(完整版)01质点运动学习题解答汇总,推荐文档
大学物理上册第一章 质点运动学 习题及答案
第一章 质点运动学一、简答题1、运动质点的路程和位移有何区别?答:路程是标量,位移是矢量;路程表示质点实际运动轨迹的长度,而位移表示始点指向终点的有向线段。
2、质点运动方程为()()()()k t z j t y i t x t r ++=,其位置矢量的大小、速度及加速度如何表示? 答:()()()t z t y t x r 222r ++==()()()k t z j t y i t xv ++= ()()()k t z j t y i t x a ++=3、质点做曲线运动在t t t ∆+→时间内速度从1v 变为到2v ,则平均加速度和t时刻的瞬时加速度各为多少? 答:平均加速度 t v v a ∆-=12 ,瞬时加速度()()dt v d t v v a t t lim t 120 =∆-=→∆4、画出示意图说明什么是伽利略速度变换公式? 其适用条件是什么?答:牵连相对绝对U V +=V ,适用条件宏观低速5、什么质点? 一个物体具备哪些条件时才可以被看作质点?答:质点是一个理想化的模型,它是实际物体在一定条件下的科学抽象。
条件:只要物体的形状和大小在所研究的问题中属于无关因素或次要因素,物体就能被看作质点。
二、选择题1、关于运动和静止的说法中正确的是 ( C )A 、我们看到的物体的位置没有变化,物体一定处于静止状态B 、两物体间的距离没有变化,两物体就一定都静止C 、自然界中找不到不运动的物体,运动是绝对的,静止是相对的D 、为了研究物体的运动,必须先选参考系,平时说的运动和静止是相对地球而言的2、下列说法中正确的是 ( D )A 、物体运动的速度越大,加速度也一定越大B 、物体的加速度越大,它的速度一定越大C 、加速度就是“加出来的速度”D 、加速度反映速度变化的快慢,与速度大小无关3、质点沿x 轴作直线运动,其t v-曲线如图所示,如s t 0=时,质点位于坐标原点,则s .t 54=时,质点在x 轴的位置为 ( B )A 、5 mB 、2 mC 、0 mD 、-2 m4、质点作匀速率圆周运动,则 ( B )A 、线速度不变B 、角速度不变C 、法向加速度不变D 、加速度不变5、质点作直线运动,某时刻的瞬时速度为s /m v 2=,瞬时加速度为22s /m a -=,则一秒钟后质点的速度 ( D )A 、等于0B 、等于s /m 2-C 、等于s /m 2D 、不能确定6、质点作曲线运动,r 表示位置矢量的大小,s 表示路程,z a 表示切向加速度的大小,v 表示速度的大小。
质点运动知识学习题集解答
第一章质点运动学重点难点:本章重点:描述物体机械运动物理量的理解和掌握,如位置矢量、位移、速度和加速度等概念;运动学中的两类问题:第一类问题是已知质点的运动方程求速度和加速度,第二类问题是已知加速度、初速度和初始位置求质点的运动方程;掌握圆周运动中的角速度、角加速度、切向加速度、法向加速度,线量与角量之间的对应关系。
难点:位置矢量、位移、速度、加速度等物理量的矢量性、瞬时性、叠加性、相对性的理解;运动学的两类问题的灵活应用。
解题思路:本章中的描述物体机械运动物理量的确定需要先选择合适的参考系和坐标系,然后根据各物理量的定义求解,比较常用的坐标系是笛卡尔坐标系和柱坐标系以及极坐标系。
对于运动学第一类问题已知质点的运动方程求速度和加速度采用的一般方法是求导,第二类问题已知加速度、初速度和初始位置求质点的运动方程一般是积分。
对于矢量运算一定要注意方向性,一般先可分解到各分坐标矢量上上进行代数运算,再进行矢量合成。
一选择题1.下列说法中,正确的是()A. 一物体若具有恒定的速率,则没有变化的速度B. 一物体具有恒定的速度,但仍有变化的速率C. 一物体具有恒定的加速度,则其速度不可能为零D. 一物体具有沿x轴正方向的加速度,其速度有可能沿x轴的负方向答案:D。
简要分析:本题考查对速度、速率和加速度等概念的正确理解,速度和位矢是描述物体机械运动状态的两个基本物理量,速度既有大小也有方向,速度的大小等于速率,加速度是单位时间内速度的改变,也具有方向性。
2. 某质点作直线运动的运动方程为x =3t -5t 3 + 6 (SI),则该质点作 ( ) A. 匀加速直线运动,加速度沿x 轴正方向 B. 匀加速直线运动,加速度沿x 轴负方向 C. 变加速直线运动,加速度沿x 轴正方向 D. 变加速直线运动,加速度沿x 轴负方向 答案: D简要分析:本题属于运动学的第一类问题,已知运动方程求速度加速度等物理量,采取的方法是先根据运动方程对时间求导,再带入相应的数据求解。
大学物理质点运动学习题(附答案)
第1章 质点运动学 习题及答案1.||与 有无不同?和有无不同? 和有无不同?其不同在哪里?试举例说明.r ∆r ∆t d d r dr dt t d d v dv dt解: ||与 不同. ||表示质点运动位移的大小,而则表示质点运动时其径向长度的r ∆r ∆r ∆r ∆增量;和不同. 表示质点运动速度的大小,而则表示质点运动速度的径向分量;t d d r dr dt t d d r dr dtt d d v 和不同. 表示质点运动加速度的大小, 而则表示质点运动加速度的切向分量.dv dt t d d v dv dt2.质点沿直线运动,其位置矢量是否一定方向不变?质点位置矢量方向不变,质点是否一定做直线运动?解: 质点沿直线运动,其位置矢量方向可以改变;质点位置矢量方向不变,质点一定做直线运动.3.匀速圆周运动的速度和加速度是否都恒定不变?圆周运动的加速度是否总是指向圆心,为什么?解: 由于匀速圆周运动的速度和加速度的方向总是随时间发生变化的,因此,其速度和加速度不是恒定不变的;只有匀速圆周运动的加速度总是指向圆心,故一般来讲,圆周运动的加速度不一定指向圆心.4.一物体做直线运动,运动方程为,式中各量均采用国际单位制,求:(1)第二秒2362x t t =-内的平均速度(2)第三秒末的速度;(3)第一秒末的加速度;(4)物体运动的类型。
解: 由于: 232621261212x(t )t t dx v(t )t t dtdv a(t )t dt=-==-==-所以:(1)第二秒内的平均速度:1(2)(1)4()21x x v ms --==- (2)第三秒末的速度: 21(3)1236318()v ms -=⨯-⨯=- (3)第一秒末的加速度:2(1)121210()a ms -=-⨯= (4)物体运动的类型为变速直线运动。
5.一质点运动方程的表达式为,式中的分别以为单位,试求;(1)质点2105(t t t =+r i j ),t r m,s 的速度和加速度;(2)质点的轨迹方程。
第一章质点运动学习题答案
第一章质点运动学习题答案1-1 质点做直线运动,运动方程为其中以s为单位,以m为单位,求:(1)=4s时,质点的位置、速度和加速度;(2)质点通过原点时的速度;(3)质点速度为零时的位置;(4) 做出-t图、-t图、-t图.解:(1) 根据直线运动情况下的定义,可得质点的位置、速度和加速度分别为(1)(2)(3)当=4s时,代入数字得:mm/sm/s(2)当质点通过原点时,=0,代入运动方程得:=0解得:,代入(2)式得:m/s=-12m/s(3) 将代入(2)式,得解得:s代入(1)式得:12m-6m=6m1.2一质点在平面上运动,运动方程为=3+5,=2+3-4.式中以 s计,,以m计.(1)以时间为变量,写出质点位置矢量的表示式;(2)求出=1 s 时刻和=2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算=0s时刻到=4s时刻内的平均速度;(4)求出质点速度矢量表示式,计算=4s 时质点的速度;(5)计算=0s 到=4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算=4s 时质点的加速度.解:(1)(2)将,代入上式即有(3)∵∴(4)则(5)∵(6)这说明该点只有方向的加速度,且为恒量.1-4 一质点沿一直线运动,其加速度为,式中的单位为m,的单位为m/s,试求该质点的速度与位置坐标之间的关系.设时,=4m/s解:依题意积分得1-5质点沿直线运动,加速度,如果当=3时,,,求质点的运动方程. (其中以m/s为单位,以s为单位,以m为单位,以m/s为单位)解:加速度表示式对积分,得将=3s,=9m,m/s代入以上二式,得积分常数m/s,=0.75m,则1-6 当物体以非常高的速度穿过空气时,由空气阻力产生的反向加速度大小与物体速度的平方成反比,即,其中为常量. 若物体不受其他力作用沿方向运动,通过原点时的速度为,试证明在此后的任意位置处其速度为.解:根据加速度定义得:,因,代入上式,分离变量,整理后得:,应用初始条件,两边积分得得即有:1-7试写出以矢量形式表示的质点做匀速圆周运动的运动学方程,并证明做匀速圆周运动质点的速度矢量和加速度矢量的标积等于零,即解:以直角坐标表示的质点运动学方程为以矢量形式表示的指点运动学方程为速度和加速度分别为所以1-8一质点在平面内运动,其运动方程为,其中均为大于零的常量.(1)试求质点在任意时刻的速度;(2)证明质点运动的轨道为椭圆;(3)证明质点的加速度恒指向椭圆的中心.解:(1)质点在任意时刻的速度(2)由消去,可得轨道方程可见是椭圆方程,表明质点作椭圆运动(3)加速度因为>0,所以的方向恒与反向,即恒指向椭圆中心.1-9路灯离地面高度为,一个身高为的人,在灯下水平路面上以匀速度步行. 如图所示,求当人与灯的水平距离为时,他的头顶在地面上的影子移动的速度的大小.解:建立如图所示的坐标,时刻头顶影子的坐标为,设头顶影子的移动速度为,则由图中可看出有,则有所以有1-10 1.10质点沿半径为的圆周按=的规律运动,式中为质点离圆周上某点的弧长,,都是常量,求:(1)时刻质点的加速度;(2)为何值时,加速度在数值上等于.解:(1)则加速度与半径的夹角为(2)由题意应有即∴当时,1-11质点做半径为20cm的圆周运动,其切向加速度恒为5cm/s,若该质点由静止开始运动,需要多少时间:(1)它的法向加速度等于切向加速度;(2)法向加速度等于切向加速度的二倍.解:质点圆周运动半径=20cm,切向加速度=5cm/s,时刻速度为,法向加速度为,因此有(1)当时,s(2)当时,s1-12 (1)地球的半径为6.37m,求地球赤道表面上一点相对于地球中心的向心加速度. (2)地球绕太阳运行的轨道半径为1.5m,求地球相对于太阳的向心加速度. (3)天文测量表明,太阳系以近似圆形的轨道绕银河系中心运动,半径为2.8m,速率为2.5m/s,求太阳系相对于银河系的向心加速度.解:(1)地球赤道表面一点相对于地球中心的向心角速度为m/s(2)地球相对太阳的向心加速度为m/s(3)太阳系相对银河系的向心加速度m/s1-13 以初速度=20抛出一小球,抛出方向与水平面成60°的夹角,求:(1)球轨道最高点的曲率半径;(2)落地处的曲率半径.解:设小球所作抛物线轨道如题1-13图所示.题1-13图(1)在最高点,又∵∴(2)在落地点,,而∴1-14一架飞机在水平地面的上方,以174m/s的速率垂直俯冲,假定飞机以圆形路径脱离俯冲,而飞机可以承受的最大加速度为78.4m/s,为了避免飞机撞到地面,求飞机开始脱离俯冲的最低高度. 假定整个运动中速率恒定.解:设飞机以半径为圆形路径俯冲,其加速度为当为飞机所能承受的最大加速度时,即为最小,所以m1-15一飞轮以速度rev/min转动,受制动而均匀减速,经s 静止,求(1) 角加速度和从制动开始到静止飞轮转过的转数;(2) 求制动开始后,s时飞轮的角速度;(3) 设飞轮半径=1m,求s时,飞轮边缘上一点的速度和加速度.解:(1)飞轮的初角速度,当s时,;代入得从开始到静止,飞轮转过的角度及其转数为:radrev(2)s 时,飞轮的角速度为rad/s(3)s 时,飞轮边缘上一点的速度为m/s相应的切线和法线加速度为m/sm/s1-16一质点沿半径为1m的圆周运动,运动方程为,式中以弧度计,以秒计,求:(1)=2s时,质点的切向和法向加速度;(2)当加速度的方向和半径成角时,其角位移是多少?解:(1)时,(2)当加速度方向与半径成角时,有即亦即则解得于是角位移为1-17一圆盘半径为3m,它的角速度在=0时为3.33rad/s,以后均匀地减小,到=4s时角速度变为零. 试计算圆盘边缘上一点在=2s时的切向加速度和法向加速度的大小.解:角速度均匀减小,因此,角加速度为rad/s圆盘做匀角加速度,故有当s时,rad/s法向和切向加速度分别为m/s=-7.8 m/s1-18某雷达站对一个飞行中的炮弹进行观测,发现炮弹达最高点时,正好位于雷达站的上方,且速率为,高度为,求在炮弹此后的飞行过程中,在(以s为单位)时刻雷达的观测方向与铅垂直方向之间的夹角及其变化率(雷达的转动角速度)解:以雷达位置为坐标原点,取坐标系如图所示,根据题意,炮弹的运动方程为可解得:(1)则将(1)式两边对求导数,得则有1-19 汽车在大雨中行驶,车速为80km/h,车中乘客看见侧面的玻璃上雨滴和铅垂线成角,当车停下来时,他发现雨滴是垂直下落的,求雨滴下落的速度.解:取车为运动参考系,雨滴相对于车的速度为,雨滴对地速度为,车对地的速度为,相对运动速度合成定理为见如图所示的速度合成图,则有m/s1-20一升降机以加速度1.22m/s上升,当上升速度为2.44 m/s时,有一螺帽自升降机的天花板松落,天花板与升降机底面相距 2.74m,计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.解:以升降机外固定柱子为参考系,竖直向上为坐标轴正向,螺帽松落时升降机底面位置为原点. 螺帽从=2.74m处松落,以初速度=2.44m/s做竖直上抛运动,升降机底面则从原点以同样的初速度做向上的加速运动,加速度=1.22m/s,它们的运动方程分别为螺帽:底面:螺帽落到底面上时,,由以上两式得=0.705s(2)螺帽相对于升降机外固定柱子的下降距离为m1-21某人骑自行车以速率向西行使,北风以速率吹来(对地面),问骑车者遇到风速及风向如何?解:地为静系E,人为动系M。
质点运动学练习册答案
质点运动学练习册答案质点运动学是研究物体在空间中运动规律的科学,特别是当物体可以被视为一个质点时。
以下是一些质点运动学的习题及其答案。
习题一:匀速直线运动一个质点以匀速 \( v = 10 \, \text{m/s} \) 沿直线运动。
如果它在 \( t = 0 \) 时位于 \( x = 0 \) 的位置,求它在 \( t = 5 \)秒时的位置。
答案:在匀速直线运动中,质点的位置 \( x \) 可以通过公式 \( x = vt \) 来计算。
将给定的值代入公式,我们得到:\[ x = 10 \, \text{m/s} \times 5 \, \text{s} = 50 \, \text{m} \]所以,质点在 \( t = 5 \) 秒时的位置是 \( x = 50 \, \text{m} \)。
习题二:匀加速直线运动一个质点从静止开始,以加速度 \( a = 2 \, \text{m/s}^2 \) 沿直线加速。
求它在 \( t = 4 \) 秒时的速度和位置。
答案:在匀加速直线运动中,速度 \( v \) 可以通过公式 \( v = at \) 来计算,位置 \( x \) 可以通过公式 \( x = \frac{1}{2}at^2 \) 来计算。
代入给定的值,我们得到:\[ v = 2 \, \text{m/s}^2 \times 4 \, \text{s} = 8 \,\text{m/s} \]\[ x = \frac{1}{2} \times 2 \, \text{m/s}^2 \times (4 \,\text{s})^2 = 16 \, \text{m} \]所以,质点在 \( t = 4 \) 秒时的速度是 \( v = 8 \, \text{m/s} \),位置是 \( x = 16 \, \text{m} \)。
习题三:抛体运动一个质点从高度 \( h = 100 \, \text{m} \) 处以初速度 \( v_0 = 30 \, \text{m/s} \) 水平抛出。
(完整版)大学物理01质点运动学习题解答
第一章 质点运动学一 选择题1. 下列说法中,正确的是:( )A. 一物体若具有恒定的速率,则没有变化的速度;B. 一物体具有恒定的速度,但仍有变化的速率;C. 一物体具有恒定的加速度,则其速度不可能为零;D. 一物体具有沿x 轴正方向的加速度而有沿x 轴负方向的速度。
解:答案是D 。
2. 长度不变的杆AB ,其端点A 以v 0匀速沿y 轴向下滑动,B 点沿x 轴移动,则B 点的速率为:( )A . v 0 sin θB . v 0 cos θC . v 0 tan θD . v 0 / cos θ 解:答案是C 。
简要提示:设B 点的坐标为x ,A 点的坐标为y ,杆的长度为l ,则222l y x =+ 对上式两边关于时间求导:0d d 2d d 2=+t y y t x x ,因v =tx d d ,0d d v -=t y ,所以 2x v -2y v 0 = 0 即 v =v 0 y /x =v 0tan θ所以答案是C 。
3. 如图示,路灯距地面高为H ,行人身高为h ,若人以匀速v 背向路灯行走,则人头影子移动的速度u 为( ) A.v H h H - B. v h H H - C. v H h D. v hH 解:答案是B 。
v x选择题2图灯s选择题3图简要提示:设人头影子到灯杆的距离为x ,则H h x s x =-,s hH H x -=, v hH H t s h H H t x u -=-==d d d d 所以答案是B 。
4. 某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作A. 匀加速直线运动,加速度沿x 轴正方向.B. 匀加速直线运动,加速度沿x 轴负方向.C. 变加速直线运动,加速度沿x 轴正方向.D. 变加速直线运动,加速度沿x 轴负方向. ( )解:答案是D5. 一物体从某一确定高度以v 0的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是:( ) A. g 0v v -t B. g 20v v -t C. g 202v v -t D. g2202v v -t 解:答案是C 。
(完整版)01质点运动学习题解答汇总,推荐文档
第一章 质点运动学一 选择题1. 下列说法中,正确的是 ()A. 一物体若具有恒定的速率,则没有变化的速度B. 一物体具有恒定的速度,但仍有变化的速率C. 一物体具有恒定的加速度,则其速度不可能为零D. 一物体具有沿x 轴正方向的加速度,其速度有可能沿x 轴的负方向解:答案是D 。
2. 某质点作直线运动的运动方程为x =3t -5t 3 + 6 (SI),则该质点作 ( )A. 匀加速直线运动,加速度沿x 轴正方向B. 匀加速直线运动,加速度沿x 轴负方向C. 变加速直线运动,加速度沿x 轴正方向D. 变加速直线运动,加速度沿x 轴负方向解:答案是D3. 如图示,路灯距地面高为H ,行人身高为h ,若人以匀速v 背向路灯行走,则人头影子移动的速度u 为( )A.B.C.D. v HhH -v hH H-v Hhv hH 解:答案是B 。
设人头影子到灯杆的距离为x ,则,,H h x s x =-s h H Hx -=v hH Ht s h H H t x u -=-==d d d d 所以答案是B 。
4. 一质点的运动方程为,其中t 1时刻的位矢为。
j i r )()(t y t x +=j i r )()(111t y t x +=问质点在t 1时刻的速率是()A.B.C.D. d d 1t r d d 1tr 1d dt t t=r 122)d d ()d d (t t ty t x =+解 根据速率的概念,它等于速度矢量的模。
本题答案为D 。
5. 一物体从某一确定高度以v 0的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是 ( )s选择题3图A.B.C.D.g 0v v -t g20v v -t g202v v -t g2202v v -t 解:答案是C 。
,,所以答案是C 。
gt t ty =-=202v v v g t t /202v v -=6. 质点作圆周运动时,下列说表述中正确的是 ()A. 速度方向一定指向切向,加速度方向一定指向圆心B. 速度方向一定指向切向,加速度方向也一般指向切向C. 由于法向分速度为零,所以法向加速度也一定为零D. 切向加速度仅由速率的变化引起解 答案是D 。
第1章 质点运动学——习题解答
第1章 质点运动学1-1 一运动质点某一瞬时位于径矢()r x y ,的端点处,关于其速度的大小有4种不同的看法,即 (1)d d tr; (2)d d t r; (3)d d sr;(4下列判断正确的是( ). (A) 只有(1)和(2)正确 (B) 只有(2)正确 (C) 只有(3)和(4)正确 (D) (1)(2)(3)(4)都正确 答案:(C )解析:瞬时速度的大小等于瞬时速率,故(3)正确;速度可由各分量合成,故(4)正确。
1-2 一质点的运动方程为22cos cos sin sin x At Bt y At Bt θθθθ⎧⎪⎨⎪⎩=+,=+,式中A ,B ,θ均为常量,且A >0,B >0,则该质点的运动为( ). (A) 一般曲线运动(B) 匀速直线运动 (C) 匀减速直线运动(D) 匀加速直线运动答案:(D )解析:由tan yxθ=可知,质点做直线运动.a x =2B cos θa y =2B sin θa =2B加速度a 为定值,故质点做匀加速直线运动.1-3 一质点沿半径为R 的圆周运动,其角速度随时间的变化规律为ω=2bt ,式中b 为正常量.如果t =0时,θ0=0,那么当质点的加速度与半径成45°角时,θ角的大小为( ) rad.(A) 12(B) 1 (C) b (D) 2b答案:(A )解析: a t =R β=2bRa n =R 2ω=4Rb 2t 2a t =a n t 2=b21θ=20tω⎰d t =bt 2=211-4 一人沿停靠的台阶式电梯走上楼需时90 s ,当他站在开动的电梯上上楼,需时60 s .如果此人沿开动的电梯走上楼,所需时间为( ).(A) 24 s (B) 30 s (C) 36 s (D) 40 s答案:(C )解析:设电梯长度为s ,则=+9060s s st , 解得t =36 s.1-5 已知质点的加速度与位移的关系式为32a x =+,当t =0时,v 0=0,x 0=0,则速度v 与位移x 的关系式为________. 答案:v 2=3x 2+4x 解析: d d d d d d d d v v x v a v t x t x ===, d d v v a x =,d =(3+2)d vxv v x x ⎰⎰,v 2=3x 2+4x .1-6 在地面上以相同的初速v 0,不同的抛射角θ斜向上抛出一物体,不计空气阻力.当θ=________时,水平射程最远,最远水平射程为________. 答案:45°20v g解析:对于斜抛运动:0cos x v t θ⋅=201sin 2y v t gt θ⋅=-当y =0时,解得02sin v t gθ=物体的水平射程20sin 2v x gθ=当θ=45°时有最远水平射程,其大小为20max v x g=1-7 某人骑摩托车以115m s -⋅的速度向东行驶,感觉到风以115m s -⋅的速度从正南吹来,则风速的大小为________ m·s -1,方向沿________.答案:m/s 东偏北45° 解析:如答案1-7图所示,由图可知=+v v v 风地风人人地故风速大小m/s v 风地=方向为东偏北45°.v 地风v 人地15v 人风15答案1-7图1-8 一质点作直线运动,加速度2sin a A t ωω=,已知t =0时,x 0=0,v 0=-ωA ,则该质点的运动方程为_______________. 答案:sin x A t ω=-,解析: d d v a t =20d sin d vtAv A t t ωωω-=⎰⎰解得,该质点的速度为cos v A t ωω=-d d x v t =d cos d xtx A t t ωω=-⎰⎰解得,该质点的运动方程为sin x A t ω=-1-9 一质点在xOy 平面上运动,运动方程为x =3t +5,y =12t 2+3t -4式中,t 以s 计,x ,y 以m 计.(1) 以时间t 为变量,写出质点位置矢量的表示式; (2) 计算第1 s 内质点的位移;(3) 计算t =0 s 时刻到t =4 s 时刻内的平均速度;(4) 求出质点速度矢量表示式,计算t =4 s 时质点的速度; (5) 计算t =0 s 到t =4 s 内质点的平均加速度;(6) 求出质点加速度矢量的表示式,计算t =4 s 时质点的加速度. (位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式) 解:(1) 质点t 时刻位矢为21(35)342r t i t t j ⎛⎫=+++- ⎪⎝⎭(m)(2) 第1 s 内位移为11010()()r x x i y y j ∆=-+-2213(10)(10)3(10)23 3.5()i ji j m ⎡⎤=-+-+-⎢⎥⎣⎦=+(3) 前4 s 内平均速度为11(1220)35(m s )4r v i j i j t -∆==⨯+=+⋅∆ (4) 质点速度矢量表示式为1d 3(3)(m s )d rv i t j t-==++⋅ t =4 s 时质点的速度为143(43)37(m s )v i j i j -=++=+⋅(5) 前4 s 内平均加速度为240731(m s )4s 4v v v a j j t -∆--====⋅∆(6) 质点加速度矢量的表示式为2d 1(m s )d va j t-==⋅t =4 s 时质点的加速度为241(m s )a j -=⋅1-10 质点沿直线运动,速度v =(t 3+3t 2+2) m·s -1,如果当t = 2 s 时,x =4 m ,求:t =3 s 时,质点的位置、速度和加速度. 解: 32d 32d x v t t t==++ 431d d 24x x v t t t t c ===+++⎰⎰当t =2时,x =4,代入可得c =-12.则质点的位置、速度和加速度的表达式分别为4312124x t t t =++-32232d 36d v t t v a t tt=++==+ 将t =3 s 分别代入得上述各式,解得1233341.25m 56m s 45m s x v a --==⋅=⋅,,1-11 质点的运动方程为2[4(32)] m r t i t j =++,t 以s 计.求: (1) 质点的轨迹方程;(2) t =1 s 时质点的坐标和位矢方向; (3) 第1 s 内质点的位移和平均速度; (4) t =1 s 时质点的速度和加速度.解:(1) 由运动方程2432x t y t⎧=⎨=+⎩消去t 得轨迹方程2(3)0x y --=(2) t =1 s 时,114m 5m x y ==,,故质点的坐标为(4,5). 由11tan 1.25y x α==得51.3α=︒,即位矢与x 轴夹角为53.0°. (3) 第1 s 内质点的位移和平均速度分别为1(40)(53)42(m)r i j i j ∆=-+-=+1142(m s )r v i j t-∆==+⋅∆ (4) 质点的速度与加速度分别为d 82d r v ti j t ==+d 8d va i t==故t =1 s 时的速度和加速度分别为1182m s v i j -=+⋅() 218m s a i -=⋅()1-12 以速度v 0平抛一球,不计空气阻力,求:t 时刻小球的切向加速度a t 和法向加速度a n 的量值. 解:小球下落过程中速度为v故切向加速度为2t d d v a t =由222n t a g a =-得,法向加速度为n a =1-13 一种喷气推进的实验车,从静止开始可在1.80 s 内加速到1 600 km·h -1的速率.按匀加速运动计算,它的加速度是否超过了人可以忍受的加速度25g ?这1.80 s 内该车跑了多少距离?解:实验车的加速度为3222160010m /s 2.4710m/s 3600 1.80v a t ⨯===⨯⨯故它的加速度略超过25g . 1.80 s 内实验车跑的距离为3160010 1.80m 400m 223600v s t ⨯==⨯=⨯ 1-14 在以初速率-1015.0 m s v ⋅=竖直向上扔一块石头后,(1) 在1.0 s 末又竖直向上扔出第二块石头,后者在h =11.0 m 高度处击中前者,求第二块石头扔出时的速率;(2) 若在1.3 s 末竖直向上扔出第二块石头,它仍在h =11.0 m 高度处击中前者,求这一次第二块石头扔出时的速率.解:(1) 设第一块石头扔出后经过时间t 被第二块击中,则2012h v t gt =-代入已知数据得2111159.82t t =-⨯解此方程,可得二解为111.84s 1.22s t t ==,′第一块石头上升到顶点所用的时间为10m 15.0s 1.53s 9.8v t g ===1m t t >,这对应于第一块石头回落时与第二块相碰;1m t t <′,这对应于第一块石头上升时被第二块赶上击中.设20v 和20v ′分别为在t 1和1t ′时刻两石块相碰时第二石块的初速度,则由于22011111()()2h v t t g t t =--- 所以2211201111()119.8(1.841)22m/s 17.2m/s 1.841h g t t v t t +-∆+⨯⨯-===-∆- 同理,2211201111()119.8(1.221)22m/s 51.1m/s 1.221h g t t v t t +-∆+⨯⨯-===-∆-′′′ (2) 由于211.3s t t ∆=>′,所以第二块石头不可能在第一块上升时与第一块相碰。
第01章(质点运动学)习题答案
思 考 题1-1 什么是矢径?矢径和对初始位置的位移矢量之间有何关系?怎样选取坐标原点才能够 使两者一致?答:矢径即位置矢量,是从坐标原点O 指向质点所在处P 的有向线段。
位移 r vD 和矢径r v不同,矢径确定某一时刻质点的位置,位移则描述某段时间内始未质点位置的变化。
矢径是相对坐标原点的,位移矢量是相对初始位置的。
对于相对静止的不同坐标系来说,位矢依 赖于坐标系的选择,而位移则与所选取的坐标系无关。
若取初始位置为坐标原点才能够使两 者一致。
1-2 在下列各图中质点 M 作曲线运动,指出哪些运动是不可能的?答:(A) 质点只要作曲线运动,肯定有法向加速度,不可能加速度为零。
(C) 在质点作曲线运动时,加速度的方向总是指向轨迹曲线凹的一侧。
(D) 质点只要作曲线运动,肯定有法向加速度,不可能只有切向加速度。
1-3 下列说法哪一条是正确的?(A) 加速度恒定不变时,物体运动方向也不变. (B) 平均速率等于平均速度的大小.(C) 不管加速度如何,平均速率表达式总可以写成 ( ) 2 / 2 1 v v v += ,其中 v 1、v 2 分 别为初、末速率.(D) 运动物体速率不变时,速度可以变化.答:加速度恒定不变时,意味着速度的大小和方向的变化是恒定的。
不是物体运动方向 不变。
平均速率不等于平均速度的大小。
若速率的变化是线性的(加速度恒定)平均速率表 达式才可以写成 ( ) 2 / 2 1 v v v + = , 否则不可以。
只有运动物体速率不变时, 速度可以变化. 才 是正确的。
1-4 如图所示,质点作曲线运动,质点的加速度 a 是恒矢量(a 1=a 2=a 3=a ).试问质点是否能作匀变速率运动? 答:质点作匀变速率运动要求切向加速度是恒量,如图 所示, 质点作曲线运动, 质点的加速度 a 是恒矢量(a 1=a 2=a 3=a) 则切向分量不一样,质点不能作匀变速率运动。
1-5 以下五种运动形式中,加速度 a 保持不变的运动是哪一a 3M 1M 2M 3a 3a 3思考题 1-4图aMMMvva =0 (A)(B)(C)(D)a vM av思考题 1-2图种或哪几种?(A) 单摆的运动. (B) 匀速率圆周运动.(C) 行星的椭圆轨道运动. (D) 抛体运动. (E) 圆锥摆运动.答:加速度a 保持不变(意味加速度 a 的大小和方向都保持不变)的运动是抛体运动。
《质点运动学》选择题解答与分析
选择题解答与分析诊断1 质点运动学 1.1直线运动1. 某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向. (B) 匀加速直线运动,加速度沿x 轴负方向. (C) 变加速直线运动,加速度沿x 轴正方向.(D) 变加速直线运动,加速度沿x 轴负方向. 答案:(D)参考解答:质点作直线运动时,常取该直线为x 轴,其运动方程可写成代数形式)(t x x =,其速度和加速度分别为(a 和v 的方向由其符号反映).d d ,d d ta t x v v == 加速度是描述质点速度的大小和方向随时间变化快慢的物理量。
本题有: 2153d d t t x -==v ,t t a 30d d -==v. 显然质点作变加速直线运动,加速度沿x 轴负方向。
凡选择正确的,给出参考解答(以后均同样处理):分支程序:凡选择回答错误的,均完成下面例题:1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 -2t 3.当t = 1 s 时,速度与加速度大小为:(A) 2m·s -1,2.24 m·s -2. (B) 6m·s -1,2.24 m·s -2. (C) 0m·s -1,6 m·s -2. (D) 6m·s -1,0 m·s -2.答案:(D)参考解答:(1) 质点速度大小为,612d d )(2t t txt -==v 因此v (1) = 12×1 - 6×12 = 6(m·s -1), (2) 质点加速度大小为,1212d d )(t tt a -==v因此1s 末的瞬时加速度为a (1) = 12 - 12×1 = 0.1.2曲线运动1. 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作 (A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D)一般曲线运动.答案:(B) 参考解答:本题有:.,22bt y at x == 联立消去时间t ,得轨道方程:,x aby =显然这是一个直线方程,另外,;2d d ,2d d 2222b ty a a t x a y x ====.022≠+=y x a a a 正确答案是变速直线运动。
大学物理第一章 质点运动学 习题解(详细、完整)
第一章 质点运动学1–1 描写质点运动状态的物理量是 。
解:加速度是描写质点状态变化的物理量,速度是描写质点运动状态的物理量,故填“速度”。
1–2 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是 运动;任意时刻a =0的运动是 运动;任意时刻a t =0,a n =常量的运动是 运动。
解:匀速率;直线;匀速直线;匀速圆周。
1–3 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为 ()m/s 102=g 。
解:此沟的宽度为m 345m 1060sin 302sin 220=︒⨯==g R θv1–4 一质点在xoy 平面内运动,运动方程为t x 2=,229t y -=,位移的单位为m ,试写出s t 1=时质点的位置矢量__________;s t 2=时该质点的瞬时速度为__________,此时的瞬时加速度为__________。
解:将s t 1=代入t x 2=,229t y -=得2=x m ,7=y ms t 1=故时质点的位置矢量为j i r 72+=(m )由质点的运动方程为t x 2=,229t y -=得质点在任意时刻的速度为m/s 2d d ==t x x v ,m/s 4d d t tx y -==v s t 2=时该质点的瞬时速度为j i 82-=v (m/s )质点在任意时刻的加速度为0d d ==ta x x v ,2m/s 4d d -==t a y y v s t 2=时该质点的瞬时加速度为j 4-m/s 2。
1–5 一质点沿x 轴正向运动,其加速度与位置的关系为x a 23+=,若在x =0处,其速度m/s 50=v ,则质点运动到x =3m 处时所具有的速度为__________。
解:由x a 23+=得x xt x x t 23d d d d d d d d +===v v v v 故x x d )23(d +=v v积分得⎰⎰+=305d )23(d x x v v v则质点运动到x =3m 处时所具有的速度大小为 61=v m/s=7.81m/s ;1–6 一质点作半径R =1.0m 的圆周运动,其运动方程为t t 323+=θ,θ以rad 计,t 以s 计。
第一章质点运动学_习题及答案-推荐下载
dr dr
dr
的增量; 和 不同. 表示质点运动速度的大小,而 则表示质点运动速度的径向分量;
dv dv
d t dt
dv
dt
和 不同. 表示质点运动加速度的大小, 而 则表示质点运动加速度的切向分量.
d t dt
dt
1 2
2.质点沿直线运动,其位置矢量是否一定方向不变?质点位置矢量方向不变,质点是否一定做直 线运动? 解: 质点沿直线运动,其位置矢量方向可以改变;质点位置矢量方向不变,质点一定做直线运动. 3.匀速圆周运动的速度和加速度是否都恒定不变?圆周运动的加速度是否总是指向圆心,为什么?
点的速度和加速度;(2)质点的轨迹方程。
解:
(1)质v 点 d的r速度20:ti
dt
质a 点 的dv加速2度0i: dt
(2)质点的轨迹方程:
5
j
由 x 10t2 , y 5t 联立消去参数 t 得质点的轨迹方程:
y2 5 x 2
3.一人自坐标原点出发,经过 20s 向东走了25 m ,又用15 s 向北走了20 m ,再经过10 s 向西南方 向走了15 m ,求:(1)全过程的位移和路程;(2)整个过程的平均速度和平均速率。
一、填空题
第 1 章 质点运动学 习题及答案
1.一质点沿 Ox 轴运动,其运动方程为 x 3 5t t3 ,则质点在任一时刻的速度为
,加速度为
。
2.一质点沿 Ox 轴运动,其运动方程为 x 3 5t t3 ,则质点在 t 2s 时的加速度大小为
,方向为
。
3. 一质点沿 Ox 轴运动,其速度为 2t2 ,初始时刻位于原点,则质点在 t 2s 时的位
(完整word版)01质点运动学习题解答汇总,推荐文档
第一章 质点运动学一 选择题1. 下列说法中,正确的是 ( ) A. 一物体若具有恒定的速率,则没有变化的速度 B. 一物体具有恒定的速度,但仍有变化的速率 C. 一物体具有恒定的加速度,则其速度不可能为零D. 一物体具有沿x 轴正方向的加速度,其速度有可能沿x 轴的负方向 解:答案是D 。
2. 某质点作直线运动的运动方程为x =3t -5t 3 + 6 (SI),则该质点作 ( ) A. 匀加速直线运动,加速度沿x 轴正方向 B. 匀加速直线运动,加速度沿x 轴负方向 C. 变加速直线运动,加速度沿x 轴正方向 D. 变加速直线运动,加速度沿x 轴负方向 解:答案是D3. 如图示,路灯距地面高为H ,行人身高为h ,若人以匀速v 背向路灯行走,则人头影子移动的速度u 为( )A.v H h H - B. v h H H - C. v H h D. v h H解:答案是B 。
设人头影子到灯杆的距离为x ,则 H h x s x =-,s hH Hx -=, v hH Ht s h H H t x u -=-==d d d d 所以答案是B 。
4. 一质点的运动方程为j i r )()(t y t x +=,其中t 1时刻的位矢为j i r )()(111t y t x +=。
问质点在t 1时刻的速率是 ( )A.d d 1tr B.d d 1tr C. 1d dt t t=r D.122)d d ()d d (t t ty t x =+解 根据速率的概念,它等于速度矢量的模。
本题答案为D 。
5. 一物体从某一确定高度以v 0的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是 ( )A. g 0vv -t B. g20v v -t C.g 202v v -t D. g2202v v -t解:答案是C 。
灯s选择题3图gt t ty =-=202v v v ,g t t /202v v -=,所以答案是C 。
大学物理第1章 质点运动学习题解答
第1章质点运动学习题解答1-9质点运动学方程为k j e ie r t t ˆ2ˆˆ22++=- .⑴求质点轨迹;⑵求自t=-1到t=1质点的位移。
解:⑴由运动学方程可知:1,2,,22====-xy z e y e x t t ,所以,质点是在z=2平面内的第一像限的一条双曲线上运动。
⑵j e e ie e r r r ˆ)(ˆ)()1()1(2222---+-=--=∆ j i ˆ2537.7ˆ2537.7+-=。
所以,位移大小:︒==∆∆=︒==∆∆=︒=-=∆∆==+-=∆+∆=∆900arccos ||arccos z 45)22arccos(||arccos y 135)22arccos(||arccos x ,22537.72537.7)2537.7()()(||2222r zr y r x y x rγβα轴夹角与轴夹角与轴夹角与1-10⑴k t j t R it R r ˆ2ˆsin ˆcos ++= ,R 为正常数,求t=0,π/2时的速度和加速度。
⑵k t j t i t r ˆ6ˆ5.4ˆ332+-= ,求t=0,1时的速度和加速度(写出正交分解式)。
解:⑴k j t R it R dt r d v ˆ2ˆcos ˆsin /++-== j R a k i R v iR a k j R v j t R i t R dt v d a t t t t ˆ|,ˆ2ˆ|,ˆ|,ˆ2ˆ|.ˆsin ˆcos /2/2/00-=+-=-=+=∴--======ππ ⑵kt j dt v d a k t j t i dt r d v ˆ36ˆ9/,ˆ18ˆ9ˆ3/2+-==+-== ; kj a k j i v j a i v t t t t ˆ36ˆ9|,ˆ18ˆ9ˆ3|,ˆ9|,ˆ3|1100+-=+-=-====== 1-12质点直线运动的运动学方程为x=acost,a 为正常数,求质点速度和加速度,并讨论运动特点(有无周期性,运动范围,速度变化情况等)解:t a dt dv a t a dt dx v t a x x x x cos /,sin /,cos -==-=== 显然,质点随时间按余弦规律作周期性运动,运动范围:a a a a v a a x a x x ≤≤-≤≤-≤≤-,,1-13图中a 、b 和c 表示质点沿直线运动三种不同情况下的x-t 图像,试说明每种运动的特点(即速度,计时起点时质点的位置坐标,质点位于坐标原点的时刻)t(s)解:质点直线运动的速度dt dx v /=,在x-t 图像中为曲线斜率。
01章 质点运动学 习题解答
x(m)
b
30° 120° 20 10 30
c
45°
t(s)
t图像中为曲线斜率。由于三种图像都是直线,因此三种运动都是匀速直线运动,设直线 与x轴正向夹角为α,则速度 v tg x / t 对于a种运动:
v tg120 3m / s, x |t 0 20m, t | x 0 20tg 30 11.55s
S 2 | x 2 (30) x 2 (0) | x 2 (0) x 2 (30) 195 60 135m
1-17 电梯以1.0m/s的匀速率下降,小孩在电梯中跳离地板0.50m高,问当小孩再次落到地板上 时,电梯下降了多长距离? 解:以电梯为参考系,小孩相对电梯做竖直上抛运动,他从起跳到再次落到地板所需
1-14质点从坐标原点出发时开始计时,沿x轴运动,其加速度ax
=
2t
(cms-
2),求在下列两种情况下质点的运动学方程,出发后6s时质点的位置、在此期间所走过的
位移及路程。⑴初速度v0=0;⑵初速度v0的大小为9cm/s,方向与加速度方向相反。 解: dv x a x dt 2tdt ,
x
vx
3 2
3g
2
2
120列车在圆弧形轨道上自东转向北行驶,在我们所讨论的时
北
间范围内,其运动学方程为S=80tv O
S
东 an α a
τ
aτ
t2(m,s),t=0时,列车在图中O点,此圆弧形轨道的半径r=1500m,求列车驶过O点以后 前进至1200m处的速率及加速度。 解:S=80t-t2 ① v=dS/dt=80-2t ② 令S=1200,由①可求得对应时间:
a x a, a v x a, a a x a
大学物理第一章质点运动学-习题及答案
(C ) 只有(2)是对的。
(D ) 只有(3)是对的。
dr _ d$工d 厂 dr dt dt .只有③正确。
1-3在相对地面静止的坐标系内,A 、B 二船都以2m s-1的速率匀速行驶,A 船沿x 轴正向,B 船沿),轴正向。
今在A 船上设置与静止坐标系方向相同的坐标系(%, y 方向单 位矢用'〃表示),那么在A 船上的坐标系中,B 船的速度(以m s^为单位)为(A ) 2i + 2j(B ) - 2i + 2j (C ) —2i — 2j (D )2i — 2j 第一章质点运动学1-1 一质点在平面上运动,已知质点位置矢量的表示式为 r = at 2i + bt 2j (其中。
上为常量) 则该质点作 (A )匀速直线运动 (E )变速直线运动 (C )抛物线运动 (D ) —般曲线运动 v = — = 2citi + 2btj 解:由 缶 知卩随/变化,质点作变速运动。
x = at 2 又由y=bfl -b y = —x a 知质点轨迹为一直线。
故该质点作变速直线运动。
1-2质点作曲线运动,「表示位置矢量,s 表示路程,①表示切向加速度,下列表达式中, 1 dv/dt = a ③ d5/d/ = v (2)dr /dz = v④ |dv/d/| = (A )只有(1)、 (4)是对的。
(B) 只有(2). (4)是对的。
[D] 解:由定义: dv a =— dr dv 丰— dr . ■[B]解:由"A 对地=2d,叫对地=2f 可得 "B 对A = "g 对地+ "地对A=%对地一对地= 2j-2i=一2i + 2/ ( m. S _1)1-4 一质点沿x 方向运动,其加速度随时间变化关系为 a = 3 + 2/ (SI)如果初始时质点的速度%为5H1-S-1,则当/为3S 时,质点的速度 W m s tv= v 0 + J adt 解: o3=5 + J (3 + 2t)dto=23 m-s'11-5 一质点的运动方程为"'-/-(SI),则在/由o 至4s 的时间间隔内,质点的位 移大小为 8m ,在/由0到4s 的时间间隔内质点走过的路程为10m 。
质点运动学 习题分析与解答
第1章 质点运动学 习题解答(一). 选择题1.一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为A. t r d dB. d d t rC. d d t rD.22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x [ ] 【分析与解答】t r d d 表示质点到坐标原点的距离随时间的变化率,d d t r表示速度矢量,d d t r 与t rd d 意义相同,在直角坐标系中,速度大小即速率可由2222d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x v v v yx求解,在自然坐标系中,速率可用公式t s v d d =计算。
正确答案是D 。
2. 一质点在平面上运动,已知质点位置矢量的表示式为22at bt =+r i j (其中a 、b 为常量), 则该质点作 A. 匀速直线运动. B. 变速直线运动. C. 抛物线运动. D.一般曲线运动. [ ] 【分析与解答】22at bt =+v i j 是变速运动,22,,ax at y bt x yb ===为直线方程正确答案是B 。
3. 某质点的速度为,已知,时它过点(3,-7),则该质点的运动方程为:A. B.C. D.不能确定 [ ]【分析与解答】22d 24(23)(47)t t t t t ==-+=+-+⎰r v i j c i j正确答案是B 。
4. 以初速将一物体斜向上抛,抛射角为,不计空气阻力,则物体在轨道最高点处的曲率半径为:A. B. C. D.不能确定。
[ ] 【分析与解答】v 0θv 0sin θg g v 02v 02cos 2θg v =2i -8t j t =02t i -4t 2j (2t +3)i -(4t 2+7)j -8j轨道最高点22220,(cos ),x xn v v v v v a g θρ=====v i ,故曲率半径2v g ρ=正确答案是C 。
5. 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为..[ ] 【分析与解答】平均速度为位移除以时间间隔,平均速率为路程除以时间, 质点沿半径为R 的圆周转动一周,位移为零,路程等于。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y x tan 60°
gx 2
2v0 2 cos 2 60°
y
v0
P
x
2v0 2
cos 2
60° (tan
60°
tan
30°) 1326m
g
y x tan 30° 765.6m
s
o 60°30°
y x
x
根据 s x 2 y 2 或者 s y ,均可以计算出 s 1531.2m 。 sin 30
D. ( dx )2 ( dy )2 dt dt
t t1
5. 一物体从某一确定高度以 v0 的初速度水平抛出,已知它落地时的速度为 vt ,那么
它的运动时间是
(
)
A. vt - v0 g
B. vt v0 2g
C. vt 2 v0 2 g
D. vt 2 v0 2 2g
解:答案是 C 。
vty
an
v2 R
(a t t ) 2 R
at
t R 1s at
(2)
s
1 2
att 2
1.5m
(3) s 2π s 0.5rad
2πR
R
(4) 1s 末
an
v2 R
(aτ t) 2 R
3m s 2 ,
a
a
2 t
a
2 n
3
2m s 2 4.2m s 2
6.
若地球的自转速率快到使得在赤道上的法向加速度为 g,则一天的时间应为
x max
(3v
2 0
/ 2k)1/ 3
5. 表面平直的山坡与水平面成 30°,在山脚用炮轰山腰处的目标,已知 v0 = 150 m s– 1,炮筒与水平面成 60°,求击中的目标离炮位有多远?
解:取坐标如图,以炮位为原点,目标为 P,离炮位的距离为 s。则有
y x tan 30°
由轨迹方程 联立解得
向加速度大小为______,法向加速度大小为_______,合加速度大小为_______。
解:答案:v0cos0; 0; g; g。
解
在最高点,垂直方向速度为零,只有水平速度,因此最高处的速度大小为
v0cos0。在最高点切向就是水平方向,法向就是竖直向下方向,因此切向加速度大小为
0,法向加速度大小为 g,合加速度大小为 g。
vA
dx A dt
4 2t
vB
dxB dt
4t 6t 2
可得:t = 0 时 v A vB ,即刚开始时 A 车行驶在前面。
(2) 由 xA xB ,可得 t = 1.19 s
(3) 由 v A vB ,可得 t = 0.67 s
3. 一质点以初速 v0,抛射角为0 作斜抛运动 ,则到达最高处的速度大小为_____,切
质点的速度为
v v0 adt t 2i t 3 j
运动方程为
r r0
vdt 1 t 3i 1 t 4 j 34
所以,2 秒时质点的速度为:
v (4i 8 j)m s-1
3. 一艘正以 v0 匀速直线行驶的舰艇,关闭发动机后,得到一个与舰速反向、大小与舰
速平方成正比的加速度,即 dv/dt=kv2,k 为一常数,求证舰艇在行驶距离 x 时的速率为
小时。(地球半径 R = 6.410 6m)
解:答案为:1.41 小时。
简要提示:由: 2 R g , g , R
T
2π
2π
R 5075s 1.41h g
7. 一列车以 5.66 m s–2 的加速度在平面直铁道上行驶,小球在车厢中自由下落,则小
球相对于车厢中乘客的加速度大小为________ m s–2,加速度与铅垂直的夹角为_______。
()
3. 如图示,路灯距地面高为 H,行人身高为 h,若人以匀速 v 背向路灯行走,则人头
影子移动的速度 u 为(
)
A. H h v H
B. H v H h
C. h v H
D. H v h
解:答案是 B 。
灯
设人头影子到灯杆的距离为 x,则
xs h ,x H s,
xH
H h
u dx H ds H v dt H h dt H h
1,方向指向东南。所以答案是 D。
v0
v
选择题 8 图
二 填空题
1. 一质点沿 x 轴运动,运动方程为 x=3+5t+6t2t3 (SI 单位)。则质点在 t=0 到 t=1s 过程 中的平均速度 v =______________m/s;质点在 t=1s 时刻的速度 v=______________ m/s。
度 a = −kx 2,求质点在 x 轴正向前进的最远距离。
解:已知:x0 = 0,v0 和 a = −kx 2,运用分离变量,得:
v dv kx 2 dx
vdv kx 2dx
两边积分:
v vdv x kx 2dx
v0
0
得:
1 2
(v
2
v
2 0
)
kx 3
/3
当
v
=
0
时,质点前进的距离最远,即:
4. 一物体作如图所示的斜抛运动,测得在轨道 A 点处速度 v 的方向与水平方向夹角为 30。则物体在 A 点切向加速度大小为________m/s2。
v A 30
填空题 4 图
答案:4.9 解 本题是斜抛运动,在运动过程中加速度始终不变,因此物体在 A 点的加速度大小 就是重力加速度的大小 g=9.8m/s2。切向加速度沿速度反方向,大小为 gcos60=4.9m/s2。
解 vA 1800 km/h 500m/s , vB 2100 km/h 583 m/s 。飞机在 B 点的加速度的法
向加速度
an
v
2 B
R
5832 4000
85.0 m/s2
俯冲过程视为匀变速率圆周运动,故切向加速度可按照下式计算
at
vB
vA t
583 - 500 23.7 m/s2 3.5
6. 设一歼击机在高空 A 点时的速度沿水平方向,速率为 1800 km/h,飞机在竖直平面 上沿近似于圆弧轨道俯冲到点 B,其速率变为 2100 km/h,A 到 B 的圆弧的半径为 4.0km, 所经历的时间为 3.5s,该俯冲过程可视为匀变速率圆周运动。求飞机在 B 点加速度的大小, 飞行员能承受这样的加速度吗?
解:答案为:11.3 m s–2;300。
简要提示:如图所示,小球相对于地面的加速度,即绝对加速度是 g。列车的加速度,
即牵连加速度 a0,大小为 a0 = 5.66 m s–2,所以小球的 相对加速度 a 为
a0 30
a g a0
a g
得 a 的大小为:
a g 2 a02 11.3m s 2
vt2
v
2 0
gt , t
v
2 t
v
2 0
/ g ,所以答案是 C
。
6. 质点作圆周运动时,下列说表述中正确的是
(
)
A. 速度方向一定指向切向,加速度方向一定指向圆心
B. 速度方向一定指向切向,加速度方向也一般指向切向
C. 由于法向分速度为零,所以法向加速度也一定为零
D. 切向加速度仅由速率的变化引起
解 根据平均速度定义, v x x1 x0 5 6 1 10 m/s。 t 1 0
质点在任意时刻的速度 v dx 5 12t 3t 2 ,因此质点在 t=1s 时刻的速度 dt
v(1) 5 12 1 3 12 14 m/s。
2. 两辆车A 和B,在笔直的公路上同向行驶,它们从同一起始线上同时出发,并且由 出发点开始计时,行驶的距离 x 与行驶时间 t 的函数关系式: xA 4t t 2 ,
2 R sin t,a y
dv y dt
2 R cost
a ax2 ay2 2R
2. 一质点运动的加速度为 a 2ti 3t 2 j ,初始速度与初始位移均为零,求该质点的运
动学方程以及 2s 时该质点的速度。 解:答案为: r 1 t 3i 1 t 4 j ; v (4i 8 j)m s-1 34 简要提示:已知质点运动的加速度,可得
B. 球匀速地上升,与顶板碰撞后匀速下落
C. 球匀减速地上升,与顶板接触后停留在那里
D. 球匀减速地上升,达最大高度后停留在那里
解:答案是 B。
升降机内的人与球之间没有相对加速度。所以答案是 B。
8. 某人在由北向南行驶,速率为 36 km h–1 的汽车上,测得风从西边吹来,大小为 10
m s–1,则实际风速大小和方向为:( )
xB 2t 2 2t 3 (SI单位),则:
(1) 它们刚离开出发点时,行驶在前面的一辆车是______________; (2) 出发后,两辆车行驶距离相同的时刻是____________________; (3) 出发后,B 车相对 A 车速度为零的时刻是__________________. 解:答案:(1)A ;(2)t = 1.19 s ;(3)t = 0.67 s (1)两车的速度分别为
5. 一质点从静止出发沿半径为 3 m 的圆周运动,切向加速度大小为 3 m s–2,则经过
s 后它的总加速度恰好与半径成 45°角。在此时间内质点经过的路程为
m,角位移为
rad,在 1s 末总加速度大小为
m s–2
解:答案为:1s; 1.5 m; 0.5 rad; 4.2 m s–2。
(1) 总加速度恰好与半径成 45°角时 a n= at ,根据
解 答案是 D。
质点作圆周运动时,一般有切向加速度和法向加速度,总加速度是它们的矢量和,加
速度的方向一般既不指向圆心也不指向切向。A、B 和 C 显然都是错误的,而切向加速度