大学物理学习题解答习题

合集下载

大学物理习题答案

大学物理习题答案

大学物理习题答案 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-一、 单项选择题:1. 北京正负电子对撞机中电子在周长为L 的储存环中作轨道运动。

已知电子的动量是P ,则偏转磁场的磁感应强度为: ( C ) (A)eLP π; (B)eL P π4; (C) eLPπ2; (D) 0。

2. 在磁感应强度为B的均匀磁场中,取一边长为a 的立方形闭合面,则通过该闭合面的磁通量的大小为: ( D )(A) B a 2; (B) B a 22; (C) B a 26; (D) 0。

3.半径为R 的长直圆柱体载流为I ,电流I 均匀分布在横截面上,则圆柱体内(R r 〈)的一点P 的磁感应强度的大小为 ( B ) (A) r I B πμ20=; (B) 202R Ir B πμ=; (C) 202rIB πμ=; (D) 202RIB πμ=。

4.单色光从空气射入水中,下面哪种说法是正确的 ( A ) (A) 频率不变,光速变小; (B) 波长不变,频率变大; (C) 波长变短,光速不变; (D) 波长不变,频率不变.5.如图,在C 点放置点电荷q 1,在A 点放置点电荷q 2,S 是包围点电荷q 1的封闭曲面,P 点是S 曲面上的任意一点.现在把q 2从A 点移到B 点,则 (D )(A) 通过S 面的电通量改变,但P 点的电场强度不变;(B) 通过S 面的电通量和P 点的电场强度都改变; (C) 通过S 面的电通量和P 点的电场强度都不变; (D) 通过S 面的电通量不变,但P 点的电场强度改变。

6.如图所示,两平面玻璃板OA 和OB 构成一空气劈尖,一平面单色光垂直入射到劈尖上,当A 板与B 板的夹角θ增大时,干涉图样将 ( C )(A) 干涉条纹间距增大,并向O 方向移动; (B) 干涉条纹间距减小,并向B 方向移动; (C) 干涉条纹间距减小,并向O 方向移动; (D) 干涉条纹间距增大,并向O 方向移动.7.在均匀磁场中有一电子枪,它可发射出速率分别为v 和2v 的两个电子,这两个电子的速度方向相同,且均与磁感应强度B 垂直,则这两个电子绕行一周所需的时间之比为 ( A )(A) 1:1; (B) 1:2; (C) 2:1; (D) 4:1.8.如图所示,均匀磁场的磁感强度为B ,方向沿y 轴正向,欲要使电量为Q 的正离子沿x 轴正向作匀速直线运动,则必须加一个均匀电场E ,其大小和方向为 ( D )(A) E =νB ,E 沿z 轴正向; (B) E =vB ,E 沿y 轴正向;(C) E =B ν,E 沿z 轴正向; (D) E =B ν,E 沿z 轴负向。

(完整版)《大学物理》练习题及参考答案

(完整版)《大学物理》练习题及参考答案

《大学物理》练习题一. 单选题:1.下列说法正确的是……………………………………() 参看课本P32-36A . 惯性系中,真空中的光速与光源的运动状态无关,与光的频率有关B . 惯性系中,真空中的光速与光源的运动状态无关,与光的频率无关C . 惯性系中,真空中的光速与光源的运动状态有关,与光的频率无关D . 惯性系中,真空中的光速与光源的运动状态有关,与光的频率有关2.下列说法正确的是………………………………… ( ) 参看课本P32-36A . 伽利略变换与洛伦兹变换是等价的B . 所有惯性系对一切物理定律都是不等价的C . 在所有惯性系中,真空的光速具有相同的量值cD . 由相对论时空观知:时钟的快慢和量尺的长短都与物体的运动无关3.下列说法正确的是………………………………… ( )参看课本P58,76,103 A . 动量守恒定律的守恒条件是系统所受的合外力矩为零 B . 角动量守恒定律的守恒条件是系统所受的合外力为零 C . 机械能守恒定律的守恒条件是系统所受的合外力不做功 D . 以上说法都不正确4. 下列关于牛顿运动定律的说法正确的是…………( ) 参看课本P44-45A . 牛顿第一运动定律是描述物体间力的相互作用的规律B . 牛顿第二运动定律是描述力处于平衡时物体的运动规律C . 牛顿第三运动定律是描述物体力和运动的定量关系的规律D . 牛顿三条运动定律是一个整体,是描述宏观物体低速运动的客观规律5.下列关于保守力的说法错误的是…………………( ) 参看课本P71-72 A . 由重力对物体所做的功的特点可知,重力是一种保守力B . 由弹性力对物体所做的功的特点可知,弹性力也是一种保守力C . 由摩擦力对物体所做的功的特点可知,摩擦力也是一种保守力D . 由万有引力对物体所做的功的特点可知,万有引力也是一种保守力6.已知某质点的运动方程的分量式是,,式中R 、ω是常cos x R t ω=sin y R t ω=数.则此质点将做………………………………………………() 参看课本P19A . 匀速圆周运动B . 匀变速直线运动C . 匀速直线运动D . 条件不够,无法确定7.如图所示,三个质量相同、线度相同而形状不同的均质物体,它们对各自的几何对称轴的转动惯量最大的是………( )A . 薄圆筒B . 圆柱体 参看课本P95C . 正方体D . 一样大8.下列关于弹性碰撞的说法正确的是………………() 中学知识在课堂已复习A . 系统只有动量守恒B . 系统只有机械能守恒C . 系统的动量和机械能都守恒D . 系统的动量和机械能都不守恒9.某人张开双臂,手握哑铃,坐在转椅上,让转椅转动起来,若此后无外力矩作用.则当此人收回双臂时,人和转椅这一系统的…………………( ) 参看课本P104A . 转速不变,角动量变大B . 转速变大,角动量保持不变C . 转速和角动量都变大D . 转速和角动量都保持不变10.下列关于卡诺循环的说法正确的是………………( ) 参看课本P144 A . 卡诺循环是由两个平衡的等温过程和两个平衡的绝热过程组成的B . 卡诺循环是由两个平衡的等温过程和两个平衡的等体过程组成的C . 卡诺循环是由两个平衡的等体过程和两个平衡的等压过程组成的D . 卡诺循环是由两个平衡的绝热过程和两个平衡的等压过程组成的11. 如图所示,在场强为E 的匀强电场中,有一个半径为R 的半球面,若场强E 的方向与半球面的对称轴平行,则通过这个半球面的电通量大小为…………………( ) 参看课本P172-173A .B .2E 22R E πC . D . 02R E 12.一点电荷,放在球形高斯面的中心处,下列情况中通过高斯面的电通量会发生变化的…………………………( ) 参看课本P173 A . 将另一点电荷放在高斯面内 B . 将高斯面半径缩小C . 将另一点电荷放在高斯面外D . 将球心处的点电荷移开,但仍在高斯面内13.如图所示,在与均匀磁场垂直的平面内有一长为l 的铜棒B MN ,设棒绕M 点以匀角速度ω转动,转轴与平行,则棒的动B 生电动势大小为……………()参看课本P257A .B . Bl ω2BlωC .D . 12Bl ω212Blω14. 、方均v 、最概然速率为,则这气体分子的三种速率的关系是…………(p v ) A .B 参看课本P125v >p vC .D p v pv =15. 下列关于导体静电平衡的说法错误………………( ) 参看课本P190-191 A . 导体是等势体,其表面是等势面 B . 导体内部场强处处为零 C . 导体表面的场强处处与表面垂直 D . 导体内部处处存在净电荷16. 下列哪种现代厨房电器是利用涡流原理工作的…( ) 参看课本P259A . 微波炉B . 电饭锅17. 下列关于电源电动势的说法正确的是……………() 参看课本P249-250A . 电源电动势等于电源把电荷从正极经内电路移到负极时所作的功B . 电源电动势的大小只取于电源本身的性质,而与外电路无关C . 电动势的指向习惯为自正极经内电路到负极的指向D . 沿着电动势的指向,电源将提高电荷的电势能18. 磁介质有三种,下列用相对磁导率正确表征它们各自特性的是………( r μ)A . 顺磁质,抗磁质,铁磁质 参看课本P39-2400r μ<0r μ<1r μ?B . 顺磁质,抗磁质,铁磁质1r μ>1r μ=1r μ?C . 顺磁质,抗磁质,铁磁质0r μ>0r μ>0r μ> D . 顺磁质,抗磁质,铁磁质1r μ>1r μ<1r μ?19. 在均匀磁场中,一带电粒子在洛伦兹力作用下做匀速率圆周运动,如果磁场的磁感应强度减小,则………………………………………………( ) 参看课本P231 A . 粒子的运动速率减小 B . 粒子的轨道半径减小 C . 粒子的运动频率不变 D . 粒子的运动周期增大20. 两根无限长的载流直导线互相平行,通有大小相等,方向相反的I 1和I 2,在两导线的正中间放一个通有电流I 的矩形线圈abcd ,如图所示. 则线圈受到的合力为…………( ) 参看课本P221-223A . 水平向左B . 水平向右C . 零D . 无法判断21. 下列说法错误的是……………………………………( ) 参看课本P263A . 通过螺线管的电流越大,螺线管的自感系数也越大B . 螺线管的半径越大,螺线管的自感系数也越大C . 螺线管中单位长度的匝数越多,螺线管的自感系数也越大D . 螺线管中充有铁磁质时的自感系数大于真空时的自感系数22. 一电偶极子放在匀强电场中,当电矩的方向与场强的方向不一致时,则它所受的合力F 和合力矩M 分别为…………………………………( ) 参看课本P168-169A . F =0 ,M =0B . F ≠0 ,M ≠0C . F =0 ,M ≠0D . F ≠0 ,M =023. 若一平面载流线圈在磁场中既不受磁力,也不受磁力矩作用,这说明……( )A . 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行 参看课本P223-224B . 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行C . 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直D . 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直24. 下列关于机械振动和机械波的说法正确的是………( ) 参看课本P306A . 质点做机械振动,一定产生机械波B .波是指波源质点在介质的传播过程C . 波的传播速度也就是波源的振动速度D . 波在介质中的传播频率与波源的振动频率相同,而与介质无关25. 在以下矢量场中,属保守力场的是…………………( ) A . 静电场 B . 涡旋电场 参看课本P180,212,258C . 稳恒磁场D . 变化磁场26. 如图所示,一根长为2a 的细金属杆AB 与载流长直导线共面,导线中通过的电流为I ,金属杆A 端距导线距离为a .金属杆AB 以速度v 向上匀速运动时,杆内产生的动生电动势为……( ) 参看课本P261 (8-8)A . ,方向由B →A B .,方向由A →B2ln 20πμεIv i =2ln 20πμεIv i =C . ,方向由B →A D . ,方向由A →B0ln 32i Iv μεπ=3ln 20πμεIv i =27.在驻波中,两个相邻波节间各质点的振动………( ) 参看课本P325A . 振幅相同,相位相同B . 振幅不同,相位相同C . 振幅相同,相位不同D . 振幅不同,相位不同28.两个质点做简谐振动,曲线如图所示,则有( )A . A 振动的相位超前B 振动π/2 参看课本P291B . A 振动的相位落后B 振动π/2C . A 振动的相位超前B 振动πD . A 振动的相位与B 振动同相29.同一点光源发出的两列光波产生相干的必要条件是…() 参看课本P336A . 两光源的频率相同,振动方向相同,相位差恒定B . 两光源的频率相同,振幅相同,相位差恒定C . 两光源发出的光波传播方向相同,振动方向相同,振幅相同D .两光源发出的光波传播方向相同,频率相同,相位差恒定30.如图所示,在一圆形电流I 所在的平面内选取一个同心圆形闭合环路L ,则由安培环路定理可知……………………………………………( ) 参看课本P235A . ,且环路上任一点B =0d 0L B l ⋅=⎰B . ,但环路上任一点B ≠0d 0L B l ⋅=⎰ C . ,且环路上任一点B ≠0d 0 L B l ⋅≠⎰D . ,且环路上任一点B =常量d 0 LB l ⋅≠⎰二. 填空题:31. 平行板电容器充电后与电源断开,然后充满相对电容率为εr 的各向均匀电介质. 则其电容C 将______,两极板间的电势差U 将________. (填减小、增大或不变) 参看课本P195,20032. 某质点沿x 轴运动,其运动方程为: x =10t –5t 2,式中x 、t 分别以m 、s 为单位. 质点任意时刻的速度v =________,加速度a =________. 参看课本P16-1733. 某人相对地面的电容为60pF ,如果他所带电荷为,则他相对地面的电C 100.68-⨯势差为__________,他具有的电势能为_____________. 参看课本P200,20234. 一人从10 m 深的井中提水,起始时,桶中装有10 kg 的水,桶的质量为1 kg ,由于水桶漏水,每升高1m 要漏去0.1 kg 的水,则水桶匀速地从井中提到井口,人所作的功为____________.参看课本P70 (2-14)35.质量为m 、半径为R 、自转运动周期为T 的月球,若月球是密度均匀分布的实球体,则其绕自转轴的转动惯量是__________,做自转运动的转动动能是__________.参看课本P100 (3-4)36. 1mol 氢气,在温度为127℃时,氢气分子的总平均动能是_____________,总转动动能是______________,内能是_____________. 〔已知摩尔气体常量R = 8.31 J/(mol ·K ) 参看课本 P120 (4-8)37. 如图所示,两个平行的无限大均匀带电平面,其面电荷密度分别为+σ和-σ. 则区域Ⅱ的场强大小E Ⅱ=___________ . 参看课本P17738. 用一定波长的单色光进行双缝干涉实验时,要使屏上的干涉条纹间距变宽,可采用的方法是: (1) _________________________;(2) ________________________. 参看课本P34439. 通过磁场中任意闭合曲面的磁通量等于_________. 感生电场是由______________产生的,它的电场线是__________曲线. (填闭合或不闭合) 参看课本P212,25840. 子弹在枪膛中前进时受到的合力与时间关系为,子弹飞出枪口5400410N F t =-⨯的速度为200m /s ,则子弹受到的冲量为_____________. 参看课本P55-5641. 将电荷量为2.0×10-8C 的点电荷,从电场中A 点移到B 点,电场力做功6.0×10-6J . 则A 、B 两点的电势差U AB =____________ . 参看课本P18142. 如图所示,图中O 点的磁感应强度大小B =______________.参看课本P229-23043. 一个螺线管的自感L =10 mH ,通过线圈的电流I =2A ,则它所储存的磁能W =_____________. 参看课本P26744. 理想气体在某热力学过程中内能增加了ΔE =250J ,而气体对外界做功A =50J ,则气体吸收的热量Q = . 参看课本P132-13345. 一平面简谐波沿x 轴的正方向传播,波速为100 m/s ,t =0时的曲线如图所示,则简谐波的波长λ =____________,频率ν =_____________. 参看课本P30946. 两个同心的球面,半径分别为R 1、R 2(R 1R 2),分别<带有总电量为Q 1、Q 2. 设电荷均匀分布在球面上,则两球面间的电势差U 12= ________________________.参看课本P186-187三. 计算题:47. 一正方形线圈由外皮绝缘的细导线绕成,共绕有100匝,每边长为10 cm ,放在B = 5.0T 的磁场中,当导线中通有I =10.0A 的电流时,求: (1) 线圈磁矩m 的大小;(2) 作用在线圈上的磁力矩M 的最大值. 参看课本P225 (7-7)48.如图所示,已知子弹质量为m ,木块质量为M ,弹簧的劲度系数为k,子弹以初速v o射入木块后,弹簧被压缩了L.设木块与平面间的滑动摩擦因数为μ,不计空气阻力.求初速v o.参看课本P80 (2-23)49. 一卡诺热机的效率为40%,其工作的低温热源温度为27℃.若要将其效率提高到50%,求高温热源的温度应提高多少?参看课本P148 (5-14)50. 质量均匀的链条总长为l,放在光滑的桌面上,一端沿桌面边缘下垂,其长度为a,如图所示.设开始时链条静止,求链条刚刚离开桌边时的速度.参看课本P70 (2-18)51.一平面简谐波在t =0时刻的波形如图所示,设波的频率ν=5 Hz,且此时图中P点的运动方向向下,求:(1) 此波的波函数;(2) P点的振动方程和位置坐标.参看课本P318 (10-11)52.如图所示,A和B两飞轮的轴杆可由摩擦啮合器使之连接,A轮的转动惯量J A=10 kg·m2.开始时,B轮静止,A轮以n A= 600 r/min的转速转动.然后使A和B连接,连接后两轮的转速n = 200 r/min.求: (1) B轮的转动惯量J B ;(2) 在啮合过程中损失的机械能ΔE.参看课本P105 (3-9及补充)53.如图所示,载流I的导线处于磁感应强度为B的均匀磁场中,导线上的一段是半径为R、垂直于磁场的半圆,求这段半圆导线所受安培力.参看课本P224-22554.如图所示的截面为矩形的环形均匀密绕的螺绕环,环的内外半径分别a和b,厚度为h,共有N匝,环中通有电流为I .求: (1) 环内外的磁感应强度B;(2) 环的自感L.参看课本P237-238 (7-23及补充)55.如图所示,一长直导线通有电流I,在与其相距d处放在有一矩形线框,线框长为l ,宽为a ,共有N 匝. 当线框以速度v 沿垂直于长导线的方向向右运动时,线框中的动生电动势是多少? 参看课本P255 (8-3)二. 填空题:31. 增大 减小32.33. 1000V 0.03 J1010m/s t -210m/s t -34. 1029 (或1050) J 35. 36. 4986J 3324J 8310 J 225mR 22245mR T π37. 38. (1) 将两缝的距离变小 (2) 将双缝到光屏的距离变大σε39. 零 变化的磁场 闭合 40.41.300V42.0.2N s ⋅0112I R μπ⎛⎫- ⎪⎝⎭43. 0.02 J44. 300 J45. 0.8 m 125 Hz46.1012114Q R R πε⎛⎫- ⎪⎝⎭三. 计算题:47. 线圈磁矩22100100.110A m m NIS ==⨯⨯=⋅线圈最大磁力矩max 10550N mM mB ==⨯=⋅48. 设子弹质量为m ,木块质量为M ,子弹与木块的共同速度v由动量守恒定律得①0()mv m M v =+由功能原理得 ②2211()()22m M gL kL m M v μ-+=-+由①、②式得 0v =49. 卡诺热机效率: 211T T η=-21300500K 110.4T T η⇒===--同理 21300600K 110.5T T η'==='--高温热源应提高的温度 11600500100KT T '-=-=n50. 设桌面为零势面,由机械能守恒定律得21222a a l mg mg mv l -=-+v ⇒=51. 解:(1) 由图中v P <0知此波沿x 轴负向传播,继而知原点此时向y 正向运动原点处0002A y v =->,023ϕπ⇒=-又x = 3m 处3300y v =>,32πϕ⇒=-由 得2x ϕπλ∆∆=2x λπϕ∆=∆30236m 223πππ-=⨯=⎛⎫--- ⎪⎝⎭此波的波函数 02cos 2x y A t ππνϕλ⎛⎫=++ ⎪⎝⎭20.10cos 10m 183t x πππ⎛⎫=+- ⎪⎝⎭(2) P 点处 P P 00y v =,<P 2πϕ⇒=P 点振动方程P P cos(2)y A t πνϕ=+0.10cos 10m 2t ππ⎛⎫=+ ⎪⎝⎭P 点位置坐标 p 363321m22x λ=+=+=52. (1) 由动量矩守恒定律得A A AB ()J J J ωω=+A A AB 2()2J n J J n ππ=+B 60020010(10)6060J ⨯=+⨯2B 20kg m J ⇒=⋅(2) 损失的机械能2222A A A B A A A B 222241111()(2)()(2)222216001200104(1020)4 1.31510J 260260E J J J J n J J n ωωππππ∆=-+=-+⎛⎫⎛⎫=⨯⨯-+⨯=⨯ ⎪ ⎪⎝⎭⎝⎭53. 依题意得 d 0x x F F =∑=d d sin d sin sin d y F F BI l BIR θθθθ===0sin d 2y F F BIR BIRπθθ===⎰54. (1)0d 2B r B r Iπμ⋅=⋅=∑⎰ 环外的磁感应强度 0B =环内的磁感应强度 02B r NIπμ⋅=02NI B rμπ=(2) 0d d d 2NIhBh r r rμΦπ==001d d ln 22b a NIh NIh br r aμμΦΦππ===⎰⎰环的自感 20ln 2N h N b L I I aμψΦπ===55. 线框的动生电动势1212()N B B lvεεε=-=-001122()NIlv NIlav d d a d d a μμππ⎛⎫=-= ⎪++⎝⎭。

《大学物理》各章练习题及答案解析

《大学物理》各章练习题及答案解析

《大学物理》各章练习题及答案解析第1章 质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是 ( D ) (A) 单摆的运动。

(B) 匀速率圆周运动。

(C) 行星的椭圆轨道运动。

(D) 抛体运动。

(E) 圆锥摆运动。

2.下面表述正确的是( B )(A)质点作圆周运动,加速度一定与速度垂直; (B) 物体作直线运动,法向加速度必为零; (C)轨道最弯处法向加速度最大; (D)某时刻的速率为零,切向加速度必为零。

3.某质点做匀速率圆周运动,则下列说法正确的是( C )(A)质点的速度不变; (B)质点的加速度不变 (C)质点的角速度不变; (D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为( D )()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA5. 一质点在平面上运动,运动方程为:j t i t r222+=,则该质点作( B )(A)匀速直线运动 (B)匀加速直线运动(C)抛物线运动 (D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是( B )(A)dt dr v = (B) dt ds v = (C) dtdv a = (D) dt vd a t=7. 某质点的运动方程为 3723+-=t t X (SI ),则该质点作 [ D ](A)匀加速直线运动,加速度沿 x 轴正方向; (B)匀加速直线运动,加速度沿 x 轴负方向; (C)变加速直线运动.加速度沿 x 轴正方向; (D)变加速直线运动,加速度沿 x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在( A )(A)加速 (B)减速 (C)匀速 (D)静止1.D2. B3. C4.D5.B ,6B ,7A 8 A二 、填空题1. 一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r)64(22-+=,t =1s 时的速度j i v22+=,加速度j a 8=,轨迹方程为x x y 32-=。

大学物理课后习题及答案(1-4章)含步骤解

大学物理课后习题及答案(1-4章)含步骤解
液面下降的速度,即
,根据流量守恒
,
(2)当
(3)当
时,
时,

,整理可得:
可得
,即
,
图1-34所示为输液的装置。设吊瓶的截面积为1 ,针孔的截面积为2 ,且1 ≫ 2 ,开始时( = 0),吊瓶内上下
液面距针孔的高度分别为ℎ1 和ℎ2 ,求吊瓶内药液全部输完时需要的时间。
,则针孔的流量为
液体总体积为
Ԧ =


= 2Ԧ − 2 Ԧ = −2Ԧ


1s末和2s末质点的速度为: 1 = 2Ԧ − 2Ԧ(m ∙ s−1 ),2 = 2Ԧ − 4Ԧ(m ∙ s −1 );
1s末和2s末质点的加速度相等:Ԧ = −2Ԧ (m ∙ s−2 )
已知一质点做直线运动,其加速度Ԧ = 4 + 3 m ∙ s−2 , 开始运动时,0 = 5 m,



= 0.06(m)
(2)设弹簧最大压缩量为∆′ , 与碰撞粘在一起的速度为 ′,0 = ( +
) ′,代入已知条件可得 ′ = 4Τ11, + 压缩弹簧的过程中,机械能守恒,则
1
(
2
1
+ ) 2 = 2 ∆′2 ,得∆′ =
+


≈ 0.04(m)
(1)角加速度 =
由 =




=
0−2×1500÷60
50
由 =


=
2×1500
60
= 50 (rad ∙ s −1 )
= − (rad ∙ s−2 )
= −,得 = −,两边进行积分
得到 − 50 = − − 0,

大学物理课后习题答案详解

大学物理课后习题答案详解

第一章质点运动学1、(习题:一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。

(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。

解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线(2)质点的位置 : 22(48)r ti t j =+-r r r由d /d v r t =r r 则速度: 28v i tj =+r r r由d /d a v t =r r 则加速度: 8a j =r r则当t=1s 时,有 24,28,8r i j v i j a j =-=+=rr r rrrrr当t=2s 时,有 48,216,8r i j v i j a j =+=+=r r r r r rr r2、(习题): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dtdv-= ⎰⎰-=t v v kdt dv v 001 t k e v v -=0t k e v dtdx-=0 dt e v dx t k tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a 4t (SI),已知t 0时,质点位于x 10 m处,初速度v0.试求其位置和时间的关系式.解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的d d r t v ,d d v t v,tvd d .解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+v v v(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t=v v v 而落地所用时间 gh2t =所以0d d r v i j t =v vd d v g j t=-v v 2202y 2x )gt (v v v v -+=+=2120212202)2(2])([gh v gh g gt v t g dt dv +=+= 5、 已知质点位矢随时间变化的函数形式为22r t i tj =+v vv,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

大学物理教材习题答案

大学物理教材习题答案

⼤学物理教材习题答案第⼀章质点运动习题解答⼀、分析题1.⼀辆车沿直线⾏驶,习题图1-1给出了汽车车程随时间的变化,请问在图中标出的哪个阶段汽车具有的加速度最⼤。

答: E 。

位移-速度曲线斜率为速率,E 阶段斜率最⼤,速度最⼤。

2.有⼒P 与Q 同时作⽤于⼀个物体,由于摩擦⼒F 的存在⽽使物体处于平衡状态,请分析习题图1-2中哪个可以正确表⽰这三个⼒之间的关系。

答: C 。

三个⼒合⼒为零时,物体才可能处于平衡状态,只有(C )满⾜条件。

3.习题图1-3(a )为⼀个物体运动的速度与时间的关系,请问习题图1-3(b )中哪个图可以正确反映物体的位移与时间的关系。

答:C 。

由v-t 图可知,速度先增加,然后保持不变,再减少,但速度始终为正,位移⼀直在增加,且三段变化中位移增加快慢不同,根据v-t 图推知s-t 图为C 。

三、综合题:1.质量为的kg 50.0的物体在⽔平桌⾯上做直线运动,其速率随时间的变化如习题图1-4所⽰。

问:(1)设s 0=t 时,物体在cm 0.2=x 处,那么s 9=t 时物体在x ⽅向的位移是多少?(2)在某⼀时刻,物体刚好运动到桌⼦边缘,试分析物体之后的运动情况。

解:(1)由v-t 可知,0~9秒内物体作匀减速直线运动,且加速度为:220.8cm/s 0.2cm/s 4a == 由图可得:0 2.0cm s =,00.8cm/s v =, 1.0cm/s t v =-,则由匀减速直线运动的位移与速度关系可得:22002() t a s s v v -=- 2200()/2t s v v a s =-+ 22[0.8( 1.0)]/20.2 2.0cm =--?+1.1c m =(2)当物体运动到桌⼦边缘后,物体将以⼀定的初速度作平抛运动。

2.设计师正在设计⼀种新型的过⼭车,习题图1- 5为过⼭车的模型,车的质量为0.50kg ,它将沿着图⽰轨迹运动,忽略过⼭车与轨道之间的摩擦⼒。

《大学物理学》习题解答静电场中的导体和电介质

《大学物理学》习题解答静电场中的导体和电介质

根据球形电容器的电容公式,得:
C
4 0
R1R2 R2 R1
4.58102 F
【12.7】半径分别为 a 和 b 的两个金属球,球心间距为 r(r>>a,r>>b),今用一根电容可忽略的细导线将 两球相连,试求:(1)该系统的电容;(2)当两球所带的总电荷是 Q 时,每一球上的电荷是多少?
【12.7 解】由于 r a , r b ,可也认为两金属球互相无影响。
以相对电容率 r ≈1 的气体。当电离粒子通过气体时,能使其电离,若两极间有电势差时,极间有电流,
从而可测出电离粒子的数量。若以 E1 表示半径为 R1 的长直导体附近的电场强度。(1)求两极间电势差的
关系式;(2)若 E1 2.0 106 V m1 , R1 0.30 mm , R2 20.00 mm , 两极间的电势差为多少?
, (R2
r) ;
外球面的电势 内外球面电势差
VR2
R2
E3 dr
Q1 Q2 4 0 R2
U
VR2
VR1
R2 R1
E2
dr
Q1 4 0
(1 R1
1) R2
可得:
Q1 6 109 C , Q2 4 109 C
【12.4】如图所示,三块平行导体平板 A,B,C 的面积均为 S,其中 A 板带电 Q,B,C 板不带电,A 和 B 间相距为 d1,A 和 C 之间相距为 d2,求(1)各导体板上的电荷分布和导体板间的电势差;(2)将 B,C 导体 板分别接地,再求导体板上的电荷分布和导体板间的电势差。
第 12 章 静电场中的导体和电介质
【12.1】半径为 R1 的金属球 A 位于同心的金属球壳内,球壳的内、外半径分别为 R2、R3 ( R2 R3 )。

大学物理习题及解答(运动学、动量及能量)

大学物理习题及解答(运动学、动量及能量)

⼤学物理习题及解答(运动学、动量及能量)1-1.质点在Oxy 平⾯内运动,其运动⽅程为j t i t r )219(22-+=。

求:(1)质点的轨迹⽅程;(2)s .t 01=时的速度及切向和法向加速度。

1-2.⼀质点具有恒定加速度j i a 46+=,在0=t 时,其速度为零,位置⽮量i r 100=。

求:(1)在任意时刻的速度和位置⽮量;(2)质点在oxy 平⾯上的轨迹⽅程,并画出轨迹的⽰意图。

1-3. ⼀质点在半径为m .r 100=的圆周上运动,其⾓位置为342t +=θ。

(1)求在s .t 02=时质点的法向加速度和切向加速度。

(2)当切向加速度的⼤⼩恰等于总加速度⼤⼩的⼀半时,θ值为多少?(3)t 为多少时,法向加速度和切向加速度的值相等?题3解: (1)由于342t +=θ,则⾓速度212t dt d ==θω,在t = 2 s 时,法向加速度和切向加速度的数值分别为 222s 2t n s m 1030.2-=??==ωr a22s t t s m 80.4d d -=?==t r a ω(2)当2t 2n t 212a a a a +==时,有2n 2t 3a a=,即 22212)24(3)r t (tr = s 29.0s 321==t此时刻的⾓位置为 rad.t 153423=+=θ (3)要使t n a a =,则有2212)24()t (r tr =s .t 550=3-1如图所⽰,在⽔平地⾯上,有⼀横截⾯2m 20.0=S 的直⾓弯管,管中有流速为1s m 0.3-?=v 的⽔通过,求弯管所受⼒的⼤⼩和⽅向。

解:在t ?时间内,从管⼀端流⼊(或流出)⽔的质量为t vS m ?=?ρ,弯曲部分AB 的⽔的动量的增量则为()()A B A B v v t vS v v m p -?=-?=?ρ依据动量定理p I ?=,得到管壁对这部分⽔的平均冲⼒()A B v v I F -=?=Sv t ρ从⽽可得⽔流对管壁作⽤⼒的⼤⼩为N 105.2232?-=-=-='Sv F F ρ作⽤⼒的⽅向则沿直⾓平分线指向弯管外侧。

大学物理习题与答案解析

大学物理习题与答案解析
v d dr tt22i1 j3 (m)/s
a d dvtt28j(m2/)s
大学物理
3、质点作直线运动,加速度 a2Asint,已知
t 0时质点初始状态为x 0
动学方程为xAsi n .t0
、v0 A、该质点运
解:
vv0
t
a
0
dt A
t2As
0
intdt
AAcostA
Acost
t
t
即 a2ct, t a 2c
vx vy
vvx 2vy 2a24c2t22a
大学物理
5、一飞机在跑道上跑过500米后,即升空,如果它在跑
前是静止的,以恒定加速度运动,升空前跑了30秒,则
当它升空时的速度为 v 100 m/s
.
3
解: x 1 at 2 2
a2t2x2 352 000190m2/s
答:B
v(m / s)
2
0到7秒的位移为:
0
r 2 22 2 2 2 2 3 1 i 3 .5 im1
坐标为:x23 .55 .5 m
t(s) 24 5 7
大学物理
3、一质点沿x轴运动的规律是 xt24t5,其中x以m 计,t以s计,则前3s内它的位移和路程分别是
(A)位移和路程都是3m. (B) 位移和路程都是-3m .
dvy dy

a vy
dvy dy
kvy2
分离变量得 :
dvy kdy vy
两边积分得 :
v dvy
y
k dy
v v0 y
0
v v0eky
大学物理
3、一质点沿半径为1 m 的圆周运动,运动方程
为 23t,3 式中以弧度计,t以秒计,求:(1) t=2 s

《大学物理学》第十一、十二、十三章练习题(解答)

《大学物理学》第十一、十二、十三章练习题(解答)

《大学物理学》第十一、十二、十三章练习题解答可能用到的物理量:122208.8510/C m N ε-=⨯⋅,922019.010/4m N C πε=⨯⋅一、选择题:1. 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 ( D )(A) (B) (C) (D)2. 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且OP =OT ,那么 ( D )(A) 穿过S 面的电通量改变,O 点的场强大小不变;(B) 穿过S 面的电通量改变,O 点的场强大小改变; (C) 穿过S 面的电通量不变,O 点的场强大小改变; (D) 穿过S 面的电通量不变,O 点的场强大小不变。

3.如图所示,在点电荷q +的电场中,若选取图中P 为电势零点,则M 点的电势为:( D ) (A)04q aπε;(B)08q aπε ;(C) 04q aπε-;(D) 08q aπε-。

4.在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电通量为 ( D ) (A)qε; (B)02q ε ; (C) 04q ε; (D) 06q ε。

5. 如图所示,a 、b 、c 是电场中某条电场线上的三个点,由此可知 ( C ) (A) E a >E b >E c ; (B) E a <E b <E c ; (C) U a >U b >U c ; (D) U a <U b <U c 。

6. 关于高斯定理的理解有下面几种说法,其中正确的是 ( C )(A) 如果高斯面内没有自由电荷,则高斯面上E ϖ处处为零; (B) 如果高斯面上电位移矢量D v为零,则该面内必无电荷;(C) 如果高斯面内有净电荷,则通过该面的电通量必不为零; (D) 如果高斯面上电通量为零,则该面内必无电荷。

大学物理习题解答

大学物理习题解答

dl Rd
x
(3) dE的大小,方向?
y
Rd x
y
dE
xdq
xydl
40 ( y2
x2
)3 2
2 0 R3
R sin R cosRd
2 0 R3
cos sin d 沿 x 方向 。
2 0
(4)
能不能由
dE
直接积分?
积分限如何确定?
因为各圆环在o 点处 dE 同向, 可直接积分 。
E0
球心处电场强度的大小 。
x
(1)将半球面视为由许多圆环拼成。
y dl
(2)带电圆环在O点产生的场强为:
xdq
o
dE
y dE 40 ( y2 x2 )32 沿 x 方向 。
dq ? dq 2ydl
x
Rd
y
x
y
dE
x 2ydl 4 0 R 3
xydl 2 0R3
x R sin , y R cos
单位时间(1秒)内电子转过的圈数(即频率):
1
2
2
v 1 T 2
u r
e2
4 0 r 2
m u2 r
, Ek
1 mu2 2
解:电子与氢核之间的电场力扮演向心力角色使得电子绕核旋转。
设电子旋转的角速度为。
e2 mu2
40r2 r
u2 r2
e2
4 0 mr 3
2
e2
4 0 r 2
2Ek r
r
(A)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷;
(B)闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必 定为零
(C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为 零

《大学物理学》第二版上册习题解答___中国科学技术大学出版社版本____黄时钟___袁广宇

《大学物理学》第二版上册习题解答___中国科学技术大学出版社版本____黄时钟___袁广宇
(3) 末的瞬时加速度为: 。
1.3质点作直线运动,初速度为零,初始加速度为 ,质点出发后,每经过 时间,加速度均匀增加 。求经过 时间后,质点的速度和位移。
解:由题意知,加速度和时间的关系为
利用 ,并取积分得

再利用 ,并取积分[设 时 ]得

1.4一质点从位矢为 的位置以初速度 开始运动,其加速度与时间的关系为 .所有的长度以米计,时间以秒计.求:
(1)求4s后,这物体的动量和速度的变化,以及力给予物体的冲量;
(2)为了使这力的冲量为200Ns,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度 的物体,回答这两个问题。
解:(1)若物体原来静止,则
[ ],沿x轴正向,
若物体原来具有初速度 ,则
于是
同理,
这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理.
负号表明船速与 轴正向反向,船速与 有关,说明船作变速运动。将上式对时间求导,可得船的加速度为
负号表明船的加速度与 轴正方向相反,与船速方向相同,加速度与 有关,说明船作变加速运动。
1.9一质点沿半径为 的圆周运动,其角坐标 (以弧度 计)可用下式表示
其中 的单位是秒( )试问:(1)在 时,它的法向加速度和切向加速度各是多少?
(8)质点的动量和动能是否与惯性系的选取有关?功是否与惯性系有关?质点的动量定理与动能定理是否与惯性系有关?请举例说明.
(9)判断下列说法是否正确,并说明理由:
(a)不受外力作用的系统,它的动量和机械能都守恒.
(b)内力都是保守力的系统,当它所受的合外力为零时,其机械能守恒.

大学物理学-习题解答

大学物理学-习题解答
答:(1)将两个线圈互相垂直地放置时,其互感最小。
(2)为减小它们之间的相互干扰,这两个变压器线圈的方向相互垂直。
因为线圈互相垂直地放置,当一线圈通以一定电时,产生磁感应强度通过另一垂直放置的线圈平面的磁通量最小,由互感系数定义 可知,此时的互感系数最小。
12-6一根长为l的导线,通以电流I,问在下述的哪一种情况中,磁场能量较大?
(1)I1=0,I2≠0,I3=0;(2)I1>I2>I3≠0;
(3)I1<I2<I3≠0;(4)I1>I2,I3=0.
答:(4)正确
12-5(1)两个相似的扁平圆线圈,怎样放置,它们的互感系数最小?设二者中心距离不变;(2)交流收音机中一般有一个电源变压器和一个输出变压器,为了减小它们之间的相互干扰,这两个变压器的位置应如何放置?为什么?
第十二章
12-1假定一矩形框以匀加速度a,自磁场外进入均匀磁场后又穿出该磁场,如图所示,问哪个图最适合表示感应电流Ii随时间t的变化关系,Ii的正负规定:逆时针为正,顺时针为负.
习题12-1图
答:d图
12-2让一块磁铁在一根很长的竖直铜管内落下,不计空气阻力,试说明磁铁最后将达到一恒定收尾速度.
答:铜管可以看成是由无数平行的铜圈叠合构成,当磁铁下落而穿过它时,产生感应电流.该电流产生的磁场对磁铁产生向上的阻力,阻碍磁铁下落.当磁铁速度增加时,阻力也增大,使磁铁的加速度越来越小,最后当磁铁下落速度足够大,

∴实际上感应电动势方向从 ,即从图中从右向左,

题12-14图
12-14如题12-14所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以 的变化率增大,求:

大学物理习题答案习题

大学物理习题答案习题
结束 返回
17-4 (1)用白光垂直入射到间距为d = 0.25mm的双链上,距离缝1.0m处放置屏 幕。求第二级干涉条纹中紫光和红光极大点 的间距(白光的波长范围是400—760nm)。
结束 返回
17-5 一射电望远镜的天线设在湖岸上, 距湖面高度为h 对岸地平线上方有一恒星刚 在升起,恒星发出波长为l 的电磁波。试求 当天线测得第一级干涉极大时恒星所在的角 位置 q (提示:作为洛埃镜干涉分析)
结束 返回
17-11 白光垂直照射到空气中一厚度为 380nm的肥皂水膜上,试问水膜表面呈现 什么颜色?(肥皂水的折射率看作1.33)。Fra bibliotek结束 返回
17-12 在棱镜 (n1=1.52 )表面镀一层增 透膜(n2=1.30),如使此增透膜适用于550.0 nm,波长的光,膜的厚度应取何值?
结束 返回
结束 返回
解: kl e=2 n
2 ne =kl
600×10-9 = 2×1.2 k =0.250×10-6 k(m)
当 k =0,1,2,3,4 时对应的厚度为
0, 0.250, 0.5, 0.75, 1.00m m 因为最大厚度为 h=l.2mm,所以能看到 的明条纹数为5条。
结束 返回
17-21 迈克耳孙干涉仪可用来测量单 色光的波长,当M2移动距离d=0.3220mm 时,测得某单色光的干涉条纹移过N=1204 条,试求该单色光的波长。
结束 返回
明纹条件为:
l = kl d = 4e + 2
(2k-1)l 膜的厚度为: e = 8
k=0,1,2,...
取 k=1 对于红光
(2k-1) 600 e= =75nm 8 (2k-1) 520 e= =65nm 8

大学物理习题及解答(振动与波、波动光学)

大学物理习题及解答(振动与波、波动光学)

1. 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ⨯ 10-2 m 。

若使物体上下振动,且规定向下为正方向。

(1)t =0时,物体在平衡位置上方8.0 ⨯ 10-2 m处,由静止开始向下运动,求运动方程。

(2)t = 0时,物体在平衡位置并以0.60 m/s 的速度向上运动,求运动方程。

题1分析:求运动方程,也就是要确定振动的三个特征物理量A 、ω,和ϕ。

其中振动的角频率是由弹簧振子系统的固有性质(振子质量m 及弹簧劲度系数k )决定的,即m k /=ω,k 可根据物体受力平衡时弹簧的伸长来计算;振幅A 和初相ϕ需要根据初始条件确定。

解:物体受力平衡时,弹性力F 与重力P 的大小相等,即F = mg 。

而此时弹簧的伸长量m l 2108.9-⨯=∆。

则弹簧的劲度系数l mg l F k ∆=∆=//。

系统作简谐运动的角频率为1s 10//-=∆==l g m k ω(1)设系统平衡时,物体所在处为坐标原点,向下为x 轴正向。

由初始条件t = 0时,m x 210100.8-⨯=,010=v 可得振幅m 100.8)/(2210102-⨯=+=ωv x A ;应用旋转矢量法可确定初相πϕ=1。

则运动方程为])s 10cos[()m 100.8(121π+⨯=--t x(2)t = 0时,020=x ,120s m 6.0-⋅=v ,同理可得m 100.6)/(22202022-⨯=+=ωv x A ,2/2πϕ=;则运动方程为]5.0)s 10cos[()m 100.6(122π+⨯=--t x2.某振动质点的x -t 曲线如图所示,试求:(1)运动方程;(2)点P 对应的相位;(3)到达点P 相应位置所需要的时间。

题2分析:由已知运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题。

本题就是要通过x -t 图线确定振动的三个特征量量A 、ω,和0ϕ,从而写出运动方程。

大学物理课后习题解答

大学物理课后习题解答
化简得
所以
l—15 一粒子沿抛物线轨道 运动,且知 。试求粒子在 m处的速度和加速度。
[解] 由粒子的轨道方程
对时间t求导数 (1)
再对时间t求导数并考虑到 是恒量 (2)
把 m代入式(1)得
1—7 湖中一小船,岸边的人用跨过高处的定滑轮的绳子拉船靠岸(如图所示)。当收绳速度为v时,试问:(1)船的运动速度u比v大还是小?(2)若v=常量。船能否作匀速运动?如果不能,其加速度为何值?
[解] (1) 由教材上图知
两边对t求导数,并注意到h为常数,得
[解] (1) 质点的加速度 a=dv/dt=4t
又 v=dx/dt 所以 dx=vdt
对上式两边积分,得
由题知 (m)
所以 c= - 457.3m
因而质点的运动方程为:
(2)
(3) 质点沿X轴作变加速直线运动,初速度为8m/s,初位置为-457.3m.
[解] 设登月舱的速率为v,周期为T,则
即 (1)
即 (2)
解式(1)(2)组成的方程组得
1—20 如图所示,一卷机扬自静止开始作匀加速运动,绞索上一点起初在A处经3s到达鼓轮的B处,然后作圆周运动。已知AB=0.45m,鼓轮半径R=0.5m,求该点经过点C时,其速度和加速度的大小和方向。
所以,t=1s时, ,
t=2s时, ,
(4)当质点的位置矢量和速度矢量垂直时,有

整理,得
解得 (舍去)
(5)任一时刻t质点离原点的距离
[解] 由
对上式两边积分

故速度v与y的函数关系为
1—14 一艘正以速率 匀速行驶的舰艇,在发动机关闭之后匀减速行驶。其加速度的大小与速度的平方成正比,即 , k为正常数。试求舰艇在关闭发动机后行驶了x距离时速度的大小。

大学物理习题参考解答物理习题参考解答刚体基本运动_转动定律_动能定理

大学物理习题参考解答物理习题参考解答刚体基本运动_转动定律_动能定理

选择题_03图示单元四 刚体基本运动 转动动能 1一 选择题01. 一刚体以每分钟60转绕z 轴做匀速转动(ω沿转轴正方向)。

设某时刻刚体上点P 的位置矢量为345r i j k =++,单位210m -,以210/m s -为速度单位,则该时刻P 点的速度为: 【 B 】(A) 94.2125.6157.0v i j k =++;(B) 25.118.8v i j =-+;(C) 25.118.8v i j =--;(D) 31.4v k =。

02. 轮圈半径为R ,其质量M 均匀布在轮缘上,长为R ,质量为m 的均质辐条固定在轮心和轮缘间,辐条共有2N 根。

今若将辐条数减少N 根但保持轮对通过轮心,垂直于轮平面轴的转动惯量保持不变,则轮圈的质量为 【 D 】(A)12N m M +; (B) 6N m M +; (C) 23N m M +; (D) 3Nm M +。

03. 如图所示,一质量为m 的均质杆长为l ,绕铅直轴OO '成θ角转动,其转动惯量为 【 C 】(A)2112ml ;(B) 221sin 4ml θ;(C) 221sin 3ml θ; (D) 213ml 。

04. 关于刚体对轴的转动惯量,下列说法中正确的是 【 C 】 (A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关; (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关; (C) 取决于刚体的质量、质量的空间分布和轴的位置;(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关。

05. 两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若A B ρρ>,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J ,则 【 B 】(A) A B J J >; (B) B A J J >;(C) A B J J =; (D) A J 和B J 哪个大,不能确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章10-1无限长直线电流的磁感应强度公式为B=μ0I 2πa,当场点无限接近于导线时(即a→0),磁感应强度B→∞,这个结论正确吗?如何解释?答:结论不正确。

公式aIBπμ2=只对理想线电流适用,忽略了导线粗细,当a→0,导线的尺寸不能忽略,电流就不能称为线电流,此公式不适用。

10-2如图所示,过一个圆形电流I附近的P点,作一个同心共面圆形环路L,由于电流分布的轴对称,L上各点的B大小相等,应用安培环路定理,可得∮L B·d l =0,是否可由此得出结论,L上各点的B均为零?为什么?答:L上各点的B不为零.由安培环路定理∑⎰=⋅iiIl dBμ得0=⋅⎰l dB,说明圆形环路L内的电流代数和为零,并不是说圆形环路L上B一定为零。

10-3设题10-3图中两导线中的电流均为8A,对图示的三条闭合曲线a,b,c,分别写出安培环路定理等式右边电流的代数和.并讨论:(1)在各条闭合曲线上,各点的磁感应强度B的大小是否相等?(2)在闭合曲线c上各点的B是否为零?为什么?解:⎰μ=⋅alB8d⎰μ=⋅balB8d⎰=⋅clB0d(1)在各条闭合曲线上,各点B的大小不相等.(2)在闭合曲线C上各点B不为零.只是B的环路积分为零而非每点0=B.题10-3图习题10-2图10-4 图示为相互垂直的两个电流元,它们之间的相互作用力是否等值、反向?由此可得出什么结论?答:两个垂直的电流元之间相互作用力不是等值、反向的。

B l Id F d⨯= 20ˆ4rr l Id B d ⨯= πμ 2212122110221212201112)ˆ(4ˆ4r rl d I l d I r r l d I l d I F d ⨯⨯=⨯⨯=πμπμ 2121211220212121102212)ˆ(4ˆ4r rl d I l d I r r l d I l d I F d ⨯⨯=⨯⨯=πμπμ ))ˆ()ˆ((4212121221************r r l d l d r r l d l d I I F d F d ⨯⨯+⨯⨯-=+πμ 2122112210212112221212102112)(ˆ4))ˆ()ˆ((4r l d l d rI I r l d r l d l d r l d I I F d F d⨯⨯=⋅-⋅=+πμπμ 一般情况下 02112≠+F d F d由此可得出两电流元(运动电荷)之间相互作用力一般不满足牛顿第三定律。

10-5 把一根柔软的螺旋形弹簧挂起来,使它的下端和盛在杯里的水银刚好接触,形成串联电路,再把它们接到直流电源上通以电流,如图所示,问弹簧会发生什么现象?怎样解释?答:弹簧会作机械振动。

当弹簧通电后,弹簧内的线圈电流可看成是同向平行的,而同向平行电流会互相吸引,因此弹簧被压缩,下端会离开水银而电流被断开,磁力消失,而弹簧会伸长,于是电源又接通,弹簧通电以后又被压缩……,这样不断重复,弹簧不停振动。

10-6 如图所示为两根垂直于xy 平面放置的导线俯视图,它们各载有大小为I 但方向相反的电流.求:(1)x 轴上任意一点的磁感应强度;(2)x 为何值时,B 值最大,并给出最大值B max .解:(1) 利用安培环路定理可求得1导线在P 点产生的磁感强度的大小为:rI B π=201μ2/1220)(12x d I +⋅π=μ2导线在P 点产生的磁感强度的大小为:r I B π=202μ2/1220)(12x d I +⋅π=μ 1B、2B 的方向如图所示.P 点总场θθcos cos 2121B B B B B x x x +=+= 021=+=y y y B B B 习题10-4图 r 12r 21 习题10-5图 习题10-6图 yPr B 1xy1 oxd θθ)()(220x d Idx B +π=μ,i x d Idx B)()(220+π=μ(2) 当 0d )(d =xx B ,0d )(d 22=<x x B 时,B (x )最大. 由此可得:x = 0处,B 有最大值.10-7 如图所示被折成钝角的长直载流导线中,通有电流I =20 A ,θ=120°,a =2.0 mm ,求A 点的磁感应强度. 解:载流直导线的磁场)sin (sin 4120ββπμ-=dIBA 点的磁感应强度)))90sin(90(sin sin 40000θθπμ--+=a IB)5.01(2/3100.2201037+⨯⨯⨯=--B =1.73⨯10-3T 方向垂直纸面向外。

10-8 一根无限长直导线弯成如图所示形状,通以电流I ,求O 点的磁感应强度. 解:图所示形状,为圆弧电流和两半无限长直载流导线的磁场叠加。

圆电流的中心的 πϕμ220R I B =半无限长直载流导线的磁场 aIB πμ40=8320R I B μ=+R I πμ20=)38(160ππμ+=R IB 方向垂直纸面向外。

10-9 如图所示,宽度为a 的薄长金属板中通有电流I ,电流沿薄板宽度方向均匀分布.求在薄板所在平面内距板的边缘为x 的P 点处的磁感应强度. 解:取离P 点为y 宽度为d y 的无限长载流细条y aI i d d = 长载流细条在P 点产生的磁感应强度y i B π=2d d 0μy yI πα=2d 0μ 所有载流长条在P 点产生的磁感强度的方向都相同,方向垂直纸面向外. 所以==⎰B B d y dy Ixa x⎰+πα20μxxa a I +π=ln 20μ 方向垂直纸面向外.习题10-7图 d 习题10-8图 习题10-9图y10-10 如图所示,半径为R 的圆盘上均匀分布着电荷,面密度为+σ,当这圆盘以角速度ω绕中心垂轴旋转时,求轴线上距圆盘中心O 为x 处的P 点的磁感应强度.解:在圆盘上取一半径为r ,宽度为d r 的环带,此环带所带电荷r r q d 2d π⋅=σ. 此环带转动相当于一圆电流,其电流大小为 π=2/d d q I ω它在x 处产生的磁感强度为2/32220)(2d d x r I r B +=μr x r r d )(22/32230+⋅=σωμ故P 点处总的磁感强度大小为:⎰+=R r x r r B 02/32230d )(2σωμ)2)(2(22/122220x x R x R -++=σωμ 方向沿x 轴方向.10-11 半径为R 的均匀带电细圆环,单位长度上所带电量为λ,以每秒n 转绕通过环心,并与环面垂直的转轴匀速转动.求:(1)轴上任一点处的磁感应强度值;(2)圆环的磁矩值.解:(1) n R I λπ2=2/32230)(y R nR B B y +==λπμB的方向为y 轴正向(2) j R n j I R p m 3222πλπ==10-12 已知磁感应强度0.2=B Wb ·m -2的均匀磁场,方向沿x 轴正方向,如题10-12图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量. 解: 如题10-12图所示题10-12图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S BΦWby ORω习题10-10图(2)通过befc 面积2S 的磁通量022=⋅=S BΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ΦWb (或曰24.0-Wb )10-13 两平行长直导线,相距0.4 m ,每根导线载有电流I 1=I 2=20 A ,如图所示,试计算通过图中斜线部分面积的磁通量. 解:如图取面微元 l d x=0.20dxBldx S d B d m =⋅=Φ)(222010x d I x I B -+=πμπμ方向垂直纸面向外.ldx x d I x I d m m ⎰⎰-+=Φ=Φ30.010.02010))(22(πμπμ30.040.010.040.0ln210.030.0ln 22010--+=πμπμl I l I =2.26⨯10-6Wb10-14长直同轴电缆由一根圆柱形导线外套同轴圆筒形导体组成,尺寸如图所示.电缆中的电流从中心导线流出,由外面导体圆筒流回.设电流均匀分布,内圆柱与外圆筒之间可作真空处理,求磁感应强度的分布.解: ⎰∑μ=⋅LI l B 0d(1)a r < 2202RIr r B μπ=202RIrB πμ=(2) b r a << I r B 02μπ=rIB πμ20=(3)c r b << I bc b r I r B 0222202μμπ+---= )(2)(22220b c r r c I B --=πμ 习题10-13图 xdx d(4)c r > 02=r B π0=B题10-14图 习题10-15图10-15 如图所示,一截面为长方形的闭合绕线环,通有电流I =1.7 A ,总匝数N =1000 匝,外直径与内直径之比为η=1.6,高h =5.0 cm.求:(1)绕线环内的磁感应强度分布;(2)通过截面的磁通量. 解:(1) 环内取一同心积分回路NI rB Bdl l d B 02μπ===⋅⎰⎰rNIB πμ20=方向为右螺旋 (2) 取面微元 h drBhdr S d B d m =⋅=Φ通过截面的磁通量. ⎰⎰=⋅=Φ2120R R m hdr rNI S d B πμηπμπμln 2ln 20120NIh R R NIh m ==Φ=8.0⨯10-6Wb10-16 一根m =1.0 kg 的铜棒静止在两根相距为l =1.0 m 的水平导轨上,棒载有电流I =50 A ,如图所示.(1)如果导轨光滑,均匀磁场的磁感应强度B 垂直回路平面向上,且B =0.5 T ,欲保持其静止,须加怎样的力(大小与方向)?(2)如果导轨与铜棒间静摩擦系数0.6,求能使棒滑动的最小磁感应强度B . 解:(1) 导线ab 中流过电流I ,受安培力IlB F =1方向水平向右,如图所示欲保持导线静止,则必须加力2F ,12F F =2F 方向与1F相反,即水平向左,5.0102012⨯⨯===IlB F F =25N(2) F 1-μmg=m aF 1-μmg ≥0Il mg B μ==0.1508.90.16.0⨯⨯⨯0.12T习题10-16图 a bI l F 2 F 110-17 如题10-17图所示,在长直导线AB 内通以电流1I =20A ,在矩形线圈CDEF 中通有电流2I =10 A ,AB 与线圈共面,且CD ,EF 都与AB 平行.已知a =9.0cm,b =20.0cm,d =1.0 cm ,求:(1)导线AB 的磁场对矩形线圈每边所作用的力;(2)矩形线圈所受合力和合力矩.解:(1)CD F方向垂直CD 向左,大小4102100.82-⨯==dI bI F CD πμ N 同理FE F方向垂直FE 向右,大小5102100.8)(2-⨯=+=a d I bI F FE πμ NCF F方向垂直CF 向上,大小为⎰+-⨯=+πμ=πμ=ad dCF dad I I r r I I F 5210210102.9ln 2d 2 N ED F方向垂直ED 向下,大小为5102.9-⨯==CF ED F F N(2)合力ED CF FE CD F F F F F+++=方向向左,大小为4102.7-⨯=F N合力矩B P M m⨯=∵ 线圈与导线共面∴ B P m//0=M.题10-17图题10-18图10-18 边长为l =0.1m 的正三角形线圈放在磁感应强度B =1T 的均匀磁场中,线圈平面与磁场方向平行.如题10-18图所示,使线圈通以电流I =10A ,求: (1) 线圈每边所受的安培力; (2) 对O O '轴的磁力矩大小;(3)从所在位置转到线圈平面与磁场垂直时磁力所作的功.解: (1) 0=⨯=B l I F bcB l I F ab⨯= 方向⊥纸面向外,大小为866.0120sin ==︒IlB F ab NB l I F ca⨯=方向⊥纸面向里,大小866.0120sin ==︒IlB F ca N(2)IS P m =B P M m⨯= 沿O O '方向,大小为221033.443-⨯===B l I ISB M m N ⋅(3)磁力功 )(12ΦΦ-=I A∵ 01=Φ B l 2243=Φ ∴ 221033.443-⨯==B l IA J10-19 横截面积S =2.0 mm 2的铜线,密度ρ=8.9×103 kg·m -3,弯成正方形的三边,可以绕水平轴OO ′转动,如图所示.均匀磁场方向向上,当导线中通有电流I =10 A ,导线AD 段和BC 段与竖直方向的夹角θ=15°时处于平衡状态,求磁感应强度B 的量值.解:在平衡的情况下,必须满足线框的重力矩与线框所受的磁力矩平衡(对OO '轴而言). 设正方形的边长为a , 则重力矩θρθρsin sin 2121gSa a a gS a M +⋅=θρsin 22g Sa =磁力矩 θθcos )21sin(222B Ia BIa M =-π=平衡时 21M M =所以 θρsin 22g Sa θcos 2B Ia = 31035.9/tg 2-⨯≈=I g S B θρ T10-20 塑料圆环盘,内外半径分别为a 和R ,如图所示.均匀带电+q ,令此盘以ω绕过环心O 处的垂直轴匀角速转动.求:(1)环心O 处的磁感应强度B ;(2)若施加一均匀外磁场,其磁感应强度B 平行于环盘平面,计算圆环受到的磁力矩. 解:(1) 取一r →r r d +圆环,环上电荷 r r q d 2d π=σ 环电流 r r I d d ωσ=圆环电流的中心的 rdIdB 20μ=dr dB 20σωμ=dr B Ra20σωμ⎰=)()(2220a R a R q --=πωμ)(20a R q +=πωμ(2) 圆环r →r r d +磁矩大小为I r p m d d 2π=r r r d 2σωπ=r B r M R a d 3σωπ=⎰)(22a R B q +41=ω10-21 一电子具有速度 v =(2.0×106i +3.0×106j ) m·s -1,进入磁场B =(0.03i -0.15j ) T 中,求作用在电子上的洛伦兹力.解:)(B q F ⨯=υ610)15.003.0()0.30.2(⨯-⨯+=j i j i q FN k j k k F-1413106.0810)09.030.0(6.1⨯-=⨯--⨯=-10-22 一质子以v =(2.0×105i +3.0×105j ) m·s -1的速度射入磁感应强度B =0.08i T 的均匀磁场中,求这质子作螺线运动的半径和螺距(质子质量m p =1.67×10-27 kg).解:半径:qBm R ⊥=υ 08.0106.1100.31067.119527⨯⨯⨯⨯⨯=--=3.91⨯10-2m qBm v R T ππ22==⊥螺距:qBm v T v h π2////⋅== 08.0106.11067.114.32100.219275⨯⨯⨯⨯⨯⨯⨯=--=0.164m习题10-20图。

相关文档
最新文档