2019年浙江省宁波市初中毕业生学业考试数学试卷(含答案)

合集下载

2019宁波市中考数学试卷(word+详解+准图)

2019宁波市中考数学试卷(word+详解+准图)

宁波市二〇一九年初中学业水平考试考试时间:120分钟满分:150分一、选择题:本大题共12小题,每小题4分,共48分.1.(2019年宁波)-2的绝对值为( )A.-12B.2 C.12D.-2{答案}B{解析}本题考查了绝对值的定义,一个数的绝对值等于这个数在数轴上所表示的点到原点的距离,因为-2在数轴上所表示的点到原点的距离是2,因此本题选B.2.(2019年宁波)下列计算正确的是( )A.a3+a2=a5B.a3·a2=a6C.(a2)3=a5D.a6÷a2=a4{答案}D{解析}本题考查了合并同类项和幂的运算,熟记合并同类项的法则与幂的运算性质是解决该类问题的关键.a3和a2不是同类项,故不能合并,选项A错误;同底数幂相乘,底数不变,指数相加,a3·a2=a5,选项B错误;幂的乘方,底数不变,指数相乘,(a2)3=a6,选项C错误;同底数幂相除,底数不变,指数相减,a6÷a2=a4,选项D正确.3.(2019年宁波)宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1526000000元人民币.数1526000000用科学记数法表示为( )A.1.526×108B.15.26×108C.1.526×109D.1.526×1010{答案}C{解析}本题考查了科学记数法,1526000000=1.526×109,因此本题选C.4.(2019年宁波)若分式12x-有意义,则x的取值范围是( )A.x﹥2 B.x≠2 C.x≠0 D.x≠-2{答案}B{解析}本题考查了分式有意义的条件,根据分式的分母不能为零,得到x-2≠0,所以x≠2,因此本题选B.5.(2019年宁波)如图,下列关于物体的主视图画法正确的是( )A.B.C.D.{答案}C{解析}本题考查了几何体的三视图,主视图是指从几何体的正面看到的平面图,该几何体从正面看,只有选项C正确,因此本题选C.6.(2019年宁波)不等式32x-﹥x的解为( )A.x﹤1 B.x﹤-1 C.x﹥1 D.x﹥-1{答案}A{解析}本题考查了解一元一次不等式.根据不等式的解法,不等式的两边同乘以2,得3-x>2x,再移项,合并同类项,得-3x>-3,解得x<1,因此本题选A.7.(2019年宁波)能说明命题“关于x的方程x2-4x+m =0一定有实数根”是假命题的反例为( ) A.m =-1 B.m =0 C.m =4 D.m =5{答案}D{解析}本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果……那么……”的形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.说明命题“关于x的方程x2-4x+m =0一定有实数根”是假命题,只要满足△=16-4m<0的解即可,即m>4的值,因此本题选D.8.(2019年宁波)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x(单位:千克)及方差S2(单位:千克2)如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是( )A.甲B.乙C.丙D.丁{答案}B{解析}本题考查平均数和方差.比较四个品种的平均数可得,甲品种和乙品种的产量更好,而甲的方差>乙的方差,所以乙品种的产量更稳定些,因此本题选B.9.(2019年宁波)已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为( )A.60°B.65°C.70°D.75°n{答案}C{解析}本题考查了平行线的性质和三角形的外角的性质.如图,∵△ABC 是含45°的等腰直角三角形,∴∠B =45°,∴∠3=∠B +∠1=45°+25°=70°,∵m ∥n ,∴∠2=∠3=70°,因此本题选C .10.(2019年宁波)如图所示,矩形纸片ABCD 中,AD =6cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为( ) A .3.5cmB .4cmC .4.5cmD .5cm{答案}B{解析}本题考查了圆锥的性质.根据题意,当裁出的扇形和圆恰好能作为一个圆锥的侧面和底面时,扇形的弧长等于圆周长.欲从矩形CDEF 中裁出最大的圆,矩形的两条边CD 、EF 恰好与圆相切,即DE 长是圆的直径,不妨设AB =x ,则扇形弧长为90180x p 白°,圆的周长为()6x p -,得90180xp 白°=()6x p -,所以x =4,因此本题选B .11.(2019年宁波)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下( ) A .31元B .30元C .25元D .19元{答案}A{解析}本题考查了代数式的概念,二元一次方程的性质以及整体思想.不妨设每支玫瑰x 元,每支百合y 元,根据题意可列出方程:5x +3y +10=3x +5y -4,得x -y =-7,若小慧只买8支玫瑰,n (第9题解)则她剩下的钱可以用代数式表示为(5x+3y+10)-8x,即-3(x-y)+10,将“x-y=-7”整体代入可得解是31,因此本题选A.12.(2019年宁波)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出( )A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和图1 图2(第12题图){答案}C{解析}本题考查了图形的面积计算和勾股定理的应用.不妨设图中所给直角三角形的较长直角边为a,较短直角边为b,斜边为c,则a2+b2=c2.将图中阴影部分分离出来,其每条边长如图所示,利用图形面积的和差关系可知阴影部分面积可以表示为c(c-b)-a(a-b),又因为a2+b2=c2,即阴影部分可表示为b(a+b-c).直角三角形的面积是12ab,选项A错误;最大正方形的面积为c2,选项B错误;最大正方形和直角三角形的面积和是c2+12ab,选项D错误;用排除法易得选项C正确.事实上,较小两个正方形重叠部分是以b为长,(a+b-c)为宽的矩形,所以面积是b(a+b-c),选项C正确,因此本题选C.二、填空题:本大题共6小题,每小题4分,共24分.13.(2019年宁波)请写出一个小于4的无理数:.{答案}p(答案不唯一){解析}本题考查了实数的大小比较和无理数的概念.本题答案不唯一,p(第12题解)14.(2019年宁波)分解因式:x 2+xy = . {答案}x (x +y ){解析}本题考查了因式分解——提取公因式.原式= x (x +y ).15.(2019年宁波)袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为 . {答案}58{解析}本题考查概率的基本计算.用红球的个数除以球的总个数即为所求的概率.因为一共有8个球,其中5个红球,所以从袋中任意摸出1个球是红球的概率是58.16.(2019年宁波)如图,某海防哨所O 发现在它的西北方向,距离哨所400米的A 处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B 处,则此时这艘船与哨所的距离OB 约为 米.(精确到1≈1.4141.732)东A(第16题图){答案}566{解析}本题考查了解直角三角形,锐角三角函数等知识.如图,在Rt △ACO 中,∠ACO =90°,AO =400,∠AOC =45°,∴CO =AO ·cos45°=Rt △BCO 中,∠BCO =90°,∠COB =60°,∴OB = cos60CO°=.17.(2019年宁波)如图,Rt △ABC 中,∠C =90°,AC =12,点D 在边BC 上,CD =5,BD =13.点P 是线段AD 上一动点,当半径为6的⊙P 与△ABC 的一边相切时,AP 的长为 .(第16题解)东A{答案}132或{解析}本题考查了直线和圆的相切,相似三角形的判定和性质,勾股定理,分类讨论思想.在Rt△ACD 中,∠C=90°,AC=12,CD=5,由勾股定理得AD=13.如图,点P到AC的最远距离是5,又因为⊙P的半径为6,所以当点P在线段AD上运动时,⊙P不可能与AC相切,有可能与BC,AB相切.当⊙P与BC相切时,作PE⊥BC于点E(如图(1)所示),此时PE=6,∵∠PED=∠ACD=90°,∠PDE=∠ADC,∴△PDE∽△ADC,∴PDAD=PEAC,即13PD=612,得:PD=6.5,∴AP=AD-PD=6.5;当⊙P与AB相切时,作PF⊥AB于点F(如图(2)所示),DQ⊥AB于点Q,在Rt△ABC中,∠C=90°,AC=12,BC=18,由勾股定理得AB=AD=BD=13,DQ⊥AB,∴AQ=12AB =∴DQ=AFP=∠AQD=90°,∠P AF=∠DAQ,∴△APF∽△ADQ,∴APAD=PFDQ,即13AP,得:AP=AP的值为132或图(1) 图(2)(第17题解)18.(2019年宁波)如图,过原点的直线与反比例函数y =kx(k﹥0)的图象交于A,B两点,点A在第一象限.点C在x轴正半轴上,连结AC交反比例函数图象于点D.AE为∠BAC的平分线,过点B作AE的垂线,垂足为E,连结DE.若AC=3DC,△ADE的面积为8,则k的值为.{答案}6{解析}本题考查了反比例函数,相似三角形,角平分线等知识.如图,连结OE,作AM⊥x轴,AN⊥x轴,垂足分别为点M,N.∵过原点的直线与反比例函数y=kx(k﹥0)的图象交于A,B两点,∴AO=BO,又∵AE⊥BE,∴OE=AO,∴∠OAE=∠OEA,∵AE为∠BAC的平分线,∴∠OAE=∠DAE,∴∠OEA=∠DAE,∴OE∥AC,∴S△OAD=S△EAD=8,∵S四边形OADN=S△OAM+S四边形AMND=S△ODN+S△OAD,又∵点A、D均在反比例函数y=kx的图象上,∴S△OAM=S△ODN=2k,∴S四边形AMND =S△OAD=8.∵AM⊥x轴,AN⊥x轴,∴AM∥DN,∴△CDN∽△CAM,∴DNAM=CDCA=3CDCD=13,不妨设DN=a,AM=3a,∵点A、D均在反比例函数y=kx的图象上,∴OM=3ka,ON=ka,∴MN=OM-ON=23ka,∴S四边形AMND=12(AM+DN)·MN=43k=8,∴k=6.三、解答题:本大题有8小题,共78分.19.(2019年宁波)先化简,再求值:(x-2)(x+2)-x(x-1),其中x =3.{解析}本题考查了整式的乘法和代数式求值.首先计算多项式乘多项式,单项式乘多项式,再合并同类项,化简后再把x的值代入即可.{答案}解:原式=x2-4-x2+x=x-4当x=3时,原式=3-4=-1.20.(2019年宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6一个中心对称图形.)(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形(第20题图){解析}本题考查了轴对称图形和中心对称图形的作图,熟练掌握轴对称图形和中心对称图形定义是解题的关键.{答案}解:(1)画出下列其中一种即可.(2)画出下列其中一种即可.21.(2019年宁波)今年5月15日,亚洲文明对话大会在北京开幕.为了增进学生对亚洲文化的了解,某学校开展了相关知识的宣传教育活动.为了解这次宣传活动的效果,学校从全校1200名学生中随机抽取100名学生进行知识测试(测试满分100分,得分均为整数),并根据这100人的测试成绩,制作了如下统计图表.Array100名学生知识测试成绩的频数表(第21题图)由图表中给出的信息回答下列问题:(1)m=,并补全频数直方图;(2)小明在这次测试中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗?请简要说明理由;(3)如果80分以上(包括80分)为优秀,请估计全校1200名学生中成绩优秀的人数.{解析}本题考查了频数表,频数直方图,中位数,用样本估计总体.明确题意,找出所求问题需要的条件、利用数形结合思想解析问题.{答案}解:(1)20.补全频数直方图:(2)不一定是,理由:将100名学生知识测试成绩从小到大排列,第50名与第51名的成绩都在分数段80≤a<90中,但它们的平均数不一定是85分.(3)4015100+×1200=660(人).答:全校1200名学生中,成绩优秀的约有660人.22.(2019年宁波)如图,已知二次函数y=x2+ax+3的图象经过点P(-2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.{解析}本题考查了二次函数的性质、待定系数法求解析式以及距离问题.在第(2)题的第②小题中先确定到y轴的距离等于2的x的值,再利用数形结合思想确定n的取值范围是解此题的关键.{答案}解:(1)把P(-2,3)代入y=x2+ax+3,得3=(-2)2-2a+3,解得a=2.∵y=x2+2x+3=(x+1)2+2,∴顶点坐标为(-1,2).(2)①把x=2代入y=x2+2x+3,求得y=11,∴当m=2时,n =11.②2≤n<11.23.(2019年宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H 在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD的中点,FH=2,求菱形ABCD的周长.{解析}本题考查了矩形、菱形的性质,全等三角形的判定和性质,平行四边形的判定和性质.根据矩形和菱形的相关性质得到判定三角形全等的条件,进而得出边相等.利用中点的定义进行边的等量转化,判定四边形ABGE是平行四边形,再利用矩形的对角线相等这一性质进行边的转化,求出菱形ABCD周长.{答案}解:(1)在矩形EFGH中,EH=FG,EH∥FG.∴∠GFH=∠EHF.∵∠BFG=180°-∠GFH,∠DHE=180°-∠EHF,∴∠BFG=∠DHE.在菱形ABCD中,AD∥BC,∴∠GBF=∠EDH.∴△BGF≌△DEH(AAS).∴BG=DE.(2)如图,连结EG.在菱形ABCD中,AD∥BC,且AD=BC.(第23题解)HF∵E 为AD 中点,∴AE =ED ,又∵BG =DE , ∴AE ∥BG ,且AE =BG . ∴四边形ABGE 为平行四边形. ∴AB =EG .在矩形EFGH 中,EG =FH =2,∴AB =2,∴菱形的周长为8.24.(2019年宁波)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7︰40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y (米)与时间x (分)的函数关系如图2所示.(1)求第一班车离入口处的路程y (米)与时间x (分)的函数表达式. (2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)(第24题图)本题考查了用待定系数法求一次函数解析式,一次函数的生活应用,一元一次不等式,主要考查学生能否把实际问题转化成数学问题.在第(1)小题中,根据(20,0),(38,2700)这两个特殊点,利用待定系数法可以求出y 关于x 的函数关系式.在第(2)小题中,已知函数值求自变量.第(3)小题中,利用一元一次不等式求出最早可以坐的班车,进而求出时差. {答案}解:(1)由题意得,可设函数表达式为:y =kx +b (k ≠0).把(20,0),(38,2700)代入y =kx +b ,得020270038k b k b ì=+ïí=+ïî,解得1503000k b ì=ïí=-ïî.图 2x y 2700150065382520小聪第一班车(分)(米)O图1∴第一班车离入口处的路程y(米)与时间x(分)的函数表达式为y=150x-3000(20≤x≤38).(注:x的取值范围可省略不写)(2)把y=1500代入,解得x=30,则30-20=10(分).∴第一班车到塔林所需时间10分钟.(3)设小聪坐上第n班车.30-25+10(n-1)≥40,解得n≥4.5,∴小聪最早坐上第5班车.等班车时间为5分钟,坐班车所需时间:1200÷150=8(分),步行所需时间:1200÷(1500÷25)=20(分),20-(8+5)=7(分).∴小聪坐班车去草甸比他游玩结束后立即步行到达草甸提早7分钟.25.(2019年宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.B图1 图2 图3(第25题图){解析}本题综合考查了直角三角形,等腰三角形,相似三角形的知识.根据邻余四边形的定义判定四边形ABEF是邻余四边形,利用直角三角形的两锐角互余画出图形,利用等腰三角形,相似三角形的判定和性质求出AB长.{答案}解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠F AB与∠EBA互余,∴四边形ABEF是邻余四边形.(2)如图所示(答案不唯一)B四边形ABEF即为所求.(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE.∵∠EDF=90°,M是EF中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴QBNC=BDCE=35.∵QB=3,∴NC=5,又∵AN=CN,∴AC=2CN=10,∴AB=AC=10.26.(2019年宁波)如图1,⊙O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,CB 的延长线交于点D,E,连结DE,BF⊥EC交AE于点F.(1)求证:BD=BE.(2)当AF︰EF=3︰2,AC=6时,求AE的长.(3)设AFEF=x,tan∠DAE=y.①求y关于x的函数表达式;②如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.图1 图2(第26题图){解析}本题综合考查了圆,等腰三角形的判定、相似三角形的判定和性质.第(1)小题中利用同弧所对的圆周角相等,等角对等边推出两边相等.第(2)小题中利用等边△ABC的性质求出相关边长,再利用相似三角形对应边成比例求出EG长,然后由勾股定理求出AE.第(3)小题中通过构造直角三角形,有效利用tan∠DAE,找出y与x之间的函数关系;通过设参数a表示相关线段长,由面积关系找出等量关系,既而求出y值.{答案}解:(1)∵△ABC为等边三角形,∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D,∴BD=BE.(2)如图,过点A作AG⊥EC于点G,∵△ABC是等边三角形,AC=6,∴BG=12BC=12AC=3,∴在Rt△ABG中,AG=∵BF⊥EC,∴BF∥AG,∴AFEF=BGEB,∵AF︰EF=3︰2,∴BE=23BG=2,∴EG=BE+BG=3+2=5,∴在Rt△AEG中,AE(3)①如图,过点E作EH⊥AD于点H.∵∠EBD=∠ABC=60°,∴在Rt△BEH中,EHBE=sin60°=2,∴EH=2BE,BH=12BE,∵BGEB=AFEF=x,∴BG=xBE,∴AB=BC=2BG=2xBE,∴AH=AB+BH=2xBE+12BE=(2x+12)BE,∴在Rt△AHE中,tan∠EAD=EHAH=21(2)2x BE+∴y.(第26题第(2)题解)②如图,过点O 作OM ⊥EC 于点M ,设BE =a , ∵BG EB =AFEF=x ,∴CG =BG =xBE =ax , ∴EC =CG +BG +BE =a +2ax , ∴EM =12EC =12a +ax , ∴BM =EM -BE =ax -12a , ∵BF ∥AG ,∴△EBF ∽△EGA , ∴BF AG =BE EG =a a ax +=11x+. ∵AG,∴BF =11x+AG=1x +,∴△OFB 的面积=2BF BM ×=12(ax -12a ),∴△AEC 的面积=2EC AG ×=12(a +2ax ), ∵△AEC 的面积是△OFB 的面积的10倍, ∴12(a +2ax )=10×12×1x +(ax -12a ),∴ 2x 2-7x +6=0,解得x 1=2,x 2=32,∴ y.(第26题第(3)②题解)。

2019年浙江省宁波市中考数学试卷(含解析)完美打印版

2019年浙江省宁波市中考数学试卷(含解析)完美打印版

2019年浙江省宁波市中考数学试卷一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)﹣2的绝对值为()A.﹣B.2C.D.﹣22.(4分)下列计算正确的是()A.a3+a2=a5B.a3•a2=a6C.(a2)3=a5D.a6÷a2=a43.(4分)宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1526000000元人民币.数1526000000用科学记数法表示为()A.1.526×108B.15.26×108C.1.526×109D.1.526×10104.(4分)若分式有意义,则x的取值范围是()A.x>2B.x≠2C.x≠0D.x≠﹣25.(4分)如图,下列关于物体的主视图画法正确的是()A.B.C.D.6.(4分)不等式>x的解为()A.x<1B.x<﹣1C.x>1D.x>﹣17.(4分)能说明命题“关于x的方程x2﹣4x+m=0一定有实数根”是假命题的反例为()A.m=﹣1B.m=0C.m=4D.m=58.(4分)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A.甲B.乙C.丙D.丁9.(4分)已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n 交于点D.若∠1=25°,则∠2的度数为()A.60°B.65°C.70°D.75°10.(4分)如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD 后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A.3.5cm B.4cm C.4.5cm D.5cm11.(4分)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A.31元B.30元C.25元D.19元12.(4分)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和二、填空题(每小题4分,共24分)13.(4分)请写出一个小于4的无理数:.14.(4分)分解因式:x2+xy=.15.(4分)袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为.16.(4分)如图,某海防哨所O发现在它的西北方向,距离哨所400米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这艘船与哨所的距离OB约为米.(精确到1米,参考数据:≈1.414,≈1.732)17.(4分)如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的⊙P与△ABC的一边相切时,AP的长为.18.(4分)如图,过原点的直线与反比例函数y=(k>0)的图象交于A,B两点,点A在第一象限.点C在x轴正半轴上,连结AC交反比例函数图象于点D.AE为∠BAC的平分线,过点B作AE的垂线,垂足为E,连结DE.若AC=3DC,△ADE的面积为8,则k的值为.三、解答题(本大题有8小题,共78分)19.(6分)先化简,再求值:(x﹣2)(x+2)﹣x(x﹣1),其中x=3.20.(8分)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)21.(8分)今年5月15日,亚洲文明对话大会在北京开幕.为了增进学生对亚洲文化的了解,某学校开展了相关知识的宣传教育活动.为了解这次宣传活动的效果,学校从全校1200名学生中随机抽取100名学生进行知识测试(测试满分100分,得分均为整数),并根据这100人的测试成绩,制作了如下统计图表.100名学生知识测试成绩的频数表由图表中给出的信息回答下列问题:(1)m=,并补全频数直方图;(2)小明在这次测试中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗?请简要说明理由;(3)如果80分以上(包括80分)为优秀,请估计全校1200名学生中成绩优秀的人数.22.(10分)如图,已知二次函数y=x2+ax+3的图象经过点P(﹣2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.23.(10分)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.24.(10分)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.(2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)25.(12分)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.26.(14分)如图1,⊙O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,CB的延长线交于点D,E,连结DE,BF⊥EC交AE于点F.(1)求证:BD=BE.(2)当AF:EF=3:2,AC=6时,求AE的长.(3)设=x,tan∠DAE=y.①求y关于x的函数表达式;②如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.2019年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)﹣2的绝对值为()A.﹣B.2C.D.﹣2【分析】根据绝对值的意义求出即可.【解答】解:﹣2的绝对值为2,故选:B.2.(4分)下列计算正确的是()A.a3+a2=a5B.a3•a2=a6C.(a2)3=a5D.a6÷a2=a4【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.【解答】解:A、a3与a2不是同类项,故不能合并,故选项A不合题意;B、a3•a2=a5故选项B不合题意;C、(a2)3=a6,故选项C不合题意;D、a6÷a2=a4,故选项D符合题意.故选:D.3.(4分)宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1526000000元人民币.数1526000000用科学记数法表示为()A.1.526×108B.15.26×108C.1.526×109D.1.526×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:数字1526000000科学记数法可表示为1.526×109元.故选:C.4.(4分)若分式有意义,则x的取值范围是()A.x>2B.x≠2C.x≠0D.x≠﹣2【分析】分式有意义时,分母x﹣2≠0,由此求得x的取值范围.【解答】解:依题意得:x﹣2≠0,解得x≠2.故选:B.5.(4分)如图,下列关于物体的主视图画法正确的是()A.B.C.D.【分析】根据主视图是从正面看到的图形,进而得出答案.【解答】解:物体的主视图画法正确的是:.故选:C.6.(4分)不等式>x的解为()A.x<1B.x<﹣1C.x>1D.x>﹣1【分析】去分母、移项,合并同类项,系数化成1即可.【解答】解:>x,3﹣x>2x,3>3x,x<1,故选:A.7.(4分)能说明命题“关于x的方程x2﹣4x+m=0一定有实数根”是假命题的反例为()A.m=﹣1B.m=0C.m=4D.m=5【分析】利用m=5使方程x2﹣4x+m=0没有实数解,从而可把m=5作为说明命题“关于x的方程x2﹣4x+m=0一定有实数根”是假命题的反例.【解答】解:当m=5时,方程变形为x2﹣4x+5=0,因为△=(﹣4)2﹣4×5<0,所以方程没有实数解,所以m=5可作为说明命题“关于x的方程x2﹣4x+m=0一定有实数根”是假命题的反例.故选:D.8.(4分)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A.甲B.乙C.丙D.丁【分析】先比较平均数得到甲组和乙组产量较好,然后比较方差得到乙组的状态稳定.【解答】解:因为甲组、乙组的平均数丙组比丁组大,而乙组的方差比甲组的小,所以乙组的产量比较稳定,所以乙组的产量既高又稳定,故选:B.9.(4分)已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n 交于点D.若∠1=25°,则∠2的度数为()A.60°B.65°C.70°D.75°【分析】先求出∠AED=∠1+∠B=25°+45°=70°,再根据平行线的性质可知∠2=∠AED=70°.【解答】解:设AB与直线n交于点E,则∠AED=∠1+∠B=25°+45°=70°.又直线m∥n,∴∠2=∠AED=70°.故选:C.10.(4分)如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD 后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A.3.5cm B.4cm C.4.5cm D.5cm【分析】设AB=xcm,则DE=(6﹣x)cm,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可.【解答】解:设AB=xcm,则DE=(6﹣x)cm,根据题意,得=π(6﹣x),解得x=4.故选:B.11.(4分)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A.31元B.30元C.25元D.19元【分析】设每支玫瑰x元,每支百合y元,根据总价=单价×数量结合小慧带的钱数不变,可得出关于x,y的二元一次方程,整理后可得出y=x+7,再将其代入5x+3y+10﹣8x中即可求出结论.【解答】解:设每支玫瑰x元,每支百合y元,依题意,得:5x+3y+10=3x+5y﹣4,∴y=x+7,∴5x+3y+10﹣8x=5x+3(x+7)+10﹣8x=31.故选:A.12.(4分)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和【分析】根据勾股定理得到c2=a2+b2,根据正方形的面积公式、长方形的面积公式计算即可.【解答】解:设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c2=a2+b2,阴影部分的面积=c2﹣b2﹣a(c﹣b)=a2﹣ac+ab=a(a+b﹣c),较小两个正方形重叠部分的长=a﹣(c﹣b),宽=a,则较小两个正方形重叠部分底面积=a(a+b﹣c),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选:C.二、填空题(每小题4分,共24分)13.(4分)请写出一个小于4的无理数:.【分析】由于15<16,则<4.【解答】解:∵15<16,∴<4,即为小于4的无理数.故答案为.14.(4分)分解因式:x2+xy=x(x+y).【分析】直接提取公因式x即可.【解答】解:x2+xy=x(x+y).15.(4分)袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为.【分析】直接利用概率公式求解.【解答】解:从袋中任意摸出一个球,则摸出的球是红球的概率=.故答案为.16.(4分)如图,某海防哨所O发现在它的西北方向,距离哨所400米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这艘船与哨所的距离OB约为566米.(精确到1米,参考数据:≈1.414,≈1.732)【分析】通过解直角△OAC求得OC的长度,然后通过解直角△OBC求得OB的长度即可.【解答】解:如图,设线段AB交y轴于C,在直角△OAC中,∠ACO=∠CAO=45°,则AC=OC.∵OA=400米,∴OC=OA•cos45°=400×=200(米).∵在直角△OBC中,∠COB=60°,OC=200米,∴OB===400≈566(米)故答案是:566.17.(4分)如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的⊙P与△ABC的一边相切时,AP的长为 6.5或3.【分析】根据勾股定理得到AB==6,AD==13,当⊙P于BC相切时,点P到BC的距离=6,过P作PH⊥BC于H,则PH=6,当⊙P于AB相切时,点P到AB的距离=6,根据相似三角形的性质即可得到结论.【解答】解:∵在Rt△ABC中,∠C=90°,AC=12,BD+CD=18,∴AB==6,在Rt△ADC中,∠C=90°,AC=12,CD=5,∴AD==13,当⊙P于BC相切时,点P到BC的距离=6,过P作PH⊥BC于H,则PH=6,∵∠C=90°,∴AC⊥BC,∴PH∥AC,∴△DPH∽△DAC,∴,∴=,∴PD=6.5,∴AP=6.5;当⊙P于AB相切时,点P到AB的距离=6,过P作PG⊥AB于G,则PG=6,∵AD=BD=13,∴∠P AG=∠B,∵∠AGP=∠C=90°,∴△AGP∽△BCA,∴,∴=,∴AP=3,∵CD=5<6,∴半径为6的⊙P不与△ABC的AC边相切,综上所述,AP的长为6.5或3,故答案为:6.5或3.18.(4分)如图,过原点的直线与反比例函数y=(k>0)的图象交于A,B两点,点A在第一象限.点C在x轴正半轴上,连结AC交反比例函数图象于点D.AE为∠BAC的平分线,过点B作AE的垂线,垂足为E,连结DE.若AC=3DC,△ADE的面积为8,则k的值为6.【分析】连接O,CE,过点A作AF⊥x轴,过点D作DH⊥x轴,过点D作DG⊥AF;由AB经过原点,则A与B关于原点对称,再由BE⊥AE,AE为∠BAC的平分线,可得AD∥OE,进而可得S△ACE=S△AOC;设点A(m,),由已知条件AC=3DC,DH∥AF,可得3DH =AF,则点D(3m,),证明△DHC∽△AGD,得到S△HDC=S△ADG,所以S△AOC=S△AOF+S梯形AFHD+S=k++=12;即可求解;△HDC【解答】解:连接O,CE,过点A作AF⊥x轴,过点D作DH⊥x轴,过点D作DG⊥AF,∵过原点的直线与反比例函数y=(k>0)的图象交于A,B两点,∴A与B关于原点对称,∴O是AB的中点,∵BE⊥AE,∴OE=OA,∴∠OAE=∠AEO,∵AE为∠BAC的平分线,∴∠DAE=∠AEO,∴AD∥OE,∴S△ACE=S△AOC,∵AC=3DC,△ADE的面积为8,∴S△ACE=S△AOC=12,设点A(m,),∵AC=3DC,DH∥AF,∴3DH=AF,∴D(3m,),∵CH∥GD,AG∥DH,∴△DHC∽△AGD,∴S△HDC=S△ADG,∵S△AOC=S△AOF+S梯形AFHD+S△HDC=k+(DH+AF)×FH+S△HDC=k+×2m+=k++=12,∴2k=12,∴k=6;故答案为6;三、解答题(本大题有8小题,共78分)19.(6分)先化简,再求值:(x﹣2)(x+2)﹣x(x﹣1),其中x=3.【分析】根据平方差公式、单项式乘多项式的法则把原式化简,代入计算即可.【解答】解:(x﹣2)(x+2)﹣x(x﹣1)=x2﹣4﹣x2+x=x﹣4,当x=3时,原式=x﹣4=﹣1.20.(8分)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【分析】(1)直接利用轴对称图形的性质分析得出答案;(2)直接利用中心对称图形的性质分析得出答案.【解答】解:(1)如图1所示:6个阴影小等边三角形组成一个轴对称图形;(2)如图2所示:6个阴影小等边三角形组成一个中心对称图形.21.(8分)今年5月15日,亚洲文明对话大会在北京开幕.为了增进学生对亚洲文化的了解,某学校开展了相关知识的宣传教育活动.为了解这次宣传活动的效果,学校从全校1200名学生中随机抽取100名学生进行知识测试(测试满分100分,得分均为整数),并根据这100人的测试成绩,制作了如下统计图表.100名学生知识测试成绩的频数表由图表中给出的信息回答下列问题:(1)m=20,并补全频数直方图;(2)小明在这次测试中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗?请简要说明理由;(3)如果80分以上(包括80分)为优秀,请估计全校1200名学生中成绩优秀的人数.【分析】(1)由总人数为100可得m的值,从而补全图形;(2)根据中位数的定义判断即可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)m=100﹣(10+15+40+15)=20,补全图形如下:故答案为:20;(2)不一定是,理由:将100名学生知识测试成绩从小到大排列,第50、51名的成绩都在分数段80≤a≤90中,当他们的平均数不一定是85分;(3)估计全校1200名学生中成绩优秀的人数为1200×=660(人).22.(10分)如图,已知二次函数y=x2+ax+3的图象经过点P(﹣2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.【分析】(1)把点P(﹣2,3)代入y=x2+ax+3中,即可求出a;(2)①把m=2代入解析式即可求n的值;②由点Q到y轴的距离小于2,可得﹣2<m<2,在此范围内求n即可;【解答】解:(1)把点P(﹣2,3)代入y=x2+ax+3中,∴a=2,∴y=x2+2x+3,∴顶点坐标为(﹣1,2);(2)①当m=2时,n=11,②点Q到y轴的距离小于2,∴|m|<2,∴﹣2<m<2,∴2≤n<11;23.(10分)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.【分析】(1)根据矩形的性质得到EH=FG,EH∥FG,得到∠GFH=∠EHF,求得∠BFG=∠DHE,根据菱形的性质得到AD∥BC,得到∠GBF=∠EDH,根据全等三角形的性质即可得到结论;(2)连接EG,根据菱形的性质得到AD=BC,AD∥BC,求得AE=BG,AE∥BG,得到四边形ABGE 是平行四边形,得到AB=EG,于是得到结论.【解答】解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.24.(10分)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.(2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)【分析】(1)设y=kx+b,运用待定系数法求解即可;(2)把y=1500代入(1)的结论即可;(3)设小聪坐上了第n班车,30﹣25+10(n﹣1)≥40,解得n≥4.5,可得小聪坐上了第5班车,再根据“路程、速度与时间的关系”解答即可.【解答】解:(1)由题意得,可设函数表达式为:y=kx+b(k≠0),把(20,0),(38,2700)代入y=kx+b,得,解得,∴第一班车离入口处的路程y(米)与时间x(分)的函数表达为y=150x﹣3000(20≤x≤38);(2)把y=1500代入y=150x﹣3000,解得x=30,30﹣20=10(分),∴第一班车从入口处到达塔林所需时间10分钟;(3)设小聪坐上了第n班车,则30﹣25+10(n﹣1)≥40,解得n≥4.5,∴小聪坐上了第5班车,等车的时间为5分钟,坐班车所需时间为:1200÷150=8(分),步行所需时间:1200÷(1500÷25)=20(分),20﹣(8+5)=7(分),∴比他在塔林游玩结束后立即步行到草甸提早了7分钟.25.(12分)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.【分析】(1)AB=AC,AD是△ABC的角平分线,又AD⊥BC,则∠ADB=90°,则∠F AB与∠EBA 互余,即可求解;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)证明△DBQ∽△ECN,即可求解.【解答】解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∠F AB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB=AC=10.26.(14分)如图1,⊙O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,CB的延长线交于点D,E,连结DE,BF⊥EC交AE于点F.(1)求证:BD=BE.(2)当AF:EF=3:2,AC=6时,求AE的长.(3)设=x,tan∠DAE=y.①求y关于x的函数表达式;②如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.【分析】(1)根据等边三角形的性质和圆周角定理解答即可;(2)过点A作AG⊥BC于点G,根据等边三角形的性质和勾股定理解得即可;(3)①过点E作EH⊥AD于点H,根据三角函数和函数解析式解得即可;②过点O作OM⊥BC于点M,根据相似三角形的判定和性质解答即可.【解答】证明:(1)∵△ABC是等边三角形,∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D,∴BD=BE;(2)如图1,过点A作AG⊥BC于点G,∵△ABC是等边三角形,AC=6,∴BG=,∴在Rt△ABG中,AG=BG=3,∵BF⊥EC,∴BF∥AG,∴,∵AF:EF=3:2,∴BE=BG=2,∴EG=BE+BG=3+2=5,在Rt△AEG中,AE=;(3)①如图1,过点E作EH⊥AD于点H,∵∠EBD=∠ABC=60°,∴在Rt△BEH中,,∴EH=,BH=,∵,∴BG=xBE,∴AH=AB+BH=2xBE+BE=(2x+)BE,∴在Rt△AHE中,tan∠EAD=,∴y=;②如图2,过点O作OM⊥BC于点M,设BE=a,∵,∴CG=BG=xBE=ax,∴EC=CG+BG+BE=a+2ax,∴EM=EC=a+ax,∴BM=EM﹣BE=ax﹣a,∵BF∥AG,∴△EBF∽△EGA,∴,∵AG=,∴BF=,∴△OFB的面积=,∴△AEC的面积=,∵△AEC的面积是△OFB的面积的10倍,∴,∴2x2﹣7x+6=0,解得:,∴,。

2019年浙江省宁波市中考数学学业水平测试试卷附解析

2019年浙江省宁波市中考数学学业水平测试试卷附解析

2019年浙江省宁波市中考数学学业水平测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52°,现A 、B 两地要同时开工,若干天后公路准确对接,则B 地所修公路的走向应该是( )A .北偏西52°B .南偏东52°C .西偏北52°D .北偏西38°2.如图,用两根等长的钢条AC 和BD 交叉构成一个卡钳,可以用来测量工作内槽的宽度.设OA OB m OC OD ==,且量得CD b =,则内槽的宽AB 等于( ) A .mb B .m bC .b mD .1b m + 3.下列各数不能..与 1,3,2,成比例的是( ) A .32 B .23 C .322 D .64.如图所示,P 为□ABCD 内任意一点,分别记△PAB ,△PBC ,△PCD ,△PDA 的面积为S 1,S 2,S 3,S 4,则有 ( )A .S 1=S 4B .S 1+S 2=S 3+S 4C .S 1+S 3=S 2+S 4D .以上都不对5.下列计算中,正确的有( )(4)(9)496-⋅-=--=(4)(9)496-⋅-==;225454541-=+-=222254541-=A .1个B .2个C .3个D .4个 6.-5<x <5的非正整数x 是( ) A .-1B .0C .-2,-1,0D .1,-1,0 7.已知反比例函数2y x=,下列结论中,不正确...的是( ) A .图象必经过点(12), B .y 随x 的增大而减少C .图象在第三象限内D .若1x >,则2y <8. 在△ABC 中,如果∠A —∠B= 90°,那么△ABC 是( )A .直角三角形B .钝角三角形C .锐角三角形D .锐角三角形或钝角三角形9.同时向空中掷两枚质地完全相同的硬币,则出现同时正面朝上的概率为( )A . 41B .31C .21 D .1 10.若448n =,则n 等于( ) A .2 B . 4 C . 6 D . 811.小王照镜子时,发现T 恤衫上英文为“”,则T 恤衫上的英文实际是( )A .APPLEB .AqqELC .ELqqAD .ELPPA 二、填空题12.如图,点D 在以AC 为直径的⊙O 上,如果∠BDC=20°,那么∠ACB=________.13.如图,在⊙O 中,AB ∥CD ,则 = .BD (只需填一组相等的量即可).14.如图:矩形纸片ABCD ,AB=2,点E 在BC 上,且AE=EC .若将纸片沿AE 折叠,点B 恰好落在AC 上,则AC 的长是 .15.判断下列语句是否是命题(是的打“√”,不是的打“×”)(1)5<2. ( )(2)两个锐角之和大于直角. ( )(3)你能列举出100个命题吗? ( )(4)如果明天是星期二,那么今天是星期一. ( )(5)延长线段AB 到C ,使AC=2AB . ( )(6)三角形的三个内角的和等于l80°. ( )(7)两点确定一条直线. ( )16.已知点(32)M -,,将它先向左平移4个单位,再向上平移3个单位后得到点N ,则点N 的坐标是 .17.请指出下列问题哪些是普查,哪些是抽样调查.(1)为了解你所在学校的八年级所有学生完成作业的情况,对你全班所有学生进行调查;(2)为了解你所在班级学生的家庭收入情况,对你全班所有女生进行调查;(3)为了解你所在班级学生的体重情况,对你全班所有学生进行调查.18.如图,以直角三角形中未知边为边长的正方形的面积为.19.已知方程组3523x yy x=-⎧⎨=+⎩,用代入法消去x,可得方程.(不必化简).三、解答题20.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.21.如图,在直角坐标系中,P是第一象限的点,其坐标是(3,y),且OP与x轴的正半轴的夹角α的正切值是43,求(1)y的值;(2)角α的正弦值.22.在如图的网格中有一个格点三角形ABC,请在图中画一个与△ABC•相似且相似比不等于1的格点三角形.BAC23.如图,已知 AB 是的直径,CD是弦,AE⊥CD,垂足为点 E,BF⊥CD,垂足为点 F,且AE= 3 cm,BF= 5 cm,若⊙O的半径为 5 cm,求 CD 的长.24.在某一电路中,保持电压不变,电流I(安培)与电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.(1)求I与R之间的函数关系式;(2)当电流I=0.5安培时,求电阻R的值.(1)I=10R ,(2)R=20欧姆.25.如图,已知反比例函数8yx=-和一次函数2y x=-+的图象交于A、B两点,求:(1)A、B 两点的坐标;(2)若O为坐标原点,求△AOB 的面积.26.如图,已知 BE⊥AD,CF⊥AD,且BE=CF. 请你判断 AD是△ABC的中线还是角平分线?并说明理由.27.在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.28.说出下列命题是假命题的理由:(1)同位角相等;(2)三角形的一个外角大于任何一个内角.29.某工厂2005年产品销售额为a万元,2006年、2007年平均每年的销售额增长m%,每年成本均为该年销售额的65%,税额和其他费用合计为该年销售额的15%.(1)用含a,m的代数式表示该工厂2006年、2007年的年利润;(2)若a=100万,m=10,则该工厂2007年的年利润为多少万元?30.如图所示,△ABC经相似变换后所得的像是△DEF.(1)线段AB与DE,AC与DF,BC与EF的大小关系如何?(2)∠A与∠D,∠B8与∠E,∠C与∠F的大小关系如何?(3)变换后所得的图形周长是原图形周长的多少倍?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.D4.C5.A6.C7.B8.B9.A10.C11.A二、填空题12.70度13.⌒AC =⌒BD14.415.(1)√(2) √ (3)× (4)√ (5)× (6)√ (7) √16.(11)-, 17.(1)抽样调查;(2)抽样调查;(3)普查18.10019.2(35)3y y =-+三、解答题20.解法一:设口袋中有x 个白球, 由题意,得200501010=+x , 解得x =30. 答:口袋中约有30个白球.解法二:∵P (50次摸到红球)=4120050=,∴10÷41=40 .∴ 40-10=30 . 答:口袋中大约有30个白球. 21.(1)4;(2)54. 22.略23.过点O 作OG ⊥CD 于G ,连结 OC .∵OG 平分 CD ,即OG=GD ,∵AE ⊥CD ,BF ⊥CD ,OG ⊥CD ,∴AE ∥OG ∥BF ,∴OG 是梯形 AEFB 的中位线,11()(35)422OG AE BF =+=+=cm ,∴在 Rt △OCG 中,22543GC =-=, ∴CD= 2CG= 2×3 = 6cm.24.25.(1)由28y x y x =-+⎧⎪⎨=-⎪⎩得2280x x --=,解得:x 1 = 4,x 2 =-2 x 1 = 4时,y 1 =-2;x 2 =--2 时,y 2 =4,∴A 、B 坐标分别是(4,一2)和(—2,4).(2)设直线 AB 与 x 轴交于C.则点 C 的坐标为(2,0).112422622AOB AOC OBC s S s ∆∆∆=+==⨯⨯+⨯⨯=.26.中线,理由略27.(1)12cm ,123cm ;(2)723cm 228.(1)如图∠1与∠2是同位角,但∠1≠∠2;(2)90°的外角与它相邻的内角29.(1)2006年:%)1(2.0m a +;2007年:%)1(2.0m a +2;(2)24.2.30.(1)AB=12DE ,AC=12DF ,BC=12EF ;(2)∠A=∠D ,∠B=∠E ,∠C=∠F ;(3)2倍。

2019年浙江省宁波市中考数学试卷-答案

2019年浙江省宁波市中考数学试卷-答案

2019年浙江省宁波市中考数学试卷数学答案解析1.【答案】B 【解析】解:22-=故答案为:B【考点】绝对值及有理数的绝对值2.【答案】D【解析】解:A 、∵2a 和3a 不是同类项,∴不能加减,故此答案错误,不符合题意; B 、∵3256a a a a ⋅=≠,∴此答案错误,不符合题意;C 、∵()3265a a a =≠,∴此答案错误,不符合题意;D 、∵624a a a ÷=,∴此答案正确,符合题意。

故答案为:D【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方 3.【答案】C【解析】解:91526000000=1.52610⨯。

故答案为:C【考点】科学记数法—表示绝对值较大的数4.【答案】B【解析】解:由题意得:20x -≠,解得: 2.x ≠故答案为:B【考点】分式有意义的条件5.【答案】C【解析】解:主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线。

故答案为:C 。

【考点】简单几何体的三视图6.【答案】A【解析】解:去分母得:32x x ->,移项得:23x x --->,合并同类项得:33x -->,系数化为1得: 1.x ﹤故答案为:A【考点】解一元一次不等式7.【答案】D【解析】解:∵()2²44410b ac m -=--⨯⨯≥, 解不等式得:4x ≤,由一元二次方程的根的判别式可知:当x≤4时,方程有实数根,∴当5m =时,方程²40x x m -+=没有实数根。

故答案为:D【考点】一元二次方程根的判别式及应用8.【答案】B【解析】解:∵从平均数可知:甲、乙比丙和丁大,∴排除选项C 和D ;从方差看,乙的方差比甲的小,∴排除选项A 。

故答案为:B【考点】平均数及其计算,方差9.【答案】C【解析】解:设直线n 与AB 的交点为E 。

∵∠AED 是△BED 的一个外角, 1AED B ∴∠=∠+∠,45125B ∠=︒∠=︒,,452570AED ∴∠=︒+︒=︒m n ,270AED ∴∠=∠=︒。

2019年浙江省宁波市中考数学会考试卷附解析

2019年浙江省宁波市中考数学会考试卷附解析

2019年浙江省宁波市中考数学会考试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.同时抛掷两枚均匀硬币,正面都同时向上的概率是( )A .31B .41C .21D .432.如图,△ABC 中,D 为AC 边上一点,DE ⊥BC 于E ,若AD=2DC ,AB=4DE ,则sinB 的值为( )A .21B .37C .773D .43 3.已知△ABC 的三边长分别为6 cm ,7.5 cm ,9 cm ,△DEF 的一边长为4 cm ,当△DEF 的另两边长是下列哪一组时,这两个三角形相似( )A .2 cm ,3 cmB .4 cm ,5 cmC .5 cm ,6 cmD .6 cm ,7 cm4.下列语句中,属于命题的是( )A .任何一元二次方程都有实数解B .作直线AB 的平行线C .1与2相等吗D .若229a =,求a 的值5.如图,在等腰梯形ABCD 中,AD ∥BC ,AC ,BD 相交于点0. 有下列四个结论:①AC=BD ;②梯形ABCD 是轴对称图形;③∠ADB=∠DAC ;④△AOD ≌△ABO. 其中正确的是( )A . ①③④B . ①②④C . ①②③D . ②③④6.一个容器装满40 L 纯酒精,第一次倒出若干升后,用水注满,第二次倒出第一次倒出量的一半的液体,已知两次共倒出纯酒精25L ,则第一次倒出纯酒精 ( )A .10 LB .15 LC .20 LD .25 L 7.下列方程是一元二次方程的是( ) A .510x -= B .71y x += C .2232x y -= D .2310m m -+=8.下列函数中,是二次函数的有( )(1)25y x =-;(2)23y x =--;(3)(1)(3)y x x =-+;(4)23y x x =-; (5)22(1)y x x =--;(6)2y x π=A .5 个B .4 个C .3 个D .2 个9.与分式2x y的值相等的是( ) A .222x y ++ B .63x y C .3(2x)y D .2x y- 10.一个晴箱里装有 10 个黑球,8 个白球, 12个红球,每个球除颜色外都相同,从中任意摸出一个球,摸到白球的概率是( )A . 13B .18C .415D .411 11.将方程0.0210.110.030.6x x ++-=中分母化为整数,正确的是( ) A .2110110036x x ++-= B .21001011036x x ++-= C .2100101136x x ++-= D .210101136x x ++-= 12.若22916x my y ++是一个完全平方式,那么m 的值是( )A . 24B .12C .12±D .24±13.下列说法正确的是( )A .零减去一个数,仍得这个数B .减去一个数,等于加上这个数C .两个相反数相减得0D .有理数的加减法中,和不一定比加数大,差不一定比被减数小14.若火箭发射点火前5秒记为-5秒,那么火箭发射点火后10秒应记为( )A .-10秒B .-5秒C .+5秒D .+10秒二、填空题15. 用计算器求:(1)sin12036/= ;(2)cos53018/40//= ;(3)tan39040/53//= . (保留4个有效数字).16.在半径为 1 的弦所对的劣弧是 度.17.如图,将等腰梯形ABCD 的腰AB 平移到DE 的位置,若∠B=60°,AB=6,则EC= .18.若某数的一个平方根是54,则这个数的另一个平方根是 .19.(1)要了解我国八年级学生的视力情况,你认为合适的调查方式是 .(2)为了了解一个有1名员工的集团公司所有人的平均工资,到5个分厂各抽查10名干部的工资进行统计,这种抽样办法是否合适? .理由是 .三、解答题20.AB 是半圆0的直径,C 、D 是半圆的三等分点,半圆的半径为R.(1)CD 与 AB 平行吗?为什么?A B CD E 30°60°(2)求阴影部分的面积.21.如图,⊙O 的直径为 12 cm ,AB 、CD 为两条互相垂直的直径,连结 AD ,求图中阴影部分的面积.22.已知:如图,在□ABCD 中,∠B =60°,CE 平分∠BCD ,交AD 于E ,∠ACE =30°,求证:BC =2AB.23.试用两种方法将已知平行四边形ABCD 分成面积相等的四个部分(要求用文字简述你所设计的两种方法,并画出示意图).24.如图,已知∠B=∠AEF=40°,∠C=58°,求∠BAC 与∠F 的度数.25.某公司甲、乙两座仓库分别有运输车 12辆和6辆,要调往A 地 10辆,调往B 地8辆. 已知从甲仓库调运一辆到 A 地和 B 地的费用分别为 40元与 80元;从乙仓库调运一辆到A 地和 B 地的费用分别为 30元与 50元. 设从乙仓库调到入地x 辆车.(1)用含x 的式子表示调运车辆的总费用;(2)若要求总费用不超过 900 元,共有几种运方案?(3)求出总费用最低的方案,最低费用是多少元?26.如图,∠ABC 的平分线BF 与△ABC 中∠ACB 的相邻外角的平分线CF 相交于点F ,过F 作DF ∥BC ,交AB 于D ,交AC 于E ,则:(1)图中有哪几个等腰三角形?并说明理由.(2)BD ,CE ,DE 之间存在着什么关系?请证明.27.某城市有一标志性雕塑;它的基座是一个正方体,在正方体的上面是一个球,而且球的直径与正方体的边长相等,请你根据描述,画出它的三视图.28.解二元一次方程组3582 1.x y x y +=⎧⎨-=⎩,29. 若0=++c b a ,求证:02222=++-ac c b a .30.由 16 个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图). 请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.C4.A5.C6.C7.D8.B9.B10.C11.C12.D13.D14.D二、填空题15.(1)0.2181;(2)0.5975;(3)0.829716.9017.618.54-19. (1)抽样调查;(2)不合适,样本不具有代表性三、解答题20.(1)由题意知⌒AC =⌒CD =⌒DB ,∴∠CDA=∠DAB, ∴CD ∥AB.(2)由题意知⌒CD 的度数为60°,即∠COD=60°∴26R S π=扇形COD , ∵CD ∥AB ,∴ACD COD S S ∆∆=,∴26R S S π==阴影扇形COD .21.221694AOD S cm ππ=⨯⨯=扇形,20166182A D S cm ∆=⨯⨯=, ∴2(918)S cm π=-阴影22.提示:2(∠ACB +30°)+60°=180°,∠ACB =30°,∠BAC =90°,∴BC =2AB . 23.两条对角线;两条对边中点的连线,一组对边四等分连线等等,图略.24.∠BAC=82°,∠F= 42°25.(1)(20x+860)元.(2)根据题意,得20x+860≤900.解得2x ≤.∵x 为非负整数,∴x =0、1、2.∴共有三种调运方案:(方案一)从甲仓库分别调运10辆、2辆到A 、B 两地,从乙仓库调运6辆到B 地;(方案二)从甲仓库分别调运9辆、3辆到A 、B 两地,从乙仓库分别调运1辆、5辆到A 、B 两地;(方案三)从甲仓库分别调运8辆、4辆到A 、B 两地,从乙仓库分别调运2辆、4辆到A 、B 两地.(3)方案一的总费用最低,为860元.26.(1)2个等腰三角形:△BDF 和△CEF ,理由略(2)BD=DE+CE ,理由略27.28.11.x y =⎧⎨=⎩, 29. 证略.30.略。

2019年宁波市中考数学试题、答案(解析版)

2019年宁波市中考数学试题、答案(解析版)

2019年宁波市中考数学试题、答案(解析版)(满分为150分,考试时间120分钟、)试题卷Ⅰ一、选择题(每小题4分,共48分在每小题给出得四个选项中,只有一项符合题目要求)1、2-得绝对值为( )A、12-B、2 C、12D、2-2、下列计算正确得就是( )A、325a a a+=B、326a a a-=C、()325a a=D、624a a a÷=3、宁波就是世界银行在亚洲地区选择得第一个开展垃圾分类试点项目得城市,项目总投资为1 526 000 000元人民币、数1 526 000 000用科学记数法表示为( )A、81.52610⨯B、815.2610⨯C、91.52610⨯D、101.52610⨯4、若分式12x-有意义,则x得取值范围就是( )A、2x>B、2x≠C、0x≠D、2x≠-5、如图,下列关于物体得主视图画法正确得就是( )A B C D6、不等式32x->x得解为( )A、1x<B、1x<-C、1x>D、1x>-7、能说明命题“关于x得方程240x x m-+=一定有实数根”就是假命题得反例为( )A、1m=-B、0m=C、4m=D、5m=8、去年某果园随机从甲、乙、丙、丁四个品种得葡萄树中各采摘了10棵,每棵产量得平均数x(单位:千克)及方差2S(单位:千克2)如下表所示:甲乙丙丁x24 24 23 202S2、1 1、9 2 1、9( )A、甲B、乙C、丙D、丁9、已知直线m nP,将一块含45°角得直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D、若125∠=︒,则∠2得度数为( )A、60°B、65°C、70°D、7510、如图所示,矩形纸片ABCD中,AD=6 cm,把它分割成正方形纸片ABFE与矩形纸片EFCD后,分别裁出扇形ABF与半径最大得圆,恰好能作为一个圆锥得侧面与底面,则AB得长为( )A、3、5 cmB、4 cmC、4、5 cmD、5 cm11、小慧去花店购买鲜花,若买5支玫瑰与3支百合,则她所带得钱还剩下10元;若买3支玫瑰与5支百合,则她所带得钱还缺4元、若只买8支玫瑰,则她所带得钱还剩下( )A、31元B、30元C、25元D、19元12、勾股定理就是人类最伟大得科学发现之一,在我国古算书《周醉算经》中早有记载。

2019年浙江省宁波市中考数学试题(含答案)

2019年浙江省宁波市中考数学试题(含答案)

2019年浙江省宁波市中考试卷数学一、选择题(每小题4分,共48分)1.-2的绝对值为()A. B. 2 C. D. -2【分析】因为一个负数的绝对值等于它的相反数,而-2的相反数是2,所以-2的绝对值等于2。

2.下列计算正确的是()A. B. C. D.3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资1526000000元人民币数1526000000用科学记数法表示为()A. B. C. D.4.若分式有意义,则x的取值范围是()A. x>2B. x≠2C. x≠0D. x≠-25.如图,下列关于物体的主视图画法正确的是()A. B. C. D.6.不等式的解为()A. B. C. D.7.能说明命题“关于x的方程x2-4x+m=0一定有实数根”是假命题的反例为()A. m=-1B. m=0C. m=4D. m=58.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x(单位:千克)及方差S2(单位:千克2)如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A. 甲B. 乙C. 丙D. 丁9.已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为()A. 60°B. 65°C. 70°D. 75°10.如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A. 3.5cmB. 4cmC. 4.5cmD. 5cm11.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A. 31元B. 30元C. 25元D. 19元12.勾股定理是人类最伟大的科学发现之一,在我国古算书《周醉算经》中早有记载。

2019年宁波市中考数学试卷(解析版)

2019年宁波市中考数学试卷(解析版)

2019年宁波市中考数学试卷(解析版)一、选择题(每小题4分,共48分)1.-2的绝对值为()A. B. 2 C. D. -2【答案】B【解析】【解答】解:∣-2∣=2. 故答案为:B2.下列计算正确的是()A. B. C. D.【答案】 D【解析】【解答】解:A、∵a²和a³不是同类项,∴不能加减,故此答案错误,不符合题意;B、∵,∴此答案错误,不符合题意;C、∵,∴此答案错误,不符合题意;D 、∵,∴此答案正确,符合题意。

故答案为:D3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资1526000000元人民币数1526000000用科学记数法表示为()A. B. C. D.【答案】C【解析】【解答】解:。

故答案为:C4.若分式有意义,则x的取值范围是()A. x>2B. x≠2C. x≠0D. x≠-2【答案】B【解析】【解答】解:由题意得:x-2≠0,解得:x≠2. 故答案为:B5.如图,下列关于物体的主视图画法正确的是()A. B. C. D.【答案】C【解析】【解答】解:主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线。

故答案为:C。

6.不等式的解为()A. B. C. D.【答案】A【解析】【解答】解:去分母得:3-x﹥2x,移项得:-x-2x﹥-3,合并同类项得:-3x﹥-3,系数化为1得:x﹤1. 故答案为:A7.能说明命题“关于x的方程x2-4x+m=0一定有实数根”是假命题的反例为()A. m=-1B. m=0C. m=4D. m=5【答案】 D【解析】【解答】解:∵b²-4ac=(-4)²-4×1×m≥0,解不等式得:x≤4,由一元二次方程的根的判别式可知:当x≤4时,方程有实数根,∴当m=5时,方程x²-4x+m=0没有实数根。

故答案为:D8.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x(单位:千克)及方差S2(单位:千克2)如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A. 甲B. 乙C. 丙D. 丁【答案】B【解析】【解答】解:∵从平均数可知:甲、乙比丙和丁大,∴排除选项C和D;从方差看,乙的方差比甲的小,∴排除选项A。

浙江宁波数学(含答案)6.27

浙江宁波数学(含答案)6.27

浙江省宁波市2019年中考数学试卷一、选择题(每小题4分,共48分)1.-2的绝对值为()A. B. 2 C. D. -2【答案】B2.下列计算正确的是()A. B. C. D.【答案】 D【解析】【解答】解:A、∵a²和a³不是同类项,∴不能加减,故此答案错误,不符合题意;B、∵,∴此答案错误,不符合题意;C、∵,∴此答案错误,不符合题意;D 、∵,∴此答案正确,符合题意。

故答案为:D3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资1526000000元人民币数1526000000用科学记数法表示为()A. B. C. D.【答案】C【解析】【解答】解:。

故答案为:C4.若分式有意义,则x的取值范围是()A. x>2B. x≠2C. x≠0D. x≠-2【答案】B【解析】【解答】解:由题意得:x-2≠0,解得:x≠2. 故答案为:B5.如图,下列关于物体的主视图画法正确的是()A. B. C. D.【答案】C【解析】【解答】解:主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线。

故答案为:C。

6.不等式的解为()A. B. C. D.【答案】A【解析】【解答】解:去分母得:3-x﹥2x,移项得:-x-2x﹥-3,合并同类项得:-3x﹥-3,系数化为1得:x﹤1. 故答案为:A7.能说明命题“关于x的方程x2-4x+m=0一定有实数根”是假命题的反例为()A. m=-1B. m=0C. m=4D. m=5【答案】 D【解析】【解答】解:∵b²-4ac=(-4)²-4×1×m≥0,解不等式得:x≤4,由一元二次方程的根的判别式可知:当x≤4时,方程有实数根,∴当m=5时,方程x²-4x+m=0没有实数根。

故答案为:D8.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x(单位:千克)及方差S2(单位:千克2)如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A. 甲B. 乙C. 丙D. 丁【答案】B【解析】【解答】解:∵从平均数可知:甲、乙比丙和丁大,∴排除选项C和D;从方差看,乙的方差比甲的小,∴排除选项A。

2019年浙江省初中毕业生学业考试(宁波卷)数学试题卷WORD版含答案

2019年浙江省初中毕业生学业考试(宁波卷)数学试题卷WORD版含答案

2019年浙江省宁波市初中毕业生学业水平考试数 学 试 题考生须知:1. 全卷分试题卷Ⅰ、试题卷Ⅱ和答题卷。

试题卷共6页,有三个大题,26个小题。

满分为150分,试时间为120分钟。

2. 请将姓名、准考证号分别填写在试题卷和答题卷的规定位置上。

3. 答題时,把试题卷I 的答案在答题卷I 上对应的选项位置用2B 铅笔涂黑、涂满。

将试题卷Ⅱ的答寰用黑色字迹的钢笔或签字笔书写,答案必须按照题号顺序在答题卷Ⅱ各题目规定区域内作答,做在试题卷上或超出答题卷区域书写的答案无效。

4. 不允许使用计算器,没有近似计算要求的试题,结果都不能用近似数表示。

试 题 卷 I一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1. -2的绝对值为( ).A 12- .B 2 .C 12 .D -22. 下列计算正确的是 .A 325a a a += .B 326a a a = .C 235()a a = .D 624a a a ÷=3. 宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1526000000元人民 币.数1526000000用科学记数法表示为( ).A 81.52610⨯.B 815.2610⨯ .C 91.52610⨯ .D 101.52610⨯ 4. 若分式12x -有意义,则x 的取值范围是( ) .A 2x > .B 2x ≠ .C 0x ≠ .D 2x ≠-5. 如图,下列关于物体的主视图画法正确的是( ).A.B .C .D 6. 不等式32x x ->的解为( ) .A 1x < .B 1x <-.C 1x > .D 1x >- 7. 能说明命题“关于x 的方程240x x m -+=一定有实数根”是假命题的反例为( ).A 1m =- .B 0m = .C 4m = .D 5m =8. 去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x 单位:千克) 及方差2S (单位:千克2)如下表所示:甲 乙丙 丁 x 24 2423 20 2S 2.11.9 2 1.9 今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是( ).A 甲 .B 乙 .C 丙 .D 丁9.已知直线m //n ,将一块含45°角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D . 若∠1=25°,则∠2的度数为( ).A 60° .B 65° .C 70° .D 75°10ABCD 6AD cm =ABFE EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为( ).A 3.5cm .B 4cm .C 4.5cm .D 5cm11.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下( ).A 31元 .B 30元 .C 25元 .D 19元12.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各 边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部 分的面积,则一定能求出( ).A 直角三角形的面积 .B 最大正方形的面积.C C.较小两个正方形重叠部分的面积 .D 最大正方形与直角三角形的面积和试 题 卷 II二、填空题(每小题4分,共24分)13. 请写出一个小于4的无理数: .14. 分解因式:2x xy += .15. 袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为 . (第9题图) (第12题图) (第10题图)16. 如图,某海防哨所O 发现在它的西北方向,距离哨所400米的A 处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B 处,则此时这艘船与哨所的距离OB 约为 米.(精确到1米,参考数据:2 1.414≈,3 1.732≈)17. 如图,Rt △ABC 中,∠C =90°,AC =12,点D 在边BC 上,CD =5,BD =13.点P 是线段AD 上动点,当半径为6的⊙P 与△ABC 的一边相切时,AP 的长为 .18.如图,过原点的直线与反比例函数k y x=(0k >)的图象交于A ,B 两点,点A 在第一象限.点C 在x 轴 正半轴上,连结AC 交反比例函数图象于点D .AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E , 连结DE .若3AC DC =,△ADE 的面积为8,则k 的值为 .三、解答题(本大题有8小题,共78分)19.(本题6分)先化简,再求值:(2)(2)(1)x x x x -+--,其中3x =.20. (本题8分)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)(第16题图) (第18题图) (第17题图) (第20题图) 图2 图121.(本题8分)今年5月15日,亚洲文明对话大会在北京开幕.为了增进学生对亚洲文化的了解,某学校开展了相关知识的宣传教育活动.为了解这次宣传活动的效果,学校从全校1200名学生中随机抽取100名学生进 行知识测试(测试满分100分,得分均为整数),并根据这100人的测试成绩,制作了如下统计图表: 100名学生知识测试成绩的频数表 100名学生知识测试成绩的频数直方图成绩a (分) 频数(人)5060a ≤< 106070a ≤<15 7080a ≤<m 8090a ≤< 4090100a ≤< 15由图表中给出的信息回答下列问题:(1)m = ,并补全频数直方图;(2)小明在这次测试中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗?请简要说明理由;(3)如果80分以上(包括80分)为优秀,请估计全校1200名学生中成绩优秀的人数.22.(本题10分)如图,已知二次函数23y x ax =++的图象经过点P (-2,3)(1)求a 的值和图象的顶点坐标.(2)点(,)Q m n 在该二次函数图象上.①当m =2时,求n 的值.②若点Q 到y 轴的距离小于2,请根据图象直接写出n 的取值范围.23.(本题10分)如图,矩形EFCH 的顶点E ,G 分别在菱形ABCD 的边AD ,BC 上,顶点F ,H 在菱形 (第22题图) (第21题图)ABCD 的对角线BD 上.(1)求证:BG DE ;(2)若E 为AD 中点,FH =2求菱形ABCD 的周长.24.(本题10分)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途 中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末 到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25 分钟后到达塔林.离入口处的路程y (米)与时间x (分)的函数关系如图2所示.(1)求第一班车离入口处的路程y (米)与时间x (分)的函数表达式.(2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸, 比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)25.(本题12分)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线. (第23题图)(第24题图)(1)如图1,在△ABC 中,AB AC =,AD 是△ABC 的角平分线,E ,F 分别是BD ,AD 上的点. 求证:四边形ABEF 是邻余四边形(2)如图2,在5×4的方格纸中,A ,B 在格点上,请画出一个符合条件的邻余四边形ABEF ,使AB 是 邻余线,E ,F 在格点上(3) 如图3,在(1)的条件下,取EF 中点M ,连结DM 并延长交AB 于点Q ,延长EF 交AC 于点N .若N 为AC 的中点,2DE BE =,3QB =,求邻余线AB 的长.26.(本题14分)如图1,⊙O 经过等边△ABC 的顶点A ,C (圆心O 在△ABC 内),分别与AB ,CB 的延长 线交于点D ,E ,连结DE ,BF ⊥EC 交AE 于点F .(1)求证:BD BE =.(2)当:3:2AF EF =,6AC =时,求AE 的长.(3)设AF x EF=,tan DAE y ∠=. ①求y 关于x 的函数表达式;②如图2,连结OF ,OB ,若△AEC 的面积是△OFB 面积的10倍,求y 的值.(第25题图) (第26题图) 图1 图2。

浙江省宁波市2019年中考数学试卷(解析版)

浙江省宁波市2019年中考数学试卷(解析版)

浙江省宁波市2019年中考数学试卷一、选择题(每小题4分,共48分)1.-2的绝对值为()A. B. 2 C. D. -2【答案】B【考点】绝对值及有理数的绝对值【解析】【解答】解:∣-2∣=2.故答案为:B【分析】因为一个负数的绝对值等于它的相反数,而-2的相反数是2,所以-2的绝对值等于2。

2.下列计算正确的是()A. B. C. D.【答案】 D【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解析】【解答】解:A、∵a²和a³不是同类项,∴不能加减,故此答案错误,不符合题意;B、∵,∴此答案错误,不符合题意;C、∵,∴此答案错误,不符合题意;D、∵,∴此答案正确,符合题意。

故答案为:D【分析】(1)因为a³与a²不是同类项,所以不能合并;(2)根据同底数幂相乘,底数不变,指数相加可判断求解;(3)根据幂的乘方,底数不变,指数相乘可判断求解;(4)根据同底数幂相除,底数不变,指数相减可判断求解。

3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资1526000000元人民币数1526000000用科学记数法表示为()A. B. C. D.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:。

故答案为:C【分析】任何一个绝对值大于等于1的数都可以用科学记数法表示,科学记数法的表示形式为a×10n,其中1≤|a|<10,n=整数位数-1.4.若分式有意义,则x的取值范围是()A. x>2B. x≠2C. x≠0D. x≠-2【答案】B【考点】分式有意义的条件【解析】【解答】解:由题意得:x-2≠0,解得:x≠2.故答案为:B【分析】分式有意义的条件是:分母不为0,从而列出不等式,求解即可。

5.如图,下列关于物体的主视图画法正确的是()A. B. C. D.【答案】C【考点】简单几何体的三视图【解析】【解答】解:主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线。

2019年浙江省宁波市中考数学试卷(附答案与解析)

2019年浙江省宁波市中考数学试卷(附答案与解析)

数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前2019年浙江省宁波市中考数学试卷数 学(满分为150分,考试时间120分钟.)试题卷Ⅰ一、选择题(每小题4分,共48分在每小题给出的四个选项中,只有一项符合题目要求)1.2-的绝对值为 ( )A .12-B .2C .12D .2-2.下列计算正确的是 ( )A .325a a a +=B .326a a a -=C .()325a a =D .624a a a ÷=3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1 526 000 000元人民币.数1 526 000 000用科学记数法表示为 ( ) A .81.52610⨯ B .815.2610⨯ C .91.52610⨯D .101.52610⨯ 4.若分式12x -有意义,则x 的取值范围是( )A .2x >B .2x ≠C .0x ≠D .2x ≠- 5.如图,下列关于物体的主视图画法正确的是( )AB CD6.不等式32x->x 的解为( ) A .1x <B .1x <-C .1x >D .1x >-7.能说明命题“关于x 的方程240x x m -+=一定有实数根”是假命题的反例为( ) A .1m =- B .0m = C .4m = D .5m = 8.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x22 ( ) A .甲 B .乙 C .丙 D .丁 9.已知直线m n ,将一块含45°角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则∠2的度数为 ( )A .60°B .65°C .70°D .75 10.如图所示,矩形纸片ABCD 中,AD=6 cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为 ( )A .3. 5 cmB .4 cmC .4.5 cmD .5 cm 11.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下 ( ) A .31元 B .30元 C .25元 D .19元 12.勾股定理是人类最伟大的科学发现之一,在我国古算书《周醉算经》中早有记载。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宁波市2012年初中毕业生学业考试
数 学 试 题
姓名 准考证号
考生须知:
1. 全卷分试题卷Ⅰ、试题卷Ⅱ和答题卷,试题卷共6页,有三个大题,26个小题。

满分
120分,考试时间为120分钟。

2. 请将姓名、准考证号分别填写在试题卷和答题卷的规定位置上。

3. 答题时,把试题卷Ⅰ的答案在答题卷Ⅰ上对应的选项位置用2B 铅笔涂黑、涂满。

将试
题卷Ⅱ的答案用黑色字迹钢笔或签字笔书写,答案必须按照题号顺序在答题卷Ⅱ各题目规定区域作答,坐在试题卷上或超出答题卷区域书写的答案无效。

4. 允许使用计算器,但没有近似计算要求的试题,结果都不能用近似数表示。

抛物线y =ax 2
+bx +c 的顶点坐标为)44,2(2
a
b a
c a b --
试 题 卷 Ⅰ
一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一个符合题目要求)
1. (—2)0的值为
(A )—2 (B )0 (C )1 (D )2 2. 下列交通标志图案是轴对称图形的是
3. 一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,
摸到白球的概率为 (A )3
2 (B )2
1 (C )3
1 (D )1
4. 据宁波市统计局年报,去年我市人均生产总值为104485元,104485元用科学计数法表
示为
(A )1.04485×106元 (B )0.104485×106元 (C )1.04485×105元 (D )10.4485×104元
5. 我市某一周每天最高气温统计如下:27,28,29,29,30,29,28(单位:℃)。

则这
组数据的极差与众数分别是
(A )2,28 (B )3,29 (C )2,27 (D )3,28 6. 下列计算正确的是
(A )326a a a =÷(B )523)(a a = (C )525±= (D )283-=-
7. 已知实数x ,y 满足
0)1(22=++-y x ,则x —y 等于
(A )3 (B )—3 (C )1 (D )—1 8. 如图,在Rt △ABC 中,︒=∠90C ,AB =6,cos B =3
2,则BC 的长为
(A )4 (B )52 (C )
13318 (D )13
3
12
9. 如图是某物体的三视图,则这个物体的形状是
(A )四面体 (B )直三棱柱 (C )直四棱柱 (D )直五棱柱 10. 如图是老年活动中心门口放着的一个招牌,这个招牌是由三个特大号的骰子摞在一起而
成的。

每个骰子的六个面的点数分别是1到6。

其中可看见7个面,其余11个面是看不见的,则看不见的面上的点数总和是
(A )41 (B )40 (C )39 (D )38
11. 如图,用邻边长分别为a ,b (a ﹤b )的矩形硬纸板裁出以a 为直径的两个半圆,再裁出
与矩形的较长边、两个半圆均相切的两个小圆。

把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽(拼接处材料忽略不计),则a 与b 满足的关系式是 (A )a b 3=(B )a b 215+=(C )a b 25=(D )a b 2=
12. 勾股定理是几何中的一个重要定理。


我国古算书《周髀算经》中就有“若勾三, 股四,则弦五”的记载。

如图1是由边长 相等的小正方形和直角三角形构成的, 可以用其面积关系验证勾股定理。

图2 是由图1放入矩形内得到的,
︒=∠90BAC ,AB =3,AC =4,则D ,
E ,
F ,
G ,
H ,
I 都在矩形KLM
J 的边上, 则矩形KLMJ 的面积为 (A )90 (B )100 (C )110 (D )121
试 题 卷 Ⅱ
二、填空题(每小题3分,共18分)
13. 写出一个比4小的正无理数: ▲ 。

14. 分式方程2
142=+-x x 的解是 ▲ 。

15. 如图是七年级(1)班学生参加课外兴趣小组人数的扇形统计图。

如果参加外语兴趣小
组的人数是12人,那么参加绘画兴趣小组的人数是 ▲ 人。

16. 如图,AE ∥BD ,C 是BD 上的点,且AB=BC ,︒=∠110ACD ,则
=∠EAB ▲ 度。

17. 把二次函数2)1(2+-=x y 的图象绕原点旋转180°后得到的图象解析式为
▲ 。

18. 如图,△ABC 中,︒=∠60BAC ,︒=∠45ABC ,AB=22,D 是线段BC 上的一个动点,以AD 为直径画⊙O 分别交AB ,AC 于E ,F ,连接EF ,则线段EF 长度的
最小值为 ▲ 。

三、解答题(本大题共8小题,共66分)
19. (本题共6分)计算:.2242
+++-a a a
20. (本题6分)用同样大小的黑色棋子按如图所示的规律摆放:
(1)第5个图形有多少颗黑色棋子?
(2)第几个图形有2013颗黑色棋子?请说明理由。

21. (本题6分)如图,已知一次函数与反比例函数的图象交于点
A(—4,—2)和B(a,4)。

(1)求反比例函数的解析式和点B的坐标;
(2)根据图象回答,当x在什么范围内时,一次函数的值
大于反比例函数的值?
22. (本题8分)某学校要成立一支由6名女生组成的礼仪队,初三两个班各选6名女生,分别组成甲队和乙队参加选拔。

每位女生的身高统计如下图,部分统计量如下表:
(1)求甲队身高的中位数;
(2)求乙队身高的平均数及身高不小于1.70米的频率;
(3)如果选拔的标准是身高越整齐越好,那么甲、乙两队中哪一队将被录取?请说明理由。

23.(本题8分)如图,在△ABC中,BE是它的角平分线,
C,D在AB边上以DB为直径的半圆O经过
∠90
=

点E,交BC于点F。

(1)求证:AC是⊙O的切线;
1,⊙O的半径为4,求图中阴影部分的
(2)已知sinA=
2
面积。

24. (本题10分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费。

下表是
(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元。

(1)求a,b的值;
(2)随着夏天的到来,用水量将增加。

为了节省开支,小王计划把6月份的水费控制在不超过家庭收入的2%。

若小王的月收入为9200元,则小王家6月份最多能
用水多少吨?
25. (本题10分)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为
第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n 阶准菱形。

如图1,□ABCD中,若AB=1,BC=2,则□ABCD为1阶准菱形。

(1)判断与推理:
①邻边长分别为2和3的平行四边形是▲ 阶准菱形;
②小明为了剪去一个菱形,进行如下操作:如图2,把□ABCD沿BE折叠(点E
在AD上),使点A落在BC边上的点F,得到四边形ABFE。

请证明四边形
ABEF是菱形。

(2)操作、探究与计算:
①已知□ABCD是邻边长分别为1,a(a>1),且是3阶准菱形,请画出□ABCD
及裁剪线的示意图,并在图形下方写出a的值;
②已知□ABCD的邻边长分别为a,b(a>b),满足a=6b+r,b=5r,请写出□ABCD
是几阶准菱形。

26. (本题12分)如图,二次函数y=ax2+bx+c的图象交x轴于A(—1,0),B(2,0),交
y轴于C(0,—2),过A,C画直线。

(1)求二次函数的解析式;
(2)点P在x轴正半轴上,且PA=PC,求OP的长;
(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H。

①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;
4,求点M的坐标。

②若⊙M的半径为5
5。

相关文档
最新文档