解二元一次方程组ppt课件(自制)
合集下载
二元一次方程组课件(共42张PPT)
设篮球队胜了x场,负了y场
胜 负 合计 场数 x y 10 得分 2x y 16
x+y=10 2x+y=16
小组讨论
观察:
x+y=10 ①
2x+y=16 ②
在未知数的个数和含有未知数的项的 次数与方程
x+(10-x)=16 有什么不一样?
定义1
含有两个未知数,并且 含有未知数的项的次数 都是1的整式方程叫做二 元一次方程.
• 4.一般地,二元一次方程组的两个方程的 ___叫
做二元一次方程组的解 • 方程3x-y=1有_____对解
巩固练习
已知二元一次方程组
5x+4y=5 ① 3x+2y=9 ②
下列说
法正确的是(A)
A.同时适合方程①和②的x、y的值是方程组的解
B.适合方程①的x、y的值是方程组的解
C.适合方程②的x、y的值是方程组的解
知识树
在NBA篮球联赛中,比赛规则是:每场比赛都要分出胜负,每队胜一场得2分,负一场得1分. 姚 明所在的火箭队在10场比赛中得到16分,那么这个队胜负场数应分别是多少?
设这个队设胜x场,根据题意得:
2x+(10-x)=16
设这个队胜x场,负y场;你能根据题意列出方程吗?
用方程表示为:
x y 10 2xy16
从中你体会到二元一次方程有_ 对解解,叫做二元一次方程组的解.
x+(10-x)=16
会检验二元一次方程的解
设2x这+(1个0队-胜x()=x1场6,2负)y场;举例说明二元一次方程、二元一次方程组的
已知二元一次方程组
下列说
解的概念. 同时适合①、②的x、y值不一定是方程组的解
(完整版)二元一次方程组优秀课件PPT
矩阵法解二元一次方程组
总结词
利用矩阵的运算性质和逆矩阵的性质,将二元一次方程组转化为线性方程组进行求解。
详细描述
矩阵法的基本思路是将二元一次方程组转化为线性方程组,然后利用矩阵的运算性质和 逆矩阵的性质求解。具体步骤包括:将二元一次方程组写成矩阵形式,然后对矩阵进行 变换,将其化为行最简形式,得到线性方程组;然后利用逆矩阵的性质求解线性方程组
示例
x + y = 1, 2x - y = 3
二元一次方程组的解法概述
01
02
03
消元法
通过加减或代入法消去一 个未知数,将二元一次方 程组转化为一元一次方程 求解。
替换法
通过一个方程中的未知数 表示另一个未知数,然后 将其代入另一个方程求解 。
矩阵法
利用矩阵表示方程组,通 过矩阵运算求解。
二元一次方程组的应用场景
化学问题
在化学中,有些问题涉及到两种化学物质之间的反应,如反 应速率和反应物浓度等,这时也可以用二元一次方程组来表 示和解决。
04
二元一次方程组的扩展知识
二元一次方程组的几何意义
平面直角坐标系
二元一次方程组可以表示平面上的点集,通过坐标系将代数问题与几何问题相互 转换。
直线交点
二元一次方程组的解对应于直线交点,即两个方程的公共解。
二元一次方程组的解的个数与性质
解的个数
二元一次方程组可能有无数解、唯一 解或无解,取决于方程组中方程的系 数和常数项。
解的性质
解的个数与方程组系数矩阵的秩和增 广矩阵的秩有关,通过比较两者可以 判断解的情况。
二元一次方程组的解的判定定理
定理内容
如果二元一次方程组的系数矩阵的秩等于增广矩阵的秩,则该方程组有唯一解;如果秩不相等,则该 方程组无解或有无数解。
(完整版)二元一次方程组优秀课件PPT
距离问题
浓度问题
通过给定的两点坐标,利用二元一次 方程组求解两点之间的距离。
通过给定的溶液浓度和体积,利用二 元一次方程组求解溶液的配制比例和 浓度。
速度问题
通过给定的时间和速度,利用二元一 次方程组求解物体的运动轨迹和速度 。
THANKS
[ 感谢观看 ]
(完整版)二元一次方程 组优秀课件
汇报人:可编辑
2023-12-25
CONTENTS
目录
• 二元一次方程组的基本概念 • 二元一次方程组的解法 • 二元一次方程组的实际应用 • 二元一次方程组的变式与拓展
CHAPTER 01
二元一次方程组的基本概念
二元一次方程组的定义
定义
二元一次方程组是由两个或两个以上的方程组成,其中含有两个未知数,且每 个方程中未知数的次数都是一次。
代数问题
例如,在求解两个未知数的和、差、 积、商等问题时,需要使用二元一次 方程组来表示和求解。
物理中的二元一次方程组问题
运动问题
例如,在计算两个物体之间的相对速度和距离时,需要使用二元一次方程组来表示和求 解。
力的问题
例如,在计算两个物体之间的相互作用力和扭矩时,需要使用二元一次方程组来表示和 求解。
示例
x + y = 1, 2x - y = 3。
二元一次方程组的表示方法
代数表示法
使用代数符号表示二元一次方程 组,如x + y = 1, 2x - y = 3。
图形表示法
通过图形表示二元一次方程组的 解,如平面直角坐标系中的直线 。
二元一次方程组的解的概念
01
02
03
解的概念
满足二元一次方程组的未 知数的值称为解。
(完整版)二元一次方程组优秀课件PPT
答案解析
答案解析1
首先将方程组中的两个方程相加和相减,消去其中一个变量,得到一个一元一次方程,然 后求解得到一个变量的值,最后将这个变量的值代入原方程组中的任意一个方程,求得另 一个变量的值。
答案解析2
首先将方程组中的两个方程相加和相减,消去其中一个变量,得到一个一元一次方程,然 后求解得到一个变量的值,最后将这个变量的值代入原方程组中的任意一个方程,求得另 一个变量的值。
几何问题
例如,在计算几何图形的面积、 周长或体积时,需要使用二元一 次方程组来表示相关变量之间的
关系。
代数问题
例如,在解决代数方程组时,需要 使用二元一次方程组来表示未知数 之间的关系。
概率统计问题
例如,在计算概率分布或统计数据 时,需要使用二元一次方程组来表 示相关变量之间的关系。
科学中的二元一次方程组问题
化学反应
在化学反应中,常常需要用到 二元一次方程组来表示反应物 和生成物的关系。
几何问题
在解决涉及两个未知数的几何 问题时,如两点之间的距离、 角度等,常常需要用到二元一
次方程组。
02
二元一次方程组的解法
代入消元法
通过代入一个方程中的未知数,将其表示为另一个变量的函数,从而简化方程组的方法。
代入消元法是解二元一次方程组的一种常用方法。首先,选择一个方程中的未知数,用另一个未知数表示出来,然后将其代 入到另一个方程中,消去一个未知数,得到一个一元一次方程。接着解这个一元一次方程,得到一个变量的值,再将其代回 原方程中求得另一个变量的值。
01
02
03
购物问题
例如,在购买商品时,需 要计算不同商品的价格和 折扣,以确定最佳购买方 案。
交通问题
《求解二元一次方程组》二元一次方程组PPT课件
x7 2
所以,原方程组 的解是
x 7 2 y 1
3x 2y 4,
1.二元一次方程5组x 2y 6 ()
A.x 1,
y
1;
x 1,
B.
y
1 2
;
x 1,
C.
y
1 2
;
【解析】选C
的解是
x 1,
D.
y
1 2
.
2.(芜湖·中考)方程组
2x 3y 7,
x
3
y
8
① ②
的解是
C.
y
4
答案:选B
D.
x 4
y
1
3.已知(2x+3y-4)2+∣x+3y-7∣=0,则x= -3 ,
10
y= 3
.
4.(青岛·中考)解方程组:
3x 4 y
x
y
4.
19,
【解析】
3x 4 y 19, ①
x
y
4.
②
由②,得x=4+y ③
把③代入①,得12+3y+4y=19,
解得:y=1.
求解求出两个未知数的值 Nhomakorabea写解写出方程组的解
2. 二元一次方程组的解法有____代__入__法__、__加__减__法__ _.
解所得的一元一次方程④ ,得x=3
再把x=3代入③,得y=2
x+y=5
这样,我们就得到二元一次方程组 4x+3y=18
x=3 的解
y=2
因此,李明和妈妈共买了苹果3 kg,梨2 kg.
归纳
上面的解法是把二元一次方程组中的一个方程的某 个未知数用含有另一个未知数的代数式表示出来,并代 入另一个方程中,从而消去一个未知数,化二元一次方 程组为一元一次方程.这种解方程组的方法称为代入消元 法,简称代入法.
二元一次方程组优秀课件PPT
观察上面四个方程,有何共同特征?
(1)2个未知数 (2)未知数的项的次数是1
含有两个未知数,并且所含未知数的
项的次数都是1次的方程叫做二元一次方程.
把两个方程 x y 22 写在一起: 2x y 40
x y 35 2x 4y 94
像这样把两个二元一次方程合在一
起,就组成了一个二元一次方程组
二元一次方程
x y 22 x y 35 2x y 40 2x 4 y 94
观察上面四个方程,有何共同特征? (1)2个未知数 (2)未知数的项的次数是1
含有两个未知数,并且所含未知数的 项的次数都是1次的方程叫做二元一次方程.
(1)“一次”是指含未知数的项的次数
C
x y
2 1 2
2
D
)
x
y
1 3 2
作 业
解:设鸡有x只,兔y只,根据题意,
得:x y 35 2x 4y 94
两个方程!
两个二元一次方程所组成的 一组方程叫做二元一次方程组
哪些是二元一次方程组?为什么?
3x 2y 9
(1)
y
5x
0
x 2 (3)x y 1
x 3y 9z 8
用学过的一元一次方 程能解决此问题吗?
这可是两个 未知数呀?
议一议
篮球联赛中,每场比赛都要分出胜负,每 队胜一场得2分,负一场得1分.如果某队为了争取 较好名次,想在全部22场比赛中得40分,那么这 个队胜负场数应分别是多少?
那么,能设两个未知数吗?比如设胜x场, 负y场;你能根据题意列出方程吗?
第八章 二元一次方程组
(1)2个未知数 (2)未知数的项的次数是1
含有两个未知数,并且所含未知数的
项的次数都是1次的方程叫做二元一次方程.
把两个方程 x y 22 写在一起: 2x y 40
x y 35 2x 4y 94
像这样把两个二元一次方程合在一
起,就组成了一个二元一次方程组
二元一次方程
x y 22 x y 35 2x y 40 2x 4 y 94
观察上面四个方程,有何共同特征? (1)2个未知数 (2)未知数的项的次数是1
含有两个未知数,并且所含未知数的 项的次数都是1次的方程叫做二元一次方程.
(1)“一次”是指含未知数的项的次数
C
x y
2 1 2
2
D
)
x
y
1 3 2
作 业
解:设鸡有x只,兔y只,根据题意,
得:x y 35 2x 4y 94
两个方程!
两个二元一次方程所组成的 一组方程叫做二元一次方程组
哪些是二元一次方程组?为什么?
3x 2y 9
(1)
y
5x
0
x 2 (3)x y 1
x 3y 9z 8
用学过的一元一次方 程能解决此问题吗?
这可是两个 未知数呀?
议一议
篮球联赛中,每场比赛都要分出胜负,每 队胜一场得2分,负一场得1分.如果某队为了争取 较好名次,想在全部22场比赛中得40分,那么这 个队胜负场数应分别是多少?
那么,能设两个未知数吗?比如设胜x场, 负y场;你能根据题意列出方程吗?
第八章 二元一次方程组
二元一次方程组的解法(共6张PPT)
{2x-7y=8
①
3x-8y-10=0 ②
解:由①得
x= 4+ 7y ③
2 将③代入②,得
3(4+ 7y )-8y-10=0 2
解得 y=-0.8
将y=-0.8代入③,得
x=4+ 7 ×(-0.8 ) 2
x=1.2
{x=1.2
所以
y=-0.8
思考:可以先消 去y吗?
1.将下列各方程变形为用一个未知数的代数
如的果形将 式①写成用一个未,知(数2来)表写示成另用一含y的代数式 3这x两-个8y方-程10中=0的未②知数的系数都不是1,
那么如何求解呢?消哪一个未知数呢? 的这形两式 个方程中的未知数,的(系2数)都写不成是用1含,y的代数式
23x-78y=-810=0 ②①
的如形果式 将①写成用一个未,知(数2来)表写示成另用一含y的代数式
如果将①写成用一个未知数来表示另一
如果将①写成用一个未知数来表示另一 式2x表-示7y另=8一个未知①数的形式:
那如么果如 将何①求写解成呢用?一消个哪未一知个数未来知表数示呢另?一
3式x表-示8y另-一10个=0未知②数的形式: 3x-8y-10=0 ②
个未知数,那么用x来表示y,还是用y来
表示x好呢?
①
的式形表式 示另一个未知数的,形(式2:)写成用含y的代数式 式解表得示另一y=个-未0.知数的形式: 那2x么-如7y何=8求解呢?①消哪一个未知数呢?
3x-8y-10=0 ②
思考 这两个方程中的未知数的系数都不是1, 如 这果两将个① 方写 程成 中用 的一 未个 知未 数知的数 系来 数表 都示 不另 是一1,
二元一次方程组的解法
二元一次方程组解法ppt课件
x 1
所以原方程组的解是
y
1
3x 5y 21 ① 2x 5y -11 ②
解:由①+②得:
5x=10
x=2
把x=2代入①,得: y=3
x 2
所以原方程组的解是
y
3
直接加减消元法
3x 5y 21 ① 2x 5y -11 ②
由①+②得: 5x=10
2x-5y=7
①
2x+3y=-1 ②
4、写出方程组的解
随堂练习: 你解对了吗?
1、用代入消元法解下列方程组
⑴
y=2x x=4 x+y=12 y=8
x=y—2-5
⑵
x=5 y=15
4x+3y=65
x+y=11
3x-2y=9
⑶
x=9 ⑷
x=3
y=2 x-y=7
y=0
x+2y=3
能 力 检 验 解二元一次方程组
(1)
2a b 18, a 3b 2.
(2) 2x y 5, 3x 4y 2.
SUCCESS
THANK YOU
2024/10/21
1
1
2、若方程5x 2m+n + 4y 3m-2n = 9是关于x、y
的二元一次方程,求m 、n 的值.
解: 根据已知条件可
列方程组:
2m + n = ①
13m – 2n = ②
由①得:1 n = 1 – ③
by ay
3 3
的解是
x 2
y
1
,则 a b 的值是
.
7.已知关于x,y方程组
2x 3x
3y 5y
(完整版)二元一次方程组优秀课件PPT
详细描述
代入法的基本步骤是先将一个方程中的变量用另一个方程中 的变量表示出来,然后将其代入另一个方程中,消去一个变 量,得到一个简单的一元一次方程,最后求解这个一元一次 方程即可。
消元法
总结词
通过对方程进行加、减、乘、除等运 算,消去一个变量,得到一个简单的 一元一次方程。
详细描述
消元法的基本步骤是先将两个方程进 行加、减、乘、除等运算,消去一个 变量,得到一个简单的一元一次方程 ,然后求解这个一元一次方程即可。
二元一次方程组的实际应用
应用场景
二元一次方程组在日常生活和生 产中有着广泛的应用,如路程问 题、价格问题、工作效率问题等 。
示例
一个工人加工零件,x小时加工了 y个零件,已知x+y=10, 2x-y=5 ,求该工人加工零件的效率。
02
二元一次方程组的解法
代入法
总结词
通过将一个方程中的变量用另一个方程中的变量表示出来, 从而消去一个变量,得到一个简单的一元一次方程。
详细描述
在距离问题中,我们常常需要计算两地之间的距离、速度和时间等参数。例如,一辆汽车从A地开往B 地,已知速度和时间,需要求出两地之间的距离。通过设立二元一次方程组,我们可以方便地解决这 类问题。
分配问题
总结词
分配问题是二元一次方程组在经济领域的应用,主要涉及到资源的合理分配和最大化利 用。
详细描述
示例
x+y=10, 2x-y=5
二元一次方程组的解法
解法
通过消元法或代入法,将二元一 次方程组转化为一个或两个一元 一次方程,然后求解得到未知数
的值。
消元法
通过加减或代入的方式消去一个未 知数,将二元一次方程组转化为一 元一次方程。
代入法的基本步骤是先将一个方程中的变量用另一个方程中 的变量表示出来,然后将其代入另一个方程中,消去一个变 量,得到一个简单的一元一次方程,最后求解这个一元一次 方程即可。
消元法
总结词
通过对方程进行加、减、乘、除等运 算,消去一个变量,得到一个简单的 一元一次方程。
详细描述
消元法的基本步骤是先将两个方程进 行加、减、乘、除等运算,消去一个 变量,得到一个简单的一元一次方程 ,然后求解这个一元一次方程即可。
二元一次方程组的实际应用
应用场景
二元一次方程组在日常生活和生 产中有着广泛的应用,如路程问 题、价格问题、工作效率问题等 。
示例
一个工人加工零件,x小时加工了 y个零件,已知x+y=10, 2x-y=5 ,求该工人加工零件的效率。
02
二元一次方程组的解法
代入法
总结词
通过将一个方程中的变量用另一个方程中的变量表示出来, 从而消去一个变量,得到一个简单的一元一次方程。
详细描述
在距离问题中,我们常常需要计算两地之间的距离、速度和时间等参数。例如,一辆汽车从A地开往B 地,已知速度和时间,需要求出两地之间的距离。通过设立二元一次方程组,我们可以方便地解决这 类问题。
分配问题
总结词
分配问题是二元一次方程组在经济领域的应用,主要涉及到资源的合理分配和最大化利 用。
详细描述
示例
x+y=10, 2x-y=5
二元一次方程组的解法
解法
通过消元法或代入法,将二元一 次方程组转化为一个或两个一元 一次方程,然后求解得到未知数
的值。
消元法
通过加减或代入的方式消去一个未 知数,将二元一次方程组转化为一 元一次方程。
7.2 二元一次方程组的解法课件(共20张PPT)
3x 5y 5 3x 4y 23
① ②
等式性质
如果把这两个方程的左边与左边相减,右边与右边相减, 能得到什么结果?
分析: 3x 5y 3x 4y = 5 23
①左边
②左边 = ①右边 ②右边
解方程组:
3x 5y 5 3x 4y 23
① ②
分析: ①左边
②左边 = ①右边 ②右边
拓展
如何利用加减法解方程组35xx
6 4
y y
42 10
通过本节课的学习,你有哪 些收获?
通过本节课的学习,你还有 疑惑吗?
P32 练习:解下列方程组
谢谢!
两个方程
4x+6y=14
只要两边 分别相减就可以消去未知数 x
练一练
(二)用加减法解二元一次方程组。
⑴ 5x+y=7 3x-y=1
⑵ 4x-3y=5 4x+6y=14
答案:xy
1 2
答案:xy
2 1
练一练
3、已知
x 2
y
1
的解,则 a b
是二元一次方程aa组xx Fra bibliotekby by
7 1
的值为( -1 )
3x 5y 3x 4y = 5 23
3x 5y 3x 4y 18
注意符号
9y 18 y 2
将y=-2代入①,得 3x 5 2 5
x5
用括号将两个式子相减,注意减去前面是负 号的项,去括号要变号。
解方程组:
3x 3x
5 4
y y
5 23
① ②
解:由①-②得:
9y 18 y 2
问题:利用加减消元法直接解二元一
次方程组的前提条件是什么?
《二元一次方程组的解法》数学教学PPT课件(3篇)
用一个未知数的代数式 表示另一个未知数 消去一个元 分别求出两个未知数的值
写出方程组的解
学习目标
1、理解解二元一次方程组的另一种常用方法——“加减 消元法” ; 2、熟练以及灵活应用加减消元法解二元一次方程组.
新知探究
想一想
为了解方程组
3x+2y=13 3x-2y=5
不用代入法能否消去其中的未知数y ?
旧校舍面积的4倍,那么应该拆除多少旧校舍,建造多少新校
舍?(单位:m2 )
拆 (x m2)
设应拆除旧校舍x m2 ,建 造新校舍y m2 .
根据题意列方程组
20000 m2
y=4x
y-x=20000× 30﹪.
y=4x 即
y-x=6000
新建 (y m2)
1.解方程组: x=3y+2, ① x+3y=8. ②
随堂练习
1、用代入消元法解下列方程组
y=2x ⑴
x=4
x=—y2-5
y=8 ⑵
x=5 y=15
x+y=12
4x+3y=65
x+y=11 x=9
3x-2y=9
x=3
⑶ x-y=7
y=2 ⑷ x+2y=3
y=0
2、若方程5x 2m+n + 4y 3m-2n = 9是关于x、y的二元 一次方程,求m 、n 的值.
把y=0.8代入①可得x=2
{ x=2
故原方程的解为 y=0.8
{7x+4y-10=0
例3 解方程组 4x+2y-5=0
{7x+4y=10 ①
解:原方程组可化为 4x+2y=5 ②
由方程②得y=(5-4x)/2 将上式带入①整理,得10- x =10
《解二元一次方程组》二元一次方程组PPT课件 (共13张PPT)
x-y=7
x+2y=3
你解对了吗?
x=4
⑴
x=5
⑵
y=8
x=9 ⑶ y=2
y=15
x=3 ⑷ y=0
同学们:你能把我们今天学习的内
容小结一下吗? 1、 本节课我们知道了用代入消元法解二元 一次方程组的基本思路是“消元”。即把 “二元”化为“一元”,化二元一次方程组 为一元一次方程。
2、 把求出的解代入原方程组,可以检验解 题过程是否正确。
2
解二元一次方程组
想一想?
问题1:什么是二元一次方程? 答:含有两个未知数,并且所含 未知数的项的次数都是1的方程叫 做二元一次方程。 问题2:有那位同学能举出生活中 运用二元一次方程组解决问题的 例子。并根据题意列出方程。
考考你
李明和妈妈买了18元的苹果和梨共5千克, 1千克苹果售价4元,1千克梨售价3元,李 明和妈妈买苹果和梨各多少千克?
1、解二元一次方程组 x+y=5 ① ⑵ ⑴ x-y=1 ②
2
2x+3y=40 ① x -y=-5 ②
2、已知(2x+3y-4)+∣x+3y-7∣=0 10 则x= -3 ,y= — 。 3
随堂练习:
y=2x ⑴ x+y=12 x+y=11 ⑶ ⑷ ⑵ 4x+3y=65 3x-2y=9
y-5 x=— 2
由于方程组中相同的字母表示同一个未知数, 所以方程②中的y也等于5-x,可以用5-x代替方 程②中的y。这样就有4x+3(5-x)=18 ④ 哈哈,二元化一元了
解所得的一元一次方程④ ,得x=3
再把x=3代入③, 得y=2 x+y=5 4x+3y=18 的解 x=3 因此,李明和妈妈共买了苹 果3千克,梨2千克。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
46、活在昨天的人失去过去,活在明 天的人 失去未 来,活 在今天 的人拥 有过去 和未来 。 47、你可以一无所有,但绝不能一无 是处。
48、通过辛勤工作获得财富才是人生 的大快 事。— —巴尔 扎克 49、相信自己能力的人,任何事情都 能够做 到。
50、有了坚定的意志,就等于给双脚 添了一 对翅膀 。—— 乔·贝利 51、每一种挫折或不利的突变,是带 着同样 或较大 的有利 的种子 。—— 爱默生 52、如果你还认为自己还年轻,还可 以蹉跎 岁月的 话,你 终将一 事无成 ,老来 叹息。
基本思路: 加减消元: 二元
一元
主要步骤:变形
同一个未知数的系 数相同或互为相反数
加减
消去一个元
求解 求出两个未知数的值
写解
写出方程组的解
2. 二元一次方程组解法有 代入法、加减法 .
探索与思考
3、在解方程组
ax cx
by 3y
2 5
时,小张正确的解是
x y
1 2
,小李由于看错
了方程组中的C得到方程组的解为
8.2.2加减消元 解二元一次方程组
复习:
1、解二元一次方程组的基本思路是什么?
基本思路: 消元: 二元
一元
2、用代入法解方程的步骤是什么一?元
主要步骤:
变形
用一个未知数的代数式
表示另一个未知数
代入
消去一个元
求解 分别求出两个未知数的值
写解
写出方程组的解
问题
怎样解下面的二元一次 方程组呢?
3x 5y 21 ① 2x 5y -11 ②
看看你掌握了吗?
7x-4y=4 ①
5x-4y=-4 ② 解:①-②,得
2x=4-4, x=0
解: ①-②,得 2x=4+4, x=4
3x-4y=14 ① 5x+4y=2 ② 解 ①-②,得
-2x=12 x =-6
解: ①+②,得 8x=16 x =2
四、已知a、b满足方程组 则a+b= 5
a+2b=8 2a+b=7
4.议一议:
上面这些方程组的特点是什么? 解这类方程组基本思路是什么? 主要步骤有哪些?
特点: 同一个未知数的系数相同或互为相反数
基本思路: 加减消元: 二元
一元
主要步骤: 加减
消去一个元
求解
分别求出两个未知数的值
写解
写出原方程组的解
例4. 用加减法解方程组:
2x 3y 12 ① 3x 4y 17 ②
探索与思考
x 3
y
1
,试求方程组中的a、b、c的值。
五、作业
1、课本P-112[习题8.2] 3 2、思考题: 在解二元一次方程组中, 代入法 和加减法有什么异同点?
3、后悔是崇高的理想就像生长在高山 上的鲜 花。如 果要搞 下它, 勤奋才 能是攀 登的绳 索。 44、幸运之神的降临,往往只是因为 你多看 了一眼 ,多想 了一下 ,多走 了一步 。 45、对待生活中的每一天若都像生命 中的最 后一天 去对待 ,人生 定会更 精彩。
53、勇士搏出惊涛骇流而不沉沦,懦 夫在风 平浪静 也会溺 水。 54、好好管教自己,不要管别人。
55、人的一生没有一帆风顺的坦途。 当你面 对失败 而优柔 寡断, 当动摇 自信而 怨天尤 人,当 你错失 机遇而 自暴自 弃的时 候你是 否会思 考:我 的自信 心呢? 其实, 自信心 就在我 们的心 中。 56、失去金钱的人损失甚少,失去健 康的人 损失极 多,失 去勇气 的人损 失一切 。 57、暗自伤心,不如立即行动。
y
1
加减消元法解方程组 创造条件.
补充练习: 用加减消元法解方程组:
x
3
1
y 2
1
①
x
2
1 4
y
2
②
解:由①×6,得 2x+3y=4 ③
由②×4,得
2x - y=8 ④
由③-④得: y= -1
把y= -解1代得入: ②x ,72
所以原方程组
的解是
x
7 2
y 1
小结 :
1.加减消元法解方程组基本思路是什么? 主要步骤有哪些?
思路
3x 5y 21 ① 2x 5y -11 ②
把②变形得:x 5y11 2
x 代入①,不就消去 了!
小明
思路
3x 5y 21 ① 2x 5y -11 ②
把②变形得
5y2x11
可以直接代入①呀!
小彬
5 y和 5y
互为相反数…… 按照小丽的思路,你能消去 一个未知数吗?
3x 5y 21 ① 小丽 2x 5y -11 ②
58、当你快乐时,你要想,这快乐不 是永恒 的。当 你痛苦 时,你 要想, 这痛苦 也不是 永恒的 。 59、抱最大的希望,为最大的努力, 做最坏 的打算 。 60、成功的关键在于相信自己有成功 的能力 。
6x+7y=-19①
1. 用加减法解方程组
应用(B)
6x-5y=17②
A.①-②消去y B.①-②消去x
B. ②- ①消去常数项 D. 以上都不对
3x+2y=132.方ຫໍສະໝຸດ 组消去y后所得的方程是(B)
3x-2y=5
A.6x=8 B.6x=18 C.6x=5 D.x=18
三、指出下列方程组求解过程 中有错误步骤,并给予订正:
分析(:3x + 5y)+(2x - 5y)=21
+ (-11)
①左边 + ② 左边 = ① 右边 +
3X+5y +2x - 5y=10
5x+0y =10
5x=10
②右边
3x 5y 21 ① 2x 5y -11 ②
解:由①+②得: 5x=10
x=2
把x=2代入①,得
y=3
所以原方程组的解是
把y =-1代入①,得 2x-5╳(-1)=7
解得:x=1
所以原方程组的解是
x
y
1 1
练习 一.填空题:
x+3y=17
1.已知方程组
两个方程
2x-3y=6
只要两边 分别相加 就可以消去未知数 y
25x-7y=16
2.已知方程组
两个方程
25x+6y=10
只要两边分别相减就可以消去未知数 x
二.选择题
x y
3 2
参考小丽的思路,怎样解 下面的二元一次方程组呢?
2x 5y 7 ① 2x 3y 1 ②
分析:
观察方程组中的两个方程,未知数x的系数
相等,都是2.把这两个方程两边分别相减, 就可以消去未知数x,同样得到一个一元一
次方程.
2x 5y 7 ① 2x 3y 1 ②
解:把 ②-①得:8y=-8 y=-1
分析:
对于当方程组中两方 程不具备上述特点时, 必须用等式性质来改
解:①×3得6x+9y=36 ③ ②×2得 6x+8y=34 ④ ③-④得: y=2
变方程组中方程的形 式,即得到与原方程 组同解的且某未知数 系数的绝对值相等的 新的方程组,从而为
把y =2代入①,
解得: x=3
x 1
所以原方程组的解是
48、通过辛勤工作获得财富才是人生 的大快 事。— —巴尔 扎克 49、相信自己能力的人,任何事情都 能够做 到。
50、有了坚定的意志,就等于给双脚 添了一 对翅膀 。—— 乔·贝利 51、每一种挫折或不利的突变,是带 着同样 或较大 的有利 的种子 。—— 爱默生 52、如果你还认为自己还年轻,还可 以蹉跎 岁月的 话,你 终将一 事无成 ,老来 叹息。
基本思路: 加减消元: 二元
一元
主要步骤:变形
同一个未知数的系 数相同或互为相反数
加减
消去一个元
求解 求出两个未知数的值
写解
写出方程组的解
2. 二元一次方程组解法有 代入法、加减法 .
探索与思考
3、在解方程组
ax cx
by 3y
2 5
时,小张正确的解是
x y
1 2
,小李由于看错
了方程组中的C得到方程组的解为
8.2.2加减消元 解二元一次方程组
复习:
1、解二元一次方程组的基本思路是什么?
基本思路: 消元: 二元
一元
2、用代入法解方程的步骤是什么一?元
主要步骤:
变形
用一个未知数的代数式
表示另一个未知数
代入
消去一个元
求解 分别求出两个未知数的值
写解
写出方程组的解
问题
怎样解下面的二元一次 方程组呢?
3x 5y 21 ① 2x 5y -11 ②
看看你掌握了吗?
7x-4y=4 ①
5x-4y=-4 ② 解:①-②,得
2x=4-4, x=0
解: ①-②,得 2x=4+4, x=4
3x-4y=14 ① 5x+4y=2 ② 解 ①-②,得
-2x=12 x =-6
解: ①+②,得 8x=16 x =2
四、已知a、b满足方程组 则a+b= 5
a+2b=8 2a+b=7
4.议一议:
上面这些方程组的特点是什么? 解这类方程组基本思路是什么? 主要步骤有哪些?
特点: 同一个未知数的系数相同或互为相反数
基本思路: 加减消元: 二元
一元
主要步骤: 加减
消去一个元
求解
分别求出两个未知数的值
写解
写出原方程组的解
例4. 用加减法解方程组:
2x 3y 12 ① 3x 4y 17 ②
探索与思考
x 3
y
1
,试求方程组中的a、b、c的值。
五、作业
1、课本P-112[习题8.2] 3 2、思考题: 在解二元一次方程组中, 代入法 和加减法有什么异同点?
3、后悔是崇高的理想就像生长在高山 上的鲜 花。如 果要搞 下它, 勤奋才 能是攀 登的绳 索。 44、幸运之神的降临,往往只是因为 你多看 了一眼 ,多想 了一下 ,多走 了一步 。 45、对待生活中的每一天若都像生命 中的最 后一天 去对待 ,人生 定会更 精彩。
53、勇士搏出惊涛骇流而不沉沦,懦 夫在风 平浪静 也会溺 水。 54、好好管教自己,不要管别人。
55、人的一生没有一帆风顺的坦途。 当你面 对失败 而优柔 寡断, 当动摇 自信而 怨天尤 人,当 你错失 机遇而 自暴自 弃的时 候你是 否会思 考:我 的自信 心呢? 其实, 自信心 就在我 们的心 中。 56、失去金钱的人损失甚少,失去健 康的人 损失极 多,失 去勇气 的人损 失一切 。 57、暗自伤心,不如立即行动。
y
1
加减消元法解方程组 创造条件.
补充练习: 用加减消元法解方程组:
x
3
1
y 2
1
①
x
2
1 4
y
2
②
解:由①×6,得 2x+3y=4 ③
由②×4,得
2x - y=8 ④
由③-④得: y= -1
把y= -解1代得入: ②x ,72
所以原方程组
的解是
x
7 2
y 1
小结 :
1.加减消元法解方程组基本思路是什么? 主要步骤有哪些?
思路
3x 5y 21 ① 2x 5y -11 ②
把②变形得:x 5y11 2
x 代入①,不就消去 了!
小明
思路
3x 5y 21 ① 2x 5y -11 ②
把②变形得
5y2x11
可以直接代入①呀!
小彬
5 y和 5y
互为相反数…… 按照小丽的思路,你能消去 一个未知数吗?
3x 5y 21 ① 小丽 2x 5y -11 ②
58、当你快乐时,你要想,这快乐不 是永恒 的。当 你痛苦 时,你 要想, 这痛苦 也不是 永恒的 。 59、抱最大的希望,为最大的努力, 做最坏 的打算 。 60、成功的关键在于相信自己有成功 的能力 。
6x+7y=-19①
1. 用加减法解方程组
应用(B)
6x-5y=17②
A.①-②消去y B.①-②消去x
B. ②- ①消去常数项 D. 以上都不对
3x+2y=132.方ຫໍສະໝຸດ 组消去y后所得的方程是(B)
3x-2y=5
A.6x=8 B.6x=18 C.6x=5 D.x=18
三、指出下列方程组求解过程 中有错误步骤,并给予订正:
分析(:3x + 5y)+(2x - 5y)=21
+ (-11)
①左边 + ② 左边 = ① 右边 +
3X+5y +2x - 5y=10
5x+0y =10
5x=10
②右边
3x 5y 21 ① 2x 5y -11 ②
解:由①+②得: 5x=10
x=2
把x=2代入①,得
y=3
所以原方程组的解是
把y =-1代入①,得 2x-5╳(-1)=7
解得:x=1
所以原方程组的解是
x
y
1 1
练习 一.填空题:
x+3y=17
1.已知方程组
两个方程
2x-3y=6
只要两边 分别相加 就可以消去未知数 y
25x-7y=16
2.已知方程组
两个方程
25x+6y=10
只要两边分别相减就可以消去未知数 x
二.选择题
x y
3 2
参考小丽的思路,怎样解 下面的二元一次方程组呢?
2x 5y 7 ① 2x 3y 1 ②
分析:
观察方程组中的两个方程,未知数x的系数
相等,都是2.把这两个方程两边分别相减, 就可以消去未知数x,同样得到一个一元一
次方程.
2x 5y 7 ① 2x 3y 1 ②
解:把 ②-①得:8y=-8 y=-1
分析:
对于当方程组中两方 程不具备上述特点时, 必须用等式性质来改
解:①×3得6x+9y=36 ③ ②×2得 6x+8y=34 ④ ③-④得: y=2
变方程组中方程的形 式,即得到与原方程 组同解的且某未知数 系数的绝对值相等的 新的方程组,从而为
把y =2代入①,
解得: x=3
x 1
所以原方程组的解是