电磁场与电磁波理论(第二版)(徐立勤,曹伟)第1章习题解答

合集下载

程稼夫电磁学第二版第一章习题解析

程稼夫电磁学第二版第一章习题解析

程稼夫电磁学篇第一章《静电场》课后习题1-1设两个小球所带净电荷为q,距离为l,由库仑定律:由题目,设小球质量m,铜的摩尔质量M,则有:算得1-2 取一小段电荷,其对应的圆心角为dθ:这一小段电荷受力平衡,列竖直方向平衡方程,设张力增量为T:解得1-3(1)设地月距离R,电场力和万有引力抵消:解得:(2)地球分到,月球分到,电场力和万有引力抵消:解得:1-4设向上位移为x,则有:结合牛顿第二定律以及略去高次项有:1-5由于电荷受二力而平衡,故三个电荷共线且q3在q1和q2之间:先由库仑定律写出静电力标量式:有几何关系:联立解得由库仑定律矢量式得:解得1-6(1)对一个正电荷,受力平衡:解得,显然不可能同时满足负电荷的平衡(2)对一个负电荷,合外力提供向心力:解得1-7(1)设P限制在沿X轴夹角为θ的,过原点的直线上运动(θ∈[0,π)),沿着光滑直线位移x,势能:对势能求导得到受力:小量近似,略去高阶量:当q>0时,;当q<0时,(2)由上知1-8设q位移x,势能:对势能求导得到受力:小量展开有:,知1-9(1)对q受力平衡,设其横坐标的值为l0:,解得设它在平衡位置移动一个小位移x,有:小量展开化简有:受力指向平衡位置,微小谐振周期(2)1-101-11先证明,如图所示,带相同线电荷密度λ的圆弧2和直线1在OO处产生的电场强度相等.取和θ.有:显然两个电场强度相等,由于每一对微元都相等,所以总体产生的电场相等.利用这一引理,可知题文中三角形在内心处产生的电场等价于三角形内切圆环在内心处产生的电场.由对称性,这一电场强度大小为0.1-12(1)如图,取θ和,设线电荷密度λ,有:积分得(2)(3)用圆心在场点处,半径,电荷线密度与直线段相等的,张角为θ0 ()的一段圆弧替代直线段,计算这段带电圆弧产生的场强大小,可以用其所张角对应的弦长与圆弧上单位长度所产生的电场强度大小的积求得:1-13我们先分析一个电荷密度为ρ,厚度为x的无穷大带电面(图中只画出有限大),取如图所示高斯面,其中高斯面的两个相对面平行于电荷平面,面积为S,由高斯定理:算得,发现这个无穷大平面在外部产生的电场是匀强电场,且左右两边电场强度相同,大小相反.回到原题,由叠加原理以及,算得在不存在电荷的区域电场强度为0(正负电荷层相互抵消.)在存在电荷的区域,若在p区,此时x处的电场由三个电荷层叠加而成,分别是左边的n区,0到x范围内的p区,以及右边的p区,有:,算得同理算出n区时场强,综上可得1-14(1)取半径为r的球形高斯面,有:,解得(2)设球心为O1,空腔中心为O2,空腔中充斥着电荷密度为−ρ的电荷,在空腔中任意一点A处产生的电场为:(借助第一问结论)同时在A处还有一个电荷密度为+ρ则有:1-15取金属球上一面元d S,此面元在金属球内侧产生指向内的电场强度,由于导体内部电场处处为0,所以金属球上除该面元外的其他电荷在该面元处产生的电场强度为所以该面元受到其他电荷施加的静电力:球面上单位面积受力大小:半球面受到的静电力可用与其电荷面密度相等的,该半球面的截口圆面的面积乘该半球面的单位面积受力求得:1-16设轴线上一点到环心距离为x,有:令其对x导数为0:解得1-17写出初态体系总电势能:1-18系统静电势能大小为:1-19由对称性,可以认为四个面分别在中心处产生的电势,故取走后,;设BCD,ACD,ABD在P2处产生的电势为U,而ABD在P2处产生的电势为,有:;取走后:,解得1-20构造如下六个带电正方体(1到6号),它们的各面电荷分布彼此不相同,但都能通过一定的旋转从程中电荷直接相加而不重新分布).这个带电正方体各面电势完全相同,都为.容易证明,正方体内部的每一个点的电势也都为(若不然,正方体内部必存在电场线,这样的电场线必定会凭空产生,或凭空消失,或形成环状,都与静电场原理不符).故此时中心电势同样为1-21 O4处电势:O1处电势:故电势差为:1-22从对称性方面考虑,先将半球面补全为整个球面.再由电势叠加原理,即一个半球面产生的电势为它的一半,从而计算出半球面在底面上的电势分布.即1-23设上极板下版面面电荷密度为,下极板上版面面电荷密度为.取一个长方体型的高斯面,其形状是是两极板中间间隔的长方体,并且把和囊括进去.注意到金属导体内部没有电场,故这个高斯面电通量为0,其中净电荷为0,有:再注意到上下极板电势相等,其中E1方向向上,E2方向向下:再由高斯定理得出的结论:解得1-24先把半圆补成整圆,补后P、Q和O.这说明,新补上的半圆对P产生的电势为,而由于对称性,这个电势恰好也是半球面ACB对Q产生的电势.故:1-25在水平方向上,设质点质量m,电量为q:运动学:整体带入得:1-26(1)先将半球面补全为整个球面,容易计算出此时半球底面的电势.再注意到这个电势由对称的两个半球面产生的电势叠加得到,即一个半球面产生的电势为它的一半,即可求出一个半球面对底面产生的电势恒为定值,故底面为等势面,由E点缓慢移至A点外力做功为W1=0.(2)由上一问的分析知由E点缓慢移至O点外力不做功,记电势能为E,E的右下标表示所代表的点,则有:依然将半球面补为整球面,此时q在球壳内部任意一点电势能为2EO.此时对于T点,其电势能为上下两个球面叠加产生,由对称性,有:综上有W2=−W.1-27小球受电场力方程:将a与g合成为一个等效的g′:方向与竖直夹角再将加速度分解到垂直于g′和平行与g′的方向上.注意到与g′平行的分量最小为0,而垂直的分量则保持不变,故速度的最小值为垂直分量:1-28假设给外球壳带上电量q2,先考虑q2在内外表面各分布了多少.取一个以内球壳外表面和外球壳内表面为边界的高斯面,并把内球壳外表面和外球壳内表面上的电荷囊括进去,真正的高斯面边界在金属内部.由于金属内部无电场,高斯面电通量为0,高斯面内电荷总量为0,得到外球壳内表面分布了−q1电荷,外表面分布了q2+q1电荷.由电势叠加原理知球心处的电势:解得由电势叠加原理及静电屏蔽:1-29设质点初速度为v0,质量为m,加速度为a,有:,其中.设时竖直向下速度为v1,动能为Ek1,初动能为Ek0,有:解得1-30球1依次与球2、球3接触后,电量分别为.当球1、4接触时满足由于解得.注:若此处利用,略去二阶小量则可以大大简便计算,有意思的是,算出的答案与笔者考虑二阶小量繁重化简过后所得结果完全一致,这是因为在最后的表达式中没有r与a的和或差的项的缘故。

电磁场与电磁波基础教程(第2版)习题解答

电磁场与电磁波基础教程(第2版)习题解答

《电磁场与电磁波基础教程》(第2版)习题解答第1章1.1 解:(1)==A B=C(2))))23452A x y zB y zC x z ==+-=+=-,,;A a a a a a -a a a a a A(3)()()+2431223x y z x y z =+-+-+=--=+;A B a a a a a a A B (4)()()23411x y z y z ⋅=+-⋅-+=-;A B a a a a a (5)()()234104x y z y z x y z ⨯=+-⋅-+=---;A B a a a a a a a a (6)()()()1045242x y z x z ⨯⋅=-++⋅-=-;A B C a a a a a(7)()()()x 2104522405x y z x z y ⨯⨯=-++⨯-=-+A B C a a a a a a a a 。

1.2解:cos 68.56θθ⋅===︒;A B A BA 在B 上的投影cos 1.37B A θ===A ;B 在A 上的投影cos 3.21A B θ===B 。

1.3 解:()()()()()()()4264280⋅=-++-=正交A B 。

1.4 解:1110x x y y z z x y y z z y ⋅=⋅=⋅=⋅=⋅=⋅=,,;;a a a a a a a a a a a a 0x x y y z z ⨯=⨯=⨯=;a a a a a a x y z y z x z x y ⨯=⨯=⨯=;,a a a a a a a a a 。

1.5 解:(1)111000z z z z ρρϕϕρϕϕρ⋅=⋅=⋅=⋅=⋅=⋅=,,;,,a a a a a a a a a a a a ;000z z z z z ρρϕϕρϕϕρρϕ⨯=⨯=⨯=⨯=⨯=⨯=,,;,,a a a a a a a a a a a a a a a 。

电磁场与电磁波第二版课后答案

电磁场与电磁波第二版课后答案

电磁场与电磁波第二版课后答案本文档为《电磁场与电磁波》第二版的课后答案,包含了所有章节的练习题的答案和解析。

《电磁场与电磁波》是电磁学领域的经典教材,它讲述了电磁场和电磁波的基本原理和应用。

通过学习本书,读者可以深入了解电磁学的基本概念和原理,并且能够解决一些相关问题。

第一章绪论练习题答案1.电磁场是由电荷和电流产生的一种物质性质,具有电场和磁场两种形式。

电磁波是电磁场的振动。

电磁辐射是指电磁波传播的过程。

2.对于一点电荷,其电场是以该点为中心的球对称分布,其强度与距离成反比。

对于无限长直导线产生的电场,其强度与距离呈线性关系,方向垂直于导线轴线。

3.电磁场的本质是相互作用力。

电场力是由于电荷之间的作用产生的,磁场力是由于电流之间的作用产生的。

解析1.电磁场是由电荷和电流产生的物质性质。

当电荷存在时,它会产生一个电场,该电荷周围的空间中存在电场强度。

同时,当电流存在时,它会产生一个磁场,该电流所在的区域存在磁场。

电磁波是电磁场的振动传播。

电磁波是由电磁场的变化引起的,相邻电磁场的振动会相互影响,从而形成了电磁波的传播。

电磁辐射是指电磁波在空间中的传播过程。

当电磁波从一个介质传播到另一个介质时,会发生折射和反射现象。

2.在一点电荷产生的电场中,电场强度与该点到电荷的距离成反比,即\(E = \frac{{k \cdot q}}{{r^2}}\),其中\(E\)为电场强度,\(k\)为电场常数,\(q\)为电荷量,\(r\)为距离。

对于无限长直导线产生的电场,其电场强度与离导线的距离呈线性关系。

当离无限长直导线的距离为\(r\)时,其电场强度可表示为\(E = \frac{{\mu_0 \cdot I}}{{2 \pi \cdot r}}\),其中\(E\)为电场强度,\(\mu_0\)为真空中的磁导率,\(I\)为电流强度。

3.电磁场的本质是相互作用力。

当两个电荷之间有作用力时,这个作用力是由于它们之间的电场力产生的。

[理学]《电磁学》赵凯华陈熙谋No1chapter答案-精品文档

[理学]《电磁学》赵凯华陈熙谋No1chapter答案-精品文档

第一章 静电场§1.1 静电的基本现象和基本规律思考题:1、 给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。

你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。

你所用的方法是否要求两球大小相等?答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。

然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。

本方法不要求两球大小相等。

因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。

2、 带电棒吸引干燥软木屑,木屑接触到棒以后,往往又剧烈地跳离此棒。

试解释之。

答:在带电棒的非均匀电场中,木屑中的电偶极子极化出现束缚电荷,故受带电棒吸引。

但接触棒后往往带上同种电荷而相互排斥。

3、 用手握铜棒与丝绸摩擦,铜棒不能带电。

戴上橡皮手套,握着铜棒和丝绸摩擦,铜棒就会带电。

为什么两种情况有不同结果?答:人体是导体。

当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。

戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。

计算题:1、 真空中两个点电荷q 1=1.0×10-10C ,q 2=1.0×10-11C ,相距100mm ,求q 1受的力。

解:)(100.941102210排斥力N r q q F -⨯==πε 2、 真空中两个点电荷q 与Q ,相距5.0mm,吸引力为40达因。

已知q=1.2×10-6C,求Q 。

解:1达因=克·厘米/秒=10-5牛顿C qF r Q r qQF 1320201093441-⨯-==⇒=πεπε 3、 为了得到一库仑电量大小的概念,试计算两个都是一库仑的点电荷在真空中相距一米时的相互作用力和相距一千米时的相互作用力。

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。

2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。

3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。

4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。

( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。

( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。

( √ )7、梯度的方向是等值面的切线方向。

(× )8、标量场梯度的旋度恒等于0。

( √ ) 9、习题1.12, 1.16。

第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。

2、在国际单位制中,电场强度的单位是V/m(伏特/米)。

3、静电系统在真空中的基本方程的积分形式是:V V sD d S d V Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。

4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。

5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。

6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。

7、在介电常数为e 的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。

8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。

新概念物理教程 电磁学 赵凯华 第二版2版 课后习题答案全解详解

 新概念物理教程 电磁学 赵凯华 第二版2版 课后习题答案全解详解

可当作点电荷),求(")! 粒于所受的力;(’)! 粒子的加速度。
解:(")
!
&"
$" + " !#
’" ’’ (’
$ +
%
%& %"" (# %"# !"&%’ ," "+ %)" )$ %"# !"’
%"" %((
(# %"# !"& " &# %"# !"$
)’
%
$ %" (+
%"# !’ %,
’& ,由 " ! ’ 题的结果可知
’"
#
%
" !
!#(
%
!&&+, &)$ ,!
’&
#
%
" !
!#(
%
&+ -& , &
)$ ;
* 点的场强为
[ ] ’
# ’"
!’&
#%
" ! !#
&+ %$ ("
!
" &,
&
%)$
! (
"
" -& ,
&
%)$
[ ( ) ] $%
" ! !#
&+ %$
"
-&$
& %
设两平行线中左边一条带负电右边一条带正电原点取在二者中间场点的坐标为利用书上例题的结果有均匀电场与半径为的半球面的轴线平行试用面积分计算通过此半球面的电通量

电磁场习题讲解1

电磁场习题讲解1



其中 r ex x ey y ez z , k 为一常矢量。
rx ry rz x y z r 3 证明:1) x y z x y z
2)
ex r x x
ey y y
ez 0 z z
3)
k ex k x ey k y ez k z k r xk x yk y zk z
2) A B (ex ey 2 ez 3) (ey 4 ez ) ex ey 6 ez 4 53
3) A B (ex ey 2 ez 3) (ey 4 ez ) 8 3 11
A B 11 11 5) AB 6) A C 1 2 2 B 17 (4) 1
Ex E y Ez E x y z 2 x az (2 xy b) (1 2 z cx 2 xy ) 0
得到
a 2; b 1; c 2
1.23
证明:1) r 3; 2) r 0; 3) k r k
ex ey 5 ez 2 3 ex 4 ey 13 ez 10 0 2
1.3 求点P’(-3,1,4)到点P(2,-2,3)的距离矢量 R 及 R 的方向。 解:
rP' 3ex ey 4ez rP 2ex 2ey 3ez
则:
R rP rP' 5ex 3ey ez
2)令
u u u u ex ey ez ex (2 x 3) ey (4 y 2) ez (6 z 6) 0 x y z
得到
x 3 / 2; y 1/ 2; z 1

《电磁场与电磁波》课后习题解答(全)

《电磁场与电磁波》课后习题解答(全)
由安培环路定律: ,按照上图所示线路积分有
等式左边
等号右边为闭合回路穿过的总电流
所以
写成矢量式为
将 代入得
【习题3.18】
解:当 时, ,
当 时, ,
这表明 和 是理想导电壁得表面,不存在电场的切向分量 和磁场的法向分量 。
在 表面,法线
所以
在 表面,法线
所以
【习题3.19】
证明:考虑极化后的麦克斯韦第一方程
【习题4.6】
解:由麦克斯韦方程 ,
引入 ,令 .在库仑规范下, ,所以有
即得
而 的解为
可得
对于线电流,有
所以
习题及参考答案
因为该齐次波动方程是麦克斯韦方程在代入 的条件下导出的,所以 作为麦克斯韦方程的解的条件是:
【习题3.22】
解:已知所给的场存在于无源( )介质中,场存在的条件是满足麦克斯韦方程组。
由 得
所以
积分得
由 ,可得
根据 ,可得
对于无源电介质,应满足 或
比较可知: ,但 又不是x的函数,故满足
同样可以证明: 也可满足
则有

前一式表明磁场 随时间变化,而后一式则得出磁场 不随时间变化,两者是矛盾的。所以电场 不满足麦克斯韦方程组。
(2)若
因为
两边对t积分,若不考虑静态场,则有
因此
可见,电场 和磁场 可以满足麦克斯韦方程组中的两个旋度方程。很容易证明他们也满足两个散度方程。
【习题2.7】
解:由传导电流的电流密度 与电场强度 关系 = 知:
取一线元:
则有
则矢量线所满足的微分方程为
或写成
求解上面三个微分方程:可以直接求解方程,也可以采用下列方法

电磁学第二版课后习题答案

电磁学第二版课后习题答案

电磁学第二版课后习题答案电磁学是物理学中的重要分支,研究电荷和电流的相互作用以及电磁场的产生和传播。

对于学习电磁学的学生来说,课后习题是巩固知识和提高能力的重要途径。

本文将对《电磁学第二版》课后习题进行一些解答和讨论,帮助读者更好地理解电磁学的概念和应用。

第一章:电荷和电场1. 问题:两个等量的正电荷之间的相互作用力是多少?答案:根据库仑定律,两个等量的正电荷之间的相互作用力等于它们之间的电荷量的平方乘以一个常数k,即F = kq1q2/r^2。

2. 问题:电场是什么?如何计算电场强度?答案:电场是指电荷周围的一种物理量,它描述了电荷对其他电荷的作用力。

电场强度E可以通过电场力F除以测试电荷q得到,即E = F/q。

第二章:静电场1. 问题:什么是电势能?如何计算电势能?答案:电势能是指电荷在电场中由于位置变化而具有的能量。

电势能可以通过电荷q乘以电势差V得到,即U = qV。

2. 问题:什么是电势差?如何计算电势差?答案:电势差是指单位正电荷从一个点移动到另一个点时所做的功。

电势差可以通过电场力F乘以移动距离d得到,即V = Fd。

第三章:电流和电阻1. 问题:什么是电流?如何计算电流?答案:电流是指单位时间内通过导体横截面的电荷量。

电流可以通过电荷量Q除以时间t得到,即I = Q/t。

2. 问题:什么是电阻?如何计算电阻?答案:电阻是指导体中电流流动受到的阻碍程度。

电阻可以通过电压V除以电流I得到,即R = V/I。

第四章:电路和电源1. 问题:什么是电路?如何计算电路中的电流和电压?答案:电路是指由电源、导线和电器元件组成的路径,用于电流的传输和电能的转换。

电路中的电流可以通过欧姆定律计算,即I = V/R,其中V为电压,R 为电阻。

2. 问题:什么是直流电源?什么是交流电源?答案:直流电源是指电流方向保持不变的电源,如电池。

交流电源是指电流方向周期性变化的电源,如交流发电机。

通过以上的解答和讨论,我们对电磁学的基本概念和计算方法有了更深入的了解。

《电磁场与电磁波》笔记和课后习题(含考研真题)详解

《电磁场与电磁波》笔记和课后习题(含考研真题)详解

第1章矢量分析1.1复习笔记一、标量场和矢量场1.一个只用大小描述的物理量为标量。

若所研究的物理量为一标量,则该物理量所确定的场为标量场,如温度场,密度场等。

用一个标量函数来表示该场为2.一个既有大小又有方向特性的物理量为矢量。

若所研究的物理量为一矢量,则该物理量所确定的场为矢量场,如力场、电场等。

用一个矢量函数来表示该场为二、标量场的方向导数与梯度1.在直角坐标系中方向导数的计算公式为式中,是方向l的方向余弦。

特点:方向导数既与所研究的点有关,也与方向有关。

2.标量场的梯度是一个矢量,在直角坐标系中,梯度的表达式为在柱坐标系和球坐标系中,梯度的表达式为标量场的梯度意义:描述标量场在某点的最大变化率及其变化最大的方向。

3.梯度运算的基本公式:三、矢量场的散度与旋度1.散度矢量通过包含该点的任意闭合小曲面的通量与曲面元体积之比的极限。

矢量场的散度是个标量,在直角坐标系、圆柱坐标系及球坐标系中的计算式分别为2.散度定理(高斯定理)矢量场F的散度在体积V上的体积分,等于矢量场F在限定该体积的闭合面S上的面积分。

3.旋度旋涡源密度矢量。

矢量场的旋度是个矢量,在直角坐标系、圆柱坐标系及球坐标系中分别表示为4.斯托克斯定理矢量场F的旋度在曲面S上的面积分等于矢量场F在限定曲面的闭合曲线C上的线积分。

四、无旋场与无散场1.仅有散度源而无旋度源的矢量场为无旋场,如静电场,。

梯度矢量的重要性质:它的旋度恒等于零,即。

2.仅有旋度源而无散度源的矢量场为无散场,如恒定磁场,。

旋度矢量的重要性质:它的散度恒等于零,即。

五、格林定理1.格林第一恒等式2.格林第二恒等式3.格林定理的应用:(1)利用格林定理可以将区域中场的求解问题转变为边界上场的求解问题。

(2)格林定理反映了两种标量场之间满足的关系。

因此,如果已知其中一种场的分布,即可利用格林定理求解另一种场的分布。

六、亥姆霍兹定理在有限区域V内,任一矢量场由它的散度、旋度和边界条件唯一地确定,且可表示为:1.2课后习题详解(一)思考题1.1如果A·B=A·C,是否意味着B=C?为什么?答:并不意味着B=C。

电磁场理论习题解答

电磁场理论习题解答

电磁场理论习题解答信息科学技术学院第1章习题答案1-1 在直角坐标系中,试将微分形式的麦克斯韦方程写成8个标量方程。

解:在直角坐标系中矢量D 的散度运算如下:()z D y D x D D D D z y x z y x z y x ∂∂+∂∂+∂∂=++⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂=∇⋅⋅k j i k j i D (1) 因此,高斯通量定理和磁通连续性原理分别是两个标量方程:0 , =∂∂+∂∂+∂∂=∂∂+∂∂+∂∂zB y B x Bz D y D x D z y x z y x ρ (2) 在直角坐标系中矢量E 的旋度运算如下:⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂∂∂∂∂=⨯∇y E x E x E z E z E y E E E E z y x x y z x y z zy x k j i kj i E (3) 法拉第电磁感应定律可以写成3个标量方程:tBy E x E t B x E z E t B z E y E z x y y z x x y z ∂∂-=∂∂-∂∂∂∂-=∂∂-∂∂∂∂-=∂∂-∂∂ ,, (4) 全电流定律也可以写成3个标量方程:tH J y H x H t D J x H z H t D J z H y H zz x y y y z x x x y z ∂∂+=∂∂-∂∂∂∂+=∂∂-∂∂∂∂+=∂∂-∂∂ ,, (5) 共8个标量方程。

1-2 试证明:任意矢量E 在进行旋度运算后再进行散度运算,其结果恒为零,即∇ ⋅ (∇ ⨯ E ) = 0 (1)证明:设A 为任意矢量场函数,由题1-1式(3)可知,在直角坐标系中,它的旋度为⎪⎪⎭⎫⎝⎛∂∂-∂∂+⎪⎪⎭⎫⎝⎛∂∂-∂∂+⎪⎪⎭⎫⎝⎛∂∂-∂∂=⨯∇y E x E x E z E z E y E x y zx y z k j i E (2) 再对上式进行散度运算0)(222222=∂∂∂-∂∂∂+∂∂∂-∂∂∂+∂∂∂-∂∂∂=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂∂∂=⨯∇∇⋅zy E x z E y x E z y E x z E y x E y E x E z x E z E y z E y E x x y z x y z x y z x y z E (3)得证。

电磁场与电磁波理论基础 曹建章 张正阶 李景镇 编著(第一章答案)

电磁场与电磁波理论基础 曹建章 张正阶 李景镇 编著(第一章答案)
表达式,有
1-16.对于矢量场,计算以下内容验证散度定理:(a)设立方体以原 点为中心,边长为2单位,计算流出立方体的总通量;(b)计算在该立 方体中的体积分。
题1-16图 解 (a)矢量场对立方体表面的面积分为
(b)将矢量场相应分量代入散度公式,得到
散度对立方体的体积分为
由此可见,散度定理成立。 1-17.对于矢量场,应用,z=0, z=4的圆柱区域验证散度定理。
题1-20图
解 (a)由题可知,XY平面对应的θ应取π/2,φ应取, r取。而矢量 场在球坐标系下的分量为
根据 得到 则
将θ=π/2(θ取常数)代入式

闭合线积分分三段:第一段积分φ=0,;第二段积分r=2,;第三段 积分φ=π,。因此有 显然,斯托克斯定理成立。
(b)由题可知,XY平面对应的θ应取π/2,φ应取, r取。同理,有
1-7.在球坐标系下矢量场的数学描述为
试写出该矢量场在直角坐标系下的表达式。 解 由题知
利用变换矩阵
得到
由此得到
其中
由此可见,在球坐标系下矢量场F具有比较简洁的表达式,而在直角坐 标系下,F的表达式要复杂的多。 1-8.在柱坐标系下描述矢量场的数学表达式为
在圆柱ρ=4的一点P(4, π, 2)处,求 (a)矢量F垂直于该圆柱的分量; (b)矢量F相切于该圆柱的分量。 解 在圆柱面上任一点,垂直于圆柱的分量为Fρ,而切于圆柱的分量
解 根据
得到数量场在点P处的梯度为
在点P处l的单位矢量为
由此可得,在点P处的方向导数为
1-13.设,求在点P(1,-2,1)的。 解 根据直角坐标系下的梯度表达式,有
1-14.设,求在P(1,-1,2)的。 解 根据直角坐标系下的散度表达式,有

电磁场与电磁波 课后习题答案

电磁场与电磁波 课后习题答案

习题1.1 已知z y x B z y x A ˆ2ˆˆ;ˆˆ3ˆ2-+=-+=,求:(a) A 和B 的大小(模); (b) A 和B 的单位矢量;(c)B A⋅;(d)B A⨯;(e)A 和B 之间的夹角;(f) A 在B 上的投影。

解:(a) A 和B 的大小74.314132222222==++=++==z y x A A A A A45.26211222222==++=++==z y x B B B B B(b) A 和B 的单位矢量z y x z y x A A aˆ267.0ˆ802.0ˆ535.0)ˆˆ3ˆ2(74.31ˆ-+=-+==z y x z y x B B bˆ816.0ˆ408.0ˆ408.0)ˆ2ˆˆ(45.21ˆ-+=-+==(c)A B ⋅7232=++=++=⋅z z y y x x B A B A B A B A(d) B A ⨯ z y x zyxB B B A A A z y xB A zyxz y xˆˆ3ˆ5211132ˆˆˆˆˆˆ-+-=--==⨯(e)A 和B 之间的夹角α根据αcos AB B A =⋅得764.0163.97cos ==⋅=AB B A α 019.40=α (f) A 在B 上的投影86.245.27ˆ==⋅=⋅B B A bA1.2如果矢量A 、B 和C 在同一平面,证明A ·(B ⨯C )=0。

证明:设矢量A 、B 和C 所在平面为xy 平面y A x A A y x ˆˆ+=y B xB B y x ˆˆ+=y C xC C y x ˆˆ+=z C B C B y C B C B x C B C B C C C B B B zy xC B x y y x z x x z y z z y zyxz y xˆ)(ˆ)(ˆ)(ˆˆˆ-+-+-==⨯zC B C B x y y x ˆ)(-= 0ˆˆ)(0)(=⋅-⨯=⨯⋅z zC B C B C B A x y y x1.3已知A =ααsin ˆcos ˆy x+、B ββsin ˆcos ˆy x -=和C ββsin ˆcos ˆy x +=,证明这三个矢量都是单位矢量,且三个矢量是共面的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档