高二数学下学期周练一

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012-2013学年度高二年级第二学期周练(一)

理 科

一、填空题:(本大题共10题,每小题5分,共50分)

1.12

(3x 展开式中1x -的项的系数为 . (用数字作答)

2.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.

3.

n

的展开式中各项系数之和为64,则展开式中的常数项为 . 4.从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为 .

5.8

2

1(12)x x x ⎛

⎫+- ⎪⎝

⎭的展开式中常数项为 .(用数字作答)

6.8名同学排成前后两排,每排4人.如果甲、乙两同学必须排在前排,丙同学必须排在后排,那

么不同的排法共有_____________种(用数字作答). 7.若n ∈N *,且n 为奇数,则6n +C n 16n-1+…+C n n-16-1被8除所得的余数是 。 8.甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、0.6、0.5,则三人中至少有一人达标的概率是 .

9.将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为 . (用数字作答)

10.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有 种(用数字作答). 二、解答题:(本大题共8题,共110分) 11.

求8展开式中的所有的有理项.

12.已知()()n

m

x x x f 4121)(+++= *

(,)m n N ∈的展开式中含x 项的系数为36,求展开式中

含2x 项的系数最小值

13.某气象站天气预报的准确率为80%,计算(结果保留最简分数):

(1)5次预报中恰有2次准确的概率; (2)5次预报中至少有2次准确的概率;

(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.

14.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现在从甲、乙两个盒内各任取2个球. (I)求取出的4个球均为黑色球的概率;

(II)求取出的4个球中恰有1个红球的概率;

(III)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.

15.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望3E ξ=,标准差V ξ

(Ⅰ)求n ,p 的值并写出ξ的分布列;

(Ⅱ)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.

16.将编号为1、2、3、4的四个小球放入编号为1、2、3、4的四个盒子中,求满足下列条件的放法分别有多少种?

(1)每个小球可任意放入其中的一个盒子里;

(2)每盒至多放入一球;

(3)恰好有一个空盒;

(4)每个盒内放一个求,并且恰好有一个球的编号与盒子的编号相同;

(5)把4个不同的小球换成4个相同的小球,且恰有一个空盒;

(6) 把4个不同的小球换成20个相同的小球,要求每个盒内的球数不少于它的编号数.17.设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购

买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.

(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;

(Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;

(Ⅲ)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望. 18.杨辉是中国南宋末年的一位杰出的数学家、数学教育家、杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.下图是一个11阶杨辉三角:

(1)求第20行中从左到右的第4个数;

(2)若第n行中从左到右第14与第15个数的比为

3

2

,求n的值;

(3)求n阶(包括0阶)杨辉三角的所有数的和;

(4)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35.显然,1+3+6+10+15=35.事实上,一般地有这样的结论:第m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数.试用含有m、k)

,

(*

N

k

m∈的数学公式表示上述结论,并给予证明.

相关文档
最新文档