人教版初中数学七年级上册期末综合测试题
2022-2023学年人教版初中数学七年级上册期末综合能力测试卷(附参考答案)
2022-2023学年人教版初中数学七年级上册期末综合能力测试卷一、选择题(共12小题)1.(2022秋•长沙县校级期中)若|x ﹣1|+x =1,则x 一定满足( ) A .x <1B .x >1C .x ≤1D .x ≥12.(2022秋•雁塔区校级期中)已知|a |=1,b 是﹣2的倒数,则a +b 的值为( ) A .32或−12B .−32C .12D .−32或123.(2022秋•溧水区期中)如图所示,数轴上点A 、B 对应的数分别为a 、b ,下列说法正确的是( )A .a +2b >0B .|a |﹣2|b |<0C .a ﹣2|b |>0D .a +2|b |<04.(2022秋•丹江口市期中)某商品原价为a 元,先提高20%,然后连续两次降价,每次降价10%.则该商品的价格是( ) A .a 元B .0.972a 元C .0.968a 元D .0.96a 元5.(2022秋•东台市期中)根据如图所示的程序计算,若输入的x 值为5时,输出的值为﹣3,则输入值为﹣1时,输出值为( )A .﹣1B .1C .3D .46.(2021秋•石狮市期末)若(2x ﹣1)6=a 6x 6+a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 6﹣a 5+a 4﹣a 3+a 2﹣a 1的值为( ) A .0B .1C .728D .7297.(2022秋•楚雄市期中)某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元. A .160B .140C .120D .1008.(2022秋•怀柔区校级月考)有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m +10=43m ﹣1;②n+1040=n+143;③n−1040=n−143;④40m +10=43m +1.其中正确的是( ) A .①②B .②④C .①③D .③④9.(2022春•商水县月考)我们定义一种运算:|abc d|=ad ﹣bc 例如,|2345|=2×5﹣3×4=﹣2,|x213|=3x ﹣2,按照这种定义的运算,当|x2−12x2|=|x −1−4121|时,x =( ) A .−32B .−12C .32D .1210.(2022秋•尤溪县期中)现有一个长方形,长和宽分别为3cm 和2cm ,绕它的一条边所在的直线旋转一周,得到的几何体的体积为( )A .12πB .27πC .12π或18πD .12π或27π11.(2021秋•青岛期末)如图,C 为线段AB 上一点,点D 为BC 的中点,且AB =30cm ,AC =4CD ,则AC 的长为( )cm .A .18B .18.5C .20D .20.512.(2022秋•海淀区校级期中)如图,在△ABC 中,根据尺规作图痕迹,下列说法不一定正确的是( )A .AF =BFB .∠AFD +∠FBC =90° C .DF ⊥ABD .∠BAF =∠CAF二、填空题(共6小题)13.(2022秋•沈北新区期中)若﹣1<a<0,则a、a2、1的大小关系是.(用“<”a连接)14.(2022秋•义乌市校级期中)如图在一条可以折叠的数轴上,点A,B表示的数分别是﹣8,3,若以点C为折点,将此数轴向右对折,若点A落在点B右边,且A、B 两点相距1单位长,则点C表示的数是.15.(2022秋•宿城区期中)如果多项式x2+5ab+b2+kab﹣1不含ab项,则k的值为.16.(2021秋•孝南区期末)单项式x m﹣1y3与4xy n的和是单项式,则n m的值是.17.(2022秋•南皮县校级月考)定义新运算“※”如下:当a≥b时,a※b=ab+b;当a<b时,a※b=ab﹣a.(1)﹣3※2=;若5※b=12,则b=;(2)若(2x﹣1)※(x+2)=0,则x=.18.(2022秋•鼓楼区校级月考)一束光线经过三块平面镜反射,光路如图所示,当∠β是∠α的一半时,∠α=°.三、解答题(共7小题)19.(2022秋•璧山区校级期中)计算题:);(1)(−12)×(−4)−10×(−32(2)﹣42×(﹣2)+[(﹣2)3﹣(﹣4)].20.(2022秋•宜兴市期中)解方程 (1)5x ﹣3=2(x ﹣12); (2)1−2x−16=2x+13.21.(2022秋•陇县期中)先化简,再求值:(1)3a 2b +2(ab −32a 2b )﹣(2ab 2﹣3ab 2+ab ),其中a =2,b =−12;(2)2(xy 2+5x 2y )﹣3(3xy 2﹣x 2y )﹣xy 2,其中x =﹣1,y =−12.22.(2022秋•张店区期中)【阅读学习】阅读下面的解题过程: 已知:xx 2+1=13,求x 2x 4+1的值. 解:由xx 2+1=13知x ≠0,所以x 2+1x=3,即x +1x =3,所以x 4+1x 2=x 2+1x 2=(x +1x)2−2=32﹣2=7,故x 2x 4+1的值为17.【类比探究】(1)上题的解叫做“倒数法”,请你利用“倒数法”解决下面的题目:已知xx 2−3x+1=−2,求x 2x 4+5x 2+1的值.【拓展延伸】(2)已知1a +1b =12,1b +1c =13,1a +1c =15,求abcab+bc+ac 的值.23.(2022秋•鄂州期中)某电器商店销售一种洗衣机和电磁炉,洗衣机每台定价800元,电磁炉每台定价200元.“十一”假期商店决定开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一台洗衣机送一台电磁炉;方案二:洗衣机和电磁炉都按定价的90%付款.现某客户要在该商店购买洗衣机10台,电磁炉x台(x>10).(1)若该客户按方案一、方案二购买,分别需付款多少元?(用含x的式子表示)(2)若x=35,通过计算说明此时按哪种方案购买较为合算?(3)当x=35时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元.24.(2022秋•泉州期中)如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣12,点B表示8,点C表示16,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.25.(2022秋•香坊区校级期中)为美化城市环境,现将广场某一区域进行景观设计规划,如图所示,区域的四角放置底座均直径为10米的圆形雕塑,紧贴四角的雕像底座安装一圈封闭围栏,在区域中央建立半径为10米的圆形喷水池,其余部分种植花卉.(π取3)(1)四个雕塑的占地面积之和是多少平方米?(2)安装一圈封闭围栏的长度是多少米?(3)在种植花卉的区域种植小雏菊、兰花、牵牛花三种花卉,其中兰花的种植面积比小雏菊多25%,小雏菊的种植面积是兰花和牵牛花种植面积之和的4,小雏菊每平13,兰花每平方米的价格方米50元,兰花每平方米的价格比小雏菊每平方米的价格少15与牵牛花每平方米的价格的比为4:3,围栏每米20元,修建喷水池和所有雕塑共需32000元,完成这项工程共需多少元?参考答案一、选择题(共12小题)1.C;2.D;3.D;4.B;5.C;6.C;7.C;8.D;9.A;10.C;11.C;12.D;二、填空题(共6小题)13.1a<a<a214.215.﹣516.917.﹣3;2;﹣1或1218.84;三、解答题(共7小题)19.解:(1)原式=48+15=63;(2)原式=﹣16×(﹣2)+(﹣8+4)=32﹣8+4=28.20.解:(1)5x﹣3=2(x﹣12),去括号,得5x﹣3=2x﹣24,移项,得5x﹣2x=3﹣24,合并同类项,得3x=﹣21,系数化为1,得x=﹣7;(2)1−2x−16=2x+13,去分母,得6﹣(2x﹣1)=2(2x+1),去括号,得6﹣2x+1=4x+2,移项,得﹣2x﹣4x=2﹣6﹣1,合并同类项,得﹣6x=﹣5,系数化为1,得x=56.21.解:(1)原式=3a2b+2ab﹣3a2b﹣2ab2+6ab2﹣ab=ab +4ab 2, 当a =2,b =−12时, 原式=﹣1+2=1;(2)原式=2xy 2+10x 2y ﹣9xy 2+3x 2y ﹣xy 2 =﹣8xy 2+13x 2y , 当x =﹣1,y =−12时, 原式=2−132=−92.22.(1)由 xx 2−3x+1=−2知x ≠0,所以x 2−3x+1x=−12,即:x +1x −3=−12. ∴x +1x =52. ∴x 4+5x 2+1x 2=x 2+1x 2+5 =(x +1x )2﹣2+5 =(52)2﹣2+5 =374.故x 2x 4+5x 2+1的值为437.(2)∵1a +1b =12,1b +1c =13,1a +1c =15, ∴2(1a +1b +1c )=12+13+15=3130, ∴1a+1b+1c=3160.∵ab+bc+acabc =1c +1a +1b ,∴abcab+bc+ac =3160.23.解:(1)800×10+200(x ﹣10)=200x +6000(元), (800×10+200x )×90%=180x +7200(元);(2)当x =35时,方案一:200×35+6000=13000(元),方案二:180×35+7200=13500(元),∵13000<13500,所以,按方案一购买较合算.(3)先按方案一购买10台微波炉送10台电磁炉,再按方案二购买2,5台电磁炉,这样更为省钱,共付款:10×800+200×25×90%=12500(元).24.解:(1)点P从点A运动至C点需要的时间为:t=6÷1+8÷0.5+(16﹣8)÷1=30(秒).答:点P从点A运动至C点需要的时间是30秒;(2)由题可知,P,Q两点相遇在线段OB上于M处,设OM=x,则6÷1+x÷0.5=8÷2+(8﹣x)÷4.解得x=0.∴OM=0表示P,Q两点相遇在线段OB上于O处,即相遇点M所对应的数是0.(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有2种可能:①动点P在AO上,动点Q在CB上,则:6﹣t=8﹣2t.解得:t=2.②动点P在AO上,动点Q在BO上,则:6﹣t=4(t﹣4).解得:t=4.4.答:t为2s或者4.4s时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.25.解:(1)3×(10)2×4=300(平方米),2∴四个雕塑的占地面积之和是300平方米.(2)10×3+50×4=230(米),∴围栏的长度是230米.(3)种花的面积:50×50+50×5×4+3×52=3×102﹣300=2975(平方米),=700(平方米),兰花700×(1+258)=875(平方米),牵牛花:小雏菊:2975×413+42975﹣700﹣875=1400(平方米),∵兰花50×(1−1)=40(元/平方米),牵牛花:40÷4×3=30 (元/平方米),5∴700×50+875×40+1400×30+230×20+32000=148600(元),答:完成这项工程共需148600元.。
人教版(七年级)初一上册数学期末测试题及答案
人教版(七年级)初一上册数学期末测试题及答案一、选择题1.计算(3)(5)-++的结果是()A.-8 B.8 C.2 D.-22.下列说法中正确的有()A.连接两点的线段叫做两点间的距离B.过一点有且只有一条直线与已知直线垂直C.对顶角相等D.线段AB的延长线与射线BA是同一条射线3.已知关于x的方程mx+3=2(m﹣x)的解满足(x+3)2=4,则m的值是()A.13或﹣1 B.1或﹣1 C.13或73D.5或734.如图,OA⊥OC,OB⊥OD,①∠AOB=∠COD;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个()A.1个B.2个C.3个D.4个5.方程3x+2=8的解是()A.3 B.103C.2 D.126.如图是由下列哪个立体图形展开得到的?()A.圆柱B.三棱锥C.三棱柱D.四棱柱7.﹣3的相反数是()A.13-B.13C.3-D.38.不等式x﹣2>0在数轴上表示正确的是()A.B.C.D.9.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱 10.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( )A .2B .4C .﹣2D .﹣411.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元B .200元C .225元D .259.2元12.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 中点个数有 ( ) ①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB .A .1个B .2个C .3个D .4个二、填空题13.9的算术平方根是________14.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.15.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.16.如图,在长方形ABCD 中,10,13.,,,AB BC E F G H ==分别是线段,,,AB BC CD AD 上的定点,现分别以,BE BF 为边作长方形BEQF ,以DG 为边作正方形DGIH .若长方形BEQF 与正方形DGIH 的重合部分恰好是一个正方形,且,BE DG =,Q I 均在长方形ABCD 内部.记图中的阴影部分面积分别为123,,s s s .若2137S S =,则3S =___17.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______. 18.将520000用科学记数法表示为_____.19.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为_____千米.20.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______. 21.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___. 22.已知7635a ∠=︒',则a ∠的补角为______°______′.23.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.24.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).三、解答题25.解方程: (1)312x +=- (2)62123x x--=- 26.如图,OC 是AOB ∠内一条射线,且AOC BOC ∠∠<,OE 是AOB ∠的平分线,OD 是AOC ∠的角平分线,则(1)若108,36,AOB AOC ∠=︒∠=︒则OC 是DOE ∠平分线,请说明理由.(2)小明由第(1)题得出猜想:当3AOB AOC ∠=∠时,OC 一定平分,DOE ∠你觉得小明的猜想正确吗?若正确,请说明理由;若不正确,判断当AOB ∠和AOC ∠满足什么条件时OC 一定平分,DOE ∠并说明理由. 27.如图,在平面内有,,A B C 三点.(1)请按要求作图:画直线AC ,射线BA ,线段BC ,取BC 的中点D ,过点D 作DE AC ⊥于点E .(2)在完成第(1)小题的作图后,图中以,,,,A B C D E 这些点为端点的线段共有 条.28.某校为了解七年级学生体育测试情况,在七年级各班随机抽取了部分学生的体育测试成绩,按,,,A B C D四个等级进行统计(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下),并将统计结果绘制成两个不完整的统计图,请你结合统计图中所给信息解答下列问题:(1)学校在七年级各班共随机调查了________名学生;(2)在扇形统计图中,D级所在的扇形圆心角的度数是_________;(3)请把条形统计图补充完整;(4)若该校七年级有500名学生,请根据统计结果估计全校七年级体育测试中A级学生约有多少名?29.计算(﹣1)2019+36×(11-32)﹣3÷(﹣34)30.用白色棋子摆出下列一组图形:(1)填写下表:图形编号(1)(2)(3)(4)(5)(6)...图形中的棋子(2)照这样的方式摆下去,写出摆第个图形棋子的枚数;(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?四、压轴题31.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(其中∠P=30°)的直角顶点放在点O处,一边OQ在射线OA上,另一边OP与OC都在直线AB的上方.将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)如图2,经过t秒后,OP恰好平分∠BOC.①求t的值;②此时OQ是否平分∠AOC?请说明理由;(2)若在三角板转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠POQ?请说明理由;(3)在(2)问的基础上,经过多少秒OC平分∠POB?(直接写出结果).32.如图1,已知面积为12的长方形ABCD,一边AB在数轴上。
2024年最新人教版初一数学(上册)期末考卷及答案(各版本)
2024年最新人教版初一数学(上册)期末考卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 1B. 0C. 1D. 22. 已知a > b,则下列不等式成立的是()A. a b > 0B. a + b < 0C. a b < 0D. a + b > 03. 下列各数中,是有理数的是()A. √3B. √2C. √5D. √94. 已知2x3=0,则x的值是()A. 0B. 1C. 2D. 35. 下列式子中,计算结果为0的是()A. 5x 5xB. 5x + 5xC. 5x 5xD. 5x / 5x二、判断题5道(每题1分,共5分)1. 任何两个有理数的和仍然是有理数。
()2. 任何两个有理数的积仍然是有理数。
()3. 任何两个整数的商仍然是有理数。
()4. 任何两个整数的和仍然是有理数。
()5. 任何两个整数的差仍然是有理数。
()三、填空题5道(每题1分,共5分)1. 已知a > b,且c > d,则a + c ______ b + d。
2. 若x为正数,则x为______数。
3. 任何数与0相乘,结果都为______。
4. 任何数与1相乘,结果都为______。
5. 任何数与1相乘,结果都为______。
四、简答题5道(每题2分,共10分)1. 简述有理数的定义。
2. 简述整数的定义。
3. 简述分数的定义。
4. 简述正数和负数的定义。
5. 简述相反数的定义。
五、应用题:5道(每题2分,共10分)1. 已知a > b,且c < d,求证:a + c > b + d。
2. 已知a > b,且c > d,求证:a c < b d。
3. 已知a > b,且c < d,求证:a c > b d。
4. 已知a > b,且c > d,求证:a c > b d。
人教版七年级(上)期末数学综合练习试卷含答案
2019—2020年七年级上学期期末考试数 学 试 卷考生注意: 1.考试时间90分钟.题号 一 二 三总分 21 22 23 24 25 26 27 28 分数一、选择题:每小题只有一个选项符合题意,本大题共6小题,每小题3分,满分18分. 1.已知x2m ﹣3+1=7是关于x 的一元一次方程,则m 的值是( )A .﹣1B .1C .﹣2D .22.一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是( ) A .0B .2C .lD .﹣13.已知a 2+2a -3=0,则代数式2a 2+4a -3的值是( )A .-3B .0C .3D .64.某同学在解方程3x -1=□x +2时,把□处的数字看错了,解得x =-1,则该同学把□看成了( )A .3B .13C .6D .-165.如图1,∠AOC 为直角,OC 是∠BOD 的平分线,且∠AOB =57.65°,则∠AOD 的度数是( )图1A .122°20′B .122°21′C .122°22′D .122°23′6.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B.C.D.二、填空题,本大题共6小题,每小题3分,共18分.7.-3的相反数是,-3的倒数是,-3的绝对值是.8.小明在做解方程的作业时,不小心将方程中的一个常数污染得看不清楚,方程是:2y+1 2=-y-■.小明翻看了书后的答案,此方程的解是y=-12,则这个常数是.9.已知线段MN,P是MN的中点,Q是PN的中点,R是MQ的中点.若MR=2,则MN =.10.如果一个角的补角比这个角的余角的3倍大10°,则这个角的度数是.11.如图所示,点A、点B、点C分别表示有理数a、b、c,O为原点,化简:|a﹣c|﹣|b﹣c|= .12.用小立方块搭成的几何体从正面和上面看的视图如图,这个几何体中小立方块的个数可以是.三、解答题(本大题共5小题,每小题6分,共30分)13.(6分)计算:(1)点A、B、C在同一条直线上,点C在线段AB上,若AB=4,BC=1,求AC;(2)已知|x|=3,y2=4,且x<y<0,那么求x+y的值.14.(6分)计算.﹣14﹣(1﹣0.5)×[3﹣(﹣3)2].15.(6分)根据下列语句,画出图形.如图:已知:四点A、B、C、D.①画直线AB;②画射线AC、BD,相交于点O.16.(6分)根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:B:;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数表示的点重合.17.(6分)先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=﹣1,b=﹣2.四、解答题(本大题共3小题,每小题8分,共24分)18.(8分)某超市为了回馈广大新老客户,元旦期间决定实行优惠活动.优惠一:非会员购物时,所有商品均可享受九折优惠;优惠二:交纳200元会费成为该超市的会员,所有商品可享受八折优惠.(1)若用x表示商品价格,请你用含x的式子分别表示两种购物方式优惠后所花的钱数.(2)当商品价格是多少元时,用两种方式购物后所花钱数相同?(3)若某人计划在该超市购买一台价格为2 700元的电脑,请分析选择哪种优惠方式更省钱.19.(8分)已知关于x的方程2(x+1)﹣m=﹣的解比方程5(x﹣1)﹣1=4(x﹣1)+1的解大2.(1)求第二个方程的解;(2)求m的值.20.(8分)“囧”(jiong)是最近时期网络流行语,想一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示图中“囧”的面积;(2)若|x﹣6|+(y﹣3)2=0时,求此时“囧”的面积.五、解答题(本大题共2小题,每小题9分,共18分)21.(9分)一个车队共有n(n为正整数)辆小轿车,正以每小时36千米的速度在一条笔直的街道上匀速行驶,行驶时车与车的间隔均为5.4米,甲停在路边等人,他发现该车队从第一辆车的车头到最后一辆的车尾经过自己身边共用了20秒的时间,假设每辆车的车长均为4.87米.(1)求n的值;(2)若乙在街道一侧的人行道上与车队同向而行,速度为v米/秒,当第一辆车的车头到最后一辆车的车尾经过他身边共用了40秒,求v的值.22.(9分)已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发速度为每秒2个单位,点N从点B出发速度为M点的3倍,点P从原点出发速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,求多长时间点M与点N相距54个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?六、解答题(本大题共1小题,共12分)23.(12分)【问题提出】已知∠AOB=70°,∠AOD=∠AOC,∠BOD=3∠BOC(∠BOC<45°),求∠BOC的度数.【问题思考】聪明的小明用分类讨论的方法解决.(1)当射线OC在∠AOB的内部时,①若射线OD在∠AOC内部,如图1,可求∠BOC 的度数,解答过程如下:设∠BOC=α,∴∠BOD=3∠BOC=3α,∴∠COD=∠BOD﹣∠BOC=2α,∴∠AOD=∠AOC,∴∠AOD=∠COD=2α,∴∠AOB=∠AOD+∠BOD=2α+3α=5α=70°,∴α=14°,∴∠BOC=14°问:当射线OC在∠AOB的内部时,②若射线OD在∠AOB外部,如图2,请你求出∠BOC 的度数;【问题延伸】(2)当射线OC在∠AOB的外部时,请你画出图形,并求∠BOC的度数.【问题解决】综上所述:∠BOC的度数分别是.。
人教版七年级数学上册 期末测试 试卷10套(含答案)
七年级(上)期末数学试卷一、选择题(每题3分,共45分)1.如图中的平面展开图与标注的立体图形不相符的是()A.长方体B.正方体C.圆柱体D.三棱锥2.下列计算正确的是()A.﹣3﹣(﹣2)=﹣1 B.﹣3﹣2=﹣1 C.﹣3÷2×2=﹣D.﹣(﹣1)2=1 3.如图是由五个正方体搭成的立体模型,从上面看到的形状图是()A.B.C.D.4.如果x=y,a为有理数,那么下列等式不一定成立的是()A.1﹣y=1﹣x B.x2=y2C.=D.ax=ay5.小明在解方程5a﹣x=13(x为未知数)时,误将﹣x看作+x,得方程的解为x=﹣2,那么原方程的解为()A.x=2 B.x=0 C.x=﹣3 D.x=16.观察图形,下列说法正确的个数是()(1)直线BA和直线AB是同一条直线;(2)AB+BD>AD;(3)射线AC和射线AD是同一条射线;(4)三条直线两两相交时,一定有三个交点.A.1个 B.2个 C.3个 D.4个7.如图,一个直角三角板ABC绕其直角顶点C旋转到△DCE的位置,若∠BCD=30°,下列结论错误的是()A.∠ACD=120° B.∠ACD=∠BCEC.∠ACE=120°D.∠ACE﹣∠BCD=120°8.有理数a等于它的倒数,有理数b等于它的相反数,则a2017+b2017的值是()A.﹣1 B.1 C.0 D.±19.如图,已知∠AOB=α,∠BOC=β,OM平分∠AOC,ON平分∠BOC,则∠MON 的度数是()A.βB.(α﹣β)C.α﹣βD.α10.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.检查一枚用于发射卫星的运载火箭的各零部件D.考察人们保护海洋的意识11.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.12.“两数和的平方”用代数式表示是()A.(a+b)2B.a2+b2C.a2+b D.a+b213.一轮船往返于A、B两港之间,逆水航行需3小时,顺水航行需2小时,水速是3千米/时,则轮船在静水中的速度是()A.18千米/时B.15千米/时C.12千米/时D.20千米/时14.为做一个如图所示的试管架,在一根长为acm的木条上钻了4个圆孔,每个孔的直径为2cm,则x等于()A.cm B.cm C.cm D.cm15.用A、B两种规格的长方形纸板(如图1)无重合无缝隙的拼接可得如图2所示的周长为32cm的正方形,已知A种长方形的宽为1cm,则B种长方形的面积是()A.10cm2B.12cm2C.14cm2D.16cm2二、填空题(每题3分,共18分)16.我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为吨.17.若a﹣3b=4,则8﹣2a+6b的值为.18.如图,四个有理数在数轴上的对应点分别是M、N、P、Q,若点M,Q表示的有理数互为相反数,则图中表示绝对值最小的数的点是.19.定义一种新运算“☆”,规定:a☆b=a﹣3b,则12☆(﹣1)=.20.圆心角是60°的扇形的半径为6,则这个扇形的面积是.21.观察下列各式:22﹣1=1×332﹣1=2×442﹣1=3×552﹣1=4×6请你猜想规律,用含自然数n(n≥2)的等式表示出来:.三、解答题(共7小题,满分57分)22.计算(1)(﹣2)2﹣(++)×12(2)﹣14﹣×[2﹣(﹣3)2]÷(﹣7).23.解方程(1)3﹣(5﹣2x)=x(2)﹣1=2+.24.先化简,再求值:3a2﹣4ab+[a2﹣2(a2﹣3ab)],其中|a+1|+(b﹣)2=0.25.如图,已知平面内两点A,B.(1)用尺规按下列要求作图,并保留作图痕迹:①连接AB;②在线段AB的延长线上取点C,使BC=AB;③在线段BA的延长线上取点D,使AD=AC.(2)图中,若AB=6,则AC的长度为,BD的长度为.26.望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≤20分钟的学生记为A类,20分钟<t≤40分钟的学生记为B类,40分钟<t≤60分钟的学生记为C类,t>60分钟的学生记为D类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)m=%,n=%,这次共抽查了名学生进行调查统计;(2)请补全上面的条形图;(3)如果该校共有1200名学生,请你估计该校C类学生约有多少人?27.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是;(2)若射线OE平分∠COD,求∠AOE的度数.28.今年某网上购物商城在“双11购物节”期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的标价为200元,按活动规定实际付款元.(2)小丽第2次购物实际花费了490元,第2次所购商品的标价为多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?参考答案与试题解析一、选择题(每题3分,共45分)1.如图中的平面展开图与标注的立体图形不相符的是()A.长方体B.正方体C.圆柱体D.三棱锥【考点】几何体的展开图.【分析】分析四个选项,发现D中的平面展开图为三棱柱的展开图,不是三棱锥的展开图,由此即可得出结论.【解答】解:根据立体图形与平面展开图对照四个选项,发现D中的平面展开图为三棱柱的展开图,不是三棱锥的展开图.故选D.2.下列计算正确的是()A.﹣3﹣(﹣2)=﹣1 B.﹣3﹣2=﹣1 C.﹣3÷2×2=﹣D.﹣(﹣1)2=1【考点】有理数的混合运算.【分析】根据有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,求出每个算式的值是多少,即可判断出哪个算式的计算正确.【解答】解:∵﹣3﹣(﹣2)=﹣1,∴选项A正确;∵﹣3﹣2=﹣5,∴选项B不正确;∵﹣3÷2×2=﹣3,∴选项C不正确;∵﹣(﹣1)2=﹣1,∴选项D不正确.故选:A.3.如图是由五个正方体搭成的立体模型,从上面看到的形状图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看第一列是一个小正方形,第二列是两个小正方形,第三列是一个正方形,故选:C.4.如果x=y,a为有理数,那么下列等式不一定成立的是()A.1﹣y=1﹣x B.x2=y2C.=D.ax=ay【考点】等式的性质.【分析】A、等式两边先同时乘﹣1,然后再同时加1即可;B、根据乘方的定义可判断;C、根据等式的性质2判断即可;D、根据等式的性质2判断即可.【解答】解:A、∵x=y,∴﹣x=﹣y.∴﹣x+1=﹣y+1,即1﹣y=1﹣x,故A一定成立,与要求不符;B、如果x=y,则x2=y2,故B一定成立,与要求不符;C、当a=0时,无意义,故C不一定成立,与要求相符;D、由等式的性质可知:ax=ay,故D一定成立,与要求不符.故选:C.5.小明在解方程5a﹣x=13(x为未知数)时,误将﹣x看作+x,得方程的解为x=﹣2,那么原方程的解为()A.x=2 B.x=0 C.x=﹣3 D.x=1【考点】一元一次方程的解.【分析】把x=﹣2代入方程5a+x=13中求出a的值,即可求出原方程的解.【解答】解:把x=﹣2代入方程5a+x=13中得:5a﹣2=13,解得:a=3,方程为15﹣x=13,解得:x=2,故选A6.观察图形,下列说法正确的个数是()(1)直线BA和直线AB是同一条直线;(2)AB+BD>AD;(3)射线AC和射线AD是同一条射线;(4)三条直线两两相交时,一定有三个交点.A.1个 B.2个 C.3个 D.4个【考点】直线、射线、线段.【分析】利用直线,射线及线段的定义判定即可.【解答】解:(1)直线BA和直线AB是同一条直线;正确,(2)AB+BD>AD;正确(3)射线AC和射线AD是同一条射线;正确,(4)三条直线两两相交时,一定有三个交点,还可能有一个,故不正确.共3个说法正确.故选:C.7.如图,一个直角三角板ABC绕其直角顶点C旋转到△DCE的位置,若∠BCD=30°,下列结论错误的是()A.∠ACD=120° B.∠ACD=∠BCEC.∠ACE=120°D.∠ACE﹣∠BCD=120°【考点】角的计算.【分析】依据题意题意可知∠ACB=∠DCE=90°,然后依据图形间角的和差关系求解即可.【解答】解:A、∵∠ACB=90°,∠BCD=30°,∴∠ACD=∠ACB+∠BCD=120°,故A 与要求不符;B、∵∠DCE=90°,∠BCD=30°,∴∠BCE=∠DCE+∠BCD=120°,∴∠ACD=∠BCE,故B与要求不符;C、∵∠ACE=360°﹣90°﹣90°﹣30°=150°,故C错误,与要求相符;D、∵∠ACE﹣∠BCD=150°﹣30°=120°,故D与要求不符.故选:C.8.有理数a等于它的倒数,有理数b等于它的相反数,则a2017+b2017的值是()A.﹣1 B.1 C.0 D.±1【考点】代数式求值.【分析】首先根据a和b的特点求得a和b的值,然后代入求解即可.【解答】解:∵有理数a等于它的倒数,有理数b等于它的相反数,∴a=1或﹣1,b=0,则a2017+b2017=1或﹣1.故选D.9.如图,已知∠AOB=α,∠BOC=β,OM平分∠AOC,ON平分∠BOC,则∠MON 的度数是()A.βB.(α﹣β)C.α﹣βD.α【考点】角的计算.【分析】求出∠AOC,根据角平分线定义求出∠NOC和∠MOC,相减即可求出答案.【解答】解:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β,∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠NOC=∠BOC=,∠MOC=∠AOC=,∴∠MON=∠MOC﹣∠NOC=﹣=.故选D.10.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.检查一枚用于发射卫星的运载火箭的各零部件D.考察人们保护海洋的意识【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A、了解一批圆珠笔的寿命适宜采用抽样调查方式,A错误;B、了解全国九年级学生身高的现状适宜采用抽样调查方式,B错误;C、检查一枚用于发射卫星的运载火箭的各零部件适宜采用普查方式,B正确;D、考察人们保护海洋的意识适宜采用抽样调查方式,D错误;故选:C.11.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.【考点】由实际问题抽象出一元一次方程.【分析】根据甲的话可得乙羊数的关系式,根据乙的话得到等量关系即可.【解答】解:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x只羊,∴乙有+1只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴+1+1=x﹣1,即x+1=2(x﹣3)故选C.12.“两数和的平方”用代数式表示是()A.(a+b)2B.a2+b2C.a2+b D.a+b2【考点】列代数式.【分析】两数和的平方是先求和,再把和进行平方.【解答】解:“两数和的平方”用代数式表示(a+b)2.故选A.13.一轮船往返于A、B两港之间,逆水航行需3小时,顺水航行需2小时,水速是3千米/时,则轮船在静水中的速度是()A.18千米/时B.15千米/时C.12千米/时D.20千米/时【考点】一元一次方程的应用.【分析】本题求的是速度,时间比较明确,那么一定是根据路程来列等量关系.本题的等量关系为:逆水速度×逆水时间=顺水速度×顺水时间.【解答】解:设轮船在静水中的速度是x千米/时,则3(x﹣3)=2(x+3)解得:x=15,故选B14.为做一个如图所示的试管架,在一根长为acm的木条上钻了4个圆孔,每个孔的直径为2cm,则x等于()A.cm B.cm C.cm D.cm【考点】一元一次方程的应用.【分析】读图可得:5x+四个圆的直径=acm.由此列出方程,用含a的代数式表示x即可.【解答】解:由题意可得,5x=a﹣2×4,则x=cm.故选:D.15.用A、B两种规格的长方形纸板(如图1)无重合无缝隙的拼接可得如图2所示的周长为32cm的正方形,已知A种长方形的宽为1cm,则B种长方形的面积是()A.10cm2B.12cm2C.14cm2D.16cm2【考点】一元一次方程的应用.【分析】可设A长方形的长是xcm,则B长方形的宽是(4﹣x)cm,B长方形的长是(8﹣x)cm,根据大正方形周长为32cm,列出方程求解即可.【解答】解:设A长方形的长是xcm,则B长方形的宽是(4﹣x)cm,B长方形的长是(8﹣x)cm,依题意有4[(4﹣x)+(8﹣x)]=32,解得x=4,(4﹣x)(8﹣x)=(4﹣2)×(8﹣2)=2×6=12.故B种长方形的面积是12cm2.故选:B.二、填空题(每题3分,共18分)16.我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为 6.75×104吨.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将67500用科学记数法表示为:6.75×104.故答案为:6.75×104.17.若a﹣3b=4,则8﹣2a+6b的值为0.【考点】代数式求值.【分析】根据a﹣3b=4,对式子8﹣2a+6b变形,可以建立﹣3b=4与8﹣2a+6b 的关系,从而可以解答本题【解答】解:∵a﹣3b=4,∴8﹣2a+6b=8﹣2(a﹣3b)=8﹣2×4=8﹣8=0,故答案为:0.18.如图,四个有理数在数轴上的对应点分别是M、N、P、Q,若点M,Q表示的有理数互为相反数,则图中表示绝对值最小的数的点是N.【考点】有理数大小比较;数轴;相反数;绝对值.【分析】首项根据点M,Q表示的有理数互为相反数,可得点M,Q表示的有理数的绝对值相等,所以点M,Q的中点即是原点;然后根据图示,可得点N和点M之间的距离大于点P和点Q之间的距离,所以点N离原点最近,所以图中表示绝对值最小的数的点是N,据此解答即可.【解答】解:因为点M,Q表示的有理数互为相反数,所以点M,Q的中点即是原点;因为点N和点M之间的距离大于点P和点Q之间的距离,所以点N离原点最近,所以图中表示绝对值最小的数的点是N.故答案为:N.19.定义一种新运算“☆”,规定:a☆b=a﹣3b,则12☆(﹣1)=9.【考点】有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:原式=6+3=9,故答案为:920.圆心角是60°的扇形的半径为6,则这个扇形的面积是6π.【考点】扇形面积的计算.【分析】根据扇形的面积公式S=计算,即可得出结果.【解答】解:该扇形的面积S==6π.故答案为:6π.21.观察下列各式:22﹣1=1×332﹣1=2×442﹣1=3×552﹣1=4×6请你猜想规律,用含自然数n(n≥2)的等式表示出来:n2﹣1=(n﹣1)(n+1).【考点】规律型:数字的变化类.【分析】通过观察,等式实际上为等差数列的推导,根据规律即可得出答案.【解答】解:观察下列各式:22﹣1=1×3=(2+1)(2﹣1),32﹣1=2×4=(3+1)(3﹣1),42﹣1=3×5=(4+1)(4﹣1),52﹣1=4×6=(5+1)(5﹣1),∴当第一个数为n(n≥2)时,得:n2﹣1=(n﹣1)(n+1).故答案为:n2﹣1=(n﹣1)(n+1).三、解答题(共7小题,满分57分)22.计算(1)(﹣2)2﹣(++)×12(2)﹣14﹣×[2﹣(﹣3)2]÷(﹣7).【考点】有理数的混合运算.【分析】(1)利用乘法的分配律和有理数的混合运算法则进行计算即可;(2)根据有理数去括号的法则、有理数的加减乘除的计算法则进行计算即可.【解答】解:(1)=4﹣=4﹣4﹣3﹣2=﹣5;(2)=﹣1﹣=﹣1﹣=﹣1﹣=.23.解方程(1)3﹣(5﹣2x)=x(2)﹣1=2+.【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3﹣5+2x=x,移项合并得:x=2;(2)去分母得:2x+2﹣4=8+2﹣x,移项合并得:3x=12,解得:x=4.24.先化简,再求值:3a2﹣4ab+[a2﹣2(a2﹣3ab)],其中|a+1|+(b﹣)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先利用绝对值以及偶次方的性质得出a,b的值,再利用整式加减运算法则化简求出原式,进而代入a,b的值求出答案.【解答】解:∵|a+1|+(b﹣)2=0,∴a+1=0,b﹣=0,解得:a=﹣1,b=,∴3a2﹣4ab+[a2﹣2(a2﹣3ab)]=3a2﹣4ab+a2﹣2a2+6ab,=2a2+2ab,将a,b的值代入上式可得:原式=2×(﹣1)2+2×(﹣1)×=2﹣1=1.25.如图,已知平面内两点A,B.(1)用尺规按下列要求作图,并保留作图痕迹:①连接AB;②在线段AB的延长线上取点C,使BC=AB;③在线段BA的延长线上取点D,使AD=AC.(2)图中,若AB=6,则AC的长度为12,BD的长度为18.【考点】两点间的距离;直线、射线、线段.【分析】(1)根据题意画出图形即可;(2)由AC=2AB,AD=AC,以及DB=AD+AB求解即可.【解答】解:(1)如图所示;(2)∵AB=BC,∴AC=2AB=2×6=12.∵AD=AC=12,∴BD=AD+AB=12+6=18.故答案为:12;18.26.望江中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≤20分钟的学生记为A类,20分钟<t≤40分钟的学生记为B类,40分钟<t≤60分钟的学生记为C类,t>60分钟的学生记为D类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)m=26%,n=14%,这次共抽查了50名学生进行调查统计;(2)请补全上面的条形图;(3)如果该校共有1200名学生,请你估计该校C类学生约有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据条形统计图和扇形统计图可以求得调查的学生数和m、n的值;(2)根据(1)和扇形统计图可以求得C类学生数,从而可以将条形统计图补充完整;(3)根据扇形统计图可以求得该校C类学生的人数.【解答】解:(1)由题意可得,这次调查的学生有:20÷40%=50(人),m=13÷50×100%=26%,n=7÷50×100%=14%,故答案为:26,14,50;(2)由题意可得,C类的学生数为:50×20%=10,补全的条形统计图,如右图所示,(3)1200×20%=240(人),即该校C类学生约有240人.27.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是北偏东70°;(2)若射线OE平分∠COD,求∠AOE的度数.【考点】方向角.【分析】(1)先求出∠AOB=55°,再求得∠NOC的度数,即可确定OC的方向;(2)根据∠AOB=55°,∠AOC=∠AOB,得出∠BOC=110°,进而求出∠COD的度数,根据射线OE平分∠COD,即可求出∠COE=35°再利用∠AOC=55°求出答案即可.【解答】解:(1)∵OB的方向是北偏西40°,OA的方向是北偏东15°,∴∠NOB=40°,∠NOA=15°,∴∠AOB=∠NOB+∠NOA=55°,∵∠AOB=∠AOC,∴∠AOC=55°,∴∠NOC=∠NOA+∠AOC=70°,∴OC的方向是北偏东70°;故答案为:北偏东70°;(2)∵∠AOB=55°,∠AOC=∠AOB,∴∠BOC=110°.又∵射线OD是OB的反向延长线,∴∠BOD=180°.∴∠COD=180°﹣110°=70°.∵∠COD=70°,OE平分∠COD,∴∠COE=35°.∵∠AOC=55°.∴∠AOE=90°.28.今年某网上购物商城在“双11购物节”期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的标价为200元,按活动规定实际付款180元.(2)小丽第2次购物实际花费了490元,第2次所购商品的标价为多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?【考点】一元一次方程的应用.【分析】(1)根据实际花费=标价×0.9,代入数据即可得出结论;(2)由500×0.9=450(元)、490>450,即可得出第2次购物超过500元,设第2次所购商品的标价为x元,根据实际花费=500×0.9+0.8×超过500元的部分即可得出关于x的一元一次方程,解之即可得出结论;(3)将两次所购商品标价相加算出实际花费,与前两次实际花费比较后即可得出结论.【解答】解:(1)200×0.9=180(元).故答案为:180.(2)∵500×0.9=450(元),490>450,∴第2次购物超过500元.设第2次所购商品的标价为x元,根据题意得:500×0.9+0.8(x﹣500)=490,解得:x=550.答:第2次所购商品的标价为550元钱.(3)200+550=750(元),500×0.9+×0.8=450+200=650(元),∵180+490=670>650,∴小丽将这两次购得的商品合为一次购买更省钱.七年级(上)期末数学试卷一、填空题(本大题共8个小题,每小题3分,满分24分)1.引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果约为617000000条,这个数用科学记数法可表示为2.将如图所示的平面展开图折叠成正方体,则a对面的数字是.3.若x=﹣1是方程3x﹣m=﹣5的解,则m的值为.4.如果单项式3a m b3与﹣a2b n是同类项,那么m﹣n=.5.若|3a+6|+(b﹣3)2=0,则a b=.6.如图,甲船从A点出发向北偏东72°25′方向航行50km至点B,则钝角∠BAC 的度数为.7.用火柴棍象如图这样搭三角形,则搭2017个这样的三角形需要根火柴棍.8.已知线段AB=10cm,C是直线AB上一点,且BC=6cm,E是AC的中点,则线段CE的长为cm.二、选择题(本大题共10个小题,每小题3分,满分30分)9.﹣3的相反数是()A.﹣ B.3 C.D.﹣310.如图所示的几何体,从正面看到所得的图形是()A.B.C.D.11.数学源于生活,并用于生活,要把一根木条固定在墙上至少需要钉两颗钉子,其中的数学原理是()A.两点之间,线段最短B.两点确定一条直线C.线段的中点定义 D.直线可以向两边延长12.一天,昆明的最高气温为6℃,最低气温为﹣4℃,那么这天的最高气温比最低气温高()A.10℃B.﹣10℃C.2℃D.﹣2℃13.下列计算正确的是()A.3x2+2x3=5x5B.2x+3y=5xyC.6x2﹣2x2=4 D.2x2y+3yx2=5x2y14.下列说法正确的是()A.单项式xy的系数是,次数是1B.单项式﹣πa2b3的系数是﹣,次数是6C.单项式x2的系数是1,次数是2D.多项式2x3﹣3x2y2+x﹣1叫三次四项式15.已知一个角的余角比它的补角的还少10°,则这个角的度数是()A.120°B.90°C.60°D.30°16.减去2﹣x等于3x2﹣x+6的整式是()A.3x2﹣2x+8 B.3x2+8 C.3x2﹣2x﹣4 D.3x2+417.某工程,甲独做需12天完成,乙独做需8天完成,现由甲先做3天,乙再参加合做,求完成这项工程共用的时间.若设完成此项工程共用x天,则下列方程正确的是()A. +=1 B. +=1 C. +=1 D. +=118.某商店有2个进价不同的计算器都卖了80元,其中一个盈利60%,另一个亏本20%,在这笔买卖中,这家商店()A.赚了10元B.赔了10元C.不赔不赚D.赚了8元三、解答题:(共66分)19.在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来.﹣,0,﹣2.5,﹣3,1.20.计算:(1)﹣9﹣(﹣8)+(﹣12)﹣6(2)(﹣12)×(﹣+)(3)﹣22×4﹣(﹣2)2÷4.21.先化简,再求值:2x2+y2+(2y2﹣3x2)﹣2(y2﹣2x2),其中x=﹣1,y=2.22.解下列方程(1)5﹣3(2x﹣1)=x(2)+1=.23.如图,一个直角三角形ABC的直角边BC=a,AC=b,三角形内部圆的半径为r.(1)用含a、b、r的式子表示阴影部分面积(结果保留π);(2)当a=10,b=6,r=2时,计算阴影部分的面积.(π取3.14,结果精确到0.1)24.2016年7月,台风“莫利娅”登陆,给我国福建,浙江等省造成严重影响,为民排忧解难的解放军叔叔驾驶冲锋舟沿一条东西方向的河流营救灾民,早晨从A地出发,来回营救灾民,晚上最后到达B地,约定向东为正方向,当天航行依次记录如下(单位:千米):+16,﹣4,+8,﹣8,+14,﹣7,﹣11.(1)B地在A地的东面还是西面?与A地相距多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为30升,求途中至少需要补充多少升油?25.制作一张桌子需要一个桌面和四个桌腿,1m3木材可制作20个桌面或制作400条桌腿,现有12m3的木材,应怎样计划才能使桌面和桌腿刚好配套?能制成多少套桌椅?26.如图,O为直线AB上一点,∠DOE=90°,OD是∠AOC的角平分线,若∠AOC=70°.(1)求∠BOD的度数.(2)试判断OE是否平分∠BOC,并说明理由.27.安宁市的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,若经粗加工后销售,每吨利润可达4500元;若经精加工后销售每吨获利7500元.当地一家农产品企业收购这种蔬菜140吨,该企业加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节条件限制,企业必须在15天的时间将这批蔬菜全部销售或加工完毕,企业研制了四种可行方案:方案一:全部直接销售;方案二:全部进行粗加工;方案三:尽可能多地进行精加工,没有来得及进行精加工的直接销售;方案四:将一部分进行精加工,其余的进行粗加工,并恰好15天完成.请通过计算以上四个方案的利润,帮助企业选择一个最佳方案使所获利润最多?参考答案与试题解析一、填空题(本大题共8个小题,每小题3分,满分24分)1.引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果约为617000000条,这个数用科学记数法可表示为 6.17×108.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数【解答】解:将617000000用科学记数法表示为:6.17×108.故答案为:6.17×108.2.将如图所示的平面展开图折叠成正方体,则a对面的数字是﹣1.【考点】专题:正方体相对两个面上的文字.【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上a对面的数字是﹣1.故答案为:﹣1.3.若x=﹣1是方程3x﹣m=﹣5的解,则m的值为2.【考点】一元一次方程的解.【分析】把x=﹣1代入方程得到一个关于m的方程,解方程求得m的值.【解答】解:把x=﹣1代入方程得﹣3﹣m=﹣5,解得m=2.故答案是:2.4.如果单项式3a m b3与﹣a2b n是同类项,那么m﹣n=﹣1.【考点】同类项.【分析】同类项是指相同字母的指数要相等,然后列出等式即可求出m与n的值.【解答】解:由题意可知:m=2,n=3,∴m﹣n=2﹣3=﹣1,故答案为:﹣15.若|3a+6|+(b﹣3)2=0,则a b=﹣8.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,3a+6=0,b﹣3=0,解得a=﹣2,b=3,所以,a b=(﹣2)3=﹣8.故答案为:﹣8.6.如图,甲船从A点出发向北偏东72°25′方向航行50km至点B,则钝角∠BAC 的度数为107°35′.【考点】方向角;度分秒的换算.【分析】根据方向角和角的和差,可得答案.【解答】解:∠BAC=180°﹣72°25′=107°35′,故答案为:107°35′.7.用火柴棍象如图这样搭三角形,则搭2017个这样的三角形需要2035根火柴棍.【考点】规律型:图形的变化类.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点【解答】解:根据题意可知,每增加一个三角形就增加了2根火柴棍,所以搭n 个三角形需要2n+1根火柴棍.所以搭2017个这样的三角形需要2×2017+1=2035.故答案为:4035.8.已知线段AB=10cm,C是直线AB上一点,且BC=6cm,E是AC的中点,则线段CE的长为2或8cm.【考点】两点间的距离.【分析】根据线段的和差,可得AC,根据线段中点的性质,可得答案.【解答】解:①AC=AB+BC=10+6=16cm,点E是线段AC的中点,得CE=AC=8cm.②AC=AB﹣BC=10﹣6=4cm,点E是线段AC的中点,得CE=AC=2cm.故答案为:2或8.二、选择题(本大题共10个小题,每小题3分,满分30分)9.﹣3的相反数是()A.﹣ B.3 C.D.﹣3【考点】相反数.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣(﹣3)=3,故﹣3的相反数是3.故选:B.10.如图所示的几何体,从正面看到所得的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,故选:A.11.数学源于生活,并用于生活,要把一根木条固定在墙上至少需要钉两颗钉子,其中的数学原理是()A.两点之间,线段最短B.两点确定一条直线C.线段的中点定义 D.直线可以向两边延长【考点】直线的性质:两点确定一条直线.【分析】根据直线的性质,可得答案.【解答】解:要把一根木条固定在墙上至少需要钉两颗钉子,其中的数学原理是两点确定一条直线,。
2022-2023学年新人教版初中七年级数学上册期末综合素养评价测试卷(附参考答案)
2022-2023学年新人教版初中七年级数学上册期末综合素养评价测试卷一、选择题(共12小题,满分36分,每小题3分)1.(3分)(2022•大冶市模拟)a与﹣2互为倒数,则a为()A.﹣2B.2C.12D.−122.(3分)(2022秋•桂平市期中)据猫眼实时数据显示,截止2022年10月16日,电影《万里归途》的累计票房正式突破13亿元,数据13亿用科学记数法表示为()A.1.3×108B.0.13×108C.1.3×109D.1.3×10103.(3分)(2022秋•宿迁期中)下列方程中,是一元一次方程的是()A.x﹣2y+1=0B.2+1x=1C.2x﹣1=0D.xy=44.(3分)(2022秋•如东县期中)下列说法错误的是()A.32ab2c的次数是4次B.多项式2x2﹣3x﹣1是二次三项式C.多项式3x2﹣2x3y+1的次数是6次D.2πr的系数是2π5.(3分)(2022秋•宿城区期中)某商品价格为a元,根据销量的变化,该商品先降价10%,一段时间后又提价10%,提价后这种商品的价格与原价格a相比()A.降低了0.01a B.降低了0.1aC.增加了0.01a D.不变6.(3分)(2022秋•黄浦区期中)分数457介于两个相邻的整数之间,这两个整数是()A.3和4B.4和5C.5和6D.6和77.(3分)(2022秋•扬州期中)下列结论不正确的是()A.单项式﹣ab2的次数是3B.单项式abc的系数是1C.多项式x2y2﹣2x2+1是四次三项式D.−3xy2不是整式8.(3分)(2022秋•丹江口市期中)已知m =n ,则下列变形中正确的个数为( ) ①m +2=n +2;②am =an ;③m n =1;④m a 2+1=na 2+1A .1个B .2个C .3个D .4个 9.(3分)(2022秋•宿城区期中)已知等式a =b ,则下列等式中不一定成立的是( )A .a +1=b +1B .2a ﹣2b =0C .a c =b cD .ac =bc10.(3分)(2022秋•天山区校级期中)如图,点C 是线段AB 上的点,点D 是线段BC 的中点,AB =10,AC =6,则线段BD 的长是( )A .6B .2C .8D .411.(3分)(2022秋•福田区校级期中)下列正方体的展开图中,“勤”的对面是“戴”的展开图是( )A .B .C .D .12.(3分)(2022秋•天山区校级期中)如果线段AB =10cm ,MA +MB =13cm ,那么下面说法中正确的是( )A .M 点在线段AB 上B .M 点在直线AB 上C .M 点可能在直线AB 上也可能在AB 外D .M 点在直线AB 外二、填空题(共6小题,满分18分,每小题3分)13.(3分)(2022秋•黄石期中)若|m 2﹣5m ﹣2|=1,则2m 2﹣10m +2022的值为 .14.(3分)(2021秋•兴庆区校级期末)若12a +1与2a−73互为相反数,则a 的值为 .15.(3分)(2022秋•莱西市期中)下列几何体属于棱柱的是 (填序号)16.(3分)(2022春•碑林区校级月考)如图,∠AOC =∠DOE =90°,如果∠AOE =65°,那么∠COD 的度数是 .17.(3分)(2022秋•城阳区期中)如图,一块长为为acm ,宽为bcm 的矩形硬纸板,在其四个角各剪去1个边长为2cm 的正方形,然后将四周的部分折起,可制成一个无盖长方体盒子,则所得长方体盒子的侧面积为 (用含a ,b 代数式表示).18.(3分)(2022秋•城阳区期中)如图,将图沿虚线折起来,得到一个正方体,那么“我“的对面是 (填汉字).三、解答题(共7小题,满分66分)19.(9分)(2022秋•宜兴市期中)解方程(1)5x ﹣3=2(x ﹣12);(2)1−2x−16=2x+13.20.(9分)(2022秋•黔东南州期中)先化简,再求值:(1)(2a 2﹣b )﹣(a 2﹣4b )﹣(b +c ),其中:a =13,b =12,c =1;(2)3(2x 2﹣3xy ﹣5x ﹣1)+6(﹣x 2+xy ﹣1),其中x 、y 满足:x 是2的相反数,y 是−23的绝对值.21.(9分)(2022秋•陇县期中)计算:(1)﹣21+(﹣14)﹣(﹣18)﹣15;(2)−3.5÷78×|−34|−(−2)÷(−13)×(−3);(3)(−2)3+[−42×(−34)2+3]÷(−35)−|−1−2|.22.(9分)(2021秋•肥东县期末)已知:如图,∠AOB =20°,OB 平分∠AOC .(1)以射线OD 为一边,在∠AOD 的外部作∠DOE ,使∠DOE =COD ;(用直尺和圆规作图,保留作图痕迹,不要求写作法)(2)若∠AOE =105°10′,求∠AOD 的大小.23.(10分)(2022秋•郫都区校级期中)整体代换是数学的一种思想方法,在求代数式的值中,整体代换思想非常常用,例如x 2+x =1,求x 2+x +2022的值,我们将x 2+x 作为一个整体代入,则原式=1+2022=2023.仿照上面的解题方法,完成下面的问题:(1)若x 2+2x ﹣1=0,则x 2+2x ﹣2022= .(2)若a 2+2ab =﹣5,b 2+2ab =3,求2a 2﹣3b 2﹣2ab 的值.24.(10分)(2022秋•顺德区校级月考)如图1至图3是将正方体截去一部分后得到的多面体.(1)根据要求填写表格:面数(f ) 顶点数(v ) 棱数(e ) 图17 14 图28 12 图3 7 10(2)请写出f 、v 、e 三个数量间的关系式.25.(10分)(2022秋•前郭县期中)如图,点A,B是数轴上两点,点A表示的数为﹣16,A,B两点之间的距离为20,动点P、Q分别从A、B出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是;(2)求数轴上点P,Q表示的数(用含t的式子表示);(3)若点P,Q同时出发,t为何值时,这两点相遇?(4)若点P,Q同时出发,t为何值时,点P和点Q刚好相距5个单位长度?参考答案一、选择题(共12小题,满分36分,每小题3分)1.D ; 2.C ; 3.C ; 4.C ; 5.A ; 6.D ; 7.D ; 8.C ; 9.C ; 10.B ; 11.D ;12.C ;二、填空题(共6小题,满分18分,每小题3分)13.2024或202814.8715.①②⑥16.115°17.(4a+4b ﹣32)cm 218.大;三、解答题(共7小题,满分66分)19.解:(1)5x ﹣3=2(x ﹣12),去括号,得5x ﹣3=2x ﹣24,移项,得5x ﹣2x =3﹣24,合并同类项,得3x =﹣21,系数化为1,得x =﹣7;(2)1−2x−16=2x+13,去分母,得6﹣(2x ﹣1)=2(2x +1),去括号,得6﹣2x +1=4x +2,移项,得﹣2x ﹣4x =2﹣6﹣1,合并同类项,得﹣6x =﹣5,系数化为1,得x =56. 20.解:(1)原式=2a 2﹣b ﹣a 2+4b ﹣b ﹣c=a 2+2b ﹣c ,当a =13,b =12,c =1时,原式=19+1﹣1=19;(2)原式=3(2x 2﹣3xy ﹣5x ﹣1)+6(﹣x 2+xy ﹣1)=6x 2﹣9xy ﹣15x ﹣3﹣6x 2+6xy ﹣6=﹣3xy ﹣15x ﹣9,∵x 是2的相反数,y 是−23的绝对值,∴x =﹣2,y =23,∴原式=﹣3×(﹣2)×23−15×(﹣2)﹣9=25.21.解:(1)﹣21+(﹣14)﹣(﹣18)﹣15=﹣21﹣14+18﹣15=﹣35+18﹣15=﹣17﹣15=﹣32;(2)−3.5÷78×|−34|−(−2)÷(−13)×(−3) =−72×87×34−(﹣2)×(﹣3)×(﹣3)=﹣3+18=15;(3)(−2)3+[−42×(−34)2+3]÷(−35)−|−1−2|=﹣8+(﹣16×916+3)×(−53)﹣3=﹣8+(﹣9+3)×(−53)﹣3=﹣8+(﹣6)×(−53)﹣3=﹣8+10﹣3=2﹣3=﹣1.22.解:(1)作图如下:(2)∵∠AOB=20°,OB平分∠AOC.∴∠AOC=2∠AOB=40°,∵∠AOE=105°10′,∴∠COE=∠AOE﹣∠AOC=65°10′,∵∠DOE=∠COD,∠COE=32°35′,∴∠COD=12∴∠AOD=∠AOC+∠COD=72°35′.23.解:(1)∵x2+2x﹣1=0,∴x2+2x=1,∴原式=(x2+2x)﹣2022=1﹣2022=﹣2021,故答案为:﹣2021;(2)∵a2+2ab=﹣5,b2+2ab=3,∴a2﹣b2=﹣5﹣3=﹣8,∴原式=2a2﹣2b2﹣b2﹣2ab=2(a2﹣b2)﹣(b2+2ab)=2×(﹣8)﹣3=﹣16﹣3=﹣19.24.解:(1)图1,面数f=7,顶点数v=9,棱数e=14,图2,面数f=6,顶点数v=8,棱数e=12,图3,面数f=7,顶点数v=10,棱数e=15,故答案为:9,6,15.(2)f+v﹣e=2.25.解:(1)∵A,B两点之间的距离为20,点A表示的数为﹣16,且点B在点A的右侧,∴数轴上点B表示的数是﹣16+20=4.故答案为:4.(2)当运动时间为t(t>0)时,数轴上点P表示的数为(2t﹣16),点Q表示的数为(4﹣t).(3)根据题意得:2t﹣16=4﹣t,解得:t=20.3时,这两点相遇.答:若点P,Q同时出发,t为203(4)根据题意得:|2t﹣16﹣(4﹣t)|=5,即20﹣3t=5或3t﹣20=5,.解得:t=5或t=253时,点P和点Q刚好相距5个单位长度.答:若点P,Q同时出发,t为5或253。
人教版七年级数学上册期末综合测试题(含答案)
一、单选题(每题3分,共30分)
1. 的相反数是( )
A.2022B. C. D.
2.下列结论成立的是( )
A.若 ,则 B.若 ,则 或
C.若 ,则 D.若 ,则 .
3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为44亿人,这个数用科学记数法表示为()
∴ , ,
∴ .
20(1) (件),
∴产量最多的一天比产量最少的一天多生产35件,
故答案为:35.
(2)
(件),
(元),
∴本周该工厂应支付工人的工资总额是84500元.
21.(1)解:∵ 平分 , 平分 ,
∴ , ,
∴
,
故答案为: ;
(2) 平分 , 平分 ,
, ,即
;
(3) , ,
又 ,
,得 .
答: 为 秒.
A. B. C. D.
7.如图,下列说法正确的是( )
A.点 在射线 上B.点 是直线 的一个端点
C.射线 和射线 是同一条射线D.点 在线段 上
8.在平面内, , 在 的外部, 是锐角, 平分 , 平分 ,若 度数逐渐变大,则 变化情况是()
A.变大B.变小C.保持不变D.无法确定
9.在解方程 时,去分母正确的是( )
17.(1)
解:
;
(2)
解:
.
18.(1)解:2(2a2+9b)+(-3a2-4b)
;
(2)解:3x2y-[2xy2-2(xy-1.5x2y)+xy]+3xy2
当x=-3,y=-2时,
原式
.
2024年最新人教版七年级数学(上册)期末试卷及答案(各版本)
2024年最新人教版七年级数学(上册)期末试卷一、选择题(每小题2分,共20分)1. 下列数中,最小的正整数是()A. 1B. 2C. 3D. 42. 下列数中,最大的负整数是()A. 1B. 2C. 3D. 43. 下列数中,是正分数的是()A. 3/4B. 3/4C. 3/2D. 3/24. 下列数中,是负分数的是()A. 3/4B. 3/4C. 3/25. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/26. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/27. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/28. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/29. 下列数中,是正整数的是()A. 3/4B. 3/4D. 3/210. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/2二、填空题(每小题2分,共20分)11. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/212. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/213. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/214. 下列数中,是分数的是()B. 3/4C. 3/2D. 3/215. 下列数中,是正整数的是()A. 3/4B. 3/4C. 3/2D. 3/216. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/217. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/218. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/219. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/220. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/2三、解答题(每小题5分,共25分)21. 解答:请计算下列各式的值。
人教版数学七年级上册 期末试卷综合测试(Word版 含答案)
人教版数学七年级上册期末试卷综合测试(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是多少.②数轴上表示﹣2和﹣6的两点之间的距离是多少.③数轴上表示﹣4和3的两点之间的距离是多少.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.(3)拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1, A2, A3,A4, A5,…A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在什么线段上,才能使这2014户居民到点P的距离总和最小.【答案】(1)解:①数轴上表示5和2的两点之间的距离是3.②数轴上表示﹣2和﹣6的两点之间的距离是4.③数轴上表示﹣4和3的两点之间的距离是7.(2)解:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,a=10或﹣4.②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4+3﹣a=7;③当a=1时,|a+4|+|a﹣1|+|a﹣3|取最小值,|a+4|+|a﹣1|+|a﹣3|最小=5+0+2=7,理由是:a=1时,正好是3与﹣4两点间的距离.(3)解:点P选在A1007A1008这条线段上【解析】【分析】(1)根据两点间的距离公式:数轴上表示数m和数n的两点之间的距离等于|m﹣n|,分别计算可得出答案。
(2)① 利用绝对值等于7的数是±7,就可得出a-3=±7,解方程即可;② 由已知数轴上表示数a的点位于﹣4与3之间,可得出a+4>0,a-3<0,先去掉绝对值,再合并同类项即可;③ 根据线段上的点到线段两端的距离的和最短,可得出答案。
人教版七年级数学上册期末综合复习测试题(含答案)精选全文完整版
可编辑修改精选全文完整版人教版七年级数学上册期末综合复习测试题(含答案)(考试时间:90分钟试卷满分:100分)第Ⅰ卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中只有一项符合题目要求。
1.在我国古代著名的数学专著《九章算术》中,首次引入负数,如果收入100元记作元,则元表示()A.支出50元B.收入50元C.支出100元D.收入100元2.下列数中:56,,,,0,,,25中,是负数的有()A.2个B.3个C.4个D.5个3.第七次全国人口普查结果显示,台州市常住人口约为万人.用科学记数法表示这个数正确的是()A.B.C.D.4.下列说法错误的是()A.是二次三项式B.的次数是6C.的系数是D.不是单项式5.如图,将图中长方形绕着给定的直线旋转一周后形成的几何体是()A.B.C.D.6.如图是正方体表面的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,如果“未”字在正方体的底部,那么正方体的上面是()A .一B .起C .向D .来7.时钟的分针从8点整转到8点20分,分针旋转了( )度. A .20B .120C .90D .1508.直线、线段、射线的位置如图所示,下图中能相交的是( )A .B .C .D .9.将多项式5x ³y ﹣y 4+2xy 2﹣x 4按x 的降幕排列是( ) A .﹣y 4+5x 3y +2xy 2﹣x 4 B .﹣x 4+5x 3y +2xy 2﹣y 4 C .﹣x 4+5x 3y ﹣y 4+2xy 2D .2xy 2+5x 3y ﹣y 4﹣x 410.随着计算机技术的迅猛发展,电脑价格不断降低.某品牌电脑按原售价降低元后,又降低,现售价为元,那么该电脑的原售价为( )A .元B .元C .元D .元11.下列等式的变形中,正确的是( ) A .如果同,那么B .如果,那么C .如果,那么24m c -=24nc - D .如果,那么12.在锐角内部由O 点引出3种射线,第1种是将分成10等份;第2种是将分成12等份;第3种是将分成15等份,所有这些射线连同OA 、OB 可组成的角的个数是( ) A .595B .406C .35D .666第Ⅱ卷二、填空题(本题共6小题,每题3分,共18分。
2024年最新人教版七年级数学(上册)期末考卷及答案(各版本)
2024年最新人教版七年级数学(上册)期末考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.25D. 1.54. 下列哪个数是整数?A. 0.3B. 2/3C. 0D. 1/25. 下列哪个数是负数?A. 3B. 0C. 2D. 1/26. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零7. 下列哪个数是分数?A. 0.5B. 3/4C. 0.25D. 1.58. 下列哪个数是整数?A. 0.3B. 2/3C. 0D. 1/29. 下列哪个数是负数?A. 3B. 0C. 2D. 1/210. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零二、填空题(每题3分,共30分)1. 5的绝对值是______。
2. 2的绝对值是______。
3. 3/4的绝对值是______。
4. 0的绝对值是______。
5. 1/2的绝对值是______。
6. 1/2的绝对值是______。
7. 3的绝对值是______。
8. 3的绝对值是______。
9. 2/3的绝对值是______。
10. 0.25的绝对值是______。
三、解答题(每题10分,共50分)1. 计算:| 5 | | 3 | + | 2 | | 1 |2. 计算:| 4 | + | 6 | | 2 | + | 3 |3. 计算:| 7 | | 5 | + | 3 | | 2 |4. 计算:| 8 | + | 7 | | 4 | + | 3 |5. 计算:| 9 | | 6 | + | 5 | | 4 |四、应用题(每题10分,共30分)1. 小明有5个苹果,小红有3个苹果,小刚有2个苹果。
小明比小红多几个苹果?小红比小刚多几个苹果?2. 一辆汽车从A地开往B地,速度是每小时60公里。
人教版七年级数学上册期末测试卷(附有答案)
人教版七年级数学上册期末测试卷(附有答案)时间:120分钟 满分:120 分题号一 二 三 总分得分 一、选择题(本大题共10个小题.1—5 小题,每小题2分,6—10 小题,每小题3分,共25分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.−114 的倒数是 ( ) A.−54 B C.−45 D. 452.若a>1,则a,-a 1a 从大到小排列正确的是 ( )A.a >−a >1aB.a >1a >−aC.1a >−a >aD.1a >a >−a3.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳 3120000 t ,把数 3120000用科学记数法表示为 ( )A.3.12×10⁵B.3.12×10⁶C.31.2×10⁵D.0.312×10⁷4.如果∠A 的补角与∠A 的余角互补,那么2∠A 是 ( )A.锐角B.直角C.钝角D.以上三种都有可能5.若 2x−13=5 与kx-1=15 的解相同,则 k 的值为 ( )A.8B.2C. - 2D.66.下列说法中,正确的是 ( ) ①射线 AB 和射线 BA 是同一条射线;②若AB=BC,则点 B 为线段AC 的中点;③同角的补角相等;④ 点 C 在线段AB 上,M,N 分别是线段AC,CB 的中点.若MN=5,则线段AB=10.A.①②B.②③C.②④D.③④7.有理数a,b在数轴上的表示如图所示,则下列结论中:①ab<0,②ab>0,③a+b<0,④a-b<0,⑤a<| b |,⑥-a>-b.正确的有( )A.2 个B.3 个C.4 个D.5 个8.下列各题中正确的是 ( )A.由 7x =4x - 3 移项,得 7x - 4x =3B.由2x−13=1+x−32去分母,得2(2x-1)=1+3(x -3)C.由 2(2x -1) -3(x-3) =1 去括号,得4x -2-3x -9=1D.由2(x+1)=x+7 移项、合并同类项,得 x =59.小博表演扑克牌游戏,她将两副牌分别交给观众 A 和观众B,然后背过脸去,请他们各自按照她的口令操作:a.在桌上摆3 堆牌,每堆牌的张数要相等,每堆多于 10 张,但是不要告诉我;b.从第 2 堆牌中拿出 4 张牌放到第1 堆里;c.从第 3 堆牌中拿出 8 张牌放在第1 堆里;d.数一下此时第2 堆牌的张数,从第1 堆牌中取出与第2 堆相同张数的牌放在第3 堆里;e.从第 2 堆牌中拿出 5 张牌放在第1 堆中.小博转过头问两名观众:“请告诉我现在第2 堆有多少张牌,我就能告诉你们最初的每堆牌的张数.”观众A 说5张,观众B说8张,小博猜两人最初每一堆里放的牌的张数分别为( )A.14,17B.14,18C.13,16D.12,1610.将全体自然数按下面的方式进行排列:按照这样的排列规律,2020应位于 ( )A.Ⓐ位B.Ⓑ位C.©位D.Ⓓ位二、填空题(本大题共 8个小题,每小题3分,共24分)11 | x 1 |= 1 ,则 x =12.如果我们将一副三角尺按如图所示的位置摆放,并且已知∠α=118°28′,那么∠β的度数为 .13.已知m,n互为相反数,p,q互为倒数,x的绝对值为2,则代数式m+n2020+2017pq+x²的值为 .14.一件商品按成本价提高20% 标价,然后打9折出售,此时仍可获利16元,则商品的成本价为元.15.如图,从边长为((a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形((a⟩0),,把剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则拼得的长方形的周长为 cm.(用含 a 的代数式表示)16.已知方程(a−5)x|a|−4+2=0是关于 x 的一元一次方程,则a 的值是17.已知线段 AB,在 AB 的延长线上取一点 C,使AC=3BC,,在 AB 的反向延长线上取一点D,使DA=13AB,那么线段AC是线段DB 的倍.18.如图将两块三角板的直角顶点重叠在一起,∠DOB与∠DOA的比是2 :11,则∠BOC=.三、解答题(本大题共8个小题,共71分.解答应写出文字说明、证明过程或演算步骤)19.(6 分) 计算:−23−17×[2−(−3)2].20.(8分) 解方程:x−x−12=23−x+26.21.(8分)已知m,x,y满足:①−2abᵐ与4ab³是同类项;circle2(x−5)2+|y−23|=0.求代数式2(x2−3y2)−3(23x2−y2−m)的值.22.(8 分) 如图所示是一个长方形.(1)根据图中尺寸大小,用含 x 的代数式表示阴影部分的面积S;(2)若x=3,求 S 的值.23.(9分)某公司6天内货品进出仓库的吨数(单位:t)如下:(“+”表示进库,“一”表示出库)+31, -32, -16,+35,-38,-20.(1)经过这6天,仓库里的货品是 (填“增多了”或“减少了”);(2)经过这6天,仓库管理员结算发现仓库里还有货品460 t,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这 6 天要付多少元装卸费?24.(10 分) 某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10t的部分,按2元 /t收费;超过10t的部分按2.5元 /t 收费.(1)若黄老师家 5月份用水 16 t,问应交水费多少元;(2)若黄老师家6月份交水费30 元,问黄老师家6 月份用水多少吨;(3)若黄老师家7月份用水at,问应交水费多少元.(用含 a 的代数式表示)25.(10分) 如图,OM 是∠AOC的平分线,ON 是∠BOC的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时∠MON=(直接写出结果);(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON=(直接写出结果).26.(12分)已知线段AB=30cm.(1) 如图1,点 P 沿线段AB 自点 A 向点B 以2cm/s的速度运动,同时点 Q 沿线段BA 自点B 向点A 以3cm/s的速度运动,几秒后,P,Q 两点相遇?(2) 如图1,几秒后,点 P,Q 两点相距10 cm?(3)如图2,AO=4cm,PO=2cm,当点P 在AB的上方,且∠POB=60°时,点 P 绕着点O 以30度/s的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B点向A 点运动,假若P,Q两点能相遇,求点Q 的运动速度.第 11 页 共 11 页。
人教版七年级数学上册期末测试卷及答案【完整】
人教版七年级数学上册期末测试卷及答案【完整】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°3.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣194.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元5.若关于x的不等式组()2213x x ax x<⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a的取值范围是()A.12a≤<B.01a≤<C.12a-<≤D.10a-≤<6.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2017将与圆周上的哪个数字重合()A .0B .1C .2D .37.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.6的相反数为( )A .-6B .6C .16-D .169.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.3.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t时后两车相距50千米,则t的值为____________.6.已知|x|=3,则x的值是________.三、解答题(本大题共6小题,共72分)1.解方程:3531 132x x-+ -=2.已知2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4,求a+2b的平方根.3.如图,四边形ABCD中,AD∥BC,点E在CD上,EA,EB分别平分∠DAB和∠CBA,设AD=x,BC=y且(x﹣3)2+|y﹣4|=0.求AB的长.4.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;∆≅∆求证:(1)DBC ECB=(2)OB OC5.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与; D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.6.小明同学在A、B两家超市发现他看中的随身听和书包的单价都相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求小明看中的随身听和书包单价各是多少元?(2)假日期间商家开展促销活动,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(购物满100元返购物券30元,购物满200元返购物券60元,以此类推;不足100元不返券,购物券可通用).小明只有400元钱,他能买到一只随身听和一个书包吗?若能,选择在哪一家购买更省钱.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、C5、A6、B7、C8、A9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、40°3、70.4、-405、2或2.56、±3三、解答题(本大题共6小题,共72分)x .1、32、±33、74、(1)略;(2)略.5、(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.6、(1)随身听和书包的单价分别是360元和92元;(2)略.。
2023-2024学年全国初一上数学人教版期末考试试卷(含答案解析)
20232024学年全国初一上数学人教版期末考试试卷一、选择题(每题2分,共20分)1. 下列数中,不是有理数的是()A. 3/4B. 2C. √5D. 0.52. 下列式子中,正确的是()A. 3 + 2 = 5B. 3 2 = 5C. 3 × 2 = 5D. 3 ÷ 2 = 53. 下列图形中,不是直线的是()A. 直线ABB. 线段ABC. 射线ABD. 曲线AB4. 下列式子中,不是同类项的是()A. 3x + 2yB. 4x 2yC. 3x + 2xD. 4y 2y5. 下列式子中,正确的是()A. 2^3 = 8B. 2^4 = 16C. 3^2 = 9D. 3^3 = 276. 下列式子中,正确的是()A. 1/2 + 1/3 = 5/6B. 1/2 1/3 = 1/6C. 1/2 × 1/3 = 1/6D. 1/2 ÷ 1/3 = 3/27. 下列式子中,正确的是()A. (2 + 3) × 4 = 20B. 2 + 3 × 4= 20C. 2 × (3 +4) = 20 D. 2 × 3 + 4 = 208. 下列式子中,正确的是()A. 2^3 × 2^4 = 2^7B. 2^3 ÷ 2^4 = 2^1C. 2^3 + 2^4 = 2^7D. 2^3 2^4 = 2^19. 下列式子中,正确的是()A. 3x + 2y = 5B. 3x 2y = 5C. 3x × 2y = 5D. 3x ÷ 2y = 510. 下列式子中,正确的是()A. (x + y)^2 = x^2 + 2xy + y^2B. (x y)^2 = x^2 2xy + y^2C. (x + y)^2 = x^2 2xy + y^2D. (x y)^2 = x^2 + 2xy + y^2二、填空题(每题2分,共20分)1. 下列数中,不是有理数的是()A. 3/4B. 2C. √5D. 0.52. 下列式子中,正确的是()A. 3 + 2 = 5B. 3 2 = 5C. 3 × 2 = 5D. 3 ÷ 2 = 53. 下列图形中,不是直线的是()A. 直线ABB. 线段ABC. 射线ABD. 曲线AB4. 下列式子中,不是同类项的是()A. 3x + 2yB. 4x 2yC. 3x + 2xD. 4y 2y5. 下列式子中,正确的是()A. 2^3 = 8B. 2^4 = 16C. 3^2 = 9D. 3^3 = 276. 下列式子中,正确的是()A. 1/2 + 1/3 = 5/6B. 1/2 1/3 = 1/6C. 1/2 × 1/3 = 1/6D. 1/2 ÷ 1/3 = 3/27. 下列式子中,正确的是()A. (2 + 3) × 4 = 20B. 2 + 3 × 4 = 20C. 2 × (3 +4) = 20 D. 2 × 3 + 4 = 208. 下列式子中,正确的是()A. 2^3 × 2^4 = 2^7B. 2^3 ÷ 2^4 = 2^1C. 2^3 + 2^4 = 2^7D. 2^3 2^4 = 2^19. 下列式子中,正确的是()A. 3x + 2y = 5B. 3x 2y = 5C. 3x × 2y = 5D. 3x ÷ 2y = 510. 下列式子中,正确的是()A. (x + y)^2 = x^2 + 2xy + y^2B. (x y)^2 = x^2 2xy + y^2C. (x + y)^2 = x^2 2xy + y^2D. (x y)^2 = x^2 + 2xy + y^2三、解答题(每题10分,共30分)1. 解方程:2x + 3 = 72. 解不等式:3x 2 < 53. 求解:2^3 × 2^4 ÷ 2^2四、应用题(每题10分,共20分)1. 小明有10元钱,他买了一支铅笔和一本笔记本,铅笔的价格是2元,笔记本的价格是5元。
人教版七年级数学上册期末考试卷及答案【完整版】
人教版七年级数学上册期末考试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0B.1C.﹣1D.±12.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B.C. D.3.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.已知x是整数,当30x取最小值时,x的值是( )A.5 B.6 C.7 D.86.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ).A .x +2x +4x =34 685B .x +2x +3x =34 685C .x +2x +2x =34 685D .x +12x +14x =34 685 8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.如图,在菱形ABCD 中,2,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC三条边长为a,b,c,化简:|a-b-c|-|a+c-b|=__________.2.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=________.3.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为_____cm(杯壁厚度不计).5.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a∥b的是________(填序号)5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解方程组21 2319x yx y+=⎧⎨-=-⎩2.已知方程组3247x ymx ny-=⎧⎨+=⎩与231953mx nyy x-=⎧⎨-=⎩有相同的解,求m,n的值.3.如图,AB⊥BC于点B,DC⊥BC于点C,DE平分∠ADC交BC于点E,点F为线段CD延长线上一点,∠BAF=∠EDF(1)求证:∠DAF=∠F;(2)在不添加任何辅助线的情况下,请直接写出所有与∠CED互余的角.4.如图,已知∠1,∠2互为补角,且∠3=∠B,(1)求证:∠AFE=∠ACB(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度数.5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、C5、A6、C7、A8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、60°3、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、205、①③④⑤.6、2或-8三、解答题(本大题共6小题,共72分)1、25 xy=-⎧⎨=⎩2、m=4,n=﹣1.3、(1)略;(2)与∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.4、(1)详略;(2)70°.5、(1)40;(2)72;(3)280.6、(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.北京市申办2008年奥运会,得到了全国民众的狂热支持,据统计,某天北京申奥网站的访问量达201947人次,用四舍五入法保留两个有效数字的近似值为。
15. 的相反数为,倒数为,绝对值为。
25、股民张智慧上星期五买进某公司1000股,每股27元,下表为本周每日该股票的涨跌情况。(单位:元)
星期
一
二
三
四
五
每股涨跌
+4
+4.5
(1)星期三收盘时,每股是多少元?
(2)本周内最高价是每股多少元?最低价是多少元?
(3)已知张智慧买进时付了0.15%的手续费,卖出时须付成交额0.15%的手续费和0.1%的交易税,如果张智慧在星期五收盘前将全部股票卖出,他的收益情况如何?
(1)假设张大爷在该公司破产的前一期停止投资,他的投资回报率是多少?
(回报率= )
(2)试计算张大爷在参与这次传销活动中共损失了多少元钱?
23、根据下图给出的信息,求每件T恤衫和每瓶矿泉水的价格。
共计44元共计26元
24、直线AB、CD相交于点O,OE平分∠AOD,
∠FOC=90°,∠1=40°,求∠2与∠3的度数。
三、解答题:
20.计算和解方程:
(1) -(- + )÷(- )
(2)
21.化简求值:(1)2(x2-xy)-3(2x2-3xy)-2x2,其中x=2,y=3
22、传销是一种危害极大的非法商业诈骗活动,国家是明令禁止的.参与传销活动的人,最终是要上当受骗的.据报道,某公司利用传销活动诈骗投资人,谎称“每位投资者每投资一股450元,买到一件价值10元的商品后,另外可得到530元的回报,每一期投资到期后,若投资人继续投资,下一期追加的投资股数必须是上一期的2倍”.退休的张大爷先投资了1股,以后每期到期时,不断追加投资,当张大爷某一期追加的投资数为16股后时,被告知该公司破产了.
5.已知线段AB=6厘米,在直线AB上画线段AC=2厘米,则BC的长是()
A.8厘米B.4厘米C.8厘米或4厘米D.不能确定
6、如图所示,已知∠AOC=∠COD=∠BOD,若∠CODபைடு நூலகம்14°34′,则∠AOB的度数是().
A.28°68′B.42°102′C.43°2′D.43°42′
O B
7.下列说法正确的是( )
期末综合检测试题(三)
姓名:得分:
一、选择题:
1、用四舍五入法按要求对0.05019分别取近似值,其中错误的是()
A.0.1(精确到0.1)B.0.05(精确到百分位)
C.0.05(保留两个有效数字)D.0.0502(精确到0.0001)
2.对于有理数a,b有下列几种说法:
①若a+b=0,则a与b互为相反数,②若a+b<0,则a与b异号,
A.平方是它本身的数是0B.立方等于本身的数是±1
C.绝对值是本身的数是正数D.倒数是本身的数是±1
8、.下面各题去括号错误的是()
A. -(6 - )= -6 +
B.2 +(- + - )=2 - + -
C.- (4 -6 +3)=-2 +3 +3
D.( + )-(- + )= + + -
9。.四名同学在同一张日历上纵列圈到四个数,其中有一名同学报出来的的日期是错误的,请你把它找出来。()
16.计算|Π-3.14|-Π的结果是;
17.设a-3b=5,则2(a-3b)2+3b-a-15的值是________.
18.观察下面一列数,探究其中的规律:—1, , , , ,
则第11,12,13三个数分别是,,;第2008个数是第n个数是
19.已知 为互为倒数, 为互为相反数, 为最大的负整数,则 的值为。
③a+b>0,若a,b同号,则ab>0,④若|a|>|b|,且a,b同号,则a+b>0,
其中正确的有:()A、3个B、2个C、1个D、0个
3、把多项式 ,按 的降幂排列后,第三项应为()
A、 B、 C、 D、
4、下列说法中不正确的是()
A.零是整数,也是自然数B.有最小的正整数,没有最小的负整数
C. 是负数,也是正数D.一个整数不是奇数,就是偶数
A、(7,14,21,28) B、(2,9,16,23)
C、(6,13,20,27)D(8,15,22,29)
二、填空题:
10.图1中共有条线段,条射线.
11.一个角的余角比它的补角的 还多1°,求这个角的度数.
12.将一个直角边长分别为3厘米和4厘米,现将直角三角尺绕着一条直角边旋转一周得到的几何体的体积是.