四种滤波器的幅频特性

合集下载

无源带通滤波器

无源带通滤波器

无源带通滤波器
无源带通滤波器电路,有源带通滤波器电路图1.根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)、和带阻滤波器(BEF)四种。

图4-1分别为四种滤波器的实际幅频特性的示意图。

滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某些频率(通常是某个频率范围)的信号通过,而其它频率的信号幅值均要受到衰减或抑制。

这些网络可以由RLC元件或RC元
无源带通滤波器电路,有源带通滤波器电路图
1.根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)、和带阻滤波器(BEF)四种。

图4-1 分别为四种滤波器的实际幅频特性的示意图。

滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某些频率(通常是某个频率范围)的信号通过,而其它频率的信号幅值均要受到衰减或抑制。

这些网络可以由RLC 元件或RC 元件构成的无源滤波器,也可由RC 元件和有源器件构成的有源滤波器。

图4-1 四种滤波器的幅频特性
2.四种滤波器的传递函数和实验模拟电路如图4-2 所示:(a)无源低通滤波器(b)有源低通滤波器 (c) 无源高通滤波器 (d)有源高通滤波器 (e)无源带通滤波器 (f)有源带通滤波器 (g)无源带阻滤波器 (h)有源带阻滤波器
图4-2 四种滤波器的实验电路
3.滤波器的网络函数H(jω),又称为正弦传递函数,它可用下式表示
式中A(ω)为滤波器的幅频特性,θ(ω)为滤波器的相频特性。

它们均可通过实验的方法来测量。

实验十一 FIR 滤波器的相位特性和幅度特性

实验十一 FIR 滤波器的相位特性和幅度特性

实验十一 FIR 滤波器的相位特性和幅度特性一、实验目的1. 了解 FIR 滤波器具有线性相位的条件。

2. 了解四种类型 FIR 滤波器的幅频特性和相频特性及用途。

3. 学会用 MA TLAB 工具分析 二、 实验原理与方法FIR 滤波器。

实验十六中已经讲过脉冲相应的对称与反对称,即满足)1()(n M h n h --=为对称满足)1()(n M h n h ---=为反对称。

当在M 为奇数偶数的下结合对称和反对称的情况,就可以得到四种类型的线性相位 FIR 滤波器。

对其中每种类型其频率响应函数都有特有的表达式和独特的形状。

可将)(ωj e H 写成:21,2;)()()(-===-M a e H e H a j r j πβωωβω式中)(ωr H 是振幅响应函数。

线性相位实系数FIR 滤波器按其M 值奇偶和)(n h 的奇偶对称性分为四种:1、Ⅰ类线性相位 FIR 滤波器:)(n h 为对称,M 为奇数。

可以证明:2/)1(2/)1(0])c o s()([)(---=∑=M j M n j e n n a e H ωωω式中)(n a 由)(n h 求得为:)21()0(-=M h a ;中间样本。

231),21(2)(-≤≤--=M n n M h n a 。

且振幅响应函数∑-==2/)1(0)cos()()(M n r n n a H ωω。

该幅值关于ππω2,,0=成偶对称。

MATLAB 中用函数Hr_Typel 来计算振幅响应。

2、Ⅱ类线性相位 FIR 滤波器:)(n h 为对称,M 为偶数.可以证明:2/)1(2/1])}21(cos{)([)(--=∑-=M j M n j e n n b e H ωωω式中2,...2,1),2(2)(M n n M h n b =-=且振幅响应函数∑=-=2/1)}21(cos{)()(M n r n n b H ωω可得0)(=πrH 。

滤波器的频率响应与幅频特性

滤波器的频率响应与幅频特性

滤波器的频率响应与幅频特性频率响应是对滤波器在不同频率下的响应能力进行描述的指标。

幅频特性则是指滤波器在不同频率下对信号幅度的影响程度。

1. 引言滤波器在电子工程中起着至关重要的作用。

它可以用来去除噪声、滤波信号以及频率选择等功能。

为了确保滤波器的设计和使用能够满足实际需求,了解滤波器的频率响应与幅频特性是非常关键的。

2. 频率响应滤波器的频率响应是指在不同频率下,滤波器对输入信号的响应情况。

通常情况下,频率响应是以频率为横坐标,增益为纵坐标进行绘制的。

不同类型的滤波器对频率的响应特性各不相同,如低通滤波器会对低频信号通过较好,而对高频信号进行衰减。

3. 幅频特性幅频特性是指在不同频率下,滤波器对信号幅度的影响程度。

它是通过绘制滤波器的增益-频率曲线来表示的。

由于滤波器对不同频率下的信号具有不同的增益,因此幅频特性是描述滤波器对信号增益的变化情况。

4. 不同类型滤波器的幅频特性4.1 低通滤波器低通滤波器的幅频特性表现为在低频范围内通过信号,并对高频信号进行衰减。

这种滤波器适用于需要去除高频噪声或只关注低频信号的应用场景。

4.2 高通滤波器高通滤波器的幅频特性表现为在高频范围内通过信号,并对低频信号进行衰减。

这种滤波器适用于需要去除低频噪声或只关注高频信号的应用场景。

4.3 带通滤波器带通滤波器的幅频特性表现为在某个频率范围内通过信号,并对其他频率的信号进行衰减。

这种滤波器适用于需要选择性地通过一定范围内的信号的应用场景。

4.4 带阻滤波器带阻滤波器的幅频特性表现为在某个频率范围内衰减信号,并对其他频率的信号进行通过。

这种滤波器适用于需要选择性地阻止一定范围内的信号的应用场景。

5. 影响滤波器频率响应与幅频特性的因素5.1 滤波器类型不同类型的滤波器由于其具体结构和设计参数的不同,其频率响应和幅频特性也会有所不同。

5.2 截止频率截止频率是影响滤波器频率响应和幅频特性的一个重要参数。

它表示滤波器在该频率下信号衰减或增益到一定程度的情况。

滤波器的基础知识2

滤波器的基础知识2

一.滤波器的基础知识1.滤波器的功能滤波器的功能就是允许某一部分频率的信号顺利的通过,而另外一部分频率的信号则受到较大的抑制,它实质上是一个选频电路。

滤波器中,把信号能够通过的频率范围,称为通频带或通带;反之,信号受到很大衰减或完全被抑制的频率范围称为阻带;通带和阻带之间的分界频率称为截止频率;理想滤波器在通带内的电压增益为常数,在阻带内的电压增益为零;实际滤波器的通带和阻带之间存在一定频率范围的过渡带。

2.滤波器的分类( 1)按所处理的信号分为模拟滤波器和数字滤波器两种。

( 2)按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。

低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。

高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。

带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。

带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。

( 3)按所采用的元器件分为无源和有源滤波器两种。

①.无源滤波器:仅由无源元件(R、L 和C)组成的滤波器,它是利用电容和电感元件的电抗随频率的变化而变化的原理构成的。

这类滤波器的优点是:电路比较简单,不需要直流电源供电,可靠性高;缺点是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L较大时滤波器的体积和重量都比较大,在低频域不适用。

②.有源滤波器:由无源元件(一般用R和C)和有源器件(如集成运算放大器)组成。

这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤波器,并且滤波器的体积小、重量轻、不需要磁屏蔽(由于不使用电感元件);缺点是:通带范围受有源器件(如集成运算放大器)的带宽限制,需要直流电源供电,可靠性不如无源滤波器高,在高压、高频、大功率的场合不适用。

3. 滤波器的主要参数(1)通带增益A0:滤波器通带内的电压放大倍数。

四种滤波器的幅频特性教程文件

四种滤波器的幅频特性教程文件

四种滤波器的幅频特性四种滤波器的幅频特性本次实验是观察四种滤波器(低通、高通、带宽、带阻)的幅频特性,以加强对各种滤波器的功能认知。

本次实验我们选用的放大器为324型,其功能图如下所示:下面我们来逐步观察一下四种滤波器的特性。

1.低通滤波器其电路图如下所示:图中,电阻R1=R2=R=10KΩ,C1=C2=0.01uF,Ro=0.8R=8Ω,Vcc+=+12V,Vcc-=-12V ,低通滤波器的传递函数20022)(ωαωω++=s s K s H p ,,其中2221102121001111;1;1C R K R R C C C R R RRK K ff p -+⎪⎪⎭⎫ ⎝⎛+==+==αωω带入数据w 。

=10000rad/s ,Kp =1.8,α=1.2,()()222202225/2425/78.1)(ωωωωω+-=j H ;当w =0时)(ωj H =1.8,;w 增加且w<4800rad/s 时,)(ωj H 增加;当>4800rad/s 时, )(ωj H 减小,;w 趋近无穷时, )(ωj H 趋近于0。

此时wc=1.17rad/s 。

对于不同的α,滤波器的幅频特性也不相同对于实验中的低通,α=1.2,与1.25的相似,我们对于实验数据的测量如下:输入为100mV 频率f (Hz )输出V (v ) 频率f (Hz ) 输出V (v ) 10 1.965 2200 0.756 30 1.965 2300 0.698 50 1.960 2400 0.650 100 1.950 2500 0.596 2001.94526000.548500 1.945 2700 0.518 800 1.945 2800 0.484 1000 1.855 2900 0.438 1100 1.795 3000 0.414 1200 1.755 3500 0.311 1300 1.700 4000 0.238 1400 1.490 4500 0.180 1500 1.400 5000 0.148 1600 1.290 5500 0.123 1700 1.195 6000 0.105 1800 1.095 7000 0.078 1900 0.966 8000 0.057 2000 0.898 9000 0.046 2100 0.818 10000 0.036 范围10~6kHz输出不失真绘出的幅频特性图如下:2、高通滤波器其电路图如下:其中R1=R2=R=10K,C1=C2=0.01uF,Ro=0.8R=8K高通的传递函数为2022)(ωαω++=s s s K s H p ,()()222022)(ωαωωωωω+-=p K j H ,1121202121001111;1;1CR K C C R C C R R RR K K f f p -+⎪⎪⎭⎫ ⎝⎛+==+==αωω带入数值后,Kp =1.8,W=0时)(ωj H =0;w<4800rad/s 时)(ωj H 增加;w 趋近于无穷时, )(ωj H 保持不变。

浅谈高通滤波器

浅谈高通滤波器

高通滤波器的工作原理与应用浅谈高通滤波器电子电路设计中,常用的滤波器主要分为高通滤波器、低通滤波器、带阻滤波器、带通滤波器,而这四种滤波器又统称为有源滤波器。

下面单独谈一下这个高通滤波器的工作原理与运用。

高通滤波器的特性:允许通过高频信号,衰减低频信号。

如下图所示,当信号处于低频段的时候幅频特性如下:高通滤波器的原理解释完之后,我们再看下面的微分电路:同之前分析低通滤波器一样,如图分析上面的微分电路,学习电路知识的我们知道,于积分电路而言,时间常数T 是大于输入信号的脉冲宽度的;反之,对于微分电路,时间常数T是远远小于输入信号宽度的。

从电路分析,当一个输入信号冲出瞬间,由于电容两端电压不能突变,此时就可以把电容看成一个短路,流过的脉冲全部留到了电阻上,电阻的电压也就变得最大,但是对于微分电路来说,因为时间常数远小于输入信号的脉冲宽度,所以很快电容就开始充电,由于电容两端的电压不能马上突变,所以电容还在充电,这时候电容充电满了,充满之后,电容就成了开路状态(同时Uout 也是0),也就是断开了输入,这时输入脉冲就会断开消失,而变成开路的结果就是没有电流流过电阻,电阻上面就没有电压,就是相当于输入端接地。

观察电压的输入极性,左边是正右边是负,那么这个时候电阻上的电压还是最大,只不过变成了最大的负电压。

这个时候开始放电,放电的同时电容两端的电压不能突变,那么这个时候,电阻上的电压还是最大,然后快速放电(由于时间T 很小),放完之后,等待下一次的脉冲过来,此时Uout 还是0。

简单总结一下:微分电路其实就是通过电容不能突变的特性,让脉冲不断产生尖波,从而求出输入信号的突变成分,也就是通过改变电容和电阻阻值,来获得某一频率范围下的信号,通过一系列的尖波突变,可以知道Uin 输入的大小不变,所以结论就是:微分电路无输出。

同样,在弄清楚微分电路之后,再看高频滤波器电路就会一目了然,下面是小编绘制的两个高通滤波器电路:一阶高通滤波器和二阶高通滤波器。

四种滤波器对比

四种滤波器对比

四种滤波器对比
按照逼近函数类型划分,滤波器可分为:
 1、巴特沃斯滤波器
 2、切比雪夫滤波器
 3、贝塞尔滤波器
 4、椭圆滤波器
 巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。

 切比雪夫滤波器在过渡带比巴特沃斯滤波器的衰减快,但频率响应的幅频特性不如后者平坦。

切比雪夫滤波器和理想滤波器的频率响应曲线之间的误差最小,但是在通频带内存在幅度波动。

 贝塞尔滤波器具有最平坦的幅度和相位响应。

带通(通常为用户关注区域)的相位响应近乎呈线性。

 相同阶数时:。

滤波器测试指标

滤波器测试指标
四、阻带衰减
阻带衰减是指滤波器对不需要的频率成分的衰减能力。阻带衰减的测试指标主要包括阻带衰减系数、阻带带宽等。阻带衰减系数是指滤波器在阻带内对信号的衰减程度。阻带带宽是指滤波器在阻带内的频率范围。
滤波器的测试指标包括频率响应、幅频特性、相频特性和阻带衰减。通过对这些指标的测试,可以评估滤波器的性能表现,从而选择合适的滤波器应用于具体的信号处理任务中。在实际应用中,需要根据具体需求和信号特点选择合适的滤波器,并对其进行测试和验证,以确保其性能符合要求。
滤波器测试指标
滤波器是信号处理中常用的一种工具,用于对信号进行滤波处理,以滤除不需要的频率成分或增强特定频率成分。滤波器的测试指标是评估其性能表现的标准,包括滤波器的频率响应、幅频特性、相频特性、群延迟、阻带衰减等。
一、频率响应
频率响应是指滤波器对不同频率信号的响应能力。滤波器的频率响应通常以幅频特性和相频特性来描述。幅频特性是指滤波器对不同频率信号的幅度衰减或增益程度。相频特性是指滤波器对不同频率信号的相位变化情况。频率响应的测试指标主要包括通频带、截止频率、衰减系数等。
二、幅频特性
幅频特性是指滤波器对不同频率信号的幅度衰减或增益程度。幅频特性的测试指标主要包括通频带、增益平坦度、通频带波动等。通频带是指滤波器能够有效传递信号的频率范围。增益平坦度是指滤波器在通频带内的增益变化情况。通频带波动是指滤波器在通频带内的增益在频率信号的相位变化情况。相频特性的测试指标主要包括群延迟、相位线性度等。群延迟是指滤波器对不同频率信号的延迟时间。相位线性度是指滤波器对不同频率信号的相位变化是否线性。

四种滤波器的幅频特性

四种滤波器的幅频特性

四种滤波器的幅频特性本次实验是观察四种滤波器(低通、高通、带宽、带阻)的幅频特性,以加强对各F面我们来逐步观察一下四种滤波器的特性。

1.低通滤波器其电路图如下所示:Vcc+K p o=+12V,Vcc- = -12V,低通滤波器的传递函数H (S) —s o S,其中K p K f 11 K fR1R2C1C2C1 R1R2R2C2带入数据w。

= 10000rad/s,H(j )Kp = 1.8 ,a= 1.2,1.8 o-------------------------------------------------------------------- ?2 2 2 2 227/25 0 24/25 0当w = 0 时H (j ) = 1.8, ; w 增加且w<4800rad/s 时,H(j )增加;当>4800rad/s 时, H(j )减小,;w趋近无穷时,H(j )趋近于0。

此时wc=1.17rad/s。

对于不同的a,滤波器的幅频特性也不相同对于实验中的低通,a=1.2,与1.25的相似,我们对于实验数据的测量如下: 输入为范围10〜6kHz输出不失真绘出的幅频特性图如下:2、高通滤波器其电路图如下:其中R仁R2=R=10K,C仁C2=0・01uF,Ro=0・8R=8K高通的传递函数为H (s)K p S2 £2,H(j )S 0 S 0K p K f 1 R°; 1 ;J R R2C1C2带入数值后,Kp = 1.8,1R2K p1C11 K fR1C1 W=0时H (j ) = 0;w<4800rad/s时| H(j )增加;w趋近于无穷时,H(j )保持不变。

对于不同的a,滤波器的幅频特性也不相同[频率f(Hz)输出V(v)频率f(Hz)输出V (v)100 0.018 1.3k 1.485 200 0.050 1.4k 1.615 300 0.095 1.5k 1.720 400 0.168 1.6k 1.790 500 0.260 1.8K 1.890 600 0.382 2.0K 1.920 700 0.517 2.5K 1.975 800 0.676 3.0K 1.970 900 0.846 4.0K 1.965 1K 1.008 5.0K 1.965 1.1K 1.200 10K 1.965 1.2K 1.3552 K(P(;QQ)S2,H(j ) • s( 0/Q)s 0(o/Q)s K P2;2 2 2 2 '/Q3带通滤波器其电路图如下所示:带通的传递函数为H (s)11 K f频率f ( Hz )输出V (v ) 频率f ( Hz ) 输出V (v )20 0.016 3K 0.760 50 0.035 3.5K 0.686 100 0.067 4K 0.610 200 0.139 4.5K 0.572 300 0.205 5K 0.518 400 0.268 6K 0.434 500 0.341 7K 0.368 600 0.398 8K 0.340 700 0.453 9K 0.310 800 0.516 10K 0.263 900 0.570 12K 0.223 1K 0.618 15K 0.180 1.5K 0.814 18K 0.151 1.8K 0.866 20K 0.140 2.0K 0.872 25K 0.105 2.02K 0.880(最大) 30K 0.092 2.2K 0.868 40K 0.0662.5K0.82650K0.055 (出现失真)输出范围200〜40KHZ 绘制的幅频特性图如下:K p K f 1G F31 K fR R 2 ;R R 2 ;.R&R3GG ;R|G R3C 1RC2 &GQ 为品质因数,不同的 Q 对幅频特性影响如下图:4、带阻滤波器 其电路图如下所示:数据如下: 频率f ( Hz )输出V (v ) 频率f ( Hz ) 输出V (v )10 1.891.39K 0.069K p K fR o R ;1 CR ;2 RCK fH(j )不同的Q 产生的影响如下:。

四种低通滤波器的软件设计与性能比较

四种低通滤波器的软件设计与性能比较

有等波纹特性,它有两种形式:1)振幅特性在通带内是等波纹的、在阻带内是单调的 切比雪夫 I 型滤波器;2)振幅特性在通带内是单调的、在阻带内是等波纹的切比雪夫 II 型滤波器,采用何种形式的切比雪夫滤波器取决于实际用途。
研究方法:Matlab 设计程序。MATLAB 语言是一种简单、高效的高级语言, 是 一种内容丰富、功能强大的分析工具, 其应用范围几乎覆盖了所有的科学和工程计算 领域。MATLAB 中提供了丰富的用于模拟滤波器设计的函数, 通过编程可以很容易 实现低通、高通、带通、带阻滤波器, 并能画出滤波器的幅频特性曲线, 大大简化了 模拟滤波器的设计。本文通过传统方法与 MATLAB 编程方法的比较, 研究了用 MATLAB 实现巴特沃斯滤波器设计的。
巴特沃斯低通滤波器切比雪夫滤波器椭圆滤波器在阶数相同时有不同的幅频特性和不同的相频特性通过比较巴特沃斯低通滤波器切比雪夫型滤波器切比雪夫型滤波器椭圆滤波器等四种低通滤波器在同一阶数的幅频特性函数图形和相频特性函数图形选出性能最优的滤波器
题 目四种低通滤波器的软件设计景、目的及现实意义) 背景:美国在 1917 年发明了世界上第一台无源滤波器,50 年代无源滤波器才逐
意义:数字滤波器是现代测控系统中的重要部件, 传统设计方法的设计过程繁琐。 对传统方法与 MATLAB 编程方法进行了比较, 研究了用 MATLAB 实现巴特沃斯滤 波器的设计, 只要改变程序中相应的参数可以很容易地实现低通、高通、带通、带阻 滤波器, 简化了模拟滤波器的设计。在数字信号处理中, 数字滤波器十分重要并已获 得广泛应用, 数字滤波器与模拟滤波器比较, 具有精度高、稳定、体积小、重量轻、 灵活、不要求阻抗匹配以及实现模拟滤波器无法实现的特殊滤波功能等优点。
创新之处:对四种低通滤波器一起进行设计,在同一指数下比较性能。

滤波器的主要特性指标

滤波器的主要特性指标

滤波器的主要特性指标电子知识1、特征频率:①通带截频fp=wp/(2p)为通带与过渡带边界点的频率,在该点信号增益下降到一个人为规定的下限。

②阻带截频fr=wr/(2p)为阻带与过渡带边界点的频率,在该点信号衰耗(增益的倒数)下降到一人为规定的下限。

③转折频率fc=wc/(2p)为信号功率衰减到1/2(约3dB)时的频率,在很多情况下,常以fc作为通带或阻带截频。

④固有频率f0=w0/(2p)为电路没有损耗时,滤波器的谐振频率,复杂电路往往有多个固有频率。

2、增益与衰耗滤波器在通带内的增益并非常数。

①对低通滤波器通带增益Kp一般指w=0时的增益;高通指w→∞时的增益;带通那么指中心频率处的增益。

②对带阻滤波器,应给出阻带衰耗,衰耗定义为增益的倒数。

③通带增益变化量△Kp指通带内各点增益的最大变化量,如果△Kp以dB为单位,那么指增益dB值的变化量。

3、阻尼系数与品质因数阻尼系数是表征滤波器对角频率为w0信号的阻尼作用,是滤波器中表示能量衰耗的一项指标。

阻尼系数的倒数称为品质因数,是*价带通与带阻滤波器频率选择特性的一个重要指标,Q= w0/△w。

式中的△w为带通或带阻滤波器的3dB 带宽, w0为中心频率,在很多情况下中心频率与固有频率相等。

4、灵敏度滤波电路由许多元件构成,每个元件参数值的变化都会影响滤波器的性能。

滤波器某一性能指标y对某一元件参数x变化的灵敏度记作Sxy,定义为: Sxy=(dy/y)/(dx/x)。

该灵敏度与测量仪器或电路系统灵敏度不是一个概念,该灵敏度越小,标志着电路容错能力越强,稳定性也越高。

5、群时延函数当滤波器幅频特性满足设计要求时,为保证输出信号失真度不超过允许范围,对其相频特性∮(w)也应提出一定要求。

在滤波器设计中,常用群时延函数d∮(w)/dw*价信号经滤波后相位失真程度。

群时延函数d∮(w)/dw越接近常数,信号相位失真越小。

IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。

滤波器的频率响应与幅频特性分析

滤波器的频率响应与幅频特性分析

滤波器的频率响应与幅频特性分析一、引言在电子工程领域,滤波器是一种常用的电子设备,用于将信号中某个特定频率范围内的成分通过,而抑制其他频率成分。

滤波器的性能主要体现在其频率响应和幅频特性上。

本文将对滤波器的频率响应与幅频特性进行深入分析。

二、滤波器的频率响应频率响应描述了滤波器在不同频率下对信号的响应能力。

通常,滤波器的频率响应可以通过幅度和相位两个方面来描述。

1. 幅度响应幅度响应描述了滤波器在不同频率下对信号幅度的变化情况。

一般以频率作为横轴,幅度变化作为纵轴,绘制频率响应曲线。

常见的滤波器频率响应曲线有低通、高通、带通和带阻四种类型。

- 低通滤波器:在截止频率以下,对信号幅度基本不产生变化,而在截止频率以上,对信号幅度进行有效抑制。

- 高通滤波器:在截止频率以下,对信号幅度进行有效抑制,而在截止频率以上,对信号幅度基本不产生变化。

- 带通滤波器:在一定的频率范围内,对信号幅度进行有效传递,而在其他频率范围内进行抑制。

- 带阻滤波器:在一定的频率范围内,对信号幅度进行有效抑制,而在其他频率范围内进行传递。

2. 相位响应相位响应描述了滤波器在不同频率下对信号相位的变化情况。

相位响应曲线一般以频率作为横轴,相位变化作为纵轴。

相位响应对于某些应用场景,如音频信号的处理,具有重要意义。

三、滤波器的幅频特性滤波器的幅频特性描述了滤波器在不同频率下对信号幅度的变化情况。

幅频特性常常通过幅频响应曲线来表示,横轴表示频率,纵轴表示信号的幅度变化。

在幅频响应曲线中,可以观察到一些重要的参数,如截止频率、增益等。

1. 截止频率截止频率是指滤波器的幅频特性曲线在该频率处开始变化的位置。

对于低通滤波器来说,截止频率是指信号幅度开始衰减的频率;而对于高通滤波器来说,截止频率是指信号幅度开始增加的频率。

2. 增益增益表示了滤波器对信号幅度的放大或衰减程度。

在幅频响应曲线中,增益通常用分贝(dB)来表示。

在实际应用中,对于不同的滤波器类型和应用场景,要根据需要选择合适的幅频特性。

FRM滤波器

FRM滤波器

FRM 滤波器设计组员:郑志龙 宋文波 丁毅 张丹娜 毛鑫萍 蒋维1. FRM 原理FIR 滤波器的幅频特性具体形式有以下四种:情况 1:N 为奇数,{}10)(-=N n n h 为偶对称形式。

∑-==2/)1(0),cos()()(ˆN n wn n a w H (1)其中:)2/)1(()0(-=N h a ,)2/)1((2)(n N h n a --=,2/)1,...(2,1-=N n .情况 2:N 为偶数,{}10)(-=N n n h 为偶对称形式。

∑=-=2/0),2/1(cos )()(ˆN n n w n b w H (2) 其中:)2/(2)(n N h n b -=,2/,...2,1N n =。

情况 3:N 为奇数,{}10)(-=N n n h 为奇对称形式。

∑-==2/)1(0),sin()()(ˆN n wn n c w H (3)其中:)2/)1((2)(n N h n c --=,.2/)1(...,2,1-=N n情况 4:N 为偶数,{}10)(-=N n n h 为奇对称形式. ∑=-=2/0),2/1(sin )()(ˆN n n w n d w H(4) 其中:),2/(2)(n N h n d -= .2/,...2,1N n =窄过渡带F I R 滤波器的几种设计技术:滤波器—均衡器技术,有限脉冲响应内插技术,并行结构技术,频率响应屏蔽技术。

本次实验我们采用的是FRM ,也就是频率响应屏蔽技术。

频率响应屏蔽(Frequency —Response Masking ,FRM)技术是L i m 于1986年[1]提出的。

为了说明频率屏蔽响应技术的基本原理,我们以一个低通滤波器a H 作为例子。

)(z H a )为低通滤波器的Z 变换传递函数,其频率响应为)(jw a e H ,过渡带宽度为a ∆,如图1(a)所示。

如果将滤波器的每个延时单元替换成M 个延时单元,则滤波器的传递函数变为)()(M a b z H z H =,频率响应变为)()(jMw a jw b e H e H =,过渡带宽度变为M a /∆,如图1(b)所示。

滤波器主要参数与特性指标

滤波器主要参数与特性指标

滤波器的主要参数(Definitions):中心频率(Center Frequency):滤波器通带的频率f0,一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。

窄带滤波器常以插损最小点为中心频率计算通带带宽。

截止频率(Cutoff Frequency):指低通滤波器的通带右边频点及高通滤波器的通带左边频点。

通常以1dB或3dB相对损耗点来标准定义。

相对损耗的参考基准为:低通以DC处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准。

通带带宽(BWxdB):指需要通过的频谱宽度,BWxdB=(f2-f1)。

f1、f2为以中心频率f0处插入损耗为基准,下降X(dB)处对应的左、右边频点。

通常用X=3、1、0.5 即BW3dB、BW1dB、BW0.5dB 表征滤波器通带带宽参数。

分数带宽(fractional bandwidth)=BW3dB/f0×100[%],也常用来表征滤波器通带带宽。

插入损耗(Insertion Loss):由于滤波器的引入对电路中原有信号带来的衰耗,以中心或截止频率处损耗表征,如要求全带内插损需强调。

纹波(Ripple):指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上波动的峰-峰值。

带内波动(Passband Riplpe):通带内插入损耗随频率的变化量。

1dB带宽内的带内波动是1dB。

带内驻波比(VSWR):衡量滤波器通带内信号是否良好匹配传输的一项重要指标。

理想匹配VSWR=1:1,失配时VSWR<1。

对于一个实际的滤波器而言,满足VSWR<1 BWdBBWdBdiv> 在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波节。

其它各点的振幅值则介于波腹与波节之间。

滤波器的四种基本类型的幅频是什么

滤波器的四种基本类型的幅频是什么

滤波器的四种基本类型的幅频是什么在信号处理和电子学领域中,滤波器是一种用于选择性地传递特定频率范围内信号的设备。

滤波器有多种类型,其中包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

每种类型的滤波器都有其独特的幅频特性,下面我们将分别介绍这四种基本类型滤波器的幅频响应。

低通滤波器低通滤波器是一种能够传递低频信号而抑制高频信号的滤波器。

其幅频响应特点是在低频处有较高的增益,随着频率的增加,幅频响应逐渐下降,最终趋近于零。

低通滤波器常被用于消除高频噪声或选择性地保留低频信号。

高通滤波器高通滤波器与低通滤波器相反,它能够传递高频信号而抑制低频信号。

其幅频响应特点是在高频处有较高的增益,随着频率的减小,幅频响应逐渐下降至零。

高通滤波器通常用于消除低频噪声或选择性地保留高频信号。

带通滤波器带通滤波器是一种能够只传递指定频率范围内信号而阻塞其他频率信号的滤波器。

其幅频响应特点是在一个特定的频率范围内有较高的增益,而在该范围之外的频率上有较低的响应。

带通滤波器通常用于接收特定频段的信号或滤除特定频段的干扰。

带阻滤波器带阻滤波器与带通滤波器相反,它能够阻止指定频率范围内的信号而通过其他频率信号。

其幅频响应特点是在指定频率范围内有较低的响应,而在该范围之外则有较高的增益。

带阻滤波器通常用于消除特定频段的干扰或阻止特定频段的信号传输。

综合来看,四种基本类型的滤波器在频率响应特性上各有所长,根据具体的应用需求选择合适的滤波器类型能够有效地实现信号处理和控制。

通过了解不同滤波器类型的幅频特性,我们可以更好地运用它们来满足不同的工程需求。

1。

滤波器测试指标

滤波器测试指标

滤波器测试指标滤波器是信号处理中常用的工具,它可以通过改变信号的频率特性来实现滤波效果。

在实际应用中,滤波器的性能评估非常重要,因为它直接影响到信号处理的效果。

本文将介绍滤波器的常用测试指标,包括频率响应、幅频特性、相频特性、群延迟、失真以及滤波器类型等。

一、频率响应频率响应是衡量滤波器性能的重要指标之一。

它描述了滤波器在不同频率下对信号的响应情况。

通常用频率响应曲线来表示,横轴为频率,纵轴为增益。

频率响应曲线能够直观地展示滤波器的通带、阻带以及过渡带等特性。

二、幅频特性幅频特性是频率响应的一种常见表示形式,它描述了滤波器在不同频率下的增益变化情况。

通常用幅频特性曲线来表示,横轴为频率,纵轴为增益。

幅频特性能够清晰地显示滤波器在不同频率下的增益变化情况,帮助我们了解滤波器的衰减特性。

三、相频特性相频特性是指滤波器在不同频率下的相位变化情况。

相位变化会导致信号的时移,因此相频特性对于滤波器的时域性能评估非常重要。

相频特性通常用相频特性曲线来表示,横轴为频率,纵轴为相位。

相频特性曲线能够帮助我们了解滤波器在不同频率下的相位变化情况,从而评估其时域性能。

四、群延迟群延迟是指滤波器对不同频率信号的延迟情况。

群延迟可以影响信号的相位和幅度,因此对于滤波器的时域性能评估非常重要。

群延迟通常用群延迟曲线来表示,横轴为频率,纵轴为群延迟。

群延迟曲线能够帮助我们了解滤波器对不同频率信号的延迟情况,从而评估其时域性能。

五、失真失真是指滤波器对输入信号进行处理后引入的额外变化。

常见的失真包括幅度失真和相位失真。

幅度失真指的是滤波器对信号幅度的改变程度,相位失真指的是滤波器对信号相位的改变程度。

失真会影响信号的质量,因此评估滤波器的失真情况对于保证信号处理的准确性非常重要。

六、滤波器类型滤波器根据其频率响应特点可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器等不同类型。

不同类型的滤波器适用于不同的信号处理需求。

因此,在选择滤波器时,我们需要根据具体应用场景和信号特性来确定合适的滤波器类型。

滤波电路主要有以下四种基本类型

滤波电路主要有以下四种基本类型

C R
(b)
RL Uo
式中 可见
有源滤波电路特点:
(1)电路的增益得到提高 (3)带负载能力强
(2)运放本身对RC网络影响小 (4)运放工作在线性区
一、低通滤波器
低通滤波器用来通过低频信号,抑制或衰减高频信号。 称为滤波电路增益或电压传递函数。
(一)一阶电路
输出电压为
Rf
R1

R
-
Uo

+
Ui
C
传递函数
结论
0 -3dB
3dB -40dB/十倍频源自10-3 0.01 0.1 1 10
ω/ω0
Q=2时幅
频特性。
将电容C1接地的一端改接到运放的输出端,形成 正反馈后,可使Uo的幅值在ω≈ω0范围内得到加强, 如果Q值合适,其幅频特性比较接近理想情况 。
二、高通滤波器
Af(ω)
理想的高通滤波器幅频特性
阻带
通带电压放大倍数
通带截止角频率
幅频特性为
20lg A Aup
1
20lg A Aup
1 0.707
0
1
(a)理想特性
o
0
(b)实际幅频特性 o
结论
1.改变电阻Rf和R1的阻值可调节通带电压放大倍数 2.改变截止频率,应调整RC
一阶电路缺点
当ω≥ ωo时,幅频特性衰减太慢,以-20dB/10 倍频程的速率下降,与理想的幅频特性相差甚远。
-40dB/十倍 频
0.1 0.37 1 10
ω/ω0
改进
R1
Rf


•-
Uo
将电容C1的接 地端改接到集成

Ui
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四种滤波器的幅频特性
本次实验是观察四种滤波器(低通、高通、带宽、带阻)的幅频特性,以加强对各种滤波器的功能认知。


次实验我们选用的放大器为324型,其功能图如下所示: 下面我们来逐步观察一下四种滤波器的特性。

1. 低通滤波器 其电路图如下所示:
图中,电阻R1=R2=R=10K Ω,C1=C2=0.01uF,Ro=0.8R=8Ω,Vcc+=+12V , Vcc-=-12V ,低通滤波器的传递函数20
02
2
)(ω
αωω++=
s s K s H p ,
,其中
2
221102
12100
1111;
1;1C R K R R C C C R R R
R K K f
f p -+⎪⎪⎭⎫ ⎝⎛+=
=
+
==αωω带入数据w 。

=10000rad/s ,Kp =1.8,α=1.2,
()(
)
2
2
2202
2
25/2425/78.1)(ωωω
ωω+-=
j H ;
当w =0时)(ωj H =1.8,;w 增加且w<4800rad/s 时,)(ωj H 增加;当>4800rad/s 时,)(ωj H 减小,;w 趋
近无穷时,
)(ωj H 趋近于0。

此时wc=1.17rad/s 。

对于不同的α,滤波器的幅频特性也不相同
对于实验中的低通,α=1.2,与1.25的相似,我们对于实验数据的测量如下: 输入为100mV
范围10~6kHz 输出不失真 绘出的幅频特性图如下: 2、高通滤波器 其电路图如下:
其中R1=R2=R=10K,C1=C2=0.01uF,Ro=0.8R=8K 高通的传递函数为20
02
2
)(ω
αω++=
s s s K s H p ,()()
2
220
2
2
)(ωαωω
ω
ωω+-=
p K j H ,
1121
2
021********
;
1
;
1C R K C C R C C R R R
R
K K f f p -+⎪⎪⎭⎫ ⎝⎛+=
=
+==αωω带入数值
后,Kp =1.8,
W=0时
)(ωj H =0;w<4800rad/s 时)(ωj H 增加;w 趋近于无穷时,)(ωj H 保持不变。

对于不同的α,滤波器的幅频特性也不相同
绘制的幅频特性图如下:
3带通滤波器 其电路图如下所示:
其中R1=R2=R3=R=10K,C1=C2=0.01uF ,Ro=8K ,
带通的传递函数为
2
02
0)/()/()(ω
ωω++=
s Q s s Q K s H p ,()H j ω;
()1
223131102
13212
101
213
1211111;
;
111C R K C R C R C R Q C C R R R R R R R K R R C C K K f
f f p -+++=+=
⎥⎦⎤⎢⎣⎡-+⎪⎪⎭⎫ ⎝⎛++=-ωω
Q 为品质因数,不同的Q 对幅频特性影响如下图: 数据如下:
输出范围200~40KHz 绘制的幅频特性图如下: 4、带阻滤波器 其电路图如下所示:
带阻的传递函数为
22
02200
()()(/)p K s H s s Q s ωωω+=
++,()H j ω=

()f f p K C
R Q CR R
R K K -=
=
+
==22
;1;1000
ωω; 不同的Q 产生的影响如下: 数据如下:
绘制的幅频特性图如下所示:。

相关文档
最新文档