高一新生分班考试数学试卷(含答案)
开学分班考试(一)-2020年秋季高一新生入学分班考试数学试卷及答案(新教材)
2020年秋季高一开学分班考试(衔接教材部分)(一)一、单选题(共8小题,满分40分,每小题5分) 1、下列式子计算正确的是( ) A .m 3•m 2=m 6 B .(﹣m )﹣2=C .m 2+m 2=2m 2D .(m +n )2=m 2+n 2【答案】C【解析】A 、m 3•m 2=m 5,故A 错误; B 、(﹣m )﹣2=B 错误;C 、按照合并同类项的运算法则,该运算正确.D 、(m +n )2=m 2+2mn +n 2,故D 错误. 2、若代数式1x−5有意义,则实数x 的取值范围是( )A . x =0B . x =5C . x ≠0D . x ≠5 【答案】D【解析】分数要求分母不为零。
5,05≠≠-x x3、已知关于x 的方程x 2+x ﹣a=0的一个根为2,则另一个根是( ) A .﹣3 B .﹣2 C .3 D .6【答案】A .【解析】设方程的另一个根为t , 根据题意得2+t=﹣1,解得t=﹣3, 即方程的另一个根是﹣3.故选A .4、关于二次函数,下列说法正确的是( ) A .图像与轴的交点坐标为B .图像的对称轴在轴的右侧C .当时,的值随值的增大而减小D .的最小值为-3 【答案】D【解析】∵y=2x 2+4x -1=2(x+1)2-3, ∴当x=0时,y=-1,故选项A 错误,该函数的对称轴是直线x=-1,故选项B 错误,2241y x x =+-y ()0,1y 0x <y x y当x<-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.5、若,则()A.1B.2C.3D.4【答案】C【解析】将不等式因式分解得,即或,无解或,所以√(2x−1)2+2|x−2|=2x−1+4−2x=3.故选C.6、已知ABC∆的三边a、b、c满足bcbaca-=-22,判断ABC∆的形状( )A.等边三角形B.等腰直角三角形C. 等腰三角形D.直角三角形【答案】C【解析】等腰三角形提示:因式分解得:(a-b)(a+b-c)=0,因为a、b、c为三角形得三边,所以a+b-c为非零数,所以a=b,故选C.7、若关于x的一元二次方程ax2+2x-1=0无解,则a的取值范围是()A.(-1, +∞)B.(-∞,-1)C.[-1,+∞)D.(-1,0)∪(0,+∞).【答案】B【解析】当{Δ=4+4a<0a≠0时,一元二次方程无解,解得a<-1,且a≠0,所以a的取值范围是a<-1.8、不等式的解集是( )A.{x|1<x≤5}B.{x|1<x<5}C.{x|1≤x<5 }D.{x|1≤x≤5 }【答案】A【解析】原不等式化为−x+5x−1≥0,x−5x−1≤0,解得1<x≤5.9、不等式2560x x+->的解集是()A.{}23x x x-或B.{}23x x-<<321xx+≥-C .{}61x x x -或 D .{}61x x -<<【答案】C【解析】因为2560x x +->,所以(1)(6)01x x x -+>∴>或6x <-,故选C 。
2022新高一入学分班考数学试卷12套(含答案)
D.不能确定
α
β
B
D
C
10.如图为由一些边长为 1cm 正方体堆积在桌面形成的立方体的三视图,则该立方体露在外面部分的表面积是
________ cm2。
正视图 A. 11 B.15
左视图 C.18
俯视图 D.22
第Ⅱ卷(答卷)
二. 填空题(本大题共 5 小题, 小题 4 分,共 20 分)
11.函数 y
形 S3 ,以此类推,则 S2006 为(
A.是矩形但不是菱形; C.既是菱形又是矩形;
) B. 是菱形但不是矩形; D.既非矩形又非菱形.
9.如图 ,D 是直角△ABC 斜边 BC 上一点,AB=AD,记∠CAD= ,∠ABC= .若 10 ,则 的度数是 (
)
A
A.40
B. 50
C. 60
W=
20 30
2x 1 x
8
1 x 82
82
12
14
8
1 8
x
82
2x
40
1 x 6 6 x 11 12 x 16
化简得
W=
1 18
x2 x2
14 2x
1
26
x 6 6 x
11
………………10
分
8
1 8
x2
4x
48
12 x 16
①当 W= 1 x 2 14 时,∵ x ≥0,函数 y 随着 x 增大而增大,∵1≤ x ≤6 8
4
1
5
2
x
①
2 x 1 6 x
②
由①得:x>-1
由②得: x 4
所以原不等式组的解集为: 1 x 4
高一新生入学分班考试数学模拟试卷(附答案)
高一新生入学分班考试数学模拟试卷(附答案)高一新生入学分班考试数学模拟试题(试题满分:150分,考试时间:120分钟)一、选择题(本题共12小题,每小题4分,共48分。
在每小题的四个选项中,只有一个符合题目要求)1.下列计算:① (-2006) = 1;② 2m-5 ÷ 4m = -4;③ x^4+x^3=x^7;④ (ab^2)^3=a^3b^6;42m-35 ÷ (-35)^2 = 35。
正确的选项为()A。
①B。
①②③C。
①③④D。
①④⑤2.一次函数 y=kx+b 满足 kb>0,且 y 随 x 的增大而减小,则此函数的图像不经过()A。
第一象限B。
第二象限C。
第三象限D。
第四象限3.一个底面半径为5cm,母线长为16cm的圆锥,它的侧面展开图的面积是()A。
80πcm^2B。
40πcm^2C。
80cm^2D。
40cm^24.以下五个图形中,既是轴对称又是中心对称的图形共有()A。
1个B。
2个C。
3个D。
4个5.在△ABC 中,∠C=90°,AB=15,sinA=1/3,则 BC 等于()A。
45B。
5C。
11D。
45/46.如图,已知 PA、PB 是⊙O 的切线,A、B 为切点,AC 是⊙O 的直径,∠P=40°,则∠BAC 的大小是()A。
70°B。
40°C。
50°D。
20°7.若不等式组的解集为空集,则 a 的取值范围是()x。
a4(x-2)+2>x-5答案:A。
a>38.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有 1 到 6 的点数,掷得正面朝上的点数为奇数的概率为()答案:B。
1/29.已知两圆的半径分别为 6cm 和 8cm,圆心距为 2cm,那么这两圆的公切线有()答案:C。
3条10.设 a。
b。
c。
d 都是非零实数,则四个数:-ab。
ac。
bd。
cd()A。
都是正数B。
开学分班考试(三)-2020年秋季高一新生入学分班考试数学试卷及答案(新教材)
2020年秋季高一开学分班考试(三)一、单选题(共8小题,满分40分,每小题5分)1、已知集合{|0}A x x a =-,若2A ∈,则a 的取值范围为( ) A .(,2]-∞- B .(,2]-∞C .[2,)+∞D .[2,)-+∞【答案】C【解析】因为集合{|0}A x x a =-,所以{}|A x x a =, 又因为2A ∈,则2a ,即[2,)a ∈+∞,故选:C .2、函数()12f x x =-的定义域为( ) A .[)0,2B .()2,+∞C .()1,22,2⎡⎫⋃+∞⎪⎢⎣⎭D .()(),22,-∞+∞【答案】C【解析】由21020x x -≥⎧⎨-≠⎩,解得x ≥12且x ≠2.∴函数()12f x x =-的定义域为()1,22,2⎡⎫⋃+∞⎪⎢⎣⎭.故选:C . 3、下列命题正确的是( ) A .若>a b ,则11a b< B .若>a b ,则22a b > C .若>a b ,c d <,则>a c b d -- D .若>a b ,>c d ,则>ac bd【答案】C【解析】A.若>a b ,则11a b<,取1,1a b ==- 不成立 B.若>a b ,则22a b >,取0,1a b ==- 不成立 C. 若>a b ,c d <,则>a c b d --,正确D. 若>a b ,>c d ,则>ac bd ,取1,1,1,2a b c d ==-==- 不成立,故答案选C4、已知函数2,01,()2,12,1,2,2x x f x x x ⎧⎪≤≤⎪=<<⎨⎪⎪≥⎩,则3[()]2f f f ⎧⎫⎨⎬⎩⎭的值为( )A .1B .2C .3-D .12【答案】A【解析】由题意得,3()=22f ,1(2)=2f ,1()=2=1122f ⨯, 所以3[()]=[(2)]=()=1212f f f f f f ⎧⎫⎨⎬⎩⎭,故选:A. 5、已知2x >,函数42y x x =+-的最小值是( ) A .5 B .4C .8D .6【答案】D【解析】因为该函数的单调性较难求,所以可以考虑用不等式来求最小值,,因为,由重要不等式可知,所以,本题正确选项为D.6、下列函数既是偶函数,又在(),0-∞上单调递减的是( ) A .2x y = B .23y x -=C .1y x x=- D .()2ln 1y x =+【答案】A【解析】对于A 选项,2xy =为偶函数,且当0x <时,122xx y -==为减函数,符合题意. 对于B 选项,23y x -=为偶函数,根据幂函数单调性可知23y x -=在(),0-∞上递增,不符合题意. 对于C 选项,1y x x=-为奇函数,不符合题意. 对于D 选项,()2ln 1y x =+为偶函数,根据复合函数单调性同增异减可知,()2ln 1y x =+在区间(),0-∞上单调递减,符合题意.故选:A 7、若正数,x y 满足220x xy +-=,则3x y +的最小值是( )A .4B.C .2D.【答案】A【解析】因为正数,x y 满足220x xy +-=,所以2=-y x x,所以2324+=+≥=x y x x ,当且仅当22x x =,即1x =时,等号成立. 故选:A8、函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(1)1f =-,则满足1(2)1f x -≤-≤的x 取值范围是( ) A .[2,2]- B .[1,1]-C .[0,4]D .[1,3]【答案】D 【解析】()f x 为奇函数,()()f x f x ∴-=-.(1)1f =-,(1)(1)1f f ∴-=-=.故由1(2)1f x -≤-≤,得(1)(2)(1)f f x f ≤-≤-.又()f x 在(,)-∞+∞单调递减,121x ∴-≤-≤,13x ∴≤≤.故选:D二、多选题(共4小题,满分200分,每小题5分) 9、下列各式既符合分数指数幂的定义,值又相等的是( ) A .13(1)-和26(1)-B .20-和12C .122和414D .324-和312-⎛⎫ ⎪⎝⎭ E.343和4313- 【答案】CE【解析】A 不符合题意,13(1)-和26(1)-均符合分数指数幂的定义,但13(1)1-==-,26(1)1-==;B 不符合题意,0的负分数指数幂没有意义; C符合题意,114242==;D 不符合题意,324-和312-⎛⎫ ⎪⎝⎭均符合分数指数幂的定义,但233211484-==,331282-⎛⎫== ⎪⎝⎭; E 符合题意,4343133-=.故选:CE.10、对任意实数a ,b ,c ,给出下列命题,其中真命题是( ) A .“a b =”是“ac bc =”的充要条件 B .“a b >”是“22a b >”的充分条件C .“5a <”是“3a <”的必要条件D .“5a +是无理数”是“a 是无理数”的充要条件【答案】CD【解析】对于A ,因为“a b =”时ac bc =成立,ac bc =,0c时,a b =不一定成立,所以“a b =”是“ac bc =”的充分不必要条件,故A 错,对于B ,1a =-,2b =-,a b >时,22a b <;2a =-,1b =,22a b >时,a b <,所以“a b >”是“22a b >”的既不充分也不必要条件,故B 错,对于C ,因为“3a <”时一定有“5a <”成立,所以“5a <”是“3a <”的必要条件,C 正确;对于D“5a +是无理数”是“a 是无理数”的充要条件,D 正确.故选:CD11、下面命题正确的是( ) A .“1a >”是“11a<”的充分不必要条件 B .命题“若1x <,则21x <”的否定是“ 存在1x <,则21x ≥”.C .设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要而不充分条件D .设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件 【答案】ABD【解析】选项A:根据反比例函数的性质可知:由1a >,能推出11a <,但是由11a<,不能推出1a >,例如当0a <时,符合11a<,但是不符合1a >,所以本选项是正确的; 选项B: 根据命题的否定的定义可知:命题“若1x <,则21x <”的 否 定 是“ 存 在1x <,则21x ≥”.所以本选项是正确的;选项C:根据不等式的性质可知:由2x ≥且2y ≥能推出224x y +≥,本选项是不正确的;选项D: 因为b 可以等于零,所以由0a ≠不能推出0ab ≠,再判断由0ab ≠能不能推出0a ≠,最后判断本选项是否正确.故选:ABD12、已知函数()()2lg 1f x x ax a =+--,给出下述论述,其中正确的是( )A .当0a =时,()f x 的定义域为()(),11,-∞-+∞B .()f x 一定有最小值;C .当0a =时,()f x 的值域为R ;D .若()f x 在区间[)2,+∞上单调递增,则实数a 的取值范围是{}4|a a ≥- 【答案】AC【解析】对A ,当0a =时,解210x ->有()(),11,x ∈-∞-+∞,故A 正确 对B ,当0a =时,()()2lg 1f x x =-,此时()(),11,x ∈-∞-+∞,()210,x -∈+∞,此时()()2lg 1f x x =-值域为R ,故B 错误.对C ,同B ,故C 正确.对D , 若()f x 在区间[)2,+∞上单调递增,此时21y x ax a =+--对称轴22ax =-≤. 解得4a ≥-.但当4a =-时()()2lg 43f x x x =-+在2x =处无定义,故D 错误.故选AC三、填空题(共4小题,满分20分,每小题5分,一题两空,第一空2分)13、正实数,x y 满足:21x y +=,则21x y+的最小值为_____.【答案】9【解析】()21212225559y x x y x y x y x y +=++=++⎛⎫≥+≥+ ⎝⎭=⎪, 当且仅当13x y ==时取等号.故答案为:9. 14、若幂函数图像过点(8,4),则此函数的解析式是y =________. 【答案】23x【解析】设幂函数的解析式为y x α=,由于函数图象过点(8,4),故有48α=,解得23α=, 所以该函数的解析式是23y x =,故答案为:23x .15、函数()2436x x f x x ++=-的值域为__________.【答案】(),161667,⎡-∞-++∞⎣【解析】设21663636,6,()16t t x t x t g t t t t++-==+==++,当0t >时,()16g t ≥,当且仅当6t x ==时等号成立;同理当0t <时,()16g t ≤-,当且仅当6t x =-=-时等号成立;所以函数的值域为(),161667,⎡-∞-++∞⎣.故答案为: (),161667,⎡-∞-++∞⎣. 16、已知函数()()1123121x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是_____. 【答案】10,2⎡⎫⎪⎢⎣⎭【解析】当1x ≥时,()12x f x -=,此时值域为[)1,+∞ 若值域为R ,则当1x <时.()()123f x a x a =-+为单调递增函数,且最大值需大于等于1,即1201231a a a ->⎧⎨-+≥⎩,解得102a ≤<,故答案为:10,2⎡⎫⎪⎢⎣⎭四、解答题(共6小题,满分70分,第17题10分,其它12分)17、已知集合A ={x|2a≤x≤a +3},B ={x|x 2+x -6≤0}.若A ∪B =B ,求实数a 的取值范围. 【解析】 B ={x|x 2+x -6≤0} ={x|(x +3)(x -2)≤0} ={x|-3≤x≤2} =[-3,2].因为A ∪B =B ,所以A ⊆B. ①当A =∅时,2a>a +3, 解得a>3;②当A≠∅,即a≤3时, 因为A =[2a ,a +3],所以⎩⎪⎨⎪⎧2a≥-3,a +3≤2,解得-32≤a≤-1,综上,实数a 的取值范围为⎣⎡⎦⎤-32,-1∪(3,+∞). 18、已知{}22|320,0A x x ax a a =-+>>,{}2|60B x x x =--≥,若x A ∈是x B ∈的必要不充分条件,求实数a 的取值范围.【解析】解出{}|23B x x x =≤-≥或,{}|20A x x a x a a =<>>或, 因为x A ∈是x B ∈的必要不充分条件,所以B 是A 的真子集.所以2323020a a a a >-⎧⎪<⇒<<⎨⎪>⎩故答案为:302a <<19、化简下列各式:【解析】 (1) 原式=lg 1100×10=-2×10=-20.(2) 原式=lg25lg2×lg4lg3×lg9lg5=2lg5lg2×2lg2lg3×2lg3lg5=8.(3) 原式=lg 427-lg4+lg75=lg(427×14×75)=12.20、判断下列函数的奇偶性: (1) f(x)=xlg(x +x 2+1); (2) f(x)=(1-x) 1+x1-x; (3) f(x)=⎩⎪⎨⎪⎧-x 2+2x +1,x >0,x 2+2x -1, x <0;(4) f(x)=4-x 2|x +3|-3.【解析】 (1) 因为x +x 2+1>0恒成立, 所以函数f(x)的定义域为R ,关于原点对称,所以f(x)-f(-x)=x[lg(x +x 2+1)+lg(-x +x 2+1)]=0, 所以f(x)=f(-x),所以f(x)为偶函数. (2) 由题意得,⎩⎪⎨⎪⎧1+x 1-x ≥0,1-x≠0,解得-1≤x<1, 所以定义域不关于原点对称, 所以f(x)为非奇非偶函数.(3) f(x)定义域为(-∞,0)∪(0,+∞)关于原点对称. 不妨设x>0,所以f(x)+f(-x)=-x 2+2x +1+x 2-2x -1=0, 所以f(x)=-f(-x),所以f(x)为奇函数.(4) 由题意得,⎩⎪⎨⎪⎧4-x 2≥0,|x +3|≠3,解得x ∈[-2,0)∪(0,2]关于原点对称,所以f(x)+f(-x)=4-x 2x -4-x 2x =0,所以f(x)=-f(-x), 所以f(x)为奇函数. 21、已知函数()log ax bf x x b-=+ ()0,0,0a a b >≠≠. (1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性,并说明理由; 【解析】(1)由x bx b->+0,化为:()()0x b x b -+>. 当0b >时,解得x b >或x b <-;0b <时,解得x b >-或x b <. ∴函数()f x 的定义域为:0b >时,()),(,x b b ∈-∞-+∞,0b <时,()),(,x b b ∈-∞-+∞.(2)∵定义域关于原点对称,()()log aa xb x bf x log f x x b x b----==-=--++,∴函数()f x 为奇函数.22、已知奇函数()2121x xa f x ⋅-=+的定义域为[]2,3ab --. (1)求实数a ,b 的值;(2)若[]2,3x a b ∈--,方程()()20f x f x m +-=⎡⎤⎣⎦有解,求m 的取值范围.【解析】(1)因为奇函数定义域关于原点对称,所以230a b --+=.又根据定义在0x =有定义,所以()00210021a f ⋅-==+,解得1a =,1b =. (2)[]3,3x ∈-,令()2121x x f x t -==+,7799t ⎛⎫-≤≤ ⎪⎝⎭则方程()()20f x f x m +-=⎡⎤⎣⎦有解等价于20t t m +-= 7799t ⎛⎫-≤≤ ⎪⎝⎭有解 也等价于2y t t =+ 7799t ⎛⎫-≤≤ ⎪⎝⎭与y m =有交点.画出图形根据图形判断:由图可知:1112481m -≤≤时有交点,即方程()()20f x f x m +-=⎡⎤⎣⎦有解.。
开学分班考试(四)-2020年秋季高一新生入学分班考试数学试卷及答案(新教材)
2020年秋季高一开学分班考试(四)一、单选题(共8小题,满分40分,每小题5分)1、设集合A ={3,5,6,8},集合4 ={45,7,8},则等于()A. {5,8}B. {3…6}C. {4,7}D. {3,568}【答案】A【解析】集合A ={3,5,6,8},集合8 ={4,5,7,8},又集合A与集合4中的公共元素为5,8 ,二. Ac3 = {5,8},故选A.2、已知命题〃:V X£R,X2—X+I>O,则一y,()A. ±wR, x2 -x + l<0B. VxwR,x2 -x + l<0C. HrwR, x2-x + l>0D. YxeR,x2 -x + l>0【答案】A【解析】由题意,根据全称命题与特称命题的关系,可得命题〃:V XE RV—X +I,。
,则「P:3xwR, x2 -x+l<0 » 故选A.3、如果/(戈)=以2-(2—〃)1+1在区间(7,1上为减函数,则。
的取值()A. (0,1]B. [0,1)C. [0,1]D. (0,1)【答案】C【解析】由题意,当4=0时,可得,(x) = -2x + l,在尺上是单调递减,满足题意,当“<0时,显然不成立:当。
>0时,要使/(X)在(一8,;上为减函数,则三;之:,解得:综上:可得0<a<\,故选:C.4、关于x的不等式产十这一3<0,解集为(一3』),则不等式以2+工一3<0的解集为()1 3A.(1,2)B.(-12)C.(――1)D.(一二1)2 2【答案】D【解析】由题/ = -3/ = 1是方程/+统一3 = 0的两根,可得-3+1 = -〃,即。
=2,z 3所以不等式为2/+工_3<0,即(2x + 3)(x—l)〈0、所以—故选:D5、(2020・重庆巴蜀中学高一期末)若八J7+l) =X+ J7,则/(X)的解析式为()A. f(x) = x2-xB. f (x) = x2 - x(x > 0)C. f(x) = x2-x[x>\)D. f(x) = A2 + X【答案】c【解析】/( 4+1)=x+y/x,设4+l=f,色1,则x= (L 1) 2,:J (f) = (/- 1)4-1=F - r,役1,・••函数f(X)的解析式为=X2-A-(X>1).故选:C.6、若。
高一入学分班考数学试题含答案
高一入学分班考试一、选择题:本大题共10小题,每小题6分,共60分.在每小题列出的四个选项中,选出符合题目要求的一项.1.下列运算正确的是()A 、932=-B、()842=-C 、()932-=-D、16214=⎪⎭⎫ ⎝⎛--2.函数x y 2=与xy 18=的的图象相交于A 、B 两点(其中A 在第一象限),过A 作AC 垂直于x 轴,垂足为C ,则△ABC 的面积等于()A 、18B、9C、12D、63.若a,b 为实数,满足b b a a +-=-+1111,则(1+a +b)(2-a-b)的值是()A 、-1B、0C、1D、24.如图1所示,把一个正方形三次对折后沿虚线剪下,则所得的图形是()5.如图,己知直角三角形ABC 中,斜边AB=35,一个边长为12的正方形CDEF 内接于△ABC,则△ABC 的周长为()A 、81B、84C、85D、886.有20个同学排成一行,若从左往右隔1人报数,小李报8号,若从右往左隔2人报数,小陈报6号,那么,小陈开始向小李逐一报数,小李报的号数是()A 、11B、12C、13D 、147.图中不是正方形的侧面展开图的个数为()A 、l B、2C、3D、48.张华同学从家里去学校,开始选匀速步行,走了一段路后,发觉照这样走下去会迟到,于是匀速跑完余下的路程,下面坐标系中,横轴表示该同学从家出发后的时间t ,纵轴表示张华离学校的路程S ,则S 与t 之间函数关系的图像大致是()9.令a=0.12345678910111213……998999,其中的数字是由依次写下正整数1至999得到的,则小数点右边第2008位数字是()A、0B、5C、7D、910.若不等式ax2+7x -1>2x +5对11≤≤-a 恒成立,则x 的取值范围是()A 、-1<x<1B、-1≤x≤1C、2<x<3D、2≤x≤3二、填空题:本大题共6小题,每小题6分,共36分.把答案填在题中横线上.11.计算:()()202260tan 13321---+-=。
区高一新生入学分班考试数学试题及答案
区高一新生入学分班考试数学试题及答案高一新生入学分班考试数学试题总分:150分,时长:120分钟第Ⅰ卷一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列运算正确的是()。
A。
a·a=aB。
a÷a4=a2C。
a3+a3=2a6D。
(a3)2=a62.一元二次方程2x2-7x+k=0的一个根是x1=2,则另一个根和k的值是()A。
x2=1,k=4B。
x2=-1,k=-4C。
x2=2/3,k=6D。
x2=-2/3,k=-63.如果关于x的一元二次方程x-kx+2=0中,k是投掷骰子所得的数字(1,2,3,4,5,6),则该二次方程有两个不等实数根的概率P=()A。
2/3B。
1/2C。
1/3D。
1/64.二次函数y=-x2-4x+2的顶点坐标、对称轴分别是()A。
(-2,6),x=-2B。
(2,6),x=2C。
(2,-6),x=-2D。
(-2,-6),x=25.已知关于x的方程5x-4+a=0无解,4x-3+b=0有两个解,3x-2+c=0只有一个解,则化简a-c+c-b-a-b的结果是()A。
2aB。
2bC。
2cD。
06.在物理实验课上,XXX用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是()见原图)7.下列图中阴影部分的面积与算式|3/1|+(4/2)+2-1的结果相同的是(见原图)8.已知四边形S1的两条对角线相等,但不垂直,顺次连结S1各边中点得四边形S2,顺次连结S2各边中点得四边形S3,以此类推,则S2006为()A。
是矩形但不是菱形;B。
是菱形但不是矩形;C。
既是菱形又是矩形;D。
既非矩形又非菱形。
9.如图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β。
2024年秋季高一入学分班考试数学试题与答案
(考试时间:120分钟 试卷满分:1502024年秋季高一入学分班考试数学试题分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.若集合{}1,2,3A =,{}2,3,4B =,则A B = ( ) A .{}1,2,3,4 B .{}1,4C .{}2,3D .∅22x =−,则x 的值可以是( )A .2−B .1−C .1D .23.“2x =”是“24x =”的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件4.已知二次函数2y ax bx c ++的图象的顶点坐标为(2,1)−,与y 轴的交点为(0,11),则( )A .3,12,11a b c ==−=B .3,12,11a b c === C .3,6,11a b c ==−= D .1,4,11a b c ==−= 5.把2212x xy y −++分解因式的结果是( ) A .()()()112x x y x y +−++ B .()()11x y x y ++−− C .()()11x y x y −+−−D .()()11x y x y +++−6.已知命题p :1x ∃>,210x ,则p ¬是( ) A .1x ∀>,210x B .1x ∀>,210x +≤ C .1x ∃>,210x +≤ D .1x ∃≤,210x +≤7.函数y =) A .[]3,3−B .()3,1(1,3)−∪C .()3,3−D .()(),33,−∞−+∞8.若实数a b ,且a ,b 满足2850a a −+=,2850b b −+=,则代数式1111b a a b −−+−−的值为( ) A .-20B .2C .2或-20D .2或20二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分. 9.下列坐标系中的曲线或直线,能作为函数()y f x =的图象的是( )A .B .C .D .10.下列命题中是全称量词命题并且是真命题的是( ) A .x ∀∈R ,2210x x ++≥ B .x ∃∈N ,2x 为偶数 C .所有菱形的四条边都相等 D .π是无理数11.下列结论中,错误的结论有( )A .()43y x x =−取得最大值时x 的值为1 B .若1x <−,则11x x ++的最大值为-2C .函数()f x =的最小值为2D .若0a >,0b >,且2a b +=,那么12a b+的最小值为3+三、填空题:本题共3小题,每小题5分,共15分.12.若多项式3x x m ++含有因式22x x −+,则m 的值是 .13.不等式20ax bx c ++>的解集是(1,2),则不等式20cx bx a ++>的解集是(用集合表示) . 14.对于每个x ,函数y 是16y x =−+,22246y x x =−++这两个函数的较小值,则函数y 的最大值是 .四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.(13分)解下列不等式:(1)2320x x −+−≥; (2)134x x −+−≥; (3)11.21x x −≤+16.(15分)设全集R U =,集合{}|15Ax x =≤≤,集合{|122}B x a x a =−−≤≤−.(1)若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围; (2)若命题“x B ∀∈,则x A ∈”是真命题,求实数a 的取值范围.17.(15分)已知集合{}{}210,20A x ax B x x x b =−==−+=.(1)若{}3A B ∩=,求实数,a b 的值及集合,A B ; (2)若A ≠∅且A B B ∪=,求实数a 和b 满足的关系式.18.(17分)已知22y x ax a =−+.(1)设0a >,若关于x 的不等式23y a a <+的解集为{},12|A Bx x =−≤≤,且x A ∈的充分不必要条件是x B ∈,求a 的取值范围;(2)方程0y =有两个实数根12,x x , ①若12,x x 均大于0,试求a 的取值范围;②若22121263x x x x +=−,求实数a 的值.19.(17分)我国是用水相对贫乏的国家,据统计,我国的人均水资源仅为世界平均水平的14.因此我国在制定用水政策时明确提出“优先满足城乡居民生活用水”,同时为了更好地提倡节约用水,对水资源使用进行合理配置,对居民自来水用水收费采用阶梯收费.某市经物价部门批准,对居民生活用水收费如下:第一档,每户每月用水不超过20立方米,则水价为每立方米3元;第二档,若每户每月用水超过20立方米,但不超过30立方米,则超过部分水价为每立方米4元;第三档,若每户每月用水超过30立方米,则超过部分水价为每立方米7元,同时征收其全月水费20%的用水调节税.设某户某月用水x立方米,水费为y元.(1)试求y关于x的函数;(2)若该用户当月水费为80元,试求该年度的用水量;(3)设某月甲用户用水a立方米,乙用户用水b立方米,若,a b之间符合函数关系:247530=−+−.则当b a a两户用水合计达到最大时,一共需要支付水费多少元?一、单项选择题:本题共8小题,每小题5分,共402024年秋季高一入学分班考试数学答案分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1 2 3 4 5 6 7 8 CDBADBCA二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9 10 11 BDACABCD三、填空题:本题共3小题,每小题5分,共15分. 12.2 13.1|12x x <<6四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 16.(13分)【解析】(1)2320x x −+−≥可化为2320,(1)(2)0x x x x −+≤∴−−≤, 所以解为1 2.x ≤≤(3分)(2)当1x <时,不等式可化为134x x −+−+≥,此时不等式解为0x ≤; 当13x ≤≤时,不等式可化为134x x −−+≥,此时不等式无解; 当3x >时,不等式可化为134x x −+−≥,此时不等式解为4x ≥; 综上:原不等式的解为0x ≤或4x ≥.(9分) (3)原不等式可化为211021x x x +−+≥+,(11分)与()()2120210x x x ++≥+≠同解, 所以不等式的解为:2x ≤−或12x >−.(13分)16.(15分)【解析】(1)由“x A ∈”是“x B ∈”的充分不必要条件,得A B ,(2分)又{}|15Ax x =≤≤,{|122}B x a x a =−−≤≤−,因此12125a a −−< −≥ 或12125a a −−≤ −> ,解得7a ≥,所以实数a 的取值范围为7a ≥.(7分)(2)命题“x B ∀∈,则x A ∈”是真命题,则有B A ⊆,(9分) 当B =∅时,122a a −−>−,解得13a <,符合题意,因此13a <;(11分)当B ≠∅时,而{}|15{|122}A x x B x a x a =≤≤=−−≤≤−,, 则11225a a ≤−−≤−≤,无解,(14分) 所以实数a 的取值范围13a <.(15分)17.(15分)【解析】(1)若{}3∩=A B , 则{}{}2310,320x ax x x x b ∈−=∈−+=,(2分) 所以310,960a b −=−+=,解得1,33a b ==−,(4分) 所以{}{}{}{}2110103,2301,33A x ax x x B x xx =−==−===−−==−,综上:1,33a b ==−,{}{}3,1,3A B ==−;(7分)(2)若A ≠∅,则0a ≠,此时{}110A x ax a=−==,(9分) 又A B B ∪=,所以A B ⊆, 即{}2120x x x b a ∈−+=,(12分)所以2120440b a ab −+= ∆=−≥ , 所以实数a 和b 满足的关系式为212b a a=−+.(15分)18.(17分)【解析】(1)由23y a a <+,得2223x ax a a a −+<+, 即22230x ax a −−<,即()()30x a x a −+<, 又0a >,∴3a x a −<<,即{}|3A x a x a =−<<,(3分)∵x A ∈的充分不必要条件是x B ∈,∴B 是A 的真子集,则0132a a a >−<− > ,解得0123a a a> > >,则1a >, 即实数a 的取值范围是1a >.(6分) (2)方程为220y x ax a =−+=, ①若12,x x 均大于0则满足21212440200a a x x a x x a ∆=−≥ +=> => ,解得10a a a a ≥≤> > 或, 故1a ≥,即a 的取值范围为1a ≥.(10分)②若22121263x x x x +=−,则()2121212263x x x x x x +−=−, 则()21212830x x x x +−+=,即24830a a −+=,(13分) 即()()21230a a −−=,解得12a =或32a =, 由0∆≥,得1a ≥或0a ≤. 所以32a =,即实数a 的值是32.(17分)19.(17分)【解析】(1)因为某户该月用水x 立方米, 按收费标准可知, 当020x <≤时,3y x =;当2030x <≤时,()203420420y x x ×+−−;当30x >时,[2034(3020)7(30)] 1.28.4132y x x =×+×−+−×=−.(5分)所以3,020420,20308.4132,30x x y x x x x <≤=−<≤ −>(6分)(2)由题可得,当该用户水费为80元时,处于第二档,所以42080x −=, 解得25x =. 所以该月的用水量为25立方米.(10分) (3)因为247530b a a =−+−,所以()2248530244646a b a a a +=−+−=−−+≤.(13分)当24a =时,()46max a b +=,此时22b =.(15分)所以此时两户一共需要支付的水费是4242042220144y =×−+×−=元.(17分)。
高一分班数学试题及答案
高一分班数学试题及答案一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-6x+8,下列哪个选项是f(x)的对称轴?A. x=-2B. x=3C. x=1D. x=-32. 已知集合A={x|x<0},B={x|x>1},则A∩B为:A. {x|x<0}B. {x|x>1}C. {x|0<x<1}D. 空集3. 若a,b,c是等差数列,且a+c=10,b=4,则a+b+c的值为:A. 14B. 16C. 18D. 204. 函数y=f(x)=x^3+1的导数f'(x)为:A. 3x^2+1B. 3x^2C. x^2+1D. 3x^2-15. 已知双曲线x^2/a^2 - y^2/b^2 = 1的渐近线方程为y=±(b/a)x,则a和b的关系为:A. a=bB. a=-bC. a=2bD. a=-b/26. 已知向量a=(3,-2),b=(-1,4),则向量a+b的坐标为:A. (2,2)B. (2,-2)C. (4,2)D. (-4,2)7. 已知等比数列{an}的公比为q,且a1=2,a4=16,则q的值为:A. 2B. 4C. 1/2D. -1/28. 函数y=f(x)=x^2-4x+3的最小值出现在x=:A. 1B. 2C. 3D. 49. 已知三角形ABC的三边长分别为a,b,c,且满足a^2+b^2=c^2,三角形ABC的形状为:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定10. 已知函数f(x)=x^3-3x,求f'(1)的值为:A. 0B. -2C. 2D. -6二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-4x+3,求f(2)的值为______。
12. 已知等差数列{an}的首项a1=3,公差d=2,求a5的值为______。
13. 已知向量a=(1,2),b=(3,-1),求向量a·b的值为______。
开学分班考试(四)-2020年秋季高一新生入学分班考试数学试卷及答案(新教材)
2020年秋季高一开学分班考试(四)一、单选题(共8小题,满分40分,每小题5分) 1、设集合A {}3,5,6,8=,集合B {}4,5,7,8=,则A B 等于( )A .{}5,8B .{}3,,6C .{}4,7D .{}3,5,6,8【答案】A【解析】集合A {}3,5,6,8=,集合B {}4,5,7,8=,又集合A 与集合B 中的公共元素为5,8,{}5,8A B ∴⋂=,故选A.2、已知命题:p x R ∀∈,210x x -+>,则p ⌝( ) A .x R ∃∈,210x x -+≤ B .x R ∀∈,210x x -+≤ C .x R ∃∈,210x x -+> D .x R ∀∈,210x x -+≥【答案】A【解析】由题意,根据全称命题与特称命题的关系,可得命题:p x R ∀∈,210x x -+>, 则:p ⌝x R ∃∈,210x x -+≤,故选A .3、如果()()221f x ax a x =--+在区间1,2⎛⎤-∞ ⎥⎝⎦上为减函数,则a 的取值( )A .(]0,1B .[)0,1C .[] 0,1D .()0,1【答案】C【解析】由题意,当0a =时,可得()21f x x =-+,在R 上是单调递减,满足题意,当0a <时,显然不成立;当0a >时,要使()f x 在1,2⎛⎤-∞ ⎥⎝⎦上为减函数,则2122a a -≥,解得:1,01a a ≤∴<≤.综上:可得01a ≤≤,故选:C .4、关于x 的不等式230x ax +-<,解集为3,1-(),则不等式230ax x +-<的解集为( ) A .1,2()B .1,2-()C .1(,1)2-D .()3,12-【答案】D【解析】由题,3,1x x =-=是方程230x ax +-=的两根,可得31a -+=-,即2a =,所以不等式为2230x x +-<,即()()2310x x +-<,所以312x -<<,故选:D5、(2020·重庆巴蜀中学高一期末)若1)f x =+()f x 的解析式为( )A .2()f x x x =-B .2()(0)f x x x x =-≥C .()2()1f x x x x =-≥D .2()f x x x =+【答案】C【解析】f 1)=x 1=t ,t ≥1,则x =(t ﹣1)2, ∴f (t )=(t ﹣1)2+t ﹣1=t 2﹣t ,t ≥1,∴函数f (x )的解析式为f (x )=x 2﹣x (x ≥1).故选:C . 6、若a 、b 、c 为实数,则下列命题正确的是( ) A .若a b >,则22ac bc > B .若0a b <<,则22a ab b >> C .若0a b <<,则11a b < D .若0a b <<,则b a a b> 【答案】B【解析】对于A 选项,若0c ,则22ac bc =,故A 不成立;对于B 选项,0a b <<,在不等式a b <同时乘以()0a a <,得2a ab >,另一方面在不等式a b <两边同时乘以b ,得2ab b >,22a ab b ∴>>,故B 成立;对于选项C ,在a b <两边同时除以()0ab ab >,可得11b a<,所以C 不成立; 对于选项D ,令2a =-,1b =-,则有221a b -==-,12b a =,b aa b <,所以D 不成立. 故选B.7、已知0,0,1x y x y >>+=,则11x y+的最小值是( )A .2B .C .4D .【答案】C【解析】()1111224y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭(当且仅当y x x y =,即x y =时取等号)11x y∴+的最小值为4,故选:C8、若函数,1()42,12x a x f x a x x ⎧≥⎪=⎨⎛⎫-+< ⎪⎪⎝⎭⎩,且满足对任意的实数12x x ≠都有()()12120f x f x x x ->-成立,则实数a 的取值范围是( ) A .(1,)+∞ B .(1,8)C .(4,8)D .[4,8)【答案】D【解析】由于()f x 足对任意的实数12x x ≠都有()()12120f x f x x x ->-成立,所以()f x 在R 上递增,所以11402422a a a a ⎧⎪>⎪⎪->⎨⎪⎪≥-+⎪⎩,即184a a a >⎧⎪<⎨⎪≥⎩,解得48a ≤<.故选:D.二、多选题(共4小题,满分200分,每小题5分) 9、下列关系中,正确的有() A .{}0∅B .13Q ∈C .Q Z ⊆D .{}0∅∈【答案】AB【解析】选项A:由空集是任何非空集合的真子集可知,本选项是正确的; 选项B:13是有理数,故13Q ∈是正确的; 选项C:所有的整数都是有理数,故有Z Q ⊆,所以本选项是不正确的; 选项D; 由空集是任何集合的子集可知,本选项是不正确的,故本题选AB. 10、对于定义在 R 上的函数()f x ,下列判断错误的有( ). A .若()()22f f ->,则函数()f x 是 R 的单调增函数 B .若()()22f f -≠,则函数()f x 不是偶函数 C .若()00f =,则函数()f x 是奇函数D .函数()f x 在区间 (−∞,0]上是单调增函数,在区间 (0,+∞)上也是单调增函数,则()f x 是 R 上的单调增函数 【答案】ACD【解析】A 选项,由()()22f f ->,则()f x 在 R 上必定不是增函数; B 选项,正确;C 选项,()2f x x =,满足()00f =,但不是奇函数;D 选项,该函数为分段函数,在x =0 处,有可能会出现右侧比左侧低的情况,故错误. 故选:ACD11、下列命题为真命题的是() A .若0a b >>,则22ac bc > B .若0a b <<,则22a ab b >> C .若00a b c >><且,则22c ca b >D .若a b >且11a b>,则0ab < 【答案】BCD 【解析】选项A :当0c时,不等式不成立,故本命题是假命题;选项B: 2222,00a b a b a ab ab b a ab b a b <<⎧⎧⇒>⇒>∴>>⎨⎨<<⎩⎩,所以本命题是真命题; 选项C: 22222211000,0c ca b a b c a b a b >>⇒>>⇒<<<∴>,所以本命题是真命题; 选项D: 2111100,00b aa b b a ab a b a b ab->⇒->⇒>>∴-<∴<,所以本命题是真命题,所以本题选BCD.12、已知a 、b 均为正实数,则下列不等式不一定成立的是( ) A .3a b+≥ B .()114a b a b ⎛⎫++≥⎪⎝⎭C 22a b≥+ D ≥ 【答案】AD【解析】对于A ,3a b+≥≥<,当且仅当2a b ==时等号同时成立;对于B ,()11224a b a b a b b a ⎛⎫++=++≥+=⎪⎝⎭,当且仅当a b =时取等号;对于C()2222a b a ba ba b++≥≥=++,当且仅当a b=时取等号;对于D,当12a=,13b=1===><.故选:AD.三、填空题(共4小题,满分20分,每小题5分,一题两空,第一空2分)13、设集合{}2S x x=>-,{}41T x x=-≤≤,则()R S T=________.【答案】{}42x x-≤≤-【解析】因为集合{}2S x x=>-,所以{}2RS x x=≤-,因为集合{}41T x x=-≤≤,所以(){}42RS T x x⋂=-≤≤-故答案为:{}42x x-≤≤-14、若“3x>”是“x a>“的充分不必要条件,则实数a的取值范围是_____.【答案】3a<【解析】因为“3x>”是“x a>”的充分不必要条件,∴3a<.故答案为:3a<.15、已知x>0,y>0,x+4y+xy=5,则xy的最大值为__________________;x+4y的最小值为__________________.【答案】1 4【解析】由x>0,y>0,则4x y xy xy++≥,即22550+⇒+≤,所以)510≤,所以01xy<≤,当且仅当4x y=时,取等号,即xy的最大值为1.()21144444442x yx y xy x y x y x y+⎛⎫++=++⋅≤++ ⎪⎝⎭化为()()24164800x y x y +++-≥,解得44x y +≥,当且仅当4x y =时,取等号,即x +4y 的最小值为4,故答案为: 1 ;416、若()f x 对于任意实数x 都有12()21f x f x x ⎛⎫-=+ ⎪⎝⎭,则12f ⎛⎫= ⎪⎝⎭__________. 【答案】3 【解析】()f x 对于任意实数x 都有12()21f x f x x ⎛⎫-=+ ⎪⎝⎭,∴12()21122()1f x f x x f f x x x ⎧⎛⎫-=+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪-=+ ⎪⎪⎝⎭⎩,解得42()133f x x x =++, ∴141213123232f ⎛⎫=⨯++= ⎪⎝⎭⨯.故答案为:3.四、解答题(共6小题,满分70分,第17题10分,其它12分) 17、已知全集U =R ,集合{}2|450A x x x =--≤,{}|24B x x =≤≤.(1)求()U A C B ⋂;(2)若集合{}|4,0C x a x a a =≤≤>,满足CA A =,CB B =,求实数a 的取值范围.【解析】(1)由题{}|15A x x =-≤≤,{|2U C B x x =<或}4x >,,(){|12U A C B x x ⋂=-≤<或}45x <≤;(2)由CA A =得C A ⊆,则145a a ≥-⎧⎨≤⎩,解得514a -≤≤,由CB B =得BC ⊆,则244a a ≤⎧⎨≥⎩,解得12a ≤≤,∴实数a 的取值范围为5|14a a ⎧⎫≤≤⎨⎬⎩⎭. 18、设集合{}2|320A x x x =++=,(){}2|10B x x m x m =+++=;(1)用列举法表示集合A ;(2)若x B ∈是x A ∈的充分条件,求实数m 的值. 【解析】(1)()()2320120x x x x ++=⇒++=即1x =-或2x =- ,{}1,2A =--; (2)若x B ∈是x A ∈的充分条件,则B A ⊆ ,()()()21010x m x m x x m +++=⇒++=解得1x =- 或x m =-,当1m =时,{}1B =-,满足B A ⊆,当2m =时,{}1,2B =-- ,同样满足B A ⊆, 所以1m =或2m =.19、讨论并用定义证明函数f(x)=xx 2-1在区间(-1,1)上的单调性. 【解析】 任取x 1,x 2∈(-1,1),且x 1<x 2, 则f(x 1)-f(x 2)==.因为-1<x 1<x 2<1,所以f(x 1)-f(x 2)>0,即f(x 1)>f(x 2), 所以函数f(x)在区间(-1,1)上单调递减.20、(1) 已知f(x)是二次函数,且f(0)=0,f(x +1)=f(x)+x +1,求函数f(x)的解析式;(2) 已知函数f(x)的定义域为R 且满足f(x +1)=2f(x).若当0≤x≤1时,f(x)=x(1-x),求当-1≤x≤0时,函数f(x)的解析式;(3) 已知f(x)的定义域为{x|x≠0},满足3f(x)+5f ⎝⎛⎭⎫1x =3x +1,求函数f(x)的解析式. 【解析】 (1) 因为f(x)为二次函数, 所以设f(x)=ax 2+bx +c(a≠0), 则f(0)=c =0,所以f(x)=ax 2+bx. 因为f(x +1)=f(x)+x +1,所以a(x +1)2+b(x +1)=ax 2+bx +x +1,ax 2+(2a +b)x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得⎩⎨⎧a =12,b =12,所以f(x)=12x 2+12x.(2) 当-1≤x≤0时,0≤x +1≤1,所以f(x)=f (x +1)2=12(x +1)(1-x -1)=-x2(x +1).(3) 因为3f(x)+5f ⎝⎛⎭⎫1x =3x +1,① 所以3f ⎝⎛⎭⎫1x +5f(x)=3x +1,②由①+②,得8f(x)+8f ⎝⎛⎭⎫1x =3x +3x +2,③ 由②-38③,得2f(x)=158x -98x +14,所以f(x)=1516x -916x +18.21、已知函数()2()33xf x a a a =-+是指数函数. (1)求()f x 的表达式;(2)判断()()()F x f x f x =--的奇偶性,并加以证明 (3)解不等式:log (1)log (2)a a x x ->+.【解析】(1)∵函数()2()33xf x a a a =-+是指数函数,0a >且1a ≠, ∴2331a a -+=,可得2a =或1a =(舍去),∴()2x f x =;(2)由(1)得()22x xF x -=-,∴()22xx F x --=-,∴()()F x F x -=-,∴()F x 是奇函数;(3)不等式:22log (1)log (2)x x ->+,以2为底单调递增, 即120x x ->+>,∴122x -<<-,解集为1{|2}2x x -<<-. 22、已知正实数x ,y 满足等式2520x y +=.(1)求lg lg u x y =+的最大值; (2)若不等式21014m m x y+≥+恒成立,求实数m 的取值范围. 【答案】(1)1;(2)91,22⎡⎤-⎢⎥⎣⎦ 【解析】(1)因为0x >,0y >,由基本不等式,得25x y +≥. 又因为2520x y +=,所以20≤,10xy≤,当且仅当252025x y x y +=⎧⎨=⎩,即52x y =⎧⎨=⎩时,等号成立,此时xy 的最大值为10.所以lg lg lg 1g101u x y xy =+=≤=.所以当5x =,2y =时,lg lg u x y =+的最大值为1;(2)因为0x >,0y >,所以101101251502252020x y y x x y x y x y ⎛⎫⎛⎫++=+=++ ⎪ ⎪⎝⎭⎝⎭1925204⎛≥+= ⎝, 当且仅当2520502x y y x x y +=⎧⎪⎨=⎪⎩,即20343x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立,所以101x y +的最小值为94. 不等式21014m m x y+≥+恒成立, 只要2944m m +≤,解得9122m -≤≤.所以m 的取值范围是91,22⎡⎤-⎢⎥⎣⎦.。
2024年浙江重点高中高一分班考试数学试卷含答案解析
浙江重点高中高一分班考试数学试卷注意:(1)试卷共有三大题21小题,满分150分,考试时间100分钟.(2)请把解答写在答题卷的对应题次上,做在试题卷上无效.一、选择题(5×8=40分)1.如图, ABC 中,D 、E 是BC 边上点,BD :DE :EC =3:2:1,M 在AC 边上,CM :MA =1:2,BM 交AD 、AE 于H 、G ,则BH :HG :GM 等于( )A.3:2:1B.5:3:1C.25:12:5D.51:24:10【答案】D【解析】【分析】连接EM ,根据已知可得,~BHD BME CEM CDA △△△△,根据相似比从而不难得到答案. 【详解】连接EM ,::1:3CE CD CM CA ==,EM ∴平行于AD .,~BHD BME CEM CDA ∴ △△△△.:3:5,:1:3HD ME ME AD ∴==.335AH ME ∴=−,:12:5AH ME ∴=, ::12:5HG GM AH EM ∴==,::3:5BH BM BD BE ∴==,::51:24:10BH HG GM ∴=.故选:D2.已知ABC 是O 的内接正三角形,ABC 的面积等于a ,DEFG 是半圆O 的内接正方形,面积等于的b ,a b的值为( )A. 2B.C.D. 【答案】D【解析】【分析】根据圆内接正三角形的性质以及正方形的性质分别用圆的半径表示出两图形面积,即可得出答案.【详解】如图所示,连接OG ,CO ,过点O 作OM BC ⊥于点M ,设O 的半径为r ,ABC 是O 的内接正三角形,30OCM °∴∠=,1122OM CO r ∴==,CM =,ABC ∴ 的高的长度为32r ,且BC =,21322a r ∴=×=,设正方形DEFG 的边长为x , 则2xOF =,2222x r x∴=+, 解得:2245x r =,245b r ∴=,45a b ∴==. 故选:D.3. 抛物线2y ax =与直线1x =,2x =,1y =,2y =围成的正方形有公共点,则实数a 的取值范围是( ) A. 114a ≤≤ B. 122a ≤≤ C. 112a ≤≤ D. 124a ≤≤ 【答案】D【解析】【分析】建立平面直角坐标系,画出四条直线围成的正方形,进一步判定其开口方向,再代入点的坐标即可解答.【详解】由下图可知:(1,2),(2,1)A B ,再根据抛物线的性质,||a 越大开口越小,把A 点代入2y ax =得2a =,把B 点代入2y ax =得14a =, 则a 的范围介于两者之间,故 124a ≤≤. 故选:D.4. 若1x >,0y >,且满足y xy x =,3y x x y=,则x y +的值为( ). A. 1 B. 2 C. 92 D. 112【答案】C【解析】【分析】由已知可得24y x x =,解得12y =,再代回已知等式求出x ,可得x y +的值. 【详解】由y xy x =,3y x x y =,得3y y x xy x x y ⋅=⋅,即24y x x =,解得12y =,把12y =代入y xy x =,得1212x x =,即x =24x x =,由1x >得4x =, 则19422x y +=+=. 故选:C5. 设3333111112399S =++++ ,则4S 的整数部分等于( ) A. 4B. 5C. 6D. 7 【答案】A【解析】【分析】由()()()32111112111k k k k k k k <=− −+− ,由此可以得到3331111115111239922991004S <=+++…+<+−< × ,然后即可求出4S 的整数部分. 【详解】当2,3,99k = ,因()()()32111112111k k k k k k k <=− −+− ,所以331111151112322991004S <=+++…++−< × , 即445S <<,故4S 的整数部分等于4故选:A .6. 如图,正方形ABCD 的边1AB =, BD 和 AC 都是以1为半径的圆弧,则无阴影部分的两部分的面积之差是( )A. 12π− B. 14π− C. 13π− D. 16π− 【答案】A【解析】【分析】图中1,2,3,4图形的面积和为正方形的面积,1,2和两个3的面积和是两个扇形的面积,因此两个扇形的面积的和减去正方形的面积等于无阴影两部分的面积之差.求解即可.详解】如图所示,1234S S S S S =+++正方形,31222S S S S =++扇形,两式相减,得到3490π12π213602S S S S ××−=−=−正方形扇形-1= 故选:A. 7. 在等边ABC 所在平面内有一点P ,使得,,PBC PAC PAB 都是等腰三角形,则具有该性质的点有( )A. 1个B. 7个C. 10个D. 无数个【答案】C【解析】【分析】过B 点作ABC 的中垂线,可知在三角形内有一点P 满足PBC 、PAC △、PAB 都是等腰三角形,根据等腰三角形的性质可以做两个圆,圆B 和圆A ,从而可以得出一条中垂线上有四个点满足PBC 、PAC △、PAB 都是等腰三角形,而三角形内部的一点是重合的,所以可以得出共有10个点.【详解】作三边的中垂线,交点P 肯定是其中之一,以B 为圆心,BA 为半径画圆,交AC 的中垂线于1P 、2P 两点,作2P AB △、2P BC △、2P AC △,如图,【则2P AB △、2P BC △、2P AC △都是等腰三角形,同理1P 具有题目所说的性质的点, 以A 为圆心,BA 为半径画圆,交AC 的中垂线于点3P ,该点也必具有题目所说的性质. 依此类推,在ABC 的其余两条中垂线上也存在这样性质的点,所以这些点一共有:33110×+=个. 故选:C8. 某工厂第二季度的产值比第一季度的产值增长了%x ,第三季度的产值又比第二季度的产值增长了%x ,则第三季度的产值比第一季度增长了( )A. 2%xB. 12%x +C. ()1%%x x +⋅D. ()2%%x x +⋅【答案】D【解析】【分析】平均增长率问题,可直接用公式解题即可.【详解】假设第一季度产值为a ,则第二季度产值为(1%)a x +,第二季度产值为2(1%)a x +. 第三季度的产值比第一季度增长了2(1%)(2%)%a x a x x a+−=+⋅. 故选:D .二、填空题(5×8=40分)9.方程226x y =+=的解是__________. 【答案】11260x y == 或22228x y =− = 【解析】【分析】利用换元法,借助立方和公式展开,求解方程组可得答案.a b ,则33 2,26a b a b +=+=, 因为()()()()233223a b a b a ab b a b a b ab +=+−+=++−,【所以2(43)26ab −=,即3ab =−,与2a b +=联立可得31a b = =− 或13a b =− =; 当31a b = =−1==−,解得260x y = =; 当13a b =− =3=−=,解得22228x y =− = . 故答案为:11260x y = = 或22228x y =− = 10. 若对任意实数x 不等式ax b >都成立,那么a 、b 的取值范围为__________.【答案】0a =,0b <【解析】【分析】分情况讨论不等式恒成立的条件.【详解】当0x =时,0b <,R a ∈;当0x ≠时,若0a =,则0b <;若0a >,则b x a>,不能恒成立; 若a<0,则b x a<,不能恒成立; 即当0x ≠时,若0a =,0b <综上所述,若使不等式恒成立,则0a =,0b <.11. 设12x −≤≤,则1222x x x −−++的最大值与最小值之差为__________. 【答案】1【解析】【分析】根据自变量的范围先去绝对值再求出最大值及最小值即可.【详解】因为12x −≤≤,所以11122224222x x x x x x x −−++=−−++=−, 因为02x ≤≤,所以当0x =时,1222x x x −−++取最大值为4, 当2x =时,1222x x x −−++取最小值3, 所以1222x x x −−++的最大值与最小值之差为431−=. 故答案为:1.12. 两个反比例函数3y x =,6y x=在第一象限内的图象点1232007,,,,P P P P 在反比例函数6y x =上,它们的横坐标分别为1232007,,,,x x x x ,纵坐标分别是1、3、5 共2007个连续奇数,过1232007,,,,P P P P 分别作y 轴的平行线,与3y x =的图象交点依次为()()()'''111222200720072007,,,,,,Q x y Q x y Q x y ,则20072007P Q =__________. 【答案】40132##2006.5 【解析】【分析】由点2007P 的纵坐标结合6y x=得出其横坐标,进而由3y x =得出点2007Q 纵坐标,从而得出20072007P Q .【详解】由题可知()20072007,4013P x ,因为点2007P 在6y x =的图象上,所以200764013x =, 又()200720072007,Q x y 在3y x =的图象上,所以200740136240313y ==, 所以20072007P Q =40134013401322−=. 故答案为:40132. 13. 如图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是__________.【答案】【解析】【分析】沿过A 点母线把圆锥侧面剪开摊平,得出圆锥侧面展开图,如图.线段1AA 的长就是所求最短距离.【详解】如图所示,在圆锥的侧面展开图中,1AA 的长就是所求最短距离.过点S 作1SB AA ⊥,则12AA AB =.因为 1AA 为圆锥底面圆的周长,即2π, 由弧长公式得12π3ASA ∠=,.所以1π22sin,3AA AB AS ==⋅=,故答案为:14. 有一张矩形纸片ABCD ,9AD =,12AB =,将纸片折叠使A 、C 两点重合,那么折痕长是__________. 【答案】454【解析】【分析】首先由勾股定理求出AC 的长,设AC 的中点为E ,折线FG 与AB 交于F ,然后求证AEF △∽ABC ,求出EF 的长.【详解】如图,由勾股定理易得15AC ===,设AC 的中点为E ,折线FG 与AB 交于F ,(折线垂直平分对角线AC ),7.5AE =. 由AEF △∽ABC ,得912EFBC AE AB ==,22.54EF ∴=∴折线长22.522.54522424EF ==×==, 故答案为:45415. 已知3、a 、4、b 、5这五个数据,其中a 、b 是方程2320x x −+=的两个根,则这五个数据的标准差是__________.【解析】【分析】先解方程得到a ,b 的值,计算出平均数和方差后,再计算方差的算术平方根,即为标准 差.【详解】2320x x −+=,解得1,2a b ==或2,1a b ==,这组数据为14253,,,,. 平均值()13142535x =++++=; 方差()()()()()2222221[3313432353]25S =−+−+−+−+−=;..16. 若抛物线2241y x px p =−++中不管p 取何值时都通过定点,则定点坐标为___________.【答案】()4,33【解析】【分析】若抛物线2241y x px p =−++中不管p 取何值时都通过定点,则含p 的项的系数为0,由此求出x 的值,再求y 的值,得出定点坐标.【详解】2241y x px p =−++可化为()2241y x p x =−−+, 当4x =时,33y =,且与p 的取值无关, 所以不管p 取何值时都通过定点()4,33. 故答案为:()4,33三、解答题17. 设m 是不小于1−的实数,使得关于x 的方程222(2)330x m x m m +−+−+=有两个不相等的实数根1x 、2x .(1)若22126x x +=,求m 的值. (2)求22121211mx mx x x +−−的最大值. 【答案】(1)m =(2)10. 【解析】【分析】(1)根据判别式可得11m −≤<,再利用韦达定理代入即可得答案;(2)将问题转化为关于m 的一元二次函数,再利用函数的性质求最值;【详解】∵方程有两个不相等的实数根,()22244(2)433440,1b ac m m m m m ∴∆=−=−−−+=−+>∴<结合题意知:11m −≤<(1)()()22222212121224(2)233210106x x x x x x m m m m m +=+−=−−−+=−+=11,m m m ∴=−≤<∴= (2)()()()()322222121212122121228821111m m m m m x x x x x x mx mx x x x x m m −+−+−+ +==−−−−− ()()2222(1)31352312(11)(1)22m m m m m m m m m m −−+ ==−+=−−−< − ∴当1m =−时,式子取最大值为10.【点睛】本题考查一元二次方程中韦达定理、一元二次函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.18. 如图,开口向下的抛物线2812y ax ax a =−+与x 轴交于A 、B 两点,抛物线上另有一点C 在第一象限,且使OCA OBC ∽△△,(1)求OC的长及BC AC的值;(2)设直线BC 与y 轴交于P 点,点C 是BP 的中点时,求直线BP 和抛物线的解析式.【答案】(1)(2)y x −+,2y x x −【解析】【分析】(1)首先求出抛物线与x 轴交点的坐标,再由三角形相似计算可得;(2)首先求出C 点坐标,利用待定系数法求出BP 的解析式,再将C 点坐标代入抛物线方程,求出a ,即可得解.【小问1详解】由题设知a<0,且方程28120ax ax a −+=有两实数根12x =,26x =,即()2,0A ,()6,0B ,所以2OA =,6OB =, OCA OBC ∽,OC OA AC OB OC BC∴==, 212OC OA OB ∴=⋅=,则OC =,所以BCOB AC OC ==;【小问2详解】因为C 是BP 的中点,所以C 点的横坐标为3,又OC =,解得C y =或C y =(舍去),(C ∴, 设直线BP 的解析式为y kx b =+,因其过点()6,0B,(C ,则有063k b k b =+ +,解得k b = =,所以y x −+;又点(C在抛物线上,92412a a a =−+,解得a =, ∴抛物线解析式为2y x x +−19. 某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表 家电名称 空调 彩电 冰箱问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少(以千元为单位)?【答案】空调30,彩电270,冰箱30,最高产值1050.【解析】【分析】设每周应生产空调、彩电、冰箱的数量分别为x 台、y 台、z 台,建立三元一次方程组,则总产值432A x y z =++.由于每周冰箱至少生产60台,即60z ≥,所以300x y +≤.又生产空调器、彩电、冰箱共360台,故有30x ≥台,即可求得,具体的x ,y ,z 的值.【详解】解:设每周应生产空调、彩电、冰箱的数量分别为x 台、y 台、z 台,则有()36011111209032341260x y z x y z x y z ++= ++==++ ≥ 总产值()()()4322272031080A x y z x y z x y x y x x ++++++++−−60,300z x y ≥∴+≤ ,而3360x y +=, 3603300,30x x x ∴+−≤∴≥ 1050A ∴≤ 即30,27060x y z ===,. 故每周生产空调30,彩电270,冰箱30,最高产值1050.20. 一个家庭有3个孩子,(1)求这个家庭有2个男孩和1个女孩的概率;(2)求这个家庭至少有一个男孩概率.【答案】(1)38; (2)78. 【解析】【分析】(1)用树状图列出所有结果,再根据古典概型计算所求;(2)根据(1)树状图列出的所有结果,再根据计算所求;【小问1详解】用B 和G 分别代表男孩和女孩,用“树状图”列出所有结果为:,的∴这个家庭有2个男孩和1个女孩的概率为38【小问2详解】由(1)可知,这个家庭至少有一个男孩的概率78. 21. 如图,已知O 和O 相交于A 、B 两点,过点A 作O 的切线交O 点C ,过点B 作两圆的割线分别交O 、O 于E 、F ,EF 与AC 相交于点P ,(1)求证:PA PE PC PF ⋅=⋅;(2)求证:22PE PF PC PB=; (3)当O 与O 为等圆时,且::3:4:5PC CE EP =时,求PEC 与FAP 的面积的比值.【答案】(1)证明见解析;(2)证明见解析; (3)49625. 【解析】【分析】(1)利用切线角与同弧所对角的性质得到CEB F ∠=∠,从而得到//AF CE ,由此得证; (2)结合(1)中结论,利用切割线定理即可得证;(3)利用三角形相似与勾股定理证得90C CAF ∠=∠=°,从而得到,x y 的比值,再利用面积比与相似比的关系即可得解.【小问1详解】连接AB ,CA 切O ′于A ,CAB F ∴∠=∠, 又CAB CEB ∠=∠,CEB F ∴∠=∠, //AF CE ∴,PE PC PF PA∴=, PA PE PC PF ∴⋅=⋅.【小问2详解】由(1)得2222,PE PC PE PC PF PA PF PA=∴=,则2222PE PF PC PA =, 再根据切割线定理,得2PA PB PF =⋅,22PE PF PC PB ∴=. 【小问3详解】连接AE ,由(1)知//AF CE PEC PFA , 而::3:4:5PC CE EP =,::3:4:5PA FA PF ∴=,不妨设3=PC x ,3PA y =,则4,5CE x EP x ==,4,5FA y PF y ==, 222222,EP PC CE PF PA FA ∴=+=+,90C CAF °∴∠=∠=, AE ∴为O 的直径,AF 为O ′的直径, 因为O 与O ′ 为等圆,4AE AF y ∴==,222AC CE AE += ,222(33)(4)(4)x y x y ∴++=,22251870x xy y +−=, 7(257)()0,25x x y x y y ∴−+=∴=,222249:625ECP FAP x PC PA S S y ∴=== .。
新高一入学分班考数学卷(参考答案)
新高一入学分班考数学卷(名校版)参考答案一、选择题1.当m<﹣1时,方程(m3+1)x2+(m2+1)x=m+1的根的情况是()A.两负根B.两异号根,且正根的绝对值较大C.两正根D.两异号根,且负根的绝对值较大【分析】首先将方程整理为一般形式,进而利用根据根与系数的关系以及因式分解的应用,分析各式子的符号,进而得出答案.【解答】解:∵(m3+1)x2+(m2+1)x=m+1,∴(m3+1)x2+(m2+1)x﹣(m+1)=0,∴x1x2====,∵m<﹣1,∴m2﹣m+1>0,∴x1x2<0,∴方程由两异号根,∵x1+x2=﹣=,∵m<﹣1,∴m2﹣m+1>0,m+1<0,﹣(m2+1)<0,∴x1+x2>0,∴正根的绝对值较大.故选:B.2.对于数x,符号[x]表示不大于x的最大整数例如[3.14]=3,[﹣7.59]=﹣8,则关于x的方程[]=4的整数根有()A.4个B.3个C.2个D.1个【分析】根据取整函数的定义可知,4≤<5,解此方程组即可.【解答】解:∵[]=4,∴4≤<5,∴,∴,即7≤x<,故x的正数值为7,8,9.故选B.3.+的最小值为()A.B. C. D.均不是【分析】根据题意结合两点之间距离求法,利用轴对称求出最短路线进而得出答案.【解答】解:原式=+,即x轴上的点到(﹣1,1)和(2,4)的距离之和的最小值画图可知,点(4,2)关于x轴的对称点(4,﹣2)与(﹣1,1)连线与x轴的交点即为所求,此时最小值为:=.故选:B.4.在下列图形中,各有一边长为4cm的正方形与一个8cm×2cm的长方形相重叠.问哪一个重叠的面积最大()A.B.C.D.【分析】A、阴影部分是长方形,所以长方形的面积等于长和宽的乘积;B、如图,设阴影部分等腰直角的腰为x,根据勾股定理求出x的值,所以,阴影部分的面积等于正方形的面积减去俩个空白三角形的面积;C、图C,逆时针旋转90°从后面看,可与图D对比,因为图C阴影部分的倾斜度比图D阴影部分的倾斜度小,所以,图C中四边形的底比图D中四边形的底小,两图为等高不等底,所以图C阴影部分的面积小于图D阴影部分的面积;D、图D,设阴影部分平行四边形的底为x,根据正方形的面积=阴影部分的面积+两个空白三角形的面积,求出x的值,再得出阴影部分的面积;图A、图C、图D中阴影部分四边形为等高不等底,因为倾斜度不同,所以图D中阴影部分的底最大,面积也就最大;因此,只要比较图B和图D阴影的面积大小,可得到图B阴影部分的面积最大.【解答】解:A、S阴影=2×4=8(cm2);5.(2016•衡水校级模拟)设全集U=R,集合A={x|},B={x|1<2x<8},则(C U A)∩B等于()A.[﹣1,3)B.(0,2]C.(1,2]D.(2,3)【分析】分别解出集合A,B,然后根据集合的运算求解即可.【解答】解:因为集合A={x|}=(﹣∞,﹣1]∪(2,+∞),B={x|1<2x<8}=(0,3),又全集U=R,∴C U A=(﹣1,2],∴(C U A)∩B=(0,2],故选B.6.已知函数f(x)=,则f(f(2))等于()A.B.2 C.﹣1 D.1【分析】先由解析式求得f(2),再求f(f(2)).【解答】解:f(2)=,f(﹣1)=2﹣1=,所以f(f(2))=f(﹣1)=,故选A.7.设a,b是常数,不等式+>0的解集为x<,则关于x的不等式bx﹣a>0的解集是()A.x>B.x<﹣C.x>﹣D.x<8.对于任意的两个实数对(a,b)和(c,d),规定:①(a,b)=(c,d),当且仅当a=c,b=d;②运算“⊗”为:(a,b)⊗(c,d)=(ac+bd,bc﹣ad);③运算“θ”为:(a,b)θ(c,d)=(a﹣c,b﹣d).设p,q∈R,若(1,2)⊗(p,q)=(11,2),则(1,2)θ(p,q)()A.(﹣2,﹣2)B.(3,4)C.(2,1)D.(﹣1,﹣2)【分析】先根据(1,2)⊗(p,q)=(11,2),列方程组求p、q的值,再由规定运算“θ”求(1,2)θ(p,q)的结果.【解答】解:由规定②,得(1,2)⊗(p,q)=(p+2q,2p﹣q),∵(1,2)⊗(p,q)=(11,2),∴(p+2q,2p﹣q)=(11,2),由规定①,得,解得,由规定③,可知(1,2)θ(p,q)=(1,2)θ(3,4)=(1﹣3,2﹣4)=(﹣2,﹣2).故选A.二、填空题9.已知a2+4a+1=0,且,则m=.【分析】由a2+4a+1=0,得a2=﹣4a﹣1,代入所求的式子化简即可.【解答】解:∵a2+4a+1=0,∴a2=﹣4a﹣1,=====5,∴(16+m)(﹣4a﹣1)+8a+2=5(m﹣12)(﹣4a﹣1),原式可化为(16+m)(﹣4a﹣1)﹣5(m﹣12)(﹣4a﹣1)=﹣8a﹣2,即[(16+m)﹣5(m﹣12)](﹣4a﹣1)=﹣8a﹣2,∵a≠0,∴(16+m)﹣5(m﹣12)=2,解得m=.故答案为.10.已知(x﹣3)2+(y﹣4)2=4,则x2+y2的最大值为49.【分析】运用几何意义解答,x2+y2的最大值就是方程(x﹣3)2+(y﹣4)2=4所代表的圆周上的点到坐标原点的距离最大值的平方,从而可得出答案.【解答】解:x2+y2的最大值就是方程(x﹣3)2+(y﹣4)2=4所代表的圆周上的点到坐标原点的距离最大值的平方,连接坐标原点与圆心(3,4)所得的直线与圆的交点,则(x2+y2)min时,|ON|取最小,(x2+y2)max时,|OM|取最大,∵原点与圆心(3,4)的距离+半径(PM)=+2=7,∴(x2+y2)max=72=49.故答案为:49.11.如图正方形ABCD中,E是BC边的中点,AE与BD相交于F点,△DEF的面积是1,那么正方形ABCD的面积是6.【分析】先设△BEF的面积是x,由于E是BC中点,那么S△DBE=S△DCE,易求S正方形=4(1+x),又四边形ABCD是正方形,那么AD∥BC,AD=BC,根据平行线分线段成比例定理的推论可得△BEF∽△DAF,于是S△BEF:S△DAF=()2,E是BC中点可知BE:AD=1:2,于是S△DAF=4x,进而可得S正方形=S△ABF+S△BEF+S△ADF+S△DEF+S△DCE=1+x+4x+1+1+x,等量代换可得4(1+x)=1+x+4x+1+1+x,解可求x,进而可求正方形的面积.【解答】解:如右图,设△BEF的面积是x,∵E是BC中点,∴S△DBE=S△DCE,∴S△BCD=2(1+x),∴S正方形=4(1+x),∵四边形ABCD是正方形,∴AD∥BC,AD=BC,∴△BEF∽△DAF,∴S△BEF:S△DAF=()2,∵E是BC中点,∴BE=CE,∴BE:AD=1:2,∴S△DAF=4x,∵S△ABE=S△BED,∴S△ABF=S△DEF=1,∴S正方形=S△ABF+S△BEF+S△ADF+S△DEF+S△DCE=1+x+4x+1+1+x,∴4(1+x)=1+x+4x+1+1+x,解得x=0.5,∴S正方形=4(1+x)=4(1+0.5)=6.12.如图,ABCD、CEFG是正方形,E在CD上,且BE平分∠DBC,O是BD中点,直线BE、DG交于H.BD,AH交于M,连接OH,则OH=AB,BM=AB.【分析】易得△BCE≌△DCG,得到∠1=∠2,B,C,H,D四点共圆,得出OH=BD=AB,由E关于BD的对称E′,得到△BEE′是等腰三角形,BM⊥E′E于M,由角平分线到角两边的距离相等得出BM=AB.【解答】解:如图,设EE′与BD交于点M′,∵AD=CD∴AE′=CE=EF,∵∠E′AM′=∠EFM′,∠AM′E′=∠FM′F,∴△AM′E′≌△FM′E(AAS),∴EM′=E′M′,∵ME′=ME∴M与M′重合,∵BC=DC,EC=CG,∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴∠1=∠2,∴B,C,H,D四点共圆,∴OH=BD=AB,∵E关于BD的对称E′,∵∠3=∠4,BE=BE′,∴△BEE′是等腰三角形,∴BM⊥E′E于M,∴BM=AB.故答案为:AB,AB.13.函数f(x)=λx2+(λ﹣3)x+1对于任意实数x都有f(x)≤f(λ),则函数f(x)的最大值是.【分析】根据函数有最值,首先判断出λ<0,进而利用二次函数的最值得出f(x)的最大值,使这个最大值与f(λ)相等,解方程即可得出λ的值,进而代入求出f(x)最大值.【解答】解:由题意得,f(x)有最大值,则可得λ<0,又∵f(x)=λ(x+)2+1﹣,∴f(x)的最大值为1﹣,又∵f(x)≤f(λ),∴f(λ)=λ3+(λ﹣3)λ+1=1﹣,解得:λ=1(舍去)或λ=﹣,将λ=﹣,代入可得f(x)的最大值为.故答案为:.三、解答题14.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.【分析】(1)根据待定系数法即可解决问题.(2)求出直线BC与对称轴的交点H,根据S△BDC=S△BDH+S△DHC即可解决问题.(3)由,当方程组只有一组解时求出b的值,当直线y=﹣x+b经过点C时,求出b的值,当直线y=﹣x+b经过点B时,求出b的值,由此即可解决问题.【解答】解:(1)由题意解得,∴抛物线解析式为y=x2﹣x+2.(2)∵y=x2﹣x+2=(x﹣1)2+.∴顶点坐标(1,),∵直线BC为y=﹣x+4,∴对称轴与BC的交点H(1,3),∴S△BDC=S△BDH+S△DHC=•3+•1=3.(3)由消去y得到x2﹣x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b=,当直线y=﹣x+b经过点C时,b=3,当直线y=﹣x+b经过点B时,b=5,∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,∴<b≤3.15.如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90°,AB=2,求PD的长.【分析】(1)由圆周角定理可知∠ABC=∠BAC=60°,从而可证得△ABC是等边三角形;(2)由△ABC是等边三角形可得出“AC=BC=AB=2,∠ACB=60°”,在直角三角形PAC 和DAC通过特殊角的正、余切值即可求出线段AP、AD的长度,二者作差即可得出结论.【解答】(1)证明:∵∠ABC=∠APC,∠BAC=∠BPC,∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC是等边三角形.(2)解:∵△ABC是等边三角形,AB=2,∴AC=BC=AB=2,∠ACB=60°.在Rt△PAC中,∠PAC=90°,∠APC=60°,AC=2,∴AP==2.在Rt△DAC中,∠DAC=90°,AC=2,∠ACD=60°,∴AD=AC•tan∠ACD=6.∴PD=AD﹣AP=6﹣2=4.2.(2013•济宁)阅读材料:若a,b都是非负实数,则a+b≥.当且仅当a=b时,“=”成立.证明:∵()2≥0,∴a﹣+b≥0.∴a+b≥.当且仅当a=b时,“=”成立.举例应用:已知x>0,求函数y=2x+的最小值.解:y=2x+≥=4.当且仅当2x=,即x=1时,“=”成立.当x=1时,函数取得最小值,y最小=4.16问题解决:汽车的经济时速是指汽车最省油的行驶速度.某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油(+)升.若该汽车以每小时x公里的速度匀速行驶,1小时的耗油量为y升.(1)求y关于x的函数关系式(写出自变量x的取值范围);(2)求该汽车的经济时速及经济时速的百公里耗油量(结果保留小数点后一位).【分析】(1)根据耗油总量=每公里的耗油量×行驶的速度列出函数关系式即可;(2)经济时速就是耗油量最小的形式速度.【解答】解:(1)∵汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油(+)升.∴y=x×(+)=(70≤x≤110);(2)根据材料得:当时有最小值,解得:x=90∴该汽车的经济时速为90千米/小时;当x=90时百公里耗油量为100×(+)≈11.1升.17.正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是CH=AB;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.【分析】(1)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可.(2)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可.(3)首先根据三角形三边的关系,可得CK<AC+AK,据此判断出当C、A、K三点共线时,CK的长最大;然后根据全等三角形判定的方法,判断出△DFK≌△DEH,即可判断出DK=DH,再根据全等三角形判定的方法,判断出△DAK≌△DCH,即可判断出AK=CH=AB;最后根据CK=AC+AK=AC+AB,求出线段CK长的最大值是多少即可.【解答】解:(1)如图1,连接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵点E是DC的中点,DE=DF,∴点F是AD的中点,∴AF=CE,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H两点都在以BE为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.故答案为:CH=AB.(2)当点E在DC边上且不是DC的中点时,(1)中的结论CH=AB仍然成立.如图2,连接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵AD=CD,DE=DF,∴AF=CE,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H两点都在以BE为直径的圆上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.(3)如图3,,∵CK≤AC+AK,∴当C、A、K三点共线时,CK的长最大,∵∠KDF+∠ADH=90°,∠HDE+∠ADH=90°,∴∠KDF=∠HDE,∵∠DEH+∠DFH=360°﹣∠ADC﹣∠EHF=360°﹣90°﹣90°=180°,∠DFK+∠DFH=180°,∴∠DFK=∠DEH,在△DFK和△DEH中,∴△DFK≌△DEH,∴DK=DH,在△DAK和△DCH中,∴△DAK≌△DCH,∴AK=CH又∵CH=AB,∴AK=CH=AB,∵AB=3,∴AK=3,AC=3,∴CK=AC+AK=AC+AB=,即线段CK长的最大值是.。
上海新高一分班数学试卷及答案(含9份)
2. 一 元二次方程2x2-7x+k=O的 一 个根是X1=2则 , 另一 个根和k的值是
(
)
A. X2=l , k=4
B. X2= - 1k= -4
C . X2= -3 k=6 2
D. X2= 一-k=-6
2
3.如果关于x的 一 元二次方程x2 -k:x+ 2 = 0中,k是投掷假子所得的数字(1, 2, 3, 4, 5, 6),则该二次方程
的表面积是
cm 2 。
门 I I [丑
门 ||||
正视图
左视图
A. 11 B. 15
c. 18
俯视图 D. 22
第H卷〈答卷〉 二. 填空题〈本大题共5小题, 每小题4分, 共20分〉
11.
函数
’y
=
丘三中,自变量x的取值范围是
x-2
12.在Rt卒ABC中,正ACB=90 。 , CD1-AB于D, AC=lO, CD=6,则sinB的值为
有两个不等实数根的概率 P= (
)
A.
-2 3
B.
-1 2
c.
3
4. 二次函数y=-x2-4x+2的顶点坐标、 对称轴分别是(
A. (-2, 6) , x=-2 B. (2, 6) , x=2
C. (2, 6) , x=-2
浙江宁波市效实中学2024-2025学年新高一上学期分班考试数学试卷(解析版)
效实中学新高一数学能力测试试题卷一、填空题1. 已知 0x 是关于 x 的方程 210x ax −−=的根. 当 32a =− 时, 0x = ___; 当2a =时,3001x x −=_______ 【答案】 ①. 12或2− ②. 8+或8− 【解析】【分析】直接解方程可得第一空,利用整体的思想及方程的思想可先化简代数式,并代入方程的根计算即可得第二空.【详解】显然32a =−时,方程可化为()()22320212x x x x +−==−+, 解之得012x =或02x =−; 2a =时,有202101x x x −−=⇒=+01x =,且20021x x =+, 对于()()()()2200030000011222141xx x x x x x x x −++−===+,当01x =+时,0448x +=+当01x =时,0448x +=−. 故答案为:12或2−;8+8−. 2. 已知实数a ,b ,c 满足2221a b c ++=,则ab bc ca ++的最小值为___,此时 22a b ab ++=______ 【答案】 ①. 12−##0.5− ②. 12##0.5 【解析】【分析】由()20a b c ++≥求出ab bc ca ++的最小值,此时()c a b =−+,再将两边平方,代入2221a b c ++=求出22a b ab ++. 【详解】因为()()222220a b c ab bc ca a b c +++++=++≥,所以()2221122ab bc ca a b c ++≥−++=−,当且仅当0a b c ++=时取等号,所以ab bc ca ++的最小值为12−, 此时()c a b =−+,则()()2222212c a b a ab b =−×+=++, 则222222212a ab b b a b c a +++++=+=, 所以2212a b ab ++=.故答案为:12−;123. 对实数m ,n .定义运算 “⊗”为: m n mn n ⊗=+. 已知关于x 的方程()14x a x ⊗⊗=−.若该方程有两个相等的实数根,则实数a 的值是___,若该方程有两个不等负根,则实数a 的取值范围是___. 【答案】 ①. 0 ②. 0a > 【解析】【分析】首先化简()x a x ⊗⊗,即可得到方程()()2414110a x a x ++++=,再根据()410Δ0a +≠= 计算第一空,由根判别式及韦达定理得到不等式组,即可得到第二空. 【详解】因为a x ax x ⊗=+,所以()()()()()()211x a x x ax x x ax x ax x a x a x ⊗⊗=⊗+=+++=+++,又()14x a x ⊗⊗=−,所以()()211104a x a x ++++=, 即()()2414110a x a x ++++=, 若该方程有两个相等的实数根,则()()()2410Δ1611610a a a +≠ =+−+= ,解得0a =; 若该方程有两个不等负根,则()()()()2410Δ16116101041a a a a+≠=+−+> >+ ,解得0a >, 所以实数a 的取值范围是0a >. 故答案为:0;0a >4. 如图,AB 是半圆O 的直径,弦AD ,BC 相交于点P , 60DPB ∠= ,D 是弧BC 的中点. 则ACAB的值为_______的【答案】12##0.5 【解析】【分析】依题意可得90ACB ∠= ,即可求出30CAD ∠= ,再由D 是弧BC 的中点,得到CAD BAD ∠=∠,即可求出CAB ∠【详解】∵AB 是半圆O 的直径, ∴90ACB ∠= ,∵60APC DPB ∠=∠= , ∴30CAD ∠= ,∵D 是 BC的中点, ∴30∠=∠= CAD BAD , ∴60CAB ∠= , ∴1cos cos 602AC CAB AB ∠===. 故答案为:12. 5. 记()()2211xyx y A xy−−=. 若a b c abc ++=,则abbc ca A A A A =++的值为_________【答案】4 【解析】【分析】依题意a 、b 、c 均不为0,根据所给定义表示出ab A ,bc A ,ca A ,再通分计算可得. 【详解】依题意a 、b 、c 均不0,又()()222222111aba b a b a b A abab−−−−+==,为()()222222111bcb c c b c cb A bcb −−−−=+=,()()222222111cac a c a c ca A caa −−−−=+=,且a b c abc ++=, 所以222222222222111ab bc ca bc ac a b a b c b c b c a c a A A A A ab −−−+++−−−=++=++222222222222a a a b b babc abc c a c b c a b c a c b c b b c a c a abc −−+−−−+−+++= 222222222222a a cc a c b c a b c a c b c b b c a c a a b b ab b−−++−−−−=+++ ()()()222222a a cabc a c b c ab a b c c b cb a b c c a ca b b a b c a b −−+++−−+++−−+++=222222222222abc a c b c a b ab abc c b abc b c c b c a ca abc c aabca ab b −−+++−−=++++−−++ 44abcabc=. 故答案为:46. 若一条直线过ABC 的内心,且平分ABC 的周长. 则该直线分ABC 所成的两个图形的面积之比为_______ 【答案】1:1 【解析】【分析】设ABC 的内心为O ,内切圆的半径为r ,作出图形,再由面积公式计算可得. 【详解】设ABC 的内心为O ,内切圆的半径为r ,内切圆与三边的切点分别为D 、E 、F , 则OE OF OD r ===,且OE BC ⊥,OF AC ⊥,OD AB ⊥,过ABC 的内心,且平分ABC 的周长的直线m ,与BC 交于点M ,AC 交于点N , 则AB AN BM CN CM ++=+,又()12ABMN ANO ABO BMO S S S S AN AB BM r =++=++ , ()12CMN CNO CMO S S S CN CM r =+=+ , 所以ABMN CMN S S = ,即该直线分ABC 所成的两个图形的面积之比为1:1. 故答案为:1:17. 如果甲的身高数或体重数至少有一项比乙大. 则称甲不亚于乙. 在 100 个小伙子中, 如果某人不亚于其他 99 人, 就称他为棒小伙子, 那么 100 个小伙子中的棒小伙子最多可能有 _________人. 【答案】100 【解析】【分析】先讨论有两个、三个小伙子时棒小伙子的最多个数,再设想100个人时的极端情况,分类讨论即可. 【详解】先考虑两个小伙子的情形,如果甲的身高>乙的身高,且乙的体重>甲的体重,可知“棒小伙子”最多有2人.再考虑三个小伙子的情形,如果甲的身高>乙的身高>丙的身高,且丙的体重>乙的体重>甲的体重,可知“棒小伙子”最多有3人.由此可以设想,当有100个小伙子时,设每个小伙子为()1,2,,100i A i = ,其身高为i x ,体重为i y , 当121100i i x x x x x +>>>>>> 且1009911 i i y y y y y +>>…>>…>> 时, 由身高看,i A 不亚于12100,,i i A A A ++ ,由体重看,i A 不亚于1121,,,i i A A A − , 所以,i A 不亚于其他99人,i A 为“棒小伙子”, 因此,100个小伙子中的“棒小伙子”最多可能有100个. 故答案为:100.8. 如果直角三角形的三边都是 200 以内的正整数, 且较长的两边长相差 1 . 那么这样的直角三角形有____________个. 【答案】9 【解析】【分析】利用勾股定理及数的性质计算即可.【详解】不妨设该直角三角形的是三边长依次为,,1x y y +,其中200,N x y x y ∗≤<∈、, 由勾股定理知()2222121x y y x y +=+⇒=+,显然21y +为大于1且小于401的奇数,所以x 为大于1且小于20的奇数,则3,5,7,9,11,13,15,17,19x =,即满足题意的直角三角形有9个. 故答案为:99. 用()S n 表示自然数n 的数字和. 例如: ()10101S =+=,()90990918S =++=.若对任意自然数n ,都有()n S n x +≠. 则满足这个条件的最大的两位整数x 的值是_________. 【答案】97 【解析】【分析】列出90,,80n = 时()n S n +的值,再判断80n <且n 为自然数时()n S n +的取值情况,即可得解.【详解】因()909099S +=,()8989106S +=,()8888104S +=, ()8787102S +=,()8686100S +=,()858598S +=,()848496S +=, ()838394S +=,()828292S +=,()818190S +=,()808088S +=, 当80n <且n 为自然数时,()797995n S n +≤++=, 当90n >且n 为自然数时,nn +SS (nn )>99, 所以若对任意自然数n ,都有()n S n x +≠, x 的值为97. 故答案为:9710. 把一副扑克牌从上到下按照大王、小王、黑桃 A 、红桃 A 、方块 A 、梅花 A 、黑桃 2 、 红桃 2、方块 2、梅花 2、...、黑桃 K 、红桃 K 、方块 K 、梅花 K 的顺序依次叠成一叠,然后执行步骤①: 把整叠牌最上面一张丢掉, 再执行步骤②: 把整叠牌最上面一张移到整叠牌的最下面, 再执行步骤①, 再执行步骤②, ...... 步骤①和步骤②依次执行直至整叠牌只剩下一张,请问:最后剩下的这张牌是_________. 【答案】红桃J 【解析】【分析】根据规律分析每轮丢掉的牌与剩下的牌,即可分析出最后剩下的牌. 【详解】不妨将54张牌按照上述顺序依次标号为1,2, ,54, 第一轮将丢掉1,3,5, ,53;第二轮将丢掉2,6,10, ,54,此时需将4号移到整叠牌的最下面,剩下的牌从上到下按顺序依次为8,12,16,20,24,28,32,36,40,44,48,52,4; 第三轮将丢掉:8,16,24,32,40,48,4,此时需将12号移到整叠牌的最下面, 为剩下的牌从上到下按顺序依次为20,28,36, 44,52,12;第四轮将丢掉:20,36, 52,剩下的牌从上到下按顺序依次为28,44,12; 第五轮将丢掉:28,12,故最后剩下的为44; 又241042+×=,所以第44张为红桃J , 故最后剩下的这张牌是红桃J . 故答案为:红桃J11. 若实数 a b , 满足a b +=,则 a 的取值范围为_________. 【答案】0a ≥ 【解析】【分析】利用根式的意义先确定0a ≥,再利用换元法及反比例函数、二次函数的性质计算即可.【详解】由题意易知00a b a b +≥ −≥ ,所以0a ≥,①显然0a =时,0b =,②当0a >时,不妨设b ta =, 此时()()101110a b t a t a b t a +=+≥⇒−≤≤−=−≥,则()()()21141t a t a t +=⇒+=−若1t =,则00a b a b −=⇒== 若1t =−,则00a b a b +=⇒==,也不符合题意,所以11t −<<,即()()()()()2222418418411181142111t t a t t t t t −−+ ===−=−− ++ +++, 易知11t −<<时1101221t t<+<⇒<+, 令11m t =+,则211842a m =−− ,由二次函数的性质可知211180242a >−−= , 综上,0a ≥. 故答案为:0a ≥.12. 已知()()21R f x ax x =−∈,若关于 x 的方程 ()f x x = 与 ()()f f x x = 都有解,且两个方程的解完全相同,则实数 a 的取值范围是_________. 【答案】1344a −≤≤ 【解析】【分析】分0a =与0a ≠进行讨论,当0a ≠时结合一元二次方程的根的判别式与条件两个方程可知2210a x ax a +−+=要么没有实根,要么实根是方程210ax x −−=的根,计算即可得. 【详解】由已知()210f x x ax x =⇒−−=,()()()22110f f x x a ax x =⇒−−−= ()()342222221110a x a x x a axx a x ax a ⇒−−+−=−−+−+=,由题意可知210ax x −−=有实根, ①当0a =时,有()1f x =−,即1x =−, 令()()f f x x =,即()11f x −=−=,符合要求;②当0a ≠时,()f x x =有解,则140a ∆=+≥,解得14a ≥−, 要满足题意,此时2210a x ax a +−+=要么没有实根, 要么实根是方程210ax x −−=的根,若2210a x ax a +−+=没有实根,则()22410a a a ∆=−−<,解得34a <; 若2210a x ax a +−+=有实根且实根是方程210ax x −−=的根,则由方程210ax x −−=,得22a x ax a +,代入2210a x ax a +−+=, 有210ax +=.由此解得12x a =−,再代入得111042a a +−=,由此34a =, 综上所述, a 的取值范围是1344a −≤≤.故答案为:1344a −≤≤.二、解答题13. 已知函数()22f x x bx c =−++在1x =时有最大值1. (1)求实数⋅b c 的值;(2)设0m n <<,若当m x n ≤≤时,()f x 最小值为1n ,最大值为1m,求m ,n 的值. 【答案】(1)4− (2)1m =,n =【解析】的【分析】(1)依题意可得()1411b f = =,即可求出b 、c 的值;(2)由(1)可得()()2211f x x =−−+,即可得到1m ≥,从而得到()1f m m =且()1f n n=,从而得到m ,n 是关于x 的方程()21211x x−−+=的两个解,即可求出m 、n 的值.【小问1详解】因()22f x x bx c =−++在1x =时有最大值1, 则()14121bf b c = =−++=,解得41b c = =− ,所以4b c ⋅=−;【小问2详解】由(1)可得()()22241211f x x x x =−+−=−−+, 则()1f x ≤,又0m n <<,所以11m≤,则1m ≥, 所以当m x n ≤≤时()f x 单调递减,所以()()21211f m m m=−−+=,且()()21211f n n n=−−+=, 所以m ,n 是关于x 的方程()21211x x−−+=的两个解,即()()212210x x x −−−=, 解方程得11x =,2x =3x =, 又1m n ≤<,所以1m =,n =.为。
湖南省长沙市2024-2025学年高一上学期综合能力检测(入学分班考试)数学试卷含答案
2024级高一综合能力检测试卷数学(答案在最后)时量:90分钟满分100分一、选择题:本题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个选项是符题目要求的.1.《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿日兆.”说明了大数之间的关系:1亿1=万1万,1兆1=万1⨯万1⨯亿.若1兆10m=,则m 的值为()A.4B.8C.12D.16【答案】D 【解析】【分析】由指数幂的运算性质即可求解.【详解】1万=410,所以1亿=810,所以1兆=8816101010⨯=,所以16m =.故选:D2.二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒大寒),若从二十四个节气中随机抽取一个节气,则抽到的节气在夏季的概率为()A.12B.112C.16D.14【答案】D 【解析】【分析】根据概率的计算公式即可求解.【详解】从二十四个节气中随机抽取一个节气,则抽到的节气在夏季的概率为61244=,故选:D3.如图,矩形ABCD 中,3AB =,1AD =,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 所表示的数为()A.2B.101- C.5D.51【答案】B 【解析】【分析】利用勾股定理和数轴的知识求得正确答案.【详解】由于223110AC =+=,所以点M 所表示的数为)2103101+=.故选:B4.若关于x 的不等式组()532223x x x x a +⎧≥-⎪⎨⎪+<+⎩恰好只有四个整数解,则a 的取值范围是()A.53a <-B.5433a -≤<-C.523a -<-≤ D.523a -<<-【答案】C 【解析】【分析】化简不等式组,由条件列不等式求a 的取值范围.【详解】解不等式532x x +≥-,得11x ≤,解不等式()223x x a +<+,得23x a >-,由已知可得7238a ≤-<,所以523a -<-≤.故选:C.5.在ABC V ,3AC =,4BC =,5AB =,点P 在ABC V 内,分别以A ,B ,P 为圆心画圆,圆A 的半径为1,圆B 的半径为2,圆P 的半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是()A.内含B.相交C.外切D.相离【答案】B 【解析】【分析】由题意条件分析两圆圆心距与两半径和差的大小关系即可得.【详解】由圆A 与圆P 内切,则312PA =-=,5AB =,又点P 在ABC V 内,则PA PB AB +>,且PB AB <,所以523PB AB PA >-=-=,且5PB <,则3232PB -<<+,由圆B 的半径为2,圆P 的半径为3,所以圆P 与圆B 相交.故选:B.6.对于正整数k 定义一种运算:1()[][]44k k f k +=-,例:313(3)[[44f +=-,[]x 表示不超过x 的最大整数,例:[3.9]3=,[1.8]2-=-.则下列结论错误的是()A.()10f =B.()0f k =或1C.()()4f k f k +=D.()()1f k f k +≥【答案】D 【解析】【分析】根据给定的定义,逐项计算判断即可.【详解】对于A ,11(1)[][]00024f =-=-=,A 正确;对于B ,取4,1,2,3,4k n i i =+=,n 为自然数,当4i =时,1()[1][1][1]044f k n n =++-+==,当3i =时,33()[1][]1([])144f k n n n n =+-+=+-+=,当1,2i =时,11()[][][]([])04444i i i if k n n n n ++=+-+=+-+=,B 正确;对于C ,11(4)[1][1]1[](1[])()4444k k k kf k f k +++=+-+=+-+=,C 正确;对于D ,414313(31)[[0,(3)[][]14444f f +++=-==-=,即(31)(3)f f +<,D 错误.故选:D7.如图,点A 为反比例函数()10y x x=-<图象上的一点,连接AO ,过点O 作OA 的垂线与反比例函数()40y x x=>的图象交于点B ,则AO BO 的值()A.12B.14C.33D.13【答案】A 【解析】【分析】设121214,,,A x B x x x ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,由,A B 两点分别做x 轴的垂线,垂足分别为,E F ,由AO BO ⊥,得∽∠ AOE OBF ,由==AE EO AOOF BF BO,可得答案.【详解】设()12121214,,,0,0A x B x x x x x ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,由,A B 两点分别做x 轴的垂线,垂足分别为,E F ,且()()12,0,,0E x F x ,因为AO BO ⊥,所以,∠=∠∠=∠AOE OBF OAE BOF ,所以∽∠ AOE OBF ,所以AE EO OF BF =,可得112214--=x x x x ,即22124x x =,所以122x x =-,所以12121211==-==-=A Ex x x O A BO OF x .故选:A.8.若二次函数的解析式为()()()2215y x m x m =--≤≤,且函数图象过点(),p q 和点()4,p q +,则q 的取值范围是()A.124q -≤≤B.50q -≤≤ C.54q -≤≤ D.123q -≤≤【答案】A 【解析】【分析】由二次函数解析式可求得对称轴为1x m =+,进而可得412p p m ++=+,由函数图象过点(),p q ,可得2(1)4q m =--+,可求q 的取值范围.【详解】因为二次函数的解析式为()()()2215y x m x m =--≤≤,所以二次函数的对称轴为1x m =+,函数图象过点(),p q 和点()4,p q +,故点(),p q 和点()4,p q +关于直线1x m =+对称,所以412p p m ++=+,所以1[0,4]p m =-∈,又()()()()2222121223(1)4q p m p m m m m m m =--=----=-++=--+,当1m =,max 4q =,当5m =,min 12q =-,所以124q -≤≤.故选:A.二、填空题:本题共4小题,每小题4分,共16分.9.分解因式:432449a a a -+-=______.【答案】2(23)(1)(3)a a a a -++-【解析】【分析】根据给定条件,利用公式法及十字相乘法分解因式即可得解.【详解】43222222449(2)9(23)(23)(23)(1)(3)a a a a a a a a a a a a a -+-=--=-+--=-++-.故答案为:2(23)(1)(3)a a a a -++-10.直线1:1l y x =-与x 轴交于点A ,将直线1l 绕点A 逆时针旋转15°,得到直线2l ,则直线2l 对应的函数表达式是______.【答案】y =【解析】【分析】先求得2l 的倾斜角,进而求得直线2l 对应的函数表达式.【详解】直线1:1l y x =-与x 轴交于点()1,0A ,直线1:1l y x =-的斜率为1,倾斜角为45︒,所以2l 的倾斜角为60︒所以直线2l 对应的函数表达式是)1y x =-=-.故答案为:y =-11.若关于x 的分式方程22411x a x ax x --+-=-+的解为整数,则整数a =______.【答案】1±【解析】【分析】由分式方程有意义可知1x ≠且1x ≠-,再化简方程求解2x a=,由,a x 均为整数可求.【详解】则方程22411x a x a x x --+-=-+可知,1x ≠且1x ≠-.方程可化为222211x a x a x x --+-=+-+,即2211a ax x -+=-+,解得2x a=,由1x ≠且1x ≠-,所以2a ≠且2a ≠-.由a 为整数,且x 为整数,则当1a =-,2x =-,或当1a =,2x =时满足题意.所以1a =±.故答案为:1±.12.如图,已知两条平行线1l ,2l ,点A 是1l 上的定点,2AB l ⊥于点B ,点C ,D 分别是1l ,2l 上的动点,且满足AC BD =,连接CD 交线段AB 于点E ,BH CD ⊥于点H ,则当BAH ∠最大时,sin BAH ∠的值为______.【答案】13【解析】【分析】因为BH CD ⊥于点H ,所以点H 在以BE 为直径的圆上运动,当AH 与圆O 相切时,BAH ∠最大,据此在OHA 求解即可.【详解】12//,//,AC BD l l ∴四边形ACBD 是平行四边形12AE BE AB ∴==A 为定点,且2//AB l AE ∴为定值,BH CD ⊥ 90BHE ∠∴= ,如图,取BE 的中点O ,则点H 在以BE 为直径的圆上运动,此时1123OE BE OA ==,当AH 与圆O 相切时,BAH ∠最大1sin 3OH BAH OA ∠∴==故答案为:13.三、解答题:本题共4小题,共52分.应写出文字说明、证明过程或演算步骤.13.某学校举办的“青春飞扬”主题演讲比赛分为初赛和决赛两个阶段.(1)初赛由10名教师评委和45名学生评委给每位选手打分(百分制),对评委给某位选手的打分进行整理、描述和分析下面给出了部分信息.a .教师评委打分:86889091919191929298b .学生评委打分的频数分布直方图如下(数据分6组:第1组8285x ≤<,第2组8588x ≤<,第3组8891x ≤<,第4组9194x ≤<,第5组9497x ≤<,第6组97100x ≤≤);平均数中位数众数教师评委9191m 学生评委90.8n93c .评委打分的平均数、中位数、众数如上:根据以上信息,回答下列问题:①m 的值为______,n 的值位于学生评委打分数据分组的第______组;②若去掉教师评委打分中的最高分和最低分,记其余8名教师评委打分的平均数为x ,则x ______91(填“>”“=”或“<”);(2)决赛由5名专业评委给每位选手打分(百分制).对每位选手,计算5名专业评委给其打分的平均数和方差.平均数较大的选手排序靠前,若平均数相同,则方差较小的选手排序靠前,5名专业评委给进入决赛的甲、乙、丙三位选手的打分如下:评1评委2评委3评委4评委5甲9390929392乙9192929292丙90949094k若丙在甲、乙、丙三位选手中的排序居中,则这三位选手中排序最靠前的是______,表中k (k 为整数)的值为______.【答案】(1)①91;4;②<(2)甲;92【解析】【分析】(1)①根据众数以及中位数的定义解答即可;②根据算术平均数的定义求出8名教师评委打分的平均数,即可得出答案;(2)根据方差的定义和平均数的意义求解即可.【小问1详解】①由题意得,教师评委打分中91出现的次数最多,故众数91m =;45名学生评委打分数据的中位数是第23个数,故n 的值位于学生评委打分数据分组的第4组;②若去掉教师评委打分中的最高分和最低分,记其余8名教师评委打分的平均数为x ,则1(8890919191919292)90.758x =⨯+++++++=,91x ∴<.【小问2详解】甲选手的平均数为1(9390929392)925⨯++++=,乙选手的平均数为1(9192929292)91.85⨯++++=,因为丙在甲、乙、丙三位选手中的排序居中,所以三位选手中排序最靠前的是甲,且丙的平均数大于或等于乙的平均数,因为5名专业评委给乙选手的打分为91,92,92,92,92,乙选手的方差2221[4(9291.8)(9191.8)]0.165S =⨯⨯-+-=乙,5名专业评委给丙选手的打分为90,94,90,94,k ,所以乙选手的方差小于丙选手的方差,所以丙选手的平均数大于乙选手的平均数,小于或等于甲选手的平均数,∴9390929392909490949192929292k ++++≥++++>++++,9291k ∴≥>,k 为整数,k ∴的值为92.14.根据以下素材,探索完成任务——如何设计摇椅的椅背和坐垫长度?素材一:某公司设计制作一款摇椅,图1为效果图,图2为其侧面设计图,其中FC 为椅背,EC 为坐垫,C ,D 为焊接点,且CD 与AB 平行,支架AC ,BD 所在直线交于圆弧形底座所在圆的圆心O .设计方案中,要求A ,B 两点离地面高度均为5厘米,A ,B 两点之间距离为70厘米;素材二:经研究,53OCF ∠=︒时,舒适感最佳.现用来制作椅背FC 和坐垫EC 的材料总长度为160厘米,设计时有以下要求:(1)椅背长度小于坐垫长度;(2)为安全起见,摇椅后摇至底座与地面相切于点A 时(如图3),F 点比E 点在竖直方向上至少高出12厘米.(sin530.8︒≈,cos530.6︒≈,tan53 1.3︒≈)任务:(1)根据素材求底座半径OA ;(2)计算图3中点B 距离地面的高度;(3)①求椅背FC 的长度范围;(结果精确到0.1m )②设计一种符合要求的方案.【答案】(1)125厘米;(2)19.6厘米(3)①64.580FC ≤<;②70cm ,90cm (答案不唯一).【解析】【分析】(1)根据四边形AHNB 为矩形,35AG BG ==厘米,5AH GM ==厘米,设底座半径OA r =厘米,则OM OA r ==厘米,由勾股定理求出r 即可得出答案;(2)由四边形ANBK 为矩形,进而得AK BN h ==,()125cm,125cm OK h OB =-=,然后在直角三角形中由勾股定理列出关于h 的方程,解方程求出h 即可得出答案;(3)①过F 作FP OA ⊥于P ,过点E 作EQ OA ⊥于Q ,先求出cos cos 0.28QCD OAB ∠=∠=,设椅背FC x =厘米,则坐垫(160)EC x =-,即可得0.60.28(160)12x x --≥,由此解得64.5x ≥,据此可得椅背FC 的长度范围;②在①中椅背FC 的长度范围任取一个FC 的值,再计算出EC 的值即可,例如取70FC =厘米,则1607090EC =-=(厘米);(答案不唯一,只要在FC 的长度范围内即可).【小问1详解】过点A 作AH 垂直地面于H ,过点O 作OG AB ⊥于G ,OG 的延长线于地面交于点M ,如图所示:AB 平行于地面,∴四边形AHNB 为矩形,1352AG BG AB ===厘米,5AH GM ==厘米,设底座半径OA r =厘米,则OM OA r ==厘米,(5)OG OM GM r ∴=-=-厘米,在Rt OAG ∆中,OA r =厘米,35AG =厘米,(5)OG r =-厘米,由勾股定理得:222OA OG AG =+,即:222(5)35r r =-+,解得:125r =,∴底座半径OA 的长度为125厘米;【小问2详解】过点B 作BN 垂直地面于N ,BK OA ⊥于K ,如图所示:设BN h =,底座与地面相切于点A ,OA ∴垂直地面于点A ,∴四边形ANBK 为矩形,AK BN h ∴==,由任务一可知:125cm,125OA OB OK OA AK h ==∴==--,在Rt ABK △中,cm,=70cm AK h AB =,由勾股定理得:2222270BK AB AK h =-=-,在Rt OBK 中,()125cm,125cm OK h OB =-=,由勾股定理得:22222125(125)BK OB OK h =-=--,222270125(125)h h ∴-=--,解得:19.6h =,∴点B 距离地面的高度为19.6厘米;【小问3详解】①过F 作FP OA ⊥于P ,过点E 作EQ OA ⊥于Q ,如图所示://CD AB Q ,QCD OAB ∴∠=∠,由任务②可知:19.6AK h ==厘米,70AB =厘米,在Rt ABK △中,19.6cos 0.2870AK OAB AB ∠===,cos cos 0.28QCD OAB ∴∠=∠=,椅背FC 和坐垫EC 的材料总长度为160厘米,∴设椅背FC x =厘米,则坐垫(160)EC x =-,椅背长度小于坐垫长度,160x x ∴<-,解得:80x <,在Rt CQE △中,cos 0.28CQ QCD CE∠==,0.280.28(160)CQ CE x ∴==-厘米,在Rt CFP △中,cos CP OCF CF∠=,cos cos530.6CP CF OCF x x ∴=⋅∠=⋅︒≈(厘米),F 点比E 点在竖直方向上至少高出12厘米,12AP AN ∴-≥,即:()12AC CP AC CQ +-+≥,12CP CQ ∴-≥,0.60.28(160)12x x ∴--≥,解得:64.5x ≥,又80x < ,64.580x ∴≤≤,即:64.580FC ≤≤,∴椅背FC 的长度范围是:64.580FC ≤<;②由于64.580FC ≤<,故取70cm FC =,则1607090cm EC ==-.15.定义:在平面直角坐标系中,直线x m =与某函数图象交点记为点P ,作该函数图象中点P 及点P 右侧部分关于直线x m =的轴对称图形,与原函数图象上的点P 及点P 右侧部分共同构成一个新函数的图象,称这个新函数为原函数关于直线x m =的“迭代函数”.例如:图1是函数1y x =+的图象,则它关于直线0x =的“迭代函数”的图象如图2所示,可以得出它的“迭代函数”的解析式为()()10,10.x x y x x ⎧+≥⎪=⎨-+<⎪⎩(1)函数1y x =+关于直线1x =的“迭代函数”的解析式为______.(2)若函数243y x x =-++关于直线x m =的“迭代函数”图象经过()1,0-,则m =______.(3)已知正方形ABCD 的顶点分别为:(),A a a ,(),B a a -,(),C a a --,(),D a a -,其中0a >.①若函数6y x =关于直线2x =-的“迭代函数”的图象与正方形ABCD 的边有3个公共点,求a 的值;②若6a =,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,求n 的取值范围.【答案】(1)1,13,1x x y x x +≥⎧=⎨-+<⎩(2)12m -=或172m +=,(3)①3;②()5,1,12⎛⎫-∞-⋃- ⎪⎝⎭.【解析】【分析】(1)取点()2,3M ,()3,4N ,求两点关于1x =的对称点,利用待定系数法求左侧图象的解析式,由此可得结论;(2)判断点()1,0-与函数243y x x =-++的图象的关系,再求()1,0-关于直线x m =的对称点,由条件列方程求m 即可;(3)①求函数6y x =关于直线2x =-的“迭代函数”的解析式,作函数图象,观察图象确定a 的值;②分别在0n >,0n =,0n <时求函数6y x=关于直线x n =的“迭代函数”解析式,讨论n ,由条件确定n 的范围.【小问1详解】在函数1y x =+的图象上位于1x =右侧的部分上取点()2,3M ,()3,4N ,点()2,3M 关于直线1x =的对称点为0,3,点()3,4N 关于直线1x =的对称点为()1,4-,设函数1y x =+,1x >的图象关于1x =对称的图象的解析式为,1y kx b x =+<,则34b k b =⎧⎨-+=⎩,解得13k b =-⎧⎨=⎩,所以函数1y x =+关于直线1x =的“迭代函数”的解析式为1,13,1x x y x x +≥⎧=⎨-+<⎩;【小问2详解】取1x =-可得,2431432y x x =-++=--+=-,故函数243y x x =-++的图象不过点()1,0-,又点()1,0-关于直线x m =的对称点为()21,0m +,由已知可得()()20214213m m =-++++,1m >-,所以12m -=或12m +=,【小问3详解】①当0x >或20x -≤<时,函数6y x =关于直线2x =-的“迭代函数”的图象的解析式为6y x =,当2x <-时,设点s 在函数6y x =关于直线2x =-的“迭代函数”的图象上,则点()4,x y --在函数6y x =的图象上,所以64y x =--,所以函数6y x =关于直线2x =-的“迭代函数”的解析式为[)()()6,2,00,6,,24x x y x x∞∞⎧∈-⋃+⎪⎪=⎨⎪∈--⎪--⎩,作函数6y x=关于直线2x =-的“迭代函数”的图象如下:观察图象可得3a =时,函数6y x=关于直线2x =-的“迭代函数”的图象与正方形ABCD 的边有3个公共点,②若0n >,当x n ≥时,函数6y x =关于直线x n =的“迭代函数”的图象的解析式为6y x =,当0x <或0x n <<时,设点s 在函数6y x =关于直线x n =的“迭代函数”的图象上,则点()2,n x y -在函数6y x=的图象上,所以62y n x =-,所以函数6y x =关于直线x n =的“迭代函数”的解析式为()()()6,,6,,00,2x n x y x n n x∞∞⎧∈+⎪⎪=⎨⎪∈-⋃⎪-⎩,当6n >时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有2个公共点,当6n =时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有2个公共点,当16n <<时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有2个公共点,当1n =时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有3个公共点,当01n <<时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当0n =时,函数6y x =关于直线=0的“迭代函数”的解析式为6,06,0x x y x x⎧>⎪⎪=⎨⎪-<⎪⎩,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,若0n <,当0n x ≤<或0x >时,函数6y x =关于直线x n =的“迭代函数”的图象的解析式为6y x=,当x n <时,设点s 在函数6y x =关于直线x n =的“迭代函数”的图象上,则点()2,n x y -在函数6y x =的图象上,所以62y n x =-,所以函数6y x =关于直线x n =的“迭代函数”的解析式为[)()()6,,00,6,,2x n x y x n n x ∞∞⎧∈⋃+⎪⎪=⎨⎪∈-⎪-⎩,当10n -<<时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当1n =-时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有5个公共点,当512n -<<-时,作函数6y x =关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有6个公共点,当52n =-时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有5个公共点,当7522n -<<-时,作函数6y x =关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当72n =-时,作函数6y x =关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当762n -<<-时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当6n =-时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当6n <-时,作函数6y x=关于直线x n =的“迭代函数”的图象可得,函数6y x =关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,综上,n 的取值范围为()51,12∞⎛⎫--⋃- ⎪⎝⎭,.【点睛】方法点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.16.已知抛物线2y x bx c =-++与x 轴交于点()1,0A -,()3,0B .(1)如图1,抛物线与y 轴交于点C ,点P 为线段OC 上一点(不与端点重合),直线PA ,PB 分别交抛物线于点E ,D ,设PAD △面积为1S ,PBE △面积为2S ,求12S S 的值;(2)如图2,点K 是抛物线的对称轴与x 轴的交点,过点K 的直线(不与对称轴重合)与抛物线交于点M ,N ,过抛物线顶点G 作直线//l x 轴,点Q 是直线l 上一动点求QM QN +的最小值.【答案】(1)19(2)45【解析】【分析】(1)把点()1,0A -,()3,0B 代入抛物线方程,解出抛物线的解析式,设(0,)P p ,求出直线AP 解析式为y px p =+,联立方程223y px p y x x =+⎧⎨=-++⎩,可得2(3,4)E p p p --+,同理可得234(,)393p p p D --+,即可得1S ,2S ,化简可得结果;(2)作点N 关于直线l 的对称点N ',连接MN ',过M 点作MF NN '⊥于F ,求出(1,0)K ,设直线MN 解析式为y kx d =+,把点K 坐标代入即可知直线MN 的解析式y kx k =-,设2(,23)M m m m -++,2(,23)N n n n -++,求出2(,25)N n n n '-+,可得QM QN QM QN MN ''+=+≥,结合2(,23)F n m m -++,可得222421780MN MF N F k k =+=++'',从而得到QM QN +的最小值.【小问1详解】把点()1,0A -,()3,0B 代入抛物线方程2y x bx c =-++得:10930b c b c --+=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩,所以抛物线方程为:223y x x =-++,设(0,)P p ,直线AP 解析式为11y k x b =+,把点()1,0A -,(0,)P p 代入得:1110k b b p -+=⎧⎨=⎩,所以线AP 解析式为y px p =+,联立223y px p y x x =+⎧⎨=-++⎩,解得:10x y ⎧⎨⎩=-=或234x p y p p =-⎧⎨=-+⎩,所以2(3,4)E p p p --+,设直线BP 解析式为22y k x b =+把点()3,0B ,(0,)P p 代入得:22230k b b p +=⎧⎨=⎩,直线BP 解析式为3p y x p =-+联立2323p y x p y x x ⎧=-+⎪⎨⎪=-++⎩,解得:30x y =⎧⎨=⎩或233493p x p p y -⎧=⎪⎪⎨⎪=-+⎪⎩可得234(,)393p p p D --+,所以221142()2(3)2939ABD ABP D P p p S S S AB y y p p p ⎛⎫=-=⋅-=-+-=- ⎪⎝⎭ ,()2221()242(3)2ABE ABP E P S S S AB y y p p p p p =-=⋅-=-+-=- ,所以2122192(3)92(3)S p p S p p -=-=【小问2详解】作点N 关于直线l 的对称点N ',连接MN ',过M 点作MF NN '⊥于F ,如图:因为2223(1)4y x x x =-++=--+,所以抛物线223y x x =-++的对称轴为1x =,所以(1,0)K ,设直线MN 解析式为y kx d =+,把点(1,0)K 代入得:=0k d +,所以=d k -,所以直线MN 的解析式为y kx k=-设2(,23)M m m m -++,2(,23)N n n n -++,联立223y x x y kx k⎧=-++⎨=-⎩,可得2(2)30x k x k +---=则2m n k +=-,3mn k =--,因为N ,N '关于直线l :4y =对称,所以2(,25)N n n n '-+,则QM QN QM QN MN ''+=+≥,又2(,23)F n m m -++,所以222()2N F m n m n =+-++',FM m n =-,在Rt MFN ' 中,2222222()2()2MN MF N F m n m n m n ⎡⎤=+=-++-++⎣'⎦',222()4()22()2m n mn m n mn m n ⎡⎤=+-++--++⎣⎦222(2)4(3)(2)2(3)2(2)2k k k k k ⎡⎤=----+------+⎣⎦421780k k =++所以当0k =时,2MN '最小为80,此时MN '=所以QM QN +≥,即QM QN +的最小值为。
名校卷 上海市光明中学2022-2023学年高一上学期分班考试数学试卷(含详解)
三.解答题11.已知抛物线 ( )经过点 ,顶点为 ,与x轴交于C、D两点(点C在点D 左边),与y轴相交于点B.
(1)求该抛物线的解析式;
(2)求点B、C、D三点的坐标;
(3)若点P是x轴上的任意一点,试判断 与 的大小关系.
【答案】(1) ;
(2) , , ;
(3)
【解析】
【分析】(1)根据抛物线的顶点,设抛物线的解析式为 ,再将 代入可求解;
A.张B.王C.李D.赵
【答案】D
【解析】
【分析】分别假设是四个人中的某个人做的好事,依次检验每个人所说的话是否正确,得出答案.
【详解】假设是张做的,则王和赵说的都正确,不符合题意;
假设是王做的,则李和赵说的都正确,不符合题意;
假设是李做 ,则张,李和赵说的都正确,不符合题意;
假设是赵做的,只有李说的正确,符合题意;
(1)求该抛物线的解析式;
(2)求点B、C、D三点的坐标;
(3)若点P是x轴上的任意一点,试判断 与 的大小关系.
12.阅读下面的材料,然后解析问题:
我们新定义一种三角形,两边 平方和等于第三边平方的k倍的三角形叫做“k倍三角形”(k为正实数).
(1)请根据“k倍三角形”的定义填空(填“锐角”、“直角”或“钝角”)
6.定义 , ,则 ______
7.若实数m满足 ,则 ______
8.口袋中有 个球,其中白球 个,红球 个,黑球 个,现从中任取 个球,使得白球不少于 个但不多于 个,红球不少于 个,黑球不多于 个,那么上述取法的种数是____.
二.选择题
9.如图,在矩形 中, , ,点 是边 上一点,沿 翻折 ,点 恰好落在 边上点 处,则 长是()
①当 时,k倍三角形一定是三角形;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
………………………… 6分
(2)如图(2)由对称性可知,点关于的对称点在过点且倾斜角为的直
线上
,所以路程最短即为上点到切点的切线长最短。
连接,在中,只要最短,
由几何知识可知,应为过原点且与垂直的直线与的交点,这一点又与点
关于对称,∴,故点的坐标为 …………… 12分
22.解:(1) 设纵断面层数为,则 即,,经带入满足不等式,不满足 当
20. (本小题满分12分)函数,若自变量取值范围内存在,使成立,则
称以为坐标的点为函数图像上的不动点。(的定义见第12题) (1)若函数有两个关于原点对称的不动点,求a,b应满足的条件; (2)在(1)的条件下,若a=2,直线与y轴、x轴分别相交于A、B两 点,在的图象上取一点P(P点的横坐标大于2),过P作PQ⊥x轴,垂足 是Q,若四边形ABQP的面积等于2,求P点的坐标 (3)定义在实数集上的函数,对任意的有恒成立。下述命题“若函数的 图像上存在有限个不动点,则不动点有奇数个”是否正确?若正确,给 予证明;若不正确,举反例说明。
高一新生分班考试数学试卷(含答
案)
(满分150分,考试时间120分钟)
题号
一
二
三
总分
得分
一、选择题(每题5分,共40分)
1.化简
()
A.
B. C.
D.
2.分式的值为0,则的值为
()
A.
B.2
C.
D.
3.如图,在四边形ABCD中,E、F分别是AB、AD的中点。若EF=2,
BC=5,CD=3,
则tan C等于
形面积为 ___ 18. 如图是一个数表,第1行依次写着从小到大的正整数,然后把每行 相邻的两个数的和写在这两数正中间的下方,得到下一行,数表从上到 下与从左到右均为无限项,则这个数表中的第11行第7个数为 (用具体数字作答)
1 2 3 4 5 6 7… 3 5 7 9 11 13… 8 12 16 20 24…
5 2 3 3 2 1 2 6 1 甲 乙 丙 10题图
11.如图,直角梯形纸片ABCD中,AD//BC,∠A=90º,∠C=30º.折叠 纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8,则AB的 长为
12.记函数在处的值为(如函数也可记为,当时的函数 值可记为)。已知,若且,,则 的所有可能值为 13.有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正 方体下底面的四个顶点是下层正方体上底面各边的中点。已知最底层正
所以为函数的不动点
……………………10分
②设为函数图像上的不动点,则
所以,
所以也为函数图像上的不动点
……………………12分
21.解:(1)由题|OA|=4,|OB|=,所以,所以 2分
(2)如图(1)由对称性可知,点关于的对称点在过点且倾斜角为的直
线上在中,,,
所以为直角三角形,。所以光线从射出经反射到经过的路程为
答案
2、 填空题(每题5分,共50分) 9.已知a、b是一元二次方程的两个实数根,则代数式 的值等于
10.有一个六个面分别标上数字1、2、3、4、5、6的正方体,甲、乙、 丙三位同学从不同的角度观察的结果如图所示.如果记2的对面的数字
为m,3的对面的数字为n,则方程的解满足,为整数,则 11题图
B C E D A F
时,剩余的圆钢最少 ………………………2分 此时剩余的圆钢为;
………………………4分
(2) 当纵断面为等腰梯形时,设共堆放
层,第一层圆钢根数为
,则由题意得: ,化简得
, 即
,
……………………6分
因
与
的奇偶性不同,所以
与
的奇偶性也不同,且
,从而由上述等式得:
或
或
或
,所以共有4种方案可供选择。 -----------------------------8分 (3) 因层数越多,最下层堆放得越少,占用面积也越少,所以由(2)可 知: 若
20 28 36 44… 48 64 80…
注意:请将填空题的答案填在下面的横线
得分 评卷人
上。
9.
10.
_ 14.
_ _ _15.
_
16.
_ 17.
18.
三、解答题(共60分) 19. (本小题满分12分)如图,抛物线与y轴交于A点,过点A的直线与抛
物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0). (1)求直线AB的函数关系式; (2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过 点P作PN⊥x轴,交直线AB于点M,交抛物线于点N。设点P移动的时间 为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范 围; (3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接 CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t 值,平行四边形BCMN能否为菱形?请说明理由. O x A M N B P C
()
A.
B.
C.
D.
4.如图,PA、PB是⊙O切线,A、B为切点,AC是直径,∠P= 40°,则
∠BAC=( )
A.
B. C.
D.
(4题图)
(3题图)
(6题图)
5.在两个袋内,分别装着写有1、2、3、4四个数字的4张卡片,今从每
个袋中各任取一张卡片,则所取两卡片上数字之积为偶数的概率是
()
A.
B.
………………6分 (3)若四边形BCMN为平行四边形,则有MN=BC,此时,有
,解得, 所以当t=1或2时,四边形BCMN为平行四边形. ………………8分
①当t=1时,,,故,又在Rt△MPC中,,故MN=MC,此时四边形BCMN
为菱形 …………10分
②当t=2时,,,故,又在Rt△MPC中,,故MN≠MC,此时四边形BCMN
不是菱形. …………12分
20.解:(1)由题得有两个互为相反数的根,
即有两个互为相反数的根, ……1分
根带入得,两式相减得, ……3分
方程变为
…………4分
(2)由(1)得,所以,即A(0,2) B(2,0) ……5分
设上任意一点,所以
……6分
又因为,所以 ……8分
……………………9分
(3)正确
①在令得所以
21. (本小题满分12分)已知圆O圆心为坐标原点,半径为,直线:交
轴负半轴于点,交轴正半轴于点 (1)求 (2)设圆O与轴的两交点是,若从发出的光线经上的点M反射后过点, 求光线从射出经反射到经过的路程 (3)点P是轴负半轴上一点,从点P发出的光线经反射后与圆O相切.
若光线从射出经反射到相切经过的路程最短,求点P的坐标
方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过 39,则该塔形中正方体的个数至少是
14.如图,三棱柱中,底面,三个侧面都是矩形, 为线段上的一动点,则当最小时,= 15.如图,AB是半圆O的直径,四边形CDMN和DEFG都是正方形,其 中C,D,E在AB上,F,N在半圆上。若AB=10,则正方形CDMN的面 积与正方形DEFG的面积之和是 16.如图,CD为直角ΔABC斜边AB上的高,BC长度为1,DE⊥AC。设 ΔADE,ΔCDB,ΔABC的周长分别是。当取最大值时,AB= 17. 如图放置的等腰直角ABC薄片()沿x轴滚动,点A的运动 轨迹曲线与x轴有交点,则在两个相邻交点间点A的轨迹曲线与x轴围成图
8.若直角坐标系内两点P、Q满足条件①P、Q都在函数y的图象上②P、
Q关于原点对称,则称点对(P,Q)是函数y的一个“友好点对”(点对
(P,Q)与(Q,P)看作同一个“友好点对”)。已知函数,则函数y
的“友好点对”有( )个
A.0
B.1
C. 2
D.3
注意:请将选择题的答案填入表格中。
题号 1 2 3 4 5 6 7 8 得分 评卷人
22. (本小题满分12分)
在金融危机中,某钢材公司积压了部分圆钢,经清理知共有根.现将它们 堆放在一起. (1)若堆放成纵断面为正三角形(每一层的根数比上一层根数多根),并使 剩余的圆钢尽可能地少,则剩余了多少根圆钢? (2)若堆成纵断面为等腰梯形(每一层的根数比上一层根数多根),且不少 于七层, (Ⅰ)共有几种不同的方案? (Ⅱ)已知每根圆钢的直径为,为考虑安全隐患,堆放高度不得高于, 则选择哪个方案,最能节省堆放场地?
cm, 显然大于4m,不合条件,舍去; 综上所述,选择堆放41层这个方案,最能节省堆放场地 ………………12分 23.解:原方程可化为,易知,此时 ……2分
因为是正整数,即为正整数。又,则 即,解得。 因为且是整数,故只能取-4,-3,-1,0,1,2, 分 依次带入的表达式得
…………………………6
从而满足题意的正整数的值有4个,分别为1, 3 ,6,10 …………………………12分
,则
,说明最上层有29根圆钢,最下层有69根圆钢,两腰之长为400 cm,上 下底之长为280 cm和680cm,从而梯形之高为
cm, 而,所以符合条件; 若
………………10分
,则
,说明最上层有17根圆钢,最下层有65根圆钢,两腰之长为480 cm,上 下底之长为160 cm和640cm,从而梯形之高为
23. (本小题满分12分)
试求出所有正整数使得关于的二次方程至少有一个整数根.
数学试卷答案
一、选择题(每题5分,共40分)
题号 1 2 3 4 5 6 7 8
答案 B B A C D A B C
3、 填空题(每题5分,共50分) 9. 10. 0 11. 6 12. 1或-1 13. 6 14. 1 15. 25 16. 2 17. 18. 12288 三、解答题(共60分) 19.解:(1)易知A(0,1),B(3,2.5),可得直线AB的解析式 为y=…………… 3分 (2)