高中数学:求轨迹方程的几种常用方法
高中数学轨迹方程求轨迹方程的的基本方法关点法参数法交轨法向量法新人教版选修
轨 迹 方 程求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。
1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法;例1、某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?【解析】设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则 |P A |+|PO |=1+r +1.5-r =2.5 ∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ②由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm. ◎◎双曲线的两焦点分别是1F 、2F ,其中1F 是抛物线1)1(412++-=x y 的焦点,两点A (-3,2)、B (1,2)都在该双曲线上.(1)求点1F 的坐标; (2)求点2F 的轨迹方程,并指出其轨迹表示的曲线.【解析】(1)由1)1(412++-=x y 得)1(4)1(2--=+y x ,焦点1F (-1,0). (2)因为A 、B 在双曲线上,所以||||||||||||2121BF BF AF AF -=-,|||22||||22|22BF AF -=-.①若||22||2222BF AF -=-,则||||22BF AF =,点2F 的轨迹是线段AB 的垂直平分线,且当y =0时,1F 与2F 重合;当y =4时,A 、B 均在双曲线的虚轴上. 故此时2F 的轨迹方程为x =-1(y ≠0,y ≠4).②若22||||2222-=-BF AF ,则24||||22=+BF AF ,此时,2F 的轨迹是以A 、B 为焦点,22=a ,2=c ,中心为(-1,2)的椭圆,其方程为14)2(8)1(22=-++y x ,(y ≠0,y ≠4) 故2F 的轨迹是直线x =-1或椭圆4)2(8)1(22-++y x 1=,除去两点(-1,0)、(-1,4) 评析:1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
三、相关点法求轨迹方程(高中数学解题妙法)
三、相关点法求轨迹方程(高中数学解题妙法)2.求出动点C和动点P之间的等量关系式;3.将等量关系式代入已知曲线方程,得到所求动点的轨迹方程。
本文介绍了相关点法求轨迹方程的基本步骤。
当题目中的条件同时具有以下特征时,一般可以用相关点法求其轨迹方程:某个动点P在已知方程的曲线上移动;另一个动点M随P的变化而变化;在变化过程中P和M满足一定的规律。
关键在于找到动点和其相关点坐标间的等量关系。
举例来说,对于点P(4.-2)与圆x^2+y^2=4上任一点连线的中点轨迹方程,我们可以设点P与圆上任一点N(x,y)连线的中点为M(x,y),然后求出x=2x-4,y=2y+2的关系式,代入圆的方程可得(x-2)^2+(y+1)^2=1,因此答案为A.(x-2)^2+(y+1)^2=1.另一个例题是:设F(1,0),M点在x轴上,P点在y轴上,且MN=2MP,PM⊥PF,当点P在y轴上运动时,求点N的轨迹方程。
我们可以设动点P的坐标为(x,y-yA),动点C为F(1,0),求出等量关系式后代入y^2=4x,得到点N的轨迹方程为y^2=4x。
综上所述,相关点法求轨迹方程的基本思路是设定两个动点,求出它们之间的等量关系式,再代入已知曲线方程得到所求动点的轨迹方程。
y0),B(x,y),P(x1,y1),则由题意得:点B在抛物线上,即y2=x+1,代入得y=x2+1;点P在线段AB上,且点M的坐标为(2,0),即线段AB的中点坐标为((x0+x)/2,(y0+x2+1)/2)。
根据上述条件,可以列出以下方程组:y=x2+1y-y0=(x-x0)/2y-(y0+x0^2+1)/2=2(x-2)/3解方程组得到:x1=3x0/2-x/2+2/3y1=3x0^2/4+y0/2+1/3代入抛物线方程y2=x+1得到点P的轨迹方程为:y1^2=(3x1/2-1)^2+1。
高中数学动点轨迹问题专题讲解
动点轨迹问题专题讲解一.专题内容:求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程.(3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程.(4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可. (5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系). 注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练(一)选择、填空题1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段2.( )设(0,5)M ,(0,5)N -,MNP ∆的周长为36,则MNP ∆的顶点P 的轨迹方程是(A )22125169x y +=(0x ≠) (B )221144169x y +=(0x ≠) (C )22116925x y +=(0y ≠) (D )221169144x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;4.P 在以1F 、2F 为焦点的双曲线221169x y -=上运动,则12F F P ∆的重心G 的轨迹方程是 ;5.已知圆C :22(16x y +=内一点)A ,圆C 上一动点Q , AQ 的垂直平分线交CQ 于P 点,则P 点的轨迹方程为 .2214x y += 6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是 ;221916x y -=(3x >) 变式:若点P 为双曲线221916x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的内切圆圆心的轨迹方程是 ;推广:若点P 为椭圆221259x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是 .(212y x =)8.抛物线22y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .(4kx =(28k y >))9.过抛物线24y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时, 弦PQ 中点的轨迹方程为 . 解法分析:解法1 当直线PQ 的斜率存在时,设PQ 所在直线方程为 (1)y k x =-与抛物线方程联立,2(1),4y k x y x=-⎧⎨=⎩ 消去y 得 2222(24)0k x k x k -++=. 设11(,)P x y ,22(,)Q x y ,PQ 中点为(,)M x y ,则有21222,22(1).x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩消k 得22(1)y x =-.当直线PQ 的斜率不存在时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-. 解法2 设11(,)P x y ,22(,)Q x y ,由2112224,4.y x y x ⎧=⎪⎨=⎪⎩ 得121212()()4()y y y y x x -+=-,设PQ 中点为(,)M x y , 当12x x ≠时,有121224y y y x x -⋅=-,又1PQ MF yk k x ==-,所以,21yy x ⋅=-,即22(1)y x =-. 当12x x =时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-.10.过定点(1, 4)P 作直线交抛物线:C 22y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.44y x =-(二)解答题1.一动圆过点(0, 3)P ,且与圆22(3)100x y ++=相内切,求该动圆圆心C 的轨迹方程. (定义法)2.过椭圆221369x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF AE =,2A 为椭圆另一顶点,连结OF 交2A E 于点P , 求动点P 的轨迹方程.(直接法、定义法;突出转化思想)3.已知1A 、2A 是椭圆22221x y a b+=的长轴端点,P 、Q 是椭圆上关于长轴12A A 对称的两点,求直线1PA 和2QA 的交点M 的轨迹.(交轨法)4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足||||MA MC =, GM AB R λλ=(∈).(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足||||AP AQ =,试求k 的取值范围.解:(1)设(,)C x y ,则由重心坐标公式可得(,)33x yG . ∵ GM AB λ=,点M 在x 轴上,∴ (,0)3x M .∵ ||||MA MC =,(0,1)A -,∴=,即 2213x y +=. 故点C 的轨迹方程为2213x y +=(1y ≠±).(直接法) (2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N . 由22,3 3.y kx b x y =+⎧⎨+=⎩消y ,得222(13)63(1)0k x kbx b +++-=.∴ 22223612(13)(1)0k b k b ∆=-+->,即22130k b +->. ①又122613kbx x k +=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++, ∴ 223(,)1313kb bN k k-++. ∵ ||||AP AQ =,∴ AN PQ ⊥,∴ 1ANk k =-,即 221113313bk kb k k ++=--+,∴ 2132k b +=,又由①式可得 220b b ->,∴ 02b <<且1b ≠.∴ 20134k <+<且2132k +≠,解得11k -<<且3k ≠±. 故k 的取值范围是11k -<<且3k ≠±. 5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ⋅=⋅. (Ⅰ)求动点P 的轨迹C 的方程;(直接法)(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ⋅为定值.解:(Ⅰ)设(,)P x y .由已知(,2)MP x y =+,(0,4)MN =,(,2)PN x y =--,48MP MN y ⋅=+.4PN MN x ⋅=,……………………………………………3分∵MP MN PN MN ⋅=⋅,∴48y += 整理,得 28x y =.即动点P 的轨迹C 为抛物线,其方程为28x y =.6.已知O 为坐标原点,点(1,0)E -、(1,0)F ,动点A 、M 、N 满足||||AE m EF =(1m >),0M N A F =⋅,1()2ON OA OF =+,//AM ME .求点M 的轨迹W 的方程.解:∵0MN AF ⋅=,1()2ON OA OF =+,∴ MN 垂直平分AF .又//AM ME ,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===,||||MA MF =, ∴ ||||2||ME MF m EF +=>,∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >).7.设,x y R ∈,,i j 为直角坐标系内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++,(2)b xi y j =+-, 且||||8a b +=.(1)求点(,)M x y 的轨迹C 的方程;(定义法)(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程,若不存在,试说明理由.解:(1)2211216x y +=; (2)因为l 过y 轴上的点(0,3).若直线l 是y 轴,则,A B 两点是椭圆的顶点.0OP OA OB =+=,所以P 与O 重合,与四边形OAPB 是矩形矛盾. 故直线l 的斜率存在,设l 方程为3y kx =+,1122(,),(,)A x y B x y .由223,1,1216y kx x y =+⎧⎪⎨+=⎪⎩消y 得22(43)18210,k x kx ++-=此时22(18)4(43)(21)k k ∆=-+->0恒成立,且1221843k x x k +=-+,1222143x x k =-+, OP OA OB =+,所以四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA OB ⊥,即0OA OB ⋅=.1122(,),(,)OA x y OB x y ==,∴ 12120OA OB x x y y ⋅=+=.即21212(1)3()90k x x k x x ++++=.2222118(1)()3()4343k k k k k +⋅-+⋅-++ 90+=.2516k =,得k =. 故存在直线l:3y x =±+,使得四边形OAPB 是矩形. 8.如图,平面内的定点F 到定直线l 的距离为2,定点E 满足:||EF =2,且EF l ⊥于G ,点Q 是直线l 上一动点,点M 满足:FM MQ =,点P 满足://PQ EF ,0PM FQ ⋅=. (I )建立适当的直角坐标系,求动点P 的轨迹方程;(II )若经过点E 的直线1l 与点P 的轨迹交于相异两点A 、B ,令AFB θ∠=,当34πθπ≤<时,求直线1l 的斜率k 的取值范围.解:(1)以FG 的中点O 为原点,以EF 所在直线为y 轴,建立平面直角坐标系xoy ,设点(,)P x y ,则(0, 1)F ,(0, 3)E ,:1l y =-.∵ FM MQ =,//PQ EF ,∴(,1)Q x -,(, 0)2x M .∵0PM FQ ⋅=,∴ ()()(2)02xx y -⨯+-⨯-=,即所求点P 的轨迹方程为24x y =. (2)设点))(,(),,(212211x x y x B y x A ≠设AF 的斜率为1k ,BF 的斜率为2k ,直线1l 的方程为3+=kx y由⎩⎨⎧=+=yx kx y 432…………6分 01242=--kx x 得 1242121-==+∴x x k x x …………7分 9)4(44221222121==⋅=∴xx x x y y646)(22121+=++=+k x x k y y …………8分)1)(1()1,(),1,,(21212211--+=⋅∴-=-=y y x x y x y x841649121)(22212121--=+--+-=++-+=k k y y y y x x)1)(1(||||21++=⋅y y FB FA 又16416491)(222121+=+++=+++=k k y y y y4216484||||cos 2222++-=+--=⋅=∴k k k k FB FA θ…………10分 由于πθπ<≤43 2242122cos 122-≤++-<--≤<-∴k k 即θ…………11分 222242222≥∴≥++∴k k k解得4488-≤≥k k 或…………13分∴直线1l 斜率k 的取值范围是}8,8|{44-≥≥k k k 或9.如图所示,已知定点(1, 0)F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=,||||PM PN =. (1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A 、B 两点,若4OA OB ⋅=-,且||AB ≤求直线l 的斜率k 的取值范围.解:(1)设(,)N x y ,由||||PM PN =得(,0)M x -,(0, )2y P ,(,)2y PM x =--,(1,)2y PF =-,又0PM PF ⋅=,∴204y x -+=,即动点N 的轨迹方程为24y x =. (2)10.已知点(0, 1)F ,点M 在x 轴上,点N 在y 轴上,P 为动点,满足0MN MF ⋅=,0MN MP +=.(1)求P 点轨迹E 的方程;(2)将(1)中轨迹E 按向量(0, 1)a =平移后得曲线E ',设Q 是E '上任一点,过Q 作圆22(1)1x y ++=的两条切线,分别交x 轴与A 、B 两点,求||AB 的取值范围.解:(1)设(, 0)M a 、(0, )N b 、(,)P x y ,则(,)MN a b =-、(, 1)MF a =-、(, )MP x a y =-.由题意得(, )(, 1)0,(, )(,)(0, 0).a b a a b x a y -⋅-=⎧⎨-+-=⎩ ∴ 20,, ,2a b xa b y ⎧+=⎪⎨==-⎪⎩ ∴ 214y x =, 故动点P 的轨迹方程为214y x =. (2)11.如图()A m和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-, O 为坐标原点,动点P 满足OP OA OB =+.(1)求m n ⋅的值; (2)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(3)若直线l 过点(2, 0)E 交(2)中曲线C 于M 、N 两点,且3ME EN =,求l 的方程. 解:(1)由已知得1()(,)22OA OB m n mn ⋅=⋅=-=-,∴ 14mn =. (2)设P 点坐标为(,)x y (0x >),由OP OA OB =+得(,)()(,)x y m n =+())m n m n =+-,∴,)x m n y m n =+⎧⎪⎨=-⎪⎩ 消去m ,n 可得2243y x mn -=,又因14mn =,∴ P 点的轨迹方程为221(0)3y x x -=>.它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支.(3)设直线l 的方程为2x ty =+,将其代入C 的方程得223(2)3ty y +-= 即 22(31)1290t y ty -++=,易知2(31)0t -≠(否则,直线l的斜率为又22214436(31)36(1)0t t t ∆=--=+>,设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==--∵ l 与C 的两个交点,M N 在y 轴的右侧212121212(2)(2)2()4x x t y t y t y y t y y =++=+++ 2222291234240313131t t t t t t t -+=⋅+⋅+=->---, ∴ 2310t -<,即2103t <<,又由120x x +>同理可得 2103t <<,由3ME EN =得 1122(2,)3(2,)x y x y --=-, ∴ 121223(2)3x x y y -=-⎧⎨-=⎩由122222123231t y y y y y t +=-+=-=--得22631t y t =-,由21222229(3)331y y y y y t =-=-=-得222331y t =--,消去2y 得2222363(31)31t t t =---考虑几何求法!!解之得:2115t = ,满足2103t <<.故所求直线l0y --=0y +-=.12.设A ,B分别是直线y x =和y x =上的两个动点,并且||20AB =点P 满足OP OA OB =+.记动点P 的轨迹为C . (I ) 求轨迹C 的方程;(II )若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=,求实数λ的取值范围.解:(I )设(,)P x y ,因为A 、B分别为直线5y x =和5y x =-上的点,故可设11(,)5A x x,22(,)5B x x -. ∵OP OA OB =+,∴1212,()5x x x y x x =+⎧⎪⎨=-⎪⎩.∴1212,2x x x x x y +=⎧⎪⎨-=⎪⎩.又20AB =, ∴2212124()()205x x x x -++=.∴22542045y x +=. 即曲线C 的方程为2212516x y +=. (II ) 设N (s ,t ),M (x ,y ),则由DN DM λ=,可得(x ,y-16)=λ (s ,t-16). 故x s λ=,16(16)y t λ=+-.∵ M 、N 在曲线C 上, ∴⎪⎪⎩⎪⎪⎨⎧=+-+=+ 1.16)1616t (25s 1,16t 25s 22222λλλ消去s 得116)1616t (16)t 16(222=+-+-λλλ.由题意知0≠λ,且1≠λ,解得 17152t λλ-=. 又 4t ≤, ∴421517≤-λλ. 解得 3553≤≤λ(1≠λ).故实数λ的取值范围是3553≤≤λ(1≠λ). 13.设双曲线22213y x a -=的两个焦点分别为1F 、2F ,离心率为2. (1)求此双曲线的渐近线1l 、2l 的方程;(y x =) (2)若A 、B 分别为1l 、2l 上的动点,且122||5||AB F F =,求线段AB 的中点M 的轨迹方程,并说明是什么曲线.(22317525x y +=) 提示:||1010AB =⇒=,又11y x =,22y x =,则1221()3y y x x +=-,2112)3y y x x -=+. 又 122x x x =+,122y y y =+代入距离公式即可.(3)过点(1, 0)N 是否存在直线l ,使l 与双曲线交于P 、Q 两点,且0OP OQ ⋅=,若存在,求出直线l 的方程;若不存在,说明理由.(不存在)14.已知点(1, 0)F ,直线:2l x =,设动点P 到直线l的距离为d ,已知||2PF =,且2332d ≤≤. (1)求动点P 的轨迹方程; (2)若13PF OF ⋅=,求向量OP 与OF 的夹角;(3)如图所示,若点G 满足2GF FC =,点M 满足3MP PF =,且线段MG 的垂直平分线经过点P ,求△PGF 的面积.15.如图,直线:1l y kx =+与椭圆22:2C ax y +=(1a >)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点). (1)若1k =,且四边形OAPB 为矩形,求a 的值;(3a =)(2)若2a =,当k 变化时(k R ∈),求点P 的轨迹方程.(22220x y y +-=(0y ≠))16.双曲线C :22221x y a b-=(0a >,0b >)的离心率为2,其中(0,)A b -,(, 0)B a ,且22224||||||||3OA OB OA OB +=⋅.(1)求双曲线C 的方程; (2)若双曲线C 上存在关于直线l :4y kx =+对称的点,求实数k 的取值范围.解:(I )依题意有:2222222c 2,a 4a b a b ,3a b c .⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得:.2,3,1===c b a所求双曲线的方程为.1322=-y x ………………………………………6分 (Ⅱ)当k=0时,显然不存在.………………………………………7分当k≠0时,设双曲线上两点M 、N 关于直线l 对称.由l ⊥MN ,直线MN 的方程为1y x b k=-+.则M 、N 两点的坐标满足方程组由221y x b,k3x y 3.⎧=-+⎪⎨⎪-=⎩消去y 得 2222(3k 1)x 2kbx (b 3)k 0-+-+=.…………………………………9分显然23k 10-≠,∴2222(2kb)4(3k 1)(b 3)k 0∆⎡⎤=---+>⎣⎦.即222k b 3k 10+->. ①设线段MN 中点D (00x ,y )则02202kb x ,3k 13k b y .3k 1-⎧=⎪⎪-⎨⎪=⎪-⎩∵D (00x ,y )在直线l 上,∴22223k b k b43k 13k 1-=+--.即22k b=3k 1- ② 把②带入①中得 222k b +b k0>, 解得b 0>或b 1<-.∴223k 10k ->或223k 1<-1k-.即k >或1k 2<,且k≠0.∴k的取值范围是113(,(,0)(0,)(,)22-∞-+∞.…………………14分 17.已知向量OA =(2,0),OC =AB =(0,1),动点M 到定直线y =1的距离等于d ,并且满足OM ·AM =K(CM ·BM -d 2),其中O 为坐标原点,K 为参数. (Ⅰ)求动点M 的轨迹方程,并判断曲线类型;(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e 满足33≤e ≤22,求实数K 的取值范围.18.过抛物线24y x =的焦点作两条弦AB 、CD ,若0AB CD ⋅=,1()2OM OA OB =+,1()2ON OC OD =+.(1)求证:直线MN 过定点;(2)记(1)中的定点为Q ,求证AQB ∠为钝角; (3)分别以AB 、CD 为直径作圆,两圆公共弦的中点为H ,求H 的轨迹方程,并指出轨迹是什么曲线.19.(05年江西)如图,M 是抛物线上2y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA MB =.(1)若M 为定点,证明:直线EF 的斜率为定值; (2)若M 为动点,且90EMF ∠=,求△EMF 的重心G 的轨迹.思路分析:(1)由直线MF (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去0y 即得到G 的轨迹方程(参数法).解:(1)法一:设200(,)M y y ,直线ME 的斜率为k (0k >),则直线MF 的斜率为k -,方程为200()y y k x y -=-.∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消x 得200(1)0ky y y ky -+-=,解得01F ky y k-=,∴ 202(1)F ky x k -=, ∴0022000022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值).所以直线EF 的斜率为定值.法二:设定点00(,)M x y ,11(,)E x y 、22(,)F x y ,由200211,y x y x ⎧=⎪⎨=⎪⎩ 得 010101()()y y y y x x -+=-,即011ME k y y =+;同理 021MF k y y =+.∵ MA MB =,∴ ME MF k k =-,即010211y y y y =-++,∴ 1202y y y +=-.所以,1212221212120112EF y y y y k x x y y y y y --====---+(定值). 第一问的变式:过点M 作倾斜角互补的直线ME 、MF ,则直线EF 的斜率为定值;根据不同的倾斜角,可得出一组平行弦.(2)90,45,1,EMF MAB k ∠=∠==当时所以直线ME 的方程为200()y y k x y -=-由2002y y x y y x ⎧-=-⎪⎨=⎪⎩得200((1),1)E y y --同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x y ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122()9273y x x =->. 20.如图,ABCD 是边长为2的正方形纸片,沿某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B 都落在边AD 上,记为B ',折痕l 与AB 交于点E ,点M 满足关系式EM EB EB '=+.(1)建立适当的直角坐标系,求点M 的轨迹方程;(2)若曲线C 是由点M 的轨迹及其关于边AB 对称的曲线组成的,F 是AB 边上的一点,4BA BF =,过点F 的直线交曲线C 于P 、Q 两点,且PF FQ λ=,求实数λ的取值范围.。
高中数学解题方法-----求轨迹方程的常用方法
练习
1.一动圆与圆
外切,同时与圆 x2 + y2 − 6x − 91 = 0内切,求动圆圆心
M 的轨迹方程,并说明它是什么样的曲线。
2. 动圆 M 过定点 P(-4,0),且与圆 :C x2+ -y2 8x = 0 相切,求动圆圆心 M 的轨迹方程。 1.在∆ABC 中,B,C 坐标分别为(-3,0),(3,0),且三角形周长为 16,则点 A 的轨迹方 程是_______________________________.
高中数学解题方法
---求轨迹方程的常用方法
(一)求轨迹方程的一般方法: 物1线.)定的义定法义:,如则果可动先点设P出的轨运迹动方规程律,合再乎根我据们已已知知条的件某,种待曲定线方(程如中圆的、常椭数圆,即、可双得曲到线轨、迹抛 方程。 P 满2.足直的译等法量:关如系果易动于点建立P 的,运则动可规以律先是表否示合出乎点我P们所熟满知足的的某几些何曲上线的的等定量义关难系以,判再用断点,但P 点的 坐标(x,y)表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点 P 运动的某个几何 量y=tg,(以t)此,量进作而为通参过变消数参,化分为别轨建迹立的普P 点通坐方标程xF,(yx与,该y)参=数0。t 的函数关系 x=f(t), 4. 代入法(相关点法):如果动点 P 的运动是由另外某一点 P'的运动引发的,而该点的 运出动相规关律点已P'知的,坐(标该,点然坐后标把满P足'的某坐已标知代曲入线已方知程曲),线则方可程以,设即出可得P(到x动,点y),P 的用轨(迹x,方y程)。表示
题目 6:已知点 P 是圆(x +1)2 + y2 =16 上的动点,圆心为 B ,A(1,0) 是圆内的定点;PA 的中垂线交 BP 于点Q .(1)求点Q 的轨迹C 的方程;
高中数学选择性必修第一册 专题研究二 求曲线的轨迹方程
探究 2 (1)相关点法求曲线方程时一般有两个动点,一个是主动的,另一个 是被动的.
(2)当题目中的条件同时具有以下特征时,一般可以用相关点法求其轨迹方 程:
①某个动点 P 在已知方程的曲线上移动; ②另一个动点 M 随 P 的变化而变化; ③在变化过程中 P 和 M 满足一定的规律.
谢
谢
观
看
2 0 22
专题研究二 求曲线的轨迹方程
专题讲解
例 1 设圆 C:(x-1)2+y2=1,过原点 O 作圆的任意弦,求所作弦的中点的 轨迹方程.
【解析】 方法一(直接法):设 OQ 为过 O 的一条弦,P(x,y)为其中点,则 CP⊥OP,OC 中点为 M12,0,
则|MP|=12|OC|=12,得方程x-122+y2=14,考虑轨迹的范围知 0<x≤1. 方法二(定义法):∵∠OPC=90°, ∴动点 P 在以 M12,0为圆心,OC 为直径的圆上,|OC|=1,再利用圆的方 程得解.
探究 1 本题中的四种方法是求轨迹方程的常用方法,我们已在本章的前几 节中做过较多的讨论,故解析时只做扼要总结即可.
例 2 设动直线 l 垂直于 x 轴,且与椭圆 x2+2y2=4 交于 A,B 两点,P 是 l 上满足P→A·P→B=1 的点,求点 P 的轨迹方程.
【解析】 设 P(x,y),A,B y2=t2,1<t<3 与椭圆 C2:x92+y2 =1 相交于 A,B,C,D 四点,点 A1,A2 分别为 C2 的左、右 顶点.求直线 AA1 与直线 A2B 的交点 M 的轨迹方程.
【解析】 由椭圆 C2:x92+y2=1,知 A1(-3,0),A2(3,0). 设点 A 的坐标为(x0,y0),由圆和椭圆的对称性,得点 B 的坐标为(x0,-y0). 设点 M 的坐标为(x,y),
高中数学求轨迹方程的六种常用技法
求轨迹方程的六种常用技法轨迹方程的探求是解析几何中的基本问题之一,也是近几年来高考中的常见题型之一。
学生解这类问题时,不善于揭示问题的内部规律及知识之间的相互联系,动辄就是罗列一大堆的坐标关系,进行无目的大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结和归纳探求轨迹方程的常用技法,对提高学生的解题能力、优化学生的解题思路很有帮助。
本文通过典型例子阐述探求轨迹方程的常用技法。
1.直接法根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。
例1.已知线段6=AB ,直线BM AM ,相交于M ,且它们的斜率之积是49,求点M 的轨迹方程。
解:以AB 所在直线为x 轴,AB 垂直平分线为y 轴建立坐标系,则(3,0),(3,0)A B -,设点M 的坐标为(,)x y ,则直线AM 的斜率(3)3AM y k x x =≠-+,直线BM 的斜率(3)3AM y k x x =≠- 由已知有4(3)339y y x x x •=≠±+- 化简,整理得点M 的轨迹方程为221(3)94x y x -=≠± 练习:1.平面内动点P 到点(10,0)F 的距离与到直线4x =的距离之比为2,则点P 的轨迹方程是 。
2.设动直线l 垂直于x 轴,且与椭圆2224x y +=交于A 、B 两点,P 是l 上满足1PA PB ⋅=的点,求点P 的轨迹方程。
3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是 A .直线 B .椭圆 C .抛物线 D .双曲线 2.定义法通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。
几种高中数学轨迹方程的常用解法分析
探索篇•方法展示几种高中数学轨迹方程的常用解法分析张成兵(江苏省宿迁市文昌高级中学,江苏宿迁)在高中数学的教学大纲以及高考的考查范围内,对于平面上动点的轨迹方程求解内容都是十分重要的。
轨迹也就是点的集合,方程则是实数对所构成的集合[1]。
基于某种条件来对某个动点的轨迹方程进行求解,本质上是找到不同变量之间的潜在关系,而这种关系的明确和求得则需要以已知点的特点为基础,即需要充分利用已知的条件。
在解决实际问题的过程中,因为动点所呈现出的规律不同,因此也需要采用不同的方法[2]。
一、采用直接法求解轨迹方程在实际求解过程中,如果题目当中的动点自身是几何量等量关系,这些条件表达起来十分简单明了,这样的情况下可以直接将条件进行转化,将其变为由X 、Y 等字母所形成的等式,这样就可以得到动点的轨迹方程。
如:已知点A (-2,0),B (2,0),点P 满足条件为PA ·PB =12,求p 点轨迹方程。
在看到这个题目时应当遵循求轨迹方程的基本步骤,具体求解步骤如下所示:(1)结合题目实际要求构建平面直角坐标系;(2)将运动轨迹上任何一点的坐标设置为n (X ,Y );(3)找到关系式,需要满足已知点和动点都满足的关系式;(4)将已知点和动点的坐标代入方程当中;(5)对方程进行化简处理;(6)需要对曲线方程是否为轨迹方程进行验证,但是在具体求解时第(3)步和第(5)步通常会被忽略。
根据这个求解思路,对以上问题进行解决,解法如下:设(x ,y ),则PA =-2-x ,-y ),PB =2-x ,-y ),所以PA ·PB =-2-x )(2-x )+(-y )(-y )=(x 2-4+4y 2)=12对以上公式整理可以得到:x 2+y 2=16二、采用定义法求解轨迹方程该方法的应用需要满足动点轨迹符合基本轨迹的相关定义,这样才可以根据已有的定义来直接得到某个动点的轨迹方程。
通常情况下可以满足的定义为抛物线、椭圆、双曲线以及圆等,这些可以直接采用定义法来求得相应的轨迹方程[3]。
(完整版)高中数学动点轨迹问题专题讲解
动点轨迹问题专题讲解一.专题内容:求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程.(3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程.(4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可. (5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系). 注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练(一)选择、填空题1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段2.( )设(0,5)M ,(0,5)N -,MNP ∆的周长为36,则MNP ∆的顶点P 的轨迹方程是(A )22125169x y +=(0x ≠) (B )221144169x y +=(0x ≠) (C )22116925x y +=(0y ≠) (D )221169144x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;4.P 在以1F 、2F 为焦点的双曲线221169x y -=上运动,则12F F P ∆的重心G 的轨迹方程是 ;5.已知圆C :22(16x y +=内一点)A ,圆C 上一动点Q , AQ 的垂直平分线交CQ 于P 点,则P 点的轨迹方程为 .2214x y += 6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是 ;221916x y -=(3x >) 变式:若点P 为双曲线221916x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的内切圆圆心的轨迹方程是 ;推广:若点P 为椭圆221259x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是 .(212y x =)8.抛物线22y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .(4kx =(28k y >))9.过抛物线24y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时, 弦PQ 中点的轨迹方程为 . 解法分析:解法1 当直线PQ 的斜率存在时,设PQ 所在直线方程为 (1)y k x =-与抛物线方程联立,2(1),4y k x y x=-⎧⎨=⎩ 消去y 得 2222(24)0k x k x k -++=. 设11(,)P x y ,22(,)Q x y ,PQ 中点为(,)M x y ,则有21222,22(1).x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩消k 得22(1)y x =-.当直线PQ 的斜率不存在时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-. 解法2 设11(,)P x y ,22(,)Q x y ,由2112224,4.y x y x ⎧=⎪⎨=⎪⎩ 得121212()()4()y y y y x x -+=-,设PQ 中点为(,)M x y ,当12x x ≠时,有121224y y y x x -⋅=-,又1PQ MF yk k x ==-,所以,21yy x ⋅=-,即22(1)y x =-. 当12x x =时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-.10.过定点(1, 4)P 作直线交抛物线:C 22y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.44y x =-(二)解答题1.一动圆过点(0, 3)P ,且与圆22(3)100x y ++=相内切,求该动圆圆心C 的轨迹方程. (定义法)2.过椭圆221369x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF A E =,2A 为椭圆另一顶点,连结OF 交2A E 于点P , 求动点P 的轨迹方程.(直接法、定义法;突出转化思想)3.已知1A 、2A 是椭圆22221x y a b+=的长轴端点,P 、Q 是椭圆上关于长轴12A A 对称的两点,求直线1PA 和2QA 的交点M 的轨迹.(交轨法)4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足||||MA MC =, GM AB R λλ=(∈).(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足||||AP AQ =,试求k 的取值范围.解:(1)设(,)C x y ,则由重心坐标公式可得(,)33x yG . ∵ GM AB λ=,点M 在x 轴上,∴ (,0)3x M .∵ ||||MA MC =,(0,1)A -,∴=,即 2213x y +=. 故点C 的轨迹方程为2213x y +=(1y ≠±).(直接法) (2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N . 由22,3 3.y kx b x y =+⎧⎨+=⎩消y ,得222(13)63(1)0k x kbx b +++-=.∴ 22223612(13)(1)0k b k b ∆=-+->,即22130k b +->. ①又122613kbx x k+=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++, ∴ 223(,)1313kb bN k k-++. ∵ ||||AP AQ =,∴ AN PQ ⊥,∴ 1ANk k =-,即 221113313bk kb k k ++=--+,∴ 2132k b +=,又由①式可得 220b b ->,∴ 02b <<且1b ≠.∴ 20134k <+<且2132k +≠,解得11k -<<且3k ≠±. 故k 的取值范围是11k -<<且k ≠. 5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ⋅=⋅. (Ⅰ)求动点P 的轨迹C 的方程;(直接法)(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ⋅为定值.解:(Ⅰ)设(,)P x y .由已知(,2)MP x y =+,(0,4)MN =,(,2)PN x y =--,48MP MN y ⋅=+.4PN MN x ⋅=……………………………………………3分∵MP MN PN MN ⋅=⋅,∴48y += 整理,得 28x y =.即动点P 的轨迹C 为抛物线,其方程为28x y =.6.已知O 为坐标原点,点(1,0)E -、(1,0)F ,动点A 、M 、N 满足||||AE m EF =(1m >),0MN AF =⋅,1()2ON OA OF =+,//AM ME .求点M 的轨迹W 的方程.解:∵0MN AF ⋅=,1()2ON OA OF =+,∴ MN 垂直平分AF .又//AM ME ,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===,||||MA MF =, ∴ ||||2||ME MF m EF +=>,∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >).7.设,x y R ∈,,i j 为直角坐标系内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++,(2)b xi y j =+-, 且||||8a b +=.(1)求点(,)M x y 的轨迹C 的方程;(定义法)(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程,若不存在,试说明理由.解:(1)2211216x y +=; (2)因为l 过y 轴上的点(0,3).若直线l 是y 轴,则,A B 两点是椭圆的顶点.0OP OA OB =+=,所以P 与O 重合,与四边形OAPB 是矩形矛盾. 故直线l 的斜率存在,设l 方程为3y kx =+,1122(,),(,)A x y B x y .由223,1,1216y kx x y =+⎧⎪⎨+=⎪⎩ 消y 得22(43)18210,k x kx ++-=此时22(18)4(43)(21)k k ∆=-+->0恒成立,且1221843k x x k +=-+,1222143x x k =-+, OP OA OB =+,所以四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA OB ⊥,即0OA OB ⋅=.1122(,),(,)OA x y OB x y ==,∴ 12120OA OB x x y y ⋅=+=.即21212(1)3()90k x x k x x ++++=.2222118(1)()3()4343k k k k k +⋅-+⋅-++ 90+=.2516k =,得54k =±. 故存在直线l :534y x =±+,使得四边形OAPB 是矩形. 8.如图,平面内的定点F 到定直线l 的距离为2,定点E 满足:||EF =2,且EF l ⊥于G ,点Q 是直线l 上一动点,点M 满足:FM MQ =,点P 满足://PQ EF ,0PM FQ ⋅=. (I )建立适当的直角坐标系,求动点P 的轨迹方程;(II )若经过点E 的直线1l 与点P 的轨迹交于相异两点A 、B ,令AFB θ∠=,当34πθπ≤<时,求直线1l 的斜率k 的取值范围.解:(1)以FG 的中点O 为原点,以EF 所在直线为y 轴,建立平面直角坐标系xoy ,设点(,)P x y ,则(0, 1)F ,(0, 3)E ,:1l y =-.∵ FM MQ =,//PQ EF ,∴(,1)Q x -,(, 0)2x M .∵0PM FQ ⋅=,∴ ()()(2)02xx y -⨯+-⨯-=,即所求点P 的轨迹方程为24x y =. (2)设点))(,(),,(212211x x y x B y x A ≠设AF 的斜率为1k ,BF 的斜率为2k ,直线1l 的方程为3+=kx y由⎩⎨⎧=+=yx kx y 432…………6分 01242=--kx x 得 1242121-==+∴x x k x x …………7分 9)4(44221222121==⋅=∴xx x x y y646)(22121+=++=+k x x k y y …………8分)1)(1()1,(),1,,(21212211--+=⋅∴-=-=y y x x FB FA y x FB y x FA841649121)(22212121--=+--+-=++-+=k k y y y y x x)1)(1(||||21++=⋅y y FB FA 又16416491)(222121+=+++=+++=k k y y y y4216484||||cos 2222++-=+--=⋅=∴k k k k FB FA θ…………10分 由于πθπ<≤43 2242122cos 122-≤++-<--≤<-∴k k 即θ…………11分 222242222≥∴≥++∴k k k解得4488-≤≥k k 或…………13分∴直线1l 斜率k 的取值范围是}8,8|{44-≥≥k k k 或9.如图所示,已知定点(1, 0)F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=,||||PM PN =. (1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A 、B 两点,若4OA OB ⋅=-,且||AB ≤求直线l 的斜率k 的取值范围.解:(1)设(,)N x y ,由||||PM PN =得(,0)M x -,(0, )2y P ,(,)2y PM x =--,(1,)2y PF =-,又0PM PF ⋅=,∴204y x -+=,即动点N 的轨迹方程为24y x =. (2)10.已知点(0, 1)F ,点M 在x 轴上,点N 在y 轴上,P 为动点,满足0MN MF ⋅=,0MN MP +=.(1)求P 点轨迹E 的方程;(2)将(1)中轨迹E 按向量(0, 1)a =平移后得曲线E ',设Q 是E '上任一点,过Q 作圆22(1)1x y ++=的两条切线,分别交x 轴与A 、B 两点,求||AB 的取值范围.解:(1)设(, 0)M a 、(0, )N b 、(,)P x y ,则(,)MN a b =-、(, 1)MF a =-、(, )MP x a y =-.由题意得(, )(, 1)0,(, )(,)(0, 0).a b a a b x a y -⋅-=⎧⎨-+-=⎩ ∴ 20,, ,2a b xa b y ⎧+=⎪⎨==-⎪⎩ ∴ 214y x =, 故动点P 的轨迹方程为214y x =. (2)11.如图()A m和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-, O 为坐标原点,动点P 满足OP OA OB =+.(1)求m n ⋅的值; (2)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(3)若直线l 过点(2, 0)E 交(2)中曲线C 于M 、N 两点,且3ME EN =,求l 的方程. 解:(1)由已知得1()(,)22OA OB m n mn ⋅=⋅=-=-,∴ 14mn =. (2)设P 点坐标为(,)x y (0x >),由OP OA OB =+得(,)()(,)x y m n =+())m n m n =+-,∴,)x m n y m n =+⎧⎪⎨=-⎪⎩ 消去m ,n 可得2243y x mn -=,又因14mn =,∴ P 点的轨迹方程为221(0)3y x x -=>.它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支.(3)设直线l 的方程为2x ty =+,将其代入C 的方程得223(2)3ty y +-= 即 22(31)1290t y ty -++=,易知2(31)0t -≠(否则,直线l的斜率为又22214436(31)36(1)0t t t ∆=--=+>,设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==-- ∵ l 与C 的两个交点,M N 在y 轴的右侧212121212(2)(2)2()4x x ty ty t y y t y y =++=+++2222291234240313131t t t t t t t -+=⋅+⋅+=->---, ∴ 2310t -<,即2103t <<,又由120x x +>同理可得 2103t <<,由3ME EN =得 1122(2,)3(2,)x y x y --=-, ∴ 121223(2)3x x y y -=-⎧⎨-=⎩由122222123231t y y y y y t +=-+=-=--得22631t y t =-,由21222229(3)331y y y y y t =-=-=-得222331y t =--,消去2y 得 2222363(31)31t t t =---考虑几何求法!! 解之得:2115t = ,满足2103t <<.故所求直线l0y --=0y +-=.12.设A ,B分别是直线y x =和y x =上的两个动点,并且||20AB =点P 满足OP OA OB =+.记动点P 的轨迹为C . (I ) 求轨迹C 的方程;(II )若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=,求实数λ的取值范围.解:(I )设(,)P x y ,因为A 、B分别为直线5y x =和5y x =-上的点,故可设11()A x x,22(,)B x x . ∵OP OA OB =+,∴1212,()5x x x y x x =+⎧⎪⎨=-⎪⎩.∴1212,2x x x x x y +=⎧⎪⎨-=⎪⎩.又20AB =, ∴2212124()()205x x x x -++=.∴22542045y x +=. 即曲线C 的方程为2212516x y +=. (II ) 设N (s ,t ),M (x ,y ),则由DN DM λ=,可得(x ,y-16)=λ (s ,t-16). 故x s λ=,16(16)y t λ=+-.∵ M 、N 在曲线C 上, ∴⎪⎪⎩⎪⎪⎨⎧=+-+=+ 1.16)1616t (25s 1,16t 25s 22222λλλ消去s 得116)1616t (16)t 16(222=+-+-λλλ.由题意知0≠λ,且1≠λ,解得 17152t λλ-=. 又 4t ≤, ∴421517≤-λλ. 解得 3553≤≤λ(1≠λ).故实数λ的取值范围是3553≤≤λ(1≠λ). 13.设双曲线22213y x a -=的两个焦点分别为1F 、2F ,离心率为2. (1)求此双曲线的渐近线1l 、2l 的方程;(3y x =±) (2)若A 、B 分别为1l 、2l 上的动点,且122||5||AB F F =,求线段AB 的中点M 的轨迹方程,并说明是什么曲线.(22317525x y +=) 提示:()221212||10()10AB x x y y =⇒-+-=,又1133y x =-,2233y x =, 则12213()3y y x x +=-,21123()3y y x x -=+. 又 122x x x =+,122y y y =+代入距离公式即可.(3)过点(1, 0)N 是否存在直线l ,使l 与双曲线交于P 、Q 两点,且0OP OQ ⋅=,若存在,求出直线l 的方程;若不存在,说明理由.(不存在) 14.已知点(1, 0)F ,直线:2l x =,设动点P 到直线l 的距离为d ,已知2||2PF d =,且2332d ≤≤. (1)求动点P 的轨迹方程; (2)若13PF OF ⋅=,求向量OP 与OF 的夹角;(3)如图所示,若点G 满足2GF FC =,点M 满足3MP PF =,且线段MG 的垂直平分线经过点P ,求△PGF 的面积.15.如图,直线:1l y kx =+与椭圆22:2C ax y +=(1a >)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点). (1)若1k =,且四边形OAPB 为矩形,求a 的值;(3a =)(2)若2a =,当k 变化时(k R ∈),求点P 的轨迹方程.(22220x y y +-=(0y ≠))16.双曲线C :22221x y a b -=(0a >,0b >)的离心率为2,其中(0,)A b -,(, 0)B a ,且22224||||||||3OA OB OA OB +=⋅.(1)求双曲线C 的方程; (2)若双曲线C 上存在关于直线l :4y kx =+对称的点,求实数k 的取值范围. 解:(I )依题意有:lxyCGFOPM2222222c 2,a 4a b a b ,3a b c .⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得:.2,3,1===c b a所求双曲线的方程为.1322=-y x ………………………………………6分 (Ⅱ)当k=0时,显然不存在.………………………………………7分当k≠0时,设双曲线上两点M 、N 关于直线l 对称.由l ⊥MN ,直线MN 的方程为1y x b k=-+.则M 、N 两点的坐标满足方程组由221y x b,k3x y 3.⎧=-+⎪⎨⎪-=⎩消去y 得 2222(3k 1)x 2kbx (b 3)k 0-+-+=.…………………………………9分显然23k 10-≠,∴2222(2kb)4(3k 1)(b 3)k 0∆⎡⎤=---+>⎣⎦.即222k b 3k 10+->. ①设线段MN 中点D (00x ,y )则02202kb x ,3k 13k b y .3k 1-⎧=⎪⎪-⎨⎪=⎪-⎩∵D (00x ,y )在直线l 上,∴22223k b k b43k 13k 1-=+--.即22k b=3k 1- ② 把②带入①中得 222k b +bk 0>, 解得b 0>或b 1<-.∴223k 10k ->或223k 1<-1k-.即k >或1k 2<,且k≠0.∴k 的取值范围是113(,)(,0)(0,)(,)3223-∞--+∞.…………………14分 17.已知向量OA =(2,0),OC =AB =(0,1),动点M 到定直线y =1的距离等于d ,并且满足OM ·AM =K(CM ·BM -d 2),其中O 为坐标原点,K 为参数. (Ⅰ)求动点M 的轨迹方程,并判断曲线类型;(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e 满足33≤e ≤22,求实数K 的取值范围.18.过抛物线24y x =的焦点作两条弦AB 、CD ,若0AB CD ⋅=,1()2OM OA OB =+,1()2ON OC OD =+.(1)求证:直线MN 过定点;(2)记(1)中的定点为Q ,求证AQB ∠为钝角; (3)分别以AB 、CD 为直径作圆,两圆公共弦的中点为H ,求H 的轨迹方程,并指出轨迹是什么曲线.19.(05年江西)如图,M 是抛物线上2y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA MB =.(1)若M 为定点,证明:直线EF 的斜率为定值; (2)若M 为动点,且90EMF ∠=,求△EMF 的重心G 的轨迹.思路分析:(1)由直线MF (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去0y 即得到G 的轨迹方程(参数法).解:(1)法一:设200(,)M y y ,直线ME 的斜率为k (0k >),则直线MF 的斜率为k -,方程为200()y y k x y -=-.∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消x 得200(1)0ky y y ky -+-=,解得01F ky y k-=,∴ 202(1)F ky x k -=, ∴0022000022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值).所以直线EF 的斜率为定值.法二:设定点00(,)M x y ,11(,)E x y 、22(,)F x y ,由200211,y x y x ⎧=⎪⎨=⎪⎩ 得 010101()()y y y y x x -+=-,即011ME k y y =+;同理 021MF k y y =+.∵ MA MB =,∴ ME MF k k =-,即010211y y y y =-++,∴ 1202y y y +=-.所以,1212221212120112EF y y y y k x x y y y y y --====---+(定值). 第一问的变式:过点M 作倾斜角互补的直线ME 、MF ,则直线EF 的斜率为定值;根据不同的倾斜角,可得出一组平行弦.(2)90,45,1,EMF MAB k ∠=∠==当时所以直线ME 的方程为200()y y k x y -=-由2002y y x y y x ⎧-=-⎪⎨=⎪⎩得200((1),1)E y y --同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x y ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122()9273y x x =->. 20.如图,ABCD 是边长为2的正方形纸片,沿某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B 都落在边AD 上,记为B ',折痕l 与AB 交于点E ,点M 满足关系式EM EB EB '=+.(1)建立适当的直角坐标系,求点M 的轨迹方程;(2)若曲线C 是由点M 的轨迹及其关于边AB 对称的曲线组成的,F 是AB 边上的一点,4BA BF =,过点F 的直线交曲线C 于P 、Q 两点,且PF FQ λ=,求实数λ的取值范围.。
高中数学求轨迹方程的六种常用技法
练习:1.平面内动点到点的距离与到直线的距离之比为2,则点的轨迹方程是。
2.设动直线垂直于轴,且与椭圆交于、两点,是上满足的点,求点的轨迹方程。
3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是
A.直线B.椭圆C.抛物线D.双曲线
, 又因为所以
化简得点的轨迹方程
6.先用点差法求出,但此时直线与双曲线并无交点,所以这样的直线不存在。中点弦问题,注意双曲线与椭圆的不同之处,椭圆不须对判别式进行检验,而双曲线必须进行检验。
7.解:设,则
由
即 所以点的轨迹是以为圆心,以3为半径的圆。
∵点是点关于直线的对称点。
∴动点的轨迹是一个以为圆心,半径为3的圆,其中是点关于直线的对称点,即直线过的中点,且与垂直,于是有
得, 即交点的轨迹方程为
解2: (利用角作参数)设,则
所以 ,两式相乘消去
即可得所求的点的轨迹方程为 。
练习:10.两条直线和的交点的轨迹方程是_________。
总结归纳
1.要注意有的轨迹问题包含一定隐含条件,也就是曲线上点的坐标的取值范围.由曲线和方程的概念可知,在求曲线方程时一定要注意它的“完备性”和“纯粹性”,即轨迹若是曲线的一部分,应对方程注明的取值范围,或同时注明的取值范围。
2.定义法
通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。
例2.xx的两顶点,和两边上的中线长之和是,则的重心轨迹方程是_______________。
求动点轨迹方程最简捷的四种方法
2023年4月上半月㊀学法指导㊀㊀㊀㊀求动点轨迹方程最简捷的四种方法◉安徽省全椒县城东中学㊀殷宏林㊀㊀摘要:求符合某种条件的动点轨迹方程,实际上就是利用已知的点的坐标之间的运动规律去寻找变量间的关系.求轨迹方程的常规思路,就是想方设法地把题目中的几何问题转化为代数方程问题来解决.关键词:参数法;复数法;交轨法;相关点法㊀㊀求动点的轨迹方程既是高中数学教学大纲要求掌握的主要内容,也是近年来高考考查的高频考点[1].这类题型由于涉及到的知识点多,综合性较强,考查的范围广,分值较高,因此学习和掌握求轨迹方程的方法与技巧,已成为考生在高考中夺取高分的必要条件.轨迹是指点的集合,而方程是实数对的集合.二者看似毫不相干,实则它们之间是可以沟通转化的,求轨迹方程运用的就是这种转化思想.由于动点运动规律所给出的条件不同,因此求动点轨迹方程的方法也就不同[2],但其中最简捷㊁最实用的有以下四种.1参数法当所求动点满足的几何条件不易得出,也看不出明显的相关性时,如果经过仔细观察,发现这个动点的运动常常会受到某个变量(时间㊁角度㊁斜率㊁比值等)的制约,那么我们就可以用这个变量作参数,建立轨迹的参数方程,这就是参数法.图1例1㊀动直线l 与单位圆交于不同的两点A ,B ,当l 总保持平行于直线y =2x 的条件下移动时,求弦A B 中点轨迹的方程.解:由l 平行于直线y =2x ,可设l 的方程为y =2x +b (b 为参数),将其代入单位圆的方程x 2+y 2=1中,整理得5x 2+4b x +b 2-1=0.如图1,因为l 与单位圆有两个交点,所以Δ=16b 2-20b 2+20=20-4b 2>0,则-5<b <5.设弦A B 的中点为P (x ,y ),根据韦达定理可知x =x 1+x 22=-25b ,代入l 的方程中,得y =b5.所以中点P 的轨迹方程为x =-25b ,y =b 5,ìîíïïïï其中-5<b <5.消去参数b ,得x +2y =0(-255<x <255),此即为弦A B 中点轨迹的普通方程,其轨迹为单位圆中的一条线段.思路与方法:从本题的解题思路可以看出以下几点.①利用几何直观即可判断出动点轨迹为过原点且垂直于y =2x 的含于单位圆中的线段;②当动点位置随着直线的平行移动而变化时,常选择截距作为参数较方便;③在求轨迹方程时,只要参数选择得当,常能使问题获得更简捷的解法.2复数法有些问题可以由复数的几何意义将动点和已知点表示成复数式,然后经过复数运算转化为动点的轨迹,这就是复数法.当涉及有向线段绕定点旋转,长度伸缩变化,或可用复数模的形式给出坐标间关系等问题时,运用复数法求解最简捷.图2例2㊀如图2,以抛物线y 2=4x 的焦半径F B 为对角线作正方形F A B C (顶点按逆时针方向顺序排列).求顶点C 的轨迹方程.解:因为抛物线y 2=4x 中焦参数p =2,所以焦点坐标为F (1,0).设动点C (x ,y ),其相关点B (x ᶄ,yᶄ).把x 轴看作实轴,y 轴为虚轴,则在复平面上,有z C =x +y i ,z B =x ᶄ+y ᶄi ,z F =1,所以z F Cң=(x -1)+y i ,z F Bң=(x ᶄ-1)+y ᶄi .由øB F C =π4,F B =2F C ,得z F B ң=z F C ңˑ2c o s (-π4)+i s i n (-π4)éëêêùûúú,即(x ᶄ-1)+y ᶄi=[(x -1)+y i ] 2(22-22i )=[(x -1)+y ]+[y -(x -1)]i .所以x ᶄ-1=x -1+y ,y ᶄ=y -x +1,{即x ᶄ=x +y ,yᶄ=y -x +1.{因为点B 在y 2=4x 上,所以(yᶄ)2=4x ᶄ.故(y -x +1)2=4(x +y ).整理即得动点C 的轨迹方程为14Copyright ©博看网. All Rights Reserved.学法指导2023年4月上半月㊀㊀㊀x 2+y 2-2x y -6x -2y =0.思路与方法:本题通过建立复平面,利用复数加法和乘法的几何意义,求出动点对应的复数表达式,然后通过比较实部㊁虚部求得动点的轨迹方程.3交轨法在求动点轨迹时,有时会遇到求两动曲线交点的轨迹问题.这类问题可以通过解方程组求出含参数的交点坐标,再消去参数得出所求轨迹的方程,这就是交轨法.图3例3㊀在直角坐标系中,矩形O A B C 的边O A =a ,O C =b ,点D 在A O 的延长线上,D O =a ,设M ,N 分别是O C ,B C 上的动点,使O M ʒM C =B N ʒN C ʂ0,求直线DM 和A N 的交点P 的轨迹方程.解:如图3,建立平面直角坐标系,则各点的坐标分别为A (a ,0),C (0,b ),D (-a ,0),B (a ,b ),设P (x ,y ).设O M ʒM C =B N ʒN C =λ(ʂ0).由定比分点公式,得M (0,λb 1+λ),N (a1+λ,b ).根据两点式,可得直线DM ,A N 的方程分别为㊀㊀㊀㊀y =λba (1+λ)(x +a ),①㊀㊀㊀㊀y =-b (1+λ)λa(x -a ).②①ˑ②,得y 2=-b 2a 2(x 2-a2),即x 2a 2+y 2b2=1(0<x <a ,0<y <b ).故点P 的轨迹方程为x 2a 2+y 2b2=1其中0<x <a ,0<b <y .思路与方法:本题中由于动点P 为动直线DM ,A N 的交点,两动直线均有一定点(D ,A )一动点(M ,N ),而两动点又满足O M ʒM C =B N ʒN C 这一比值条件,所以设此比值为参数较为方便.从本题的求解过程我们发现,运用交轨法求解时,可以不用求交点的坐标,只要能消掉参数,得出点P 的坐标间的关系即可.这也充分展示了运用交轨法求轨迹方程的便捷性与实用性.4相关点法在求动点轨迹方程的过程中,有时动点满足的条件不方便用等式列出,但动点是随着另外相关点而运动的.如果相关点所满足的条件能够看出,或可分析出,这时就可以用动点的坐标来表示相关点的坐标,根据相关点所满足的方程就能够求得动点的轨迹方程,这就是相关点法.图4例4㊀已知定点O (0,0)和A (6,0),M 为O A 的中点,以O A为一边作菱形O A B C ,M B 与A C 交于点P ,当菱形变动时,求点P 的轨迹方程.解:如图4,设动点P (x ,y ),其相关点B (x ᶄ,yᶄ).由A (6,0),得M (3,0).易知M P P B =12.所以由x =3+12x ᶄ1+12,y =0+12y ᶄ1+12,ìîíïïïïïïïïïï得x ᶄ=3x -6,y ᶄ=3y .{由A B =O A =6,可得(x ᶄ-6)2+(yᶄ-0)2=6.即(3x -6-6)2+(3y -0)2=6.整理,得(x -4)2+y 2=4.因为点P 不可能在x 轴上,所以点P 的轨迹方程为(x -4)2+y 2=4(y ʂ0).思路与方法:本题分析已知点与动点间的关系时,找出相关点是关键的一步.在图4中,若连接O B ,则可知P 为әA B O 的重心,所以选B 为相关点更方便;当然也可由A C 平分øO A B ,推知|B P ||PM |=2.事实上,求已知曲线关于某定点(或定直线)的中心对称(或轴对称)的曲线方程时,通常选择相关点法较简捷[3].5结论从上述典型实例可以看出,求动点轨迹方程的方法虽然很多,但上述四种方法最简捷,也非常实用,值得学生借鉴.当然,在求轨迹方程的过程中,要注意以上方法的灵活运用.对同一问题,若几种方法都可解决时,应择优选用;对较复杂的问题,有时需将两种或两种以上的方法结合起来使用.参考文献:[1]钟载硕.求动点轨迹方程八法[J ].理科考试研究:高中版,2004(3):10G14.[2]张黎青.求动点轨迹方程的常用方法介绍[J ].新高考(高二语数外),2010(2):33G35.[3]陆钧.浅谈求动点轨迹方程[J ].理科考试研究:高中版,2006(11):12G13.Z 24Copyright ©博看网. All Rights Reserved.。
高中数学 轨迹问题专题
轨迹问题专题一.综述(一)求动点的轨迹方程的基本步骤:⒈依据题目建立适当的坐标系,设出动点M (x ,y )的坐标.⒉写出点M 的集合(几何关系).⒊将几何关系转化为代数关系,列出方程f (x ,y )=0,化简方程为最简形式.4.检验特殊点,进行必要的文字说明.(二)高考中常见的求轨迹方程的方法有:1.直译法与定义法,2.相关点法;3.参数法;4.交轨法(三)求轨迹方程一般以解答题第一问的形式出现,偶尔也会在小题中考查.二.例题精讲 破解规律例1. 设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .证明为定值,并写出点E 的轨迹方程.分析: 题目中要求证明为定值,容易知道, E 的轨迹是椭圆,根据条件求出相关的参数即可.222150x y x ++-=EA EB +EA EB+点评:平面几何相关知识是解决本题的关键,平时学习中要加以重视.规律总结: (1)直译法求轨迹方程:题目给出的条件可以直接得到一个关于动点坐标的关系式,化简即可.(2)定义法求轨迹方程:轨迹方程问题中,若能得到与我们所学过的圆锥曲线定义相符的结论,可以根据相应圆锥曲线的定义求出相关的参数,从而得到方程.(3)定义法求轨迹方程本质上还是直译法,只是我们利用了直译法得到的结论. 现学现用1:如图,矩形中, 且, 交于点.若点的轨迹是曲线的一部分,曲线关于轴、轴、原点都对称,求曲线的轨迹方程.例2. 已知线段的端点的坐标是,端点在圆上运动.求线段的中点的轨迹的方程;规律总结:相关点法求轨迹方程: 题中涉及了两个动点N 、M ,且点N 的运动是有规律的(轨迹方程已知),而M 的运动是由N 的运动而引发的,这样的题目可采用相关点法求动点M 的轨迹方程.基本方法是设M 的坐标,再反解出N 的坐标,然后带入N 所在曲线的轨迹方程,整理即可.现学现用2: 设O 为坐标原点,动点M 在椭圆C :上,过M 做x 轴ABCD ()()()()2,0,2,0,2,2,2,2A B C D --,AM AD DN DC λλ==[]0,1,AN λ∈BM Q Q P P x y P AB B ()6,5A ()()221:434C x y -+-=AB P 2C 2212x y +=的垂线,垂足为N ,点P 满足.求点P 的轨迹方程;例3: 已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(Ⅰ)若在线段上,是的中点,证明;(Ⅱ)若的面积是的面积的两倍,求中点的轨迹方程.点评:本题考查抛物线定义与几何性质、直线与抛物线位置关系、轨迹求法规律总结: 当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一变量(或多个)的关系,再消去参变量,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法现学现用3: 已知为椭圆的左、右焦点,点在椭圆上移动时, 的内心的轨迹方程为__________.三.课堂练习 强化技巧 2NP NM =C 22y x =F x 12,l l C A B ,C P Q ,F AB R PQ AR FQ ∥PQF △ABF △AB 12,F F 22:143x y C +=P C 12PF F ∆I1. 已知|| =3,A ,B 分别在x 轴和y 轴上运动,O 为原点, ,则点P 的轨迹方程为( ).A .B .C .D .2. 若动圆与圆和圆都外切,则动圆的圆心的轨迹( ) A . 是椭圆 B . 是一条直线 C . 是双曲线的一支 D . 与的值有关3. 已知直线过抛物线: 的焦点, 与交于, 两点,过点, 分别作的切线,且交于点,则点的轨迹方程为________.四.课后作业 巩固内化1. 设过点的直线分别与轴的正半轴和轴的正半轴交于、两点,点与点关于轴对称, 为原点,若为的中点,且,则点的轨迹方程为__________.2. 已知A(1,14),B(−1,14),直线AM ,BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率的差是12,则点M 的轨迹C 的方程是___________.3. .点P 是圆C:(x +2)2+y 2=4上的动点,定点F (2,0),线段PF 的垂直平分线与直线CP 的交点为Q ,则点Q 的轨迹方程是___. AB 12OP OA OB 33=+22y x 14+=22x y 14+=22x y 19+=22y x 19+=P ()22:21M x y ++=()()22:314N x y λλ++=≤≤P λl C 24y x =l C A B A B C P P (),P x y x y A B Q P y O P AB 1OQ AB ⋅=P4. 如下图,在平面直角坐标系中,直线与直线之间的阴影部分即为,区域中动点到的距离之积为1.求点的轨迹的方程;5. 已知动圆过定点,且在轴上截得的弦长为.求动圆的圆心点的轨迹方程;6. 在平面直角坐标系中,设动点到两定点, 的距离的比值为的轨迹为曲线.求曲线的方程;7. 已知动点E 到点A 与点B 的直线斜率之积为,点E 的轨迹为曲线C .求C 的方程;8. 平面直角坐标系中,圆的圆心为.已知点,且为圆上的动点,线段的中垂线交于点.求点的轨迹方程;9. 设M,N,T 是椭圆x 216+y 212=1上三个点,M,N 在直线x =8上的射影分别为xOy 1:l y x =2:l y x =-W W (),P x y 12,l l PC G ()4,0F y 8G G xOy P ()2,0M -()1,0N 2C C ()2,0()2,0-14-xOy 222150x y x ++-=M ()1,0N T M TN TM P PM1,N1.(1)若直线MN过原点O,直线MT,NT斜率分别为k1,k2,求证:k1k2为定值;(2)若M,N不是椭圆长轴的端点,点L坐标为(3,0),ΔM1N1L与ΔMNL面积之比为5,求MN中点K的轨迹方程.10. 已知椭圆Γ:x2a2+y2b2=1(a>b>0)的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,O为坐标原点.(1)求椭圆Γ的方程;(2)设点A在椭圆Γ上,点B在直线y=2上,且OA⊥OB,求证:1OA2+1OB2为定值;(3)设点C在椭圆Γ上运动,OC⊥OD,且点O到直线CD的距离为常数√3,求动点D 的轨迹方程.轨迹问题专题答案一.综述(一)求动点的轨迹方程的基本步骤:⒈依据题目建立适当的坐标系,设出动点M (x ,y )的坐标.⒉写出点M 的集合(几何关系).⒊将几何关系转化为代数关系,列出方程f (x ,y )=0,化简方程为最简形式.4.检验特殊点,进行必要的文字说明.(二)高考中常见的求轨迹方程的方法有:1.直译法与定义法,2.相关点法;3.参数法;4.交轨法(三)求轨迹方程一般以解答题第一问的形式出现,偶尔也会在小题中考查.二.例题精讲 破解规律例1. 设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .证明为定值,并写出点E 的轨迹方程.分析: 题目中要求证明为定值,容易知道, E 的轨迹是椭圆,根据条件求出相关的参数即可.222150x y x ++-=EA EB +EA EB +答案:() 解析:因为,,故,所以,故.又圆的标准方程为,从而,所以. 由题设得,,,由椭圆定义可得点的轨迹方程为: (). 点评:平面几何相关知识是解决本题的关键,平时学习中要加以重视.规律总结: (1)直译法求轨迹方程:题目给出的条件可以直接得到一个关于动点坐标的关系式,化简即可.(2)定义法求轨迹方程:轨迹方程问题中,若能得到与我们所学过的圆锥曲线定义相符的结论,可以根据相应圆锥曲线的定义求出相关的参数,从而得到方程.(3)定义法求轨迹方程本质上还是直译法,只是我们利用了直译法得到的结论. 现学现用1:如图,矩形中, 且, 交于点.若点的轨迹是曲线的一部分,曲线关于轴、轴、原点都对称,求曲线的轨迹方程.13422=+y x 0≠y ||||AC AD =AC EB //ADC ACD EBD ∠=∠=∠||||ED EB =||||||||||AD ED EA EB EA =+=+A 16)1(22=++y x 4||=AD 4||||=+EB EA )0,1(-A )0,1(B 2||=AB E 13422=+y x 0≠y ABCD ()()()()2,0,2,0,2,2,2,2A B C D --,AM AD DN DC λλ==[]0,1,AN λ∈BM Q Q P P x y P解析:设,由,求得, ∵,∴, ∴,整理得. 可知点的轨迹为第二象限的椭圆,由对称性可知曲线的轨迹方程为. 例2. 已知线段的端点的坐标是,端点在圆上运动.求线段的中点的轨迹的方程;分析:设点的坐标为,点的坐标为,根据点坐标,和点是线段的中点,得, ,再由点在圆上运动,求得点的轨迹方程,进而可求得点的轨迹的方程;答案:解析:设点的坐标为,点的坐标为,由于点的坐标为, 且点是线段的中点,所以, 于是有, ①因为点在圆上运动,所以点的坐标满足的方程 即: ②把①代入②,得整理,得所以点的轨迹的方程为.(),Q x y ,AM AD DN DC λλ==()()2,2,42,2M N λλ--1,22QA AN QB BM k k k k λλ====-11224QA QB k k λλ⎛⎫⋅=⋅-=- ⎪⎝⎭1224y y x x ⋅=-+-()22120,014x y x y +=-≤≤≤≤Q 14P 2214x y +=AB B ()6,5A ()()221:434C x y -+-=AB P 2C P (),x y A ()00,x y B P AB 026x x =-025y y =-A 1C A P 2C ()()22541x y -+-=P (),x y A ()00,x y B ()6,5P AB 062x x +=052y y +=026x x =-025y y =-A 1C A 1C ()()22434x y -+-=()()2200434x y -+-=()()222642534x y --+--=()()22541x y -+-=P 2C ()()22541x y -+-=规律总结:相关点法求轨迹方程: 题中涉及了两个动点N 、M ,且点N 的运动是有规律的(轨迹方程已知),而M 的运动是由N 的运动而引发的,这样的题目可采用相关点法求动点M 的轨迹方程.基本方法是设M 的坐标,再反解出N 的坐标,然后带入N 所在曲线的轨迹方程,整理即可.现学现用2: 设O 为坐标原点,动点M 在椭圆C :上,过M 做x 轴的垂线,垂足为N ,点P 满足.求点P 的轨迹方程;解析:设,,即 代入椭圆方程,得到 ∴点的轨迹方程。
高中数学—18—轨迹方程
1.已知AB 是圆2522=+y x 的动弦,若6=AB ,则线段AB 的中点的轨迹方程为 .2.已知5=PQ ,P 到平面内一直线l 的距离为2且Q 到直线l 的距离为4,则满足条件的直线l 有 条.3.ABC ∆的三边长分别为||,||,||BC a BA c A C b ===,且a b c >>成等差数列,(1,0),(1,0)A C -,则顶点B 的轨迹方程为 .4.已知圆O 的方程是0222=-+y x ,圆O '的方程是010822=+-+x y x ,由动点P 向圆O 和圆O '所引的切线长相等,则动点P 的轨迹方程为 .5.()24,P 是圆C :036282422=---+y x y x 内的一个定点,圆上的动点A 、B 满足ο90=∠APB ,则弦AB 的中点Q 的轨迹方程为 .轨迹方程热身练习知识梳理求轨迹是解析几何一个很重要的题型,方法较多,难度较大。
在此两讲中,我们将学习最为常见的几种求轨迹的方法(直接法、转移代入法、几何定义法、综合法、点差法、消参法、交轨法等).1、直接法直接法,又称“直译法”,是求轨迹最基本的方法,圆锥曲线的标准方程都是通过直接法得到的.解题步骤就是“建设现代化镇”(1)建系,目前大部分题目都已经建好坐标系了,一般可以省略;x y;(2)设点,直接设动点坐标为(,)(3)写式,运用一定平面几何知识,写出题目中动点满足的几何关系式;(4)代入,将动点坐标、已知数据全部代入关系式;(5)化简,化简式子,注意等价性;(6)证明,证明轨迹的完备性和纯粹性,由于前几步的等价性,所以现已省略此步.2、转移代入法转移代入法,也称“相关点法”.当动点是随着相关的点有规律的运动而运动时,可用此法.解题步骤:第一,需找到动点和相关点之间的坐标关系,进行表示和反表示,就是坐标转移;第二,需找到相关点在运动时满足的那个关键式,代入关键式;第三,化简即可,注意范围。
直译法求轨迹方程 - 江西教师网
求轨迹方程的常见方法系列微课(一)
直接法求轨迹方程
欢迎你继续观看. 再见
x,y的方程式,并化简;
5.证明 证明所求方程即为符合条件的动点 轨迹方程.
来试试 在直角坐标系中,长度为3的线段AB的 端点A、B分别在x、y轴上运动,点M在线段 AB上,且 AM 2MB. 求点M的轨迹方程.
参考答案
y2 x2 1 4
求轨迹方程的直接法,我就介绍到这里, 谢谢你的观看 . 下一节我要介绍的是定义法求轨迹方程.
2 2 2
2
2
2
则点M的轨迹是 x2 y 2 a 2
法二、设M点的坐标为(x,y) ,由平
面几何中直角三角形的性质可知
1 1 OM AB 2a a 2 2
x y a
2 2
Байду номын сангаас
x2 y 2 a2
x y a
2 2 2
点M的轨迹是
直接法求动点轨迹方程的一般步骤是 1.建系 建立适当的坐标系; 2.设点 设轨迹上的任一点M(x,y) ; 3.列式 列出动点M所满足的关系式; 4.代换 依条件的特点,将其转化为关于
江西省宜丰中学 建德名师工作室
吴永芳
普通高中数学北师大版选修2-1
第三章第四节
适应对象 高二和高三学生
求轨迹方程的常见方法(一)
直接法 如果动点满足的几何条件本身就是一
高中数学轨迹求法
、直接法按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比拟明显时1.三角形ABC 中,BC = 4,且AB = "'E A C,那么三角形ABC 面积最大值为.. 一、, 一 . ........ 一 I PAI _、 2、动点P (x,y)到两定点 A (—3, 0)和B (3, 0)的距离的比等于 2 (即 -------------------- ! 2),|PB|求动点P 的轨迹方程?3、一动点到y 轴距离比到点 2,0的距离小2,那么此动点的轨迹方程为. 由M… …MA 1 …— —八4.A 1,0 , B 2,0 ,动点M x, y 满足_ —.设动点M 的轨迹为C .MB 2(1)求动点M 的轨迹方程,并说明轨迹 C 是什么图形;(2)求动点M 与定点B 连线的斜率的最小值;15、曲线C 是动点M 到两个定点O 0,0、A 3,0距离之比为1的点的轨迹. 2(1)求曲线C 的方程;(2)求过点N 1,3且与曲线C 相切的直线方程.10,两端点 A,B 分别在x 轴和y 轴上滑动, M 在线段 AB 上且_2_2__22 一A x 16y64 B . 16x y 64C. x 2 16y 2 8 D . 16x 2 y 2 8 — 1 IM (x, y)与两个定点 M 1 (26, 1), M 2 (2, 1),且 1Mg = =5. (I )求点M 的轨迹方程,并说明轨迹是什么图形;(n )记(I )中的轨迹为 C,过点M (-2, 3)的直线l 被C 所截得的线段的长为 8,求 直线l 的方程.A&M ,由题意有:+ 2八六涧X M-球,整理可得:,结合三角形 的性质可得点C 的轨迹方程为以川5为圆 心,2V§为半径的圆出去其与x 轴的交点,据此可得三角形ABC 面积的最大值为6. 一条线段的长等于4MB ,那么点M 的轨迹方程是(B7.坐标平面上一点1、【解析】建立如下图的平面直角坐标系,那么:,设点A 的坐标为2、【解答】••• | PA= J(x 3)2—y2,| PB | (x 3)2代入四2得亟亘工1PBi . (x 3)2 y2化简彳导(x—5) 2+y2=16,轨迹是以(2(x 3)25, 0)为圆心,2 2y24(x 3)24为半径的圆.4y223、y 8x x 0 或y 0【解析】设动点为P x,y ,那么由条件得_ 2 22 y2y24x 4 x ,当x 0时,y 8x ;当x 0时,y 0, 所以动点的轨迹方程为y28x x 0或x 4、(1)-- x 1 2y2 12 2 y2 2化简可得: 4 ,轨迹C是以2,0为圆心,2为半径的圆(2)设过点B的直线为y k x 2 ,圆心到直线的距离为d4k k2 1(1)点M的轨迹方程是(x—1)2+(y—1)2= 25,轨迹是以(2)直线l的方程为x=-2,或5x-12y + 46=0.(1,1)为圆心,以5为半径的圆,、2 5. (1) x2y2 2x 3 05x 12y 31 0(1) 设点M x, y .OMAM 及两点间的距离公式,■ 2 2 x y2- x 3将①式两边平方整理得2x 3 0.即所求曲线方程为x22x 0.(2)由(1)得x 1 2 y 4,表不圆心为C 1,0 ,半径为2的圆.〔i 〕当过点N 1,3的直线的斜率不存在时,直线方程为 x 1,显然与圆相切; 〔ii 〕当过点N 1,3的直线的斜率存在时,设其方程为y 3 k x 1 ,即 kx y 3 k 0,由其与圆相切得圆心到该直线的距离等于半径,即k 0 3 k 八…5 2 -- ==_2 2,解得 k —,、*2 112此时直线方程为5x 12y 31 0,所以过点N 1,3且与曲线C 相切的直线方程为 x 1, 5x 12y 31 0 .7【解析】【试题分析】〔1〕运用两点间距离公式建立方程进行化简;〔2〕借助直线与圆的位置关系,运用圆 心距、半径、弦长之间的关系建立方程待定直线的斜率,再用直线的点斜式方程 分析求解:化简,得, + / = "2-210. 二点M 的轨迹方程是811%卜11=25 轨迹是以〔1」〕为圆心,以弓为半径的圆〔1〕由题意,得(2)当直线।的斜率不存在时,1*〜2,I | 2 2此时所截得的线段的长为勺5 -3『符合题意.当直线।的斜率存在时,设।的方程为13 = k|x + 2)即h-v+2k + 3=O圆心到।的距离$+iI 孤*2、2------- )+4=5由题意,得解得5 231—x 7 . - - 0,直线।的方程为12 6即5x-12y*46 = d综上,直线।的方程为-2,或1"+46〞二、定义法假设动点运动的规律满足某种曲线的定义,那么可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现.1:圆(及= "的圆心为M,圆/一4'+/=1的圆心为M2, 一动圆与这两个圆外切,求动圆圆心P的轨迹方程.2:一动圆与圆O x2y21外切,而与圆C: x2y26x 8 0内切,那么动圆的圆心M的轨迹是:A:抛物线B:圆C:椭圆D:双曲线一支3 一条线段AB的长等于2a,两个端点A和B分别在x轴和y轴上滑动,求AB中点P的轨迹方程?4:ABC的顶点A, B的坐标分别为(-4, 0), (4, 0), C为动点,且满足5 .sin B sin A -sin C,求点C 的轨迹.45、等腰三角形ABC中,假设一腰的两个端点分别为A 4,2 , B -2,0 ,A为顶点,求一腰的一个端点C的轨迹方程6、圆O: x2+ y2= 16及点A(2, 0),求过A且与圆.相切的诸圆圆心P的轨迹方程.7 .动点M到定点F i 2,0和F2 2,0的距离之和为472.⑴求动点M轨迹C的方程;(2)设N 0,2 ,过点P 1, 2作直线l ,交椭圆C于不同于N的A, B两点,直线NA,NB的斜率分别为K , k2,求k〔k2的值.8 .M 2,0 , N 2,0 ,那么以MN为斜边的直角三角形的直角顶点P的轨迹方程是()八 2 2c 2 2 4A. x y 2 B . x y 42 2 2 2C. x2y22 x 2 D . x2y24 x 2D1 .解:设动圆的半径为R由两圆外切的条件可得:|PM I|=R+5, W=R + 1.,|PM1|-5-|PM2|-L|PM1|-|PM3|-4O•••动圆圆心P的轨迹是以M、M为焦点的双曲线的右支, c=4, a=2, b2=12.故所求轨迹方程为' <|MO | R 1………2.【解答】令动圆半径为R,那么有,那么|MO|-|MC|=2 ,满足双曲线定义.应选|MC| R 1Db3解设M点的坐标为(x, y)由平几的中线定理:在直角三角形AOB中,1… 1 COM= —AB — 2a a,2 22 2 222x y a,x y aM点的轨迹是以O为圆心,a为半径的圆周5 54.【解析】由sin B sin A -sinC,可知b a -c 10,即|AC| | BC | 10 ,满足4 4椭圆的定义. 令椭圆方程为2x F a’2b i,那么a 5,c 4 b 3 ,那么轨迹方程为2 x 25 5〕,图形为椭圆〔不含左,右顶点〕 5、x 2 240 x 2且x i0 6、解:如右图: A 且与圆.相切的圆,只能与圆 .相内切,根据两圆相内切的性质: 连心线必过其切点,设切点为 M,那么O 、P 、M 共线, OM OP + PM .又由于A 在圆 P 上, PM = PA . OP + PA = OM =4. 故P 的轨迹是以O 、 OM = 4的椭圆.故P 的轨迹方程:(n)由{ y k i A 为焦点, 长轴长为(x i)22+L = i .3F 2为焦点,以4J2为长轴长的椭圆.由椭圆定义,可知点 M 的轨迹是以F ,、_22,a 2J2,得b 2 .故曲线C 的方程为之 8 当直线l 的斜率存在时, 设其方程为2 y 4 k i /日 ,得i i 2k 24k k 2 xA x i ,y iB x 2,y 2 , 4k k 2x ix 2i 2k 2k 2工 x i2 y 2 2 2kx i x 24 x i x 2 x 2 x i x 2当直线l 的斜率不存在时,得 A、J4i,V ,B综上,恒有k i k 2 4. i2分2y .…— i . 5 分42k 22k_2 一2k 8ki 2k 24k k 2 4 -2k 2 8k4. ii考点:1.三角形面积公式;2.余弦定理;3.韦达定理;4.椭圆的定义0,2和0, 2 ,假设三角形的周长为10,那么顶点C、相关点法;假设动点P(x, y 脓赖于某曲线上的另一个动点P 1(x 1,y 1)而运动,且x 1,y 1可用x, y 表示,那么将P 1(x 1,y 1)代入曲线,求出 P 点的轨迹方程.此法也称代入法或转移法. 1 .点P (4 , — 2)与圆x 2+ y 2= 4上任一点连线的中点的轨迹方程是 . .(x-2)2 + (y+ 1)2= 1【解析】设圆上任一点坐标为M(x 0, y 0),那么PM 的中点坐标为(x, y),2x = + 4 x 0 = 2x-4那么 ' 二 Vg-2 解得% , 2V + 2代入 $ + 小 $ 中得仅—2)2 + (y + 1)2= 1.222.圆O:x y 4及一点P 1,0 , Q 在圆O 上运动一周,PQ 的中点M 形成上的动点,点D 是P 在x 轴上的投影,M 为线段PD上一点,且4 = -|PD3. ABC 中,A,B 的坐标分别为的轨迹方程是()2 2x y -A. — — 1 ( y 0)9 52 2x y-B.———1 ( y 0)36 20 2xC.—52y——1 ( x 0)922x yD.— —32 361 (x 0)3.如图,设P 是圆轨迹C .(1)求轨迹C 的方程;〔1〕当P在圆上运动时,求点M的轨迹C的方程;2,、 1 22 . (1) C : x — y2【解析】试题分析:〔1〕转移法求动点轨迹,先设所求M动点坐标及Q点坐标,再根据中点坐标公式得两者坐标关系,用M动点坐标表示Q点坐标,最后代入圆方程,化简得轨迹的方程〔2〕先根据点斜式写出直线PQ的方程,再根据圆心到直线方程距离得三角形的高利用垂径定理可得弦长,即三角形底边边长,最后根据三角形面积公式得结果 .试题解析:〔1〕设M x,y ,Q x1,y1 ,那么x1 2x 1,y1 2y,22 2 一 1 2把x1,y1 代入x y 4 得C : x — y 12〔2〕直线PQ : y x 1圆心C到直线PQ的距离为d【解析】试题分析:〔I〕由题意P是圆/十¥' = 25上的动点,点D是P在x轴上的射影,M为PD上一点,4|MD| = -|PD|且 5 ,利用相关点法即可求轨迹; n〕由题意写出直线方程与曲线C的方程进行联立,利用根与系数的关系得到线段长度试题解析:〔I 〕设M的坐标为〔x,y〕 P的坐标为〔x p,y p〕由x p =x,S CMN2 Sx +( V)=25. P在圆上,4,即C的方程为..224.圆O X y 4,从这个圆上任意一点 P 向y 轴作垂线段PP 〔 P 在y 轴上〕,M 在直线PP 上且PM 2Pd ,那么动点M 的轨迹方程是〔〕M 向y 轴作垂线段,垂足为 N,且OQ OM ON,, 那么动点Q 的轨迹方程是2与1上的动点,A 〔2a,0〕为定点,求线段AB 的中点M 的 b 2轨迹方程.分析:题中涉及了三个点 A B 、M 其中A 为定点,而B 、M 为动点,且点B 的运动是 有规律的,显然 M 的运动是由B 的运动而引发的,可见 M B 为相关点,故采用相关点法求 动点M 的轨迹方程.【解析】设动点M 的坐标为〔x, y 〕,而设B 点坐标为〔xo, y .〕 那么由M 为线段AB 中点,可得【点评】代入法的关键在于找到动点和其相关点坐标间的等量关系7、如下图,P 〔4,.〕是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足/ APB=90 求矩形APBQ 的顶点Q 的轨迹方程,22 在圆 x y 4上任取一点P,过点P 作x 轴的垂线段PD,D 为垂足.当点P 在圆上运动时,线段PD 的中点 M 的轨迹是什么?A. 4x 2+16y 2=1B. 16x 2+4y 2=1C.—162X D.— 165、圆O ,从这个圆上一动点 2_ x5、一42y 16 x . 2a x 2 y .o 2x 0 2x 2a y o 2y即点 B 坐标可表为〔2x-2a, 2y 〕2点B 〔x .,y .〕在椭圆三a 2y- 1上b 22x . 2 a2〞1 b 2〔2x 从而有-一 2a)22a(2y)2 1f 1'整理,得动点M 的轨迹方程为4x、22 a) 4y 2,2ab【解析】:设AB的中点为R,坐标为(x,y),那么在RtAABP中,|AR|=|PR]又由于R是弦AB的中点,依垂径定理? 在RtA OAR中,|AR|2=|AO |2- |OR|2=36 — (x2+y2)又|AR|=|PR|= (x—4)2—y2所以有(x-4)2+y2=36- (x2+y2),即x2+y2-4x- 10=0因此点R在一个圆上,而当R在此圆上运动时,Q点即在所求的轨迹上运动x 4 y 0设Q(x,y), R(x i,y i),由于R 是PQ 的中点,所以x i = ---------------- , y1-一2 2代入方程x2+y2-4x- 10=0,得(三)2 (尹4?-10=0整理得,x2+y2=56,这就是所求的轨迹方程2 28.圆O:x y 4及一点P 1,0 , Q在圆O上运动一周, PQ的中点M形成轨迹C.(1)求轨迹C的方程;五、交轨法一般用于求二动曲线交点的轨迹方程. 其过程是选出一个适当的参数, 求出二动曲线的方程或动点坐标适合的含参数的等式,再消去参数,即得所求动点轨迹的方程.1、两点P( 2,2),Q(0,2)以及一条直线:y=x,设长为4'2的线段AB在直线上移动, 求直线PA和QB交点M的轨迹方程.【解析】:PA和QB的交点M (x, y)随A、B的移动而变化,故可设A(t,t), B(t 1,t 1),t 2 t 1那么PA : y 2 ——(x 2)(t 2), QB :y 2 ——x(t 1).消去t ,得t 2 t 12 2x y 2x 2y 8 0.当t=—2,或t=—1时,PA与QB的交点坐标也满足上式,所以点M的轨迹方程是x2 y2 2x 2x 2y 8 0.六、用点差法求轨迹方程21.椭圆—y2 1,2一1 1 . ....... ................... ...(1)求过点P 1,1 且被P平分的弦所在直线的方程;2 2(2)求斜率为2的平行弦的中点轨迹方程;(3)过A2,1引椭圆的割线,求截得的弦的中点的轨迹方程;分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.M Xi, yi , N X2, y ,线段 MN 的中点 R x, y ,那么将③④代入得X 2y 里坐 0 .⑤X i X 2故所求的轨迹方程为:X 2—y 2 + 4X = 0 (X 0).(i)将X 1,y1代入⑤,得小 y 21,故所求直线方程为:2X 4y 3 0.⑥2 2X i X 22222i i将⑥代入椭圆万程 X 2 2y 2 2得6y 2 6y — 0,36 4 6 - 0符合题意,442X 4y 3 0为所求.(2)将、_」2 2代入⑤得所求轨迹方程为:x 4y 0.(椭圆内局部)x i x 2 (3)将yi y 22」代入⑤得所求轨迹方程为: x 2 2y 2 2x 2y 0 .(椭圆内局部)x i x 2 x 2七、引参消参法;假设题目出现当动点运动所受限制条件较多,不易直接建立X 、y 的某种联系,但且发现x 、y 同时受到另外一个变量 t (如角度、斜率、截距等)的制约而将它们用 t 表示,然后通过消去变量t 而得到所要求的动点的轨迹方程 f(x, y)=0.例7、过点M(-2, 0)作直线L 交双曲线x 2 —y 2 = i 于A 、B 两点,以OA 、OB 为邻边作平行 四边形OAPR 求动点P 的轨迹方程.解:设过 M 的直线方程为:y = k (x + 2) (k 0, k i),代入双曲线 x 2—y 2 = i 得:(i — k 2) x 2 -4 k 2x -4 k 2 - i = 0 OAPB 为平行四边形,那么:4k 2X p = X A + X B = ---V ;yi k4k y p = N A + y B = k (X A + X B ) + 4k = ---y ° BP Ai k解:设弦两端点分别为 X 2y 2 2, x 2 2y 2 2, x i x 2 2x, y i y 2 2y ,①一②得 X i X 2 X i X 2 2 y i y 2 y i y 2 0.X 2 ,那么上式两端同除以X 1 X 2 ,有 X i X 2 2 y iy 2 V y 2X i X 20,①由题意知X i2、点P在直线x=2上移动,直线l通过原点且和OP 垂直,通过点A(1 , 0)及点P的直线m和直线l相交于点Q求点Q的轨迹方程.解如图1所示,设OP所在直线的斜率为k,那么点P的坐标为(2 , 2k).由l OP ,得直线的方程为x+ky=0. ①易得直线m的方程为y=2k(x-1). ②由于点Q(x, y)是直线l和直线m的交点,所以将①②联立,消去k,得点Q的轨迹方程为2x2 y20〔x木〕.P2X。
一、直接法求轨迹方程(高中数学解题妙法)
一、直接法求轨迹方程本内容主要研究直接法求轨迹方程.根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,将关系式坐标化,从而求得轨迹方程。
例:已知一条曲线C 在y 轴右边,C 上每一点到点F (1,0)的距离减去它到y 轴距离的差都是1.求曲线C 的方程.归纳整理:当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.再看一个例题,加深印象例:在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B ,右焦点为F .设过点T (m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、22N (x ,y ),其中m >0,0,021<>y y .设动点P 满足22PF PB 4-=,求点P 的轨迹.总结:1.用直接法求轨迹方程的步骤:建系,设点,列方程化简,其关键是根据条件建立x ,y 之间的关系F (x ,y )=0.2.求轨迹方程时,最后要注意它的完备性与纯粹性,多余的点要去掉,遗漏的点要补上.练习:1.已知线段6=AB ,直线BM AM ,相交于M ,且它们的斜率之积是49,求点M 的轨迹方程.2.已知点)0,2(-A 、).0,3(B 动点),(y x P 满足2x =⋅,则点P 的轨迹为( ) A .圆 B .椭圆 C .双曲线 D .抛物线3.动点P (x ,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即|PA |2|PB |=),求动点P 的轨迹方程?4. 已知三点O (0,0),A (-2,1),B (2,1),曲线c 上任意一点M (x ,y )满足 ||()2MA MB OM OA OB +=⋅++ .(Ⅰ)求曲线C 的方程;(Ⅱ)点Q (x 0,y 0)(-2<x 0<2)是曲线C 上的动点,曲线C 在点Q 处的切线为l ,点P 的坐标是(0,-1),l 与P A ,PB 分别交于点D ,E ,求△QAB 与△PDE 的面积之比.5. 在直角坐标系xOy 中,曲线C 1上的点均在圆C 2:(x -5)2+y 2=9外,且对C 1上任意一点M,M 到直线x =-2的距离等于该点与圆C 2上点的距离的最小值.(Ⅰ)求曲线C 1的方程;(Ⅱ)设P (x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆(C 2的两条切线,分别与曲线C 1相交于点A ,B 和C ,D .证明:当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值.答案:(3)3AM y k x x =≠- 由已知有4(3)339y y x x x ∙=≠±+- 化简,整理得点M 的轨迹方程为221(3)94x y x -=≠±此即点P 的轨迹方程,所以P 的轨迹为抛物线,选D.3.解 ∵|PA|= PB |=代入|PA |2|PB |=得222222224)3(4)3(2)3()3(y x y x y x y x +-=++⇒=+-++化简得22(x-5)y 16+=,轨迹是以(5,0)为圆心,4为半径的圆.。
求曲线方程的常用方法
曲线的方程摘要:通过曲线方程常见题型的分析,归纳总结曲线的方程的解题巧,对于常见的一些问题,给出规律性的解答.关键词:曲线的方程 轨迹曲线的方程是高考中常出现的问题,要熟练掌握求曲线方程的基本步骤,能利用图像将题目中所给的条件转化为数学表达式. 下面介绍五种求解曲线方程的方法.求轨迹方程的常用方法有:直接法、定义法、待定系数法、转移法(或称代入法)、参数法.一、直接法建立适当的坐标系后,设动点为),(y x P ,根据几何条件直接寻求y x ,之间的关系,其一般步骤为:(1)建立坐标系(选取原点位置及坐标轴的方位);(2)设动点坐标为),(y x P ;(3)依据题意找出等量关系,列出方程;(4)化简方程,并讨论取值范围,说明轨迹曲线特征.【例1】已知两点)0,3(-A ,)0,3(B ,动点M 与A 、B 的连线的斜率之积是32,则点M 的轨迹方程为 .讲解:设点M 的坐标为),(y x ,点M 属于集合⎭⎬⎫⎩⎨⎧=⋅=32|MB MA k k M P . 由经过两点的直线的斜率公式,得3233=-⋅+x y x y ,化简,整理得)3(0183222±≠=--x y x . 此即为所求的轨迹方程.练习1:已知两定点)0,1(-A ,)0,2(B ,动点P 满足21||||=PB PA ,求P 点的轨迹方程. 答案:4)2(22=++y x .二、定义法如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的定义,建立动点的方程,化简整理即得轨迹方程.【例2】一动圆过定点)0,2(-A 且与定圆12)2(22=+-y x 相切. 求动圆圆心C 的轨迹M 的方程.解:设动圆与定圆的切点为T ,定圆的圆心为B ,由题意知动圆内切于定圆,则22||32||||||||||=>==+=+AB BT CT CB CB CA ,∴点C 的轨迹方程是以A 、B 为焦点的椭圆, 则322=a ,222=c . 3=∴a ,2=c . 12=∴b .∴动圆圆心C 的轨迹M 的方程为1322=+y x . 练习2:ABC ∆中,已知的方程)0,4(-A ,)0,4(B ,且C B A sin 21sin sin =-,则点C 的轨迹方程是( ) 1124.22=+y x A )0(1124.22<=-x y x B )0(1124.22<=+x y x C )0(14_12.22<=x y x D 答案:B .三、待定系数法当已知动点的轨迹方程是所学过的曲线,如:直线、圆、圆锥曲线等,则可先设出含有待定系数的方程,再根据动点满足的条件,确定待定系数,从而求得动点的轨迹方程,其基本思路是:先定性,再定型,最后定量.【例3】已知二次函数)(x f 同时满足条件:(1))1()1(x f x f -=+;(2))(x f 的最大值为15;(3)0)(=x f 的两根的立方和等于17,求)(x f 的解析式.解:由已知,可设)0(15)1()(2<+-=a x a x f ,即152)(2++-=a ax ax x f ,设方程01522=++-a ax ax 的两根分别为21,x x ,由韦达定理得221=+x x ,ax x 15121+=⋅.而aa x x x x x x x x 902151232)(3)(321213213231-=⎪⎭⎫ ⎝⎛+⨯⨯-=+-+=+, 17902=-∴a,6-=∴a . 9126)(2++-=∴x x x f .练习3:已知函数)(x f 是二次函数,不等式0)(<x f 的解集是)5,0(且)(x f 在区间]4,1[-上的最大值是12. 求)(x f 的解析式.答案:)(102)(2R x x x x f ∈-=.四、转移法(或称代入法)若已知动点),(1βαP 在曲线0),(:11=y x f C 上移动,动点),(y x P 依动点1P 而动,它满足关系:(1)⎩⎨⎧==),(),(βαβαy y x x 则关于βα,反解方程组(1)得 (2)⎩⎨⎧==),(),(y x h y x g βα 代入曲线方程0),(1=y x f ,即可得动点P 的轨迹方程0),(:=y x f C .【例4】已知直线134:=+y x l ,M 是直线l 上的一个动点,过点M 作x 轴和y 轴的垂线,垂足分别为A 、B ,求把有向线段AB 分成的比2=λ的动点P 的轨迹方程.解:设),(00y x M ,),(y x P ,则)0,(0x A ,),0(0y B ,点P 分有向线段AB 分成的比2=λ, ∴⎪⎩⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧++=++=.233,2120,2100000y y x x y y x x 又 )23,3(y x M 在直线134:=+y x l 上, ∴132343=+y x ,即0423=-+y x .练习4:求曲线x y 42=关于点)3,1(M 对称的曲线方程.答案:)2(4)6(2x y -=-.五、参数法当动点),(y x P 中坐标y x ,之间的关系直接找不出时,可设动点),(y x P 满足关于参数t 的方程组⎩⎨⎧==)()(t y y t x x (t 是参数),则由方程消去参数t ,即求得动点),(y x P 的普通方程:0),(=y x f .【例5】设椭圆方程为1422=+y x ,过点)1,0(M 的直线l 交椭圆于A 、B 两点,O 是坐标原点,点P 满足)(21+=,点N 坐标为)21,21(,当l 绕点M 旋转时,求:动点P 的轨迹方程.解:线l 过点)1,0(M ,设其斜率为k ,则l 的方程为1+=kx y .设),(11y x A ,),(22y x B , 由⎪⎩⎪⎨⎧=++=14122y x kx y ,得:032)4(22=-++kx x k , 由韦达定理得:22142k k x x +-=+ ∴22148k y y +=+ 于是,)44,4()2,2()(21222121kk k y y x x OB OA OP ++-=++=+=. 设点P 的坐标为),(y x ,则⎪⎪⎩⎪⎪⎨⎧+=+-=2244,4k y k k x消去参数k 得0422=-+y y x .当斜率不存在时,A 、B 中点为坐标原点)0,0(,也满足上式,所以点P 的轨迹方程为0422=-+y y x .练习5:已知抛物线x y C 4:2=,O 为原点,动直线)1(:+=x k y l 与抛物线C 交于A 、B 两点,求满足+=的点M 的轨迹方程.答案:)2(842>+=x x y .参考文献:[1] 任志鸿《十年高考分类解析与应试策略》南方出版社2006年7月第2版[2] 曲一线《高中习题化知识清单数学》首都师范大学出版社2007年5月第3版[3] 曲一线《5年高考3年模拟》(2009B版)首都师范大学出版社2007年7月第1版[4] 贾鸿玉《高考绿色通道数学》中国致公出版社2007年3月第6版[5] 全日制普通高级中学教科书《数学》第二册(必修)人民教育出版2006年11月第2版。
例谈求动点轨迹方程的几种方法
例谈求动点轨迹方程的几种方法求动点的轨迹方程问题是高考的热点问题,难度较大,根据近几年全国卷的相关题目的得分情况开看,得分率普遍较低.求动点轨迹方程的关键是要仔细审题,分析已知条件和动点轨迹的特点,然后将动点满足的条件用动点坐标来表示,化简要注意等价变形,并要考虑一些特殊点是否适合方程.求动点的轨迹方程的一般步骤:在平面直角坐标系中,设动点,根据题目条件,得出横坐标x与纵坐标y的关系式,即为动点的轨迹方程.简化来说,核心步骤是建系、设点、列式、代人、化简、检验.一、待定系数法当已知曲线的形状时,利用待定系数法,设出曲线方程,根据已知条件,求出未知数.此类题目一般比较简单.例1.与椭圆共焦点,且过点的双曲线方程为()A. B. C. D.【解析】由题得椭圆的焦点为,所以双曲线的焦点为,设双曲线的方程为,所以,解之得所以双曲线的方程为 .故选:B.【答案】B.二、定义法定义法往往是根据课本中椭圆、双曲线与抛物线的定义,需要利用数形结合思想,挖掘位置关系,研究动点满足的几何特征,从题目的已知条件中提取出相关定义进行求解.例2.动圆M与圆外切,与圆内切,则动圆圆心M的轨迹方程是__________.【来源】安徽省淮南市2019-2020学年高二上学期期末数学(文)试题【解析】设动圆的圆心为:,半径为,动圆与圆外切,与圆内切,所以,,,因此该动圆是以原点为中心,焦点在轴上的椭圆,且,,解得,∴,椭圆的方程为: .【答案】.名师点拨:如果动圆与两个相互内含的定圆的位置关系为一个内切,一个外切,那么动圆圆心的轨迹为椭圆.同样可得:1.如果动圆与两个相离的定圆(圆M、圆N)的位置关系为与某一个外切,某一个内切,那么动圆的圆心的轨迹为双曲线;2.如果动圆与两个相离的定圆(圆M、圆N)的位置关系为与圆M外切,与圆N内切(与圆M内切,与圆N外切),那么动圆的圆心的轨迹为双曲线的一支;3.如果动圆与两个相离的定圆的位置关系为同时外切或内切,那么动圆的圆心的轨迹为双曲线的一支.4.如果动圆与一个定圆和一条直线同时相切(直线与定圆不相切),那么动圆的圆心的轨迹为抛物线;5.如果动圆与一个定圆和一条直线同时相切(直线与定圆相切),那么动圆的圆心的轨迹为抛物线或一条射线.三、直译法根据题意中动点的几何关系,将其转化为动点坐标的关系式,化简后即为动点P的轨迹方程,在将关系式进行变形和化简的过程中,一定要注意是否等价.例3..动点与定点的距离和它到定直线的距离的比是,则动点的轨迹方程是___________.【来源】广东省阳江市第三中学2019-2020学年高二上学期第二次月考试题【解析】设,则,化简得: .【答案】 .名师点拨:已知平面内某动点P到定点F的距离与到定直线l的距离之比为e,当时,动点P的轨迹为椭圆;当时,动点P的轨迹为双曲线;当时,动点P的轨迹为抛物线.此为圆锥曲线的第二定义.例4.已知两点、,直线、相交于点,且这两条直线的斜率之积为,则点的轨迹方程为________.【来源】河南省南阳市第一中学2019-2020学年高二上学期第四次月考数学(理)试题【解析】设点,由直线、的斜率之积为,整理得,即,因此,点的轨迹方程为 .【答案】 .名师点拨:已知平面内某动点P到两定点,的斜率的乘积等于常数,则该动点的轨迹为椭圆;动点P到两定点,的斜率的乘积等于常数,则该动点的轨迹为抛物线.此为圆锥曲线的第三定义.四、相关点法(涉及点差)根据题目中的条件,无法直接列出动点的相关关系式,但是所研究的动点本身不是主动运动,而是受另一动点运动的牵制,即动点是随着另一相关点的运动而运动,一般需要将两个点的坐标都设出来,用动点的坐标表示相关点的坐标,代入相关点所满足的等式,便可得到动点的轨迹方程.例5.已知椭圆的左右焦点为、,点为椭圆上任意一点,过作的外角平分线的垂线,垂足为点,过点作轴的垂线,垂足为,线段的中点为,则点的轨迹方程为___________.【来源】邯郸市大名一中2020-2021学年高二上学期10月月考题【解析】如图,延长交的延长线于,连接.因为为的平分线且,故为等腰三角形且,,所以 .在中,因为,所以,故的轨迹方程为: .令,,则,因为线段的中点为,所以,所以,即 .【答案】 .五、参数法有些题目很难直接找出动点的横、纵坐标,如果中间借助中间参数,如斜率、变角等,可以很容易地使动点的横、纵坐标之间建立联系,消去参数,即得动点的轨迹方程.消参时一定要注意参数的取值范围对方程中的x和y的范围的影响.例6.平面直角坐标系中,已知两点,,若点满足(为原点),其中,且,则点的轨迹是()A.直线 B.椭圆 C.圆 D.双曲线【来源】陕西省渭南市临渭区2019-2020学年高一下学期期末数学试题【解析】设,则,解得:,,,整理得:,点的轨迹是直线.【答案】A.六、交轨法如果动点是两条动曲线的交点,即动点的坐标同时满足两条曲线方程,选出一个适当的参数,求出两条动曲线的方程或动点坐标适合的含参数的等式,再消去参数,即得所求动点轨迹的方程,需注意动点的取值范围.例7.已知过点的直线与相交于点,过点的直线与相交于点,若直线与圆相切,则直线与的交点的轨迹方程为__________.【来源】江苏省南通市如皋中学2020届高三创新班下学期高考冲刺模拟(三)数学试题【解析】设直线AC,BD的斜率分别为,则直线AC,BD的方程分别为:,据此可得:,则:,直线CD的方程为:,整理可得:,直线与圆相切,则:,据此可得:,由于:,两式相乘可得:,即直线与的交点的轨迹方程为 .名师点拨:求轨迹方程,要注意曲线上的点与方程的解是一一对应关系,检验应从两个方面进行:一是方程的化简是否是同解变形,消参的途径灵活多变;二是是否符合实际意义,注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.注明:本文系2021年度河南省基础教育教学研究项目《新课标下数学思想方法在高中物理中的应用与研究》(课题编号JCJYB210609028)的研究成果。
高中数学动点轨迹方程求解方法
高中数学动点轨迹方程求解方法轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。
轨迹方程就是与几何轨迹对应的代数描述。
轨迹方程就是与几何轨迹对应的代数描述。
符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹。
重点要掌握常用求轨迹方法,难点是轨迹的定型及其纯粹性和完备性的讨论。
一、动点轨迹方程解题步骤1.建系——建立适当的坐标系,设出动点M的坐标;2.设点——设轨迹上的任一点P(x,y),写出点P的集合;3.列式——列出动点p所满足的关系式;4.代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,化简方程为最简形式;5.证明——证明所求方程即为符合条件的动点轨迹方程。
二、动点轨迹方程求解常见的6种方法动点轨迹方程的求解方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
1.直译求解法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。
根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。
2.定义求解法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。
高中数学考前归纳总结求轨迹方程的常用方法
求轨迹方程的常用方法一、求轨迹方程的一般方法:1,待定系数法:如果动点P的运动规律符合我们的某种曲线〔如圆、椭圆、双曲线、抛物线〕的定义,那么可先设出轨迹方程,再根据条件, 待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法.2,直译法:如果动点P的运动规律是否符合我们熟知的某些曲线的定义难以判断, 但点P满足的等量关系易于建立,那么可以先表示出点P所满足的几何上的等量关系, 再用点P的坐标〔x, y〕表示该等量关系式,即可得到轨迹方程.3 .参数法:如果采用直译法求轨迹方程难以奏效,那么可寻求引发动点P运动的某个几何量t ,以此量作为参变数,分别建立P点坐标x, y与该参数t 的函数关系x = f〔t〕, y = g 〔t〕,进而通过消参化为轨迹的普通方程 F 〔x, y〕 =0.4 .代入法〔相关点法〕:如果动点P的运动是由另外某一点P'的运动引发的, 而该点的运动规律,〔该点坐标满足某曲线方程〕,那么可以设出P 〔x, y〕,用〔x, y〕表示出相关点P'的坐标,然后把P'的坐标代入曲线方程,即可得到动点P的轨迹方程.5 .几何法:假设所求的轨迹满足某些几何性质〔如线段的垂直平分线,角平分线的性质等〕,可以用几何法,列出几何式,再代入点的坐标较简单.6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题通常通过解方程组得出交点〔含参数〕的坐标,再消去参数求得所求的轨迹方程〔假设能直接消去两方程的参数,也可直接消去参数得到轨迹方程〕,该法经常与参数法并用.二、求轨迹方程的考前须知:1 . 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律, 即P 点满足的等量关系,因此要学会动中求静,变中求不变.2 .轨迹方程既可用普通方程F〔x,y〕 0表示,又可用参数方程x f〔t〕〔t为参数〕y g〔t〕来表示,假设要判断轨迹方程表示何种曲线,那么往往需将参数方程化为普通程的某些解为坐标的点不在轨迹上〕,又要检验是否丢解.〔即轨迹上方程.3.求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解, 〔即以该方的某些点未能用所求的方程表示),出现增解那么要舍去,出现丢解,那么需补充.检验方法:研究运动中的特殊情形或极端情形.4 .求轨迹方程还有整体法等其他方法.在此不一一缀述.三、典例分析1,用定义法求曲线轨迹求曲线轨迹方程是解析几何的两个根本问题之一,求符合某种条件的动点轨迹方程,其实质就是利用题设中的几何条件,通过坐标互化将其转化为寻求变量之间的关系,在求与圆锥曲线有关的轨迹问题时,要特别注意圆锥曲线的定义在求轨迹中的作用,只要动点满足已知曲线定义时,通过待定系数法就可以直接得出方程.例1:ABC的顶点A, B的坐标分别为(-4 , 0) , (4, 0) , C为动点,且满足一一一5 .sin B sin A —sinC,求点C的轨迹.45 . . 5【解析】由sin B sin A -sinC,可知b a -c 10,即|AC| | BC | 10 ,满足椭4 42 2圆的定义.令椭圆方程为J 2 1,那么a' 5,c' 4 b' 3,2 2a b2 2那么轨迹方程为土2―1 (x 5),图形为椭圆(不含左,右顶点) .25 9【点评】熟悉一些根本曲线的定义是用定义法求曲线方程的关键.(1) 圆:到定点的距离等于定长(2) 椭圆:到两定点的距离之和为常数(大于两定点的距离)(3) 双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离)(4) 到定点与定直线距离相等.【变式1]:1:圆尸=有的圆心为M,圆住一4尸4了, .的圆心为M, 一动圆与这两个圆外切,求动圆圆心P的轨迹方程.解:设动圆的半径为R,由两圆外切的条件可得:|P%l=R + 5 , |P叫l=R + l.,-.|PM1P5HPMJ-b|PM1|-|PM a|=4•••动圆圆心P的轨迹是以M、M2为焦点的双曲线的右支, c=4, a=2, b2=12.故所求轨迹方程为4 12M 的轨迹是:A:抛物线B:圆C:椭圆D:双曲线一支2.用直译法求曲线轨迹方程 此类问题重在寻找数量关系.例2: 一条线段AB 的长等于2a ,两个端点A 和B 分别在x 轴和y 轴上滑动,求 AB 中点P 的轨迹方程?解 设M 点的坐标为〔x, y 〕由平几的中线定理:在直角三角形 一— 1 一 1 八 AO 升,OM=AB - 2a a,2 2―22-222x y a,x y aM 点的轨迹是以O 为圆心,a 为半径的圆周.1【点评】此题中找到了 OM=1AB 这一等量关系是此题成功的关键所在.一般直译法有以下几2种情况:1〕代入题设中的等量关系:假设动点的规律由题设中的等量关系明显给出,那么采用直 接将数量关系代数化的方法求其轨迹.2〕列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设条 件列出等式,得出其轨迹方程.3〕运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的 恒等变换即得其轨迹方程.4〕借助平几中的有关定理和性质:有时动点规律的数量关系不明显,这时可借助平面几何中 的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数 量的关系,这种借助几何定理的方法是求动点轨迹的重要方法^| PAI 一【变式2】:动点P(x,y)到两定点A(—3,0)和B(3,0)的距离的比等于2(即 2),|PB|求动点P 的轨迹方程?[解答]. . | PA = J(x 3)2__y 7/ PB | J(x 3)2父| PA | (x 3)2 y 2 2 2 22代入 ——1 2得 ——2 (x 3)2y 2 4(x 3)2 4y 22: 一动圆与圆O: x 2 y 21外切,而与圆C : x 22y 6x 8 0内切,那么动圆的圆心【解答】令动圆半径为R, 皿士 |MO| R那么有। ।| MC | R1c,那么 |MO|-|MC|=2 ,1满足双曲线定义.应选Do|PB| ..(x 3)2 y2化简彳导(x-5) 2+y2=16,轨迹是以(5, 0)为圆心,4为半径的圆.3.用参数法求曲线轨迹方程此类方法主要在于设置适宜的参数,求出参数方程,最后消参,化为普通方程.注意参数的取值范围.例3.过点P (2,4)作两条互相垂直的直线l i, 12,假设l i交x轴于A点,l 2交y轴于B点,求线段AB的中点M的轨迹方程.【解析】分析1:从运动的角度观察发现,点M的运动是由直线l i引发的,可设出l i的斜率k作为参数,建立动点M坐标(x, y)满足的参数方程.解法1:设M (x, y),设直线l i的方程为y-4= k (x-2), ( k w 0 )1 _由l i l2,那么直线l2的万程为y 4 —(x 2)k4l1与x轴交点A的坐标为(2 4,0),kl2与y轴交点B的坐标为(0,4 2), k・•.M为AB的中点,2k(k为参数)消去k,得x+ 2y—5=0.另外,当k = 0时,AB中点为M (1, 2),满足上述轨迹方程;当k不存在时,AB中点为M (1, 2),也满足上述轨迹方程.综上所述,M的轨迹方程为x+2y—5=0.分析2:解法1中在利用k1k2=- 1时,需注意匕、k2是否存在,故而分情形讨论,能否避开讨论呢?只需利用^ PAB为直角三角形的几何特性:1 . .|MP| 21ABi解法2:设M (x, y),连结MP 那么 A (2x, 0), B (0, 2y),•••l」l 2, PAB为直角三角形1 .由直角二角形的性质,|MP| 31ABi--------------- 2 2-1 -----------2 2..(x 2)2 (y 4)22;,(2x)2 (2y)2化简,得x + 2y-5 = 0,此即M 的轨迹方程.分析3::设M (x, y),由l i _L l 2,联想到两直线垂直的充要条件: k i k 2=—1,即可 列出轨迹方程,关键是如何用 M 点坐标表示 A 、B 两点坐标.事实上,由 M 为AB 的中点,易 找出它们的坐标之间的联系.解法3:设M (x, y), •「M 为AB 中点, 又l 1, l 2过点P (2, 4),且l/l 2••• PAX PB,从而 k PA • k PB= — 1, 中点M (1, 2),经检验,它也满足方程 x+2y-5=0 综上可知,点 M 的轨迹方程为x+2y-5=0o【点评】 解法1用了参数法,消参时应注意取值范围.解法 2, 3为直译法,运 1 ,k PA • k PB= - 1, | MP | - | AB|这些等量关系.用参数法求解时,一 般参数可选用具有某种物理或几何意义的量,如时间,速度,距离,角度, 有向线段的数量,直线的斜率,点的横,纵坐标等.也可以没有具体的意 义,选定参变量还要特别注意它的取值范围对动点坐标取值范围的影响【变式3】过圆O: x 2+y 2= 4外一点A(4,0),作圆的割线,求割线被圆截得的弦 BC 的中点M 的轨迹. 解法一:“几何法〞设点M 的坐标为(x,y ),由于点M 是弦BC 的中点,所以 OML BC, 所以 |OM | 2 + | MA | 2 =| OA | 2 ,即(x 2+y 2)+(x -4)2 +y 2=16化简得:(x —2) 2+ y 2=4 .................................. ①由方程 ① 与方程x 2+y 2= 4得两圆的交点的横坐标为 1,所以点M 的轨迹方程为 (x —2) 2+ y 2=4 (0<x<1)o 所以M 的轨迹是以(2, 0)为圆心,2为半径的圆在圆 O 内的局部. 解法二:“参数法〞设点M 的坐标为(x,y ), B (x 1,y0 ,C (x 2,y 2)直线AB 的方程为y=k(x -4), 由直线与圆的方程得(1+k 2) x 2—8k 2x +16k 2—4=0 .................... (*),由点M 为BC 的中点,所以x=x —x 2 」4k ) ................................ (1),2 1 k又 OMLBC,所以 k=Y (2)由方程(1) (2)消去k 得(x — 2) 2+ y 2=4,又由方程(* )的^> 0得k 2< 1,所以x< 1.3••• A (2x, 0),B (0, 2y).而k pA4 0 2 2x' 4 2y2 2x 2注意到l i^x 轴时,1,化简,得x 2y 5 0l 2±y 轴,此时 A (2, 0), B (0,4)用了2+ y 2=4 ( 0<x< 1)为圆心,2为半径的圆在圆 O 内的局部.【点评】代入法的关键在于找到动点和其相关点坐标间的等量关系【变式4】如下图, R4 , 0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足ZAPE =90 ,求矩形APBQ 勺顶点Q 的轨迹方程【解析】: 设AB 的中点为R,坐标为(x , y ),那么在Rt^ABP 中,|AR =| PR 又由于R 是弦 AB 的中点,依垂径定理在 Rt △ OAF^, | AR 2=| A .2—|OR 2=36—(x 2+y 2)又|AR =| P 帘(x 4)2 y 2所以有(x-4) 2+y 2=36- (x 2+y 2),即 x 2+y 2—4x —10=0因此点R 在一个圆上,而当 R 在此圆上运动时,Q 点即在所求 的轨迹上运动 设Qx ,y) , R (x 1, y 1),由于R 是PQ 的中点,所以 y o ,222x +y -4x- 10=0,得(_y )2 4 x 4 _10=022所以点M 的轨迹方程为(x-2)所以M 的轨迹是以(2, 0) 4,用代入法等其它方法求轨迹方程x 2例4.点B 是椭圆-2 a2与1上的动点,A(2a,0)为定点,求线段AB 的中点M 的 b 2轨迹方程.分析:题中涉及了三个点 A 、B 、M,其中A 为定点,而B 、M 为动点,且点 B 的运动是有 规律的,显然 M 的运动是由B 的运动而引发的,可见 M B 为相关点,故采用相关点法求动点 M 的轨迹方程.【解析】设动点 那么由M 为线段 M 的坐标为(x, y),而设B 点坐标为(xo, yo)AB 中点,可得x 0 2a 2 V . 0 2 x 0 2x 2aV . 2y即点 B 坐标可表为(2x - 2a, 2y)x 2点B(x°, y°)在椭圆-y a 2—1上b 22x 0 -2- a2〞1 b 2(2x 从而有——2a)2 2a叱1b 2整理,得动点M 的轨迹方程为4J a22a) 4y 1 b 2x 4 x1=—,y 1代入方程(7)22QR整理得 x 2+y 2=56,这就是所求的轨迹方程四、常见错误:【例题5】 ABC 中,B, C 坐标分别为(-3, 0), (3, 0),且三角形周长为16,求点A 的轨 迹方程.22【常见错误】由题意可知,|AB|+|AC|=10 ,满足椭圆的定义.令椭圆方程为 : 4 1 ,那么a b22由定义可知a 5,c 3,那么b 4,得轨迹方程为—匕 1516【错因剖析】ABC 为三角形,故A, B, C 不能三点共线.【正确解答】ABC 为三角形,故 A, B, C 不能三点共线.轨迹方程里应除去点(5,0).( 5,0),22即轨迹方程为二匕 1(x5)25 16提示:1 :在求轨迹方程中易出错的是对轨迹纯粹性及完备性的忽略,除;另一方面,又要注意有无“漏网之鱼〞仍逍遥法外,2:求轨迹时方法选择尤为重要,首先应注意定义法,几何法,直接法等方 法的选择.3:求出轨迹后,一般画出所求轨迹,这样更易于检查是否有不合题意的部 分或漏掉的局部. 针对性练习:5 ___ 5、 一 一 22 一1:两点M(1,—), N( 4,一)给出以下曲线方程:① 4x 2y 1 0;②x y 3;③4 422— y 21y 21,在曲线上存在点 P 满足|MP | | NP |的所有曲线方程是(22A ①③B ②④C ①②③D ②③④【答案】:D【解答】:要使得曲线上存在点 P 满足|MP| |NP|,即要使得曲线与 MN 的中垂线y 有交点.把直线方程分别与四个曲线方程联立求解,只有①无解,那么选D2.两条直线x my 1 0与mx y 1 0的交点的轨迹方程是 : 【解答】:直接消去参数 m 即得(交轨法):x 2 y 2 x y 03:圆的方程为(x-1) 2+y 2=1,过原点O 作圆的弦0A,那么弦的中点M 的轨迹方程是 ^因此, 在求出曲线方程的方程之后,应仔细检查有无“不法分子〞掺杂其中, 将其剔要将其“捉拿归案〞.2x 3【解答】:令 M 点的坐标为(x, y),那么A 的坐标为(2 x,2y),代入圆的方程里面便可得到动点的轨迹方程.【解答】:抛物线方程可化为它的顶点坐标为消去参数m 得:(4, 0)的距离与它到直线 x 4的距离相等.那么点 M 的 4为准线的抛物线.故所求轨迹方程为 y 2 16x .6:求与两定点OO 1, 0、A3, 0距离的比为1: 2的点的轨迹方程为八, …, ,□… POl1一、… 一— 一〜…,一八【分析】:设动点为巳由题意- -,那么依照点P 在运动中所遵循的条件,可列出等量关| PA| 2系式.【解答】:设P x, y 是所求轨迹上一点,依题意得L1 O 得:(x 1)22y 2 :(x 0)4随意变化时,那么抛物线y x 2 2m 1 xm 2 1的顶点的轨迹方程为把所求轨迹上的动点坐标x, y 分别用已有的参数 m 来表示,然后消去参数 m故所求动点的轨迹方程为4x 4y 305:点M 到点F (4, 0) 的距离比它到直线50的距离小1 ,那么点M 的轨迹方程为【分析】:点M 到点F (4, 0)的距离比它到直线 50 的距离小1,意味着点M 到点F(4, 0)的距离与它到直线 x 40的距离相等. 由抛物线标准方程可写出点 M 的轨迹方程.【解答】:依题意,点M 到点F轨迹是以F (4, 0)为焦点、x由两点间距离公式得:x 2 y 21PO 1 PA 2化简彳导:x 2 y 2 2x 3027抛物线y 4x 的通径〔过焦点且垂直于对称轴的弦〕与抛物线交于 A 、B 两点,动点C 在抛物线上,求^ ABC 重心P 的轨迹方程.【分析】:抛物线y 4x 的焦点为F 1,0 .设^ ABC 重心P 的坐标为〔x, y 〕,点C 的坐 标为〔x 1, y 1〕.其中x 1 1【解答】:因点P x, y 是重心,那么由分点坐标公式得:x 另一2, y 也33即 x 1 3x 2, y 1 3y由点C x 1,y 1在抛物线y 2 4x 上,得:y 12 4x 124 2将x i3x 2, y i3y 代入并化简,得:y — x —( x 1) 338 .双曲线中央在原点且一个焦点为F 〔乔,0〕,直线y=x —1与其相交于 M N 两点,MNUI中点的横坐标为 5 ,求此双曲线方程.22【解答】:设双曲线方程为 2T 当 a b (b 2-a a)x a+ 2a ax- a 3- a ab a=0,此双曲线的方程为9 .动点P 到定点F 〔1, 0〕和直线x=3的距离之和等于【解答】:设点P 的坐标为〔x, y 〕,那么由题意可得1.将y=x — 1代入方程整理得由韦达定理得x 1 x 2解得 a 2 2,b 25.22aX I x 2~2~2 --a b 22 ,2a b2.又有+ 联立方程组,34,求点P 的轨迹方程.J (犬 _ + y* + | x — 31= 4(1)当xw3 时,方程变为J(x 1)2—y2 3 x 4,J(x 1)2―y2 x 1,化简得2y 4x(0 x 3).(2)当x>3 时,方程变为J(x 1)2—y7 x 3 4,J(x 1)2—y7 7 x,化简得y a = -12(x-4)(3<x<4)o毋足十的人口的-■铲曰必=4式.弓工43)一,= T2(x —4)0仃44)故所求的点P的轨迹方程是‘ 工 ,或, 八■10 .过原点作直线l和抛物线y x24x 6交于A、B两点,求线段AB的中点M的轨迹方程.【解答】:由题意分析知直线l的斜率一定存在,设直线l的方程y=kx.把它代入抛物线方程了=/一4天4®,得又‘一04•的白=口.由于直线和抛物线相交,所以△>0,解得x ( , 4 2而)(4 2^/6,).设A (叼打),B (叼力),M (x, y),由韦达定理得句中句=4*k.盯盯=6.产1 4k由户工一厂消去k得y=2x〞-必.又2黑f % =4 +上,所以x ( , V6)(后).,点M的轨迹方程为y 2x24x, x ( , <6) (<16, ) o。
高中数学-教师-轨迹方程的求法
设双曲线 的方程为 因为双曲线 经过 ,所以
(2)因为点 在双曲线的上支,所以可设 。根据点 到直线 的距离等于 ,得 ,因此所求点 的坐标是 。
3.已知抛物线 的顶点在原点,它的准线 经过双曲线 的焦点,且准线 与双曲线 交于 和 两点,求抛物线 和双曲线 的方程。
由 =30,得: ,
又 ,
代入上式得; ,化简得:
例5以抛物线y= x2的弦AB为直径的圆经过原点O,过点O作OM⊥AB,M为垂足,求点M的轨迹方程
解:设直线OA方程为 ,代入y= x2,得A点坐标为 ,
,
同理可得B( ),
直线AB方程为 ,
即: ①
直线OM方程为 ②
① ②,得: ,
即
解析:本题关键利用圆的几何条件来求轨迹方程。
解:取过 点且与 平行的直线为 轴,过 且垂直于 的直线为 轴,建立直角坐标系,设动圆圆心为 与 的公共弦为 与 切于点 ,则 为 的直径, 垂直平分 于 由勾股定理得 而 。
4.动圆P与定圆 相内切且过点 求动圆圆心 的轨迹方程。
解:设动圆 的半径为 ,圆 的方程可化为 。动圆 与圆 相内切,则 ,又动圆 过点 因此 点 的轨迹是以 为焦点的椭圆。可知:
热身练习
1.已知 两点分别在 轴, 轴上移动,求 中点 的轨迹方程。
解:设点 ,则点
2.若 的两个顶点为 点 在曲线 上运动。求 的重心轨迹方程。
解析:本题重在熟悉求轨迹方程中很重要的方法—转移代换
解:设重心坐标为 ,则点 。 点 在已知曲线上, 点 坐标满足曲线方程,
3.已知 的半径为3,直线 与 相切,一动圆与 相切,并与 相交的公共弦恰为 的直径,求动圆圆心的轨迹方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学:求轨迹方程的几种常用方法
由已知条件求动点轨迹方程是解析几何的基本问题之一,也是解析几何的重点。
轨迹方程的常用方法可归纳为以下四种。
一、普通法
例1. 求与两定点距离的比为1:2的点的轨迹方程。
分析:设动点为P,由题意,则依照点P在运动中所遵循的条件,可列出等量关系式。
解:设是所求轨迹上一点,依题意得
由两点间距离公式得:
化简得:
二、定义法
例2. 点M到点F(4,0)的距离比它到直线的距离小1,求点M的轨迹方程。
分析:点M到点F(4,0)的距离比它到直线的距离小1,意味着点M到点F(4,0)的距离与它到直线
的距离相等。
由抛物线标准方程可写出点M的轨迹方程。
解:依题意,点M到点F(4,0)的距离与它到直线的距离相等。
则点M的轨迹是以F(4,0)为焦点、为准线的抛物线。
故所求轨迹方程为。
三、坐标代换法
例3. 抛物线的通径(过焦点且垂直于对称轴的弦)与抛物线交于A、B两点,动点C在抛物线上,求△ABC重心P的轨迹方程。
分析:抛物线的焦点为。
设△ABC重心P的坐标为,点C的坐标为。
解:因点是重心,则由分点坐标公式得:
即
由点在抛物线上,得:
将代入并化简,得:
四、参数法
例4. 当参数m随意变化时,求抛物线的顶点的轨迹方程。
分析:把所求轨迹上的动点坐标x,y分别用已有的参数m
来表示,然后消去参数m,便可得到动点的轨迹方程。
解:抛物线方程可化为
它的顶点坐标为
消去参数m得:
故所求动点的轨迹方程为。
▍
▍ ▍
▍。