实验八 RC桥式正弦波振荡器

合集下载

RC正弦波振荡器设计实验

RC正弦波振荡器设计实验

综合设计 正弦波振荡器的设计与测试一.实验目的1. 掌握运用Multisim 设计RC 振荡电路的设计方法 2. 掌握RC 正弦波振荡器的电路结构及其工作原理 3. 熟悉RC 正弦波振荡器的调试方法4. 观察RC 参数对振荡器的影响,学习振荡器频率的测定方法 二.实验原理在正弦波振荡电路中,一要反馈信号能够取代输入信号,即电路中必须引入正反馈;二要有外加的选频网络,用以确定振荡频率。

正弦波振荡的平衡条件为:..1AF = 起振条件为..||1AF > 写成模与相角的形式:..||1AF = 2A F n πψ+ψ=(n 为整数) 电路如图1所示:1. 电路分析RC 桥式振荡电路由RC 串并联选频网络和同相放大电路组成,图中RC 选频网络形成正反馈电路,决定振荡频率0f 。

1R 、f R 形成负反馈回路,决定起振的幅值条件,1D 、2D 是稳幅元件。

该电路的振荡频率 : 0f =RCπ21① 起振幅值条件:311≥+=R R A f v ②式中d f r R R R //32+= ,d r 为二极管的正向动态电阻2. 电路参数确定(1) 根据设计所要求的振荡频率0f ,由式①先确定RC 之积,即 RC=21f π ③为了使选频网络的选频特性尽量不受集成运算放大器的输入电阻i R 和输出电阻o R 的影响,应使R 满足下列关系式:i R >>R>>o R 一般i R 约为几百千欧以上,而o R 仅为几百欧以下,初步选定R 之后,由式③算出电容C 的值,然后再算出R 取值能否满足振荡频率的要求(2) 确定1R 、f R :电阻1R 、f R 由起振的幅值条件来确定,由式②可知f R ≥21R , 通常取f R =(2.1~2.5)1R ,这样既能保证起振,也不致产生严重的波形失真。

此外,为了减小输入失调电流和漂移的影响,电路还应满足直流平衡条件,即: R=1R //f R(3) 确定稳幅电路:通常的稳幅方法是利用v A 随输出电压振幅上升而下降的自动调节作用实现稳幅。

rc桥式振荡器实验报告

rc桥式振荡器实验报告

rc桥式振荡器实验报告
RC桥式振荡器实验报告
摘要:
本实验旨在通过搭建RC桥式振荡器电路并进行实验,探究其工作原理和特性。

实验结果表明,RC桥式振荡器能够产生稳定的正弦波输出,且频率受到RC元
件的影响。

引言:
振荡器是一种能够产生周期性输出信号的电路,广泛应用于各种电子设备中。

RC桥式振荡器是其中一种常见的振荡器电路,其工作原理是通过RC元件和放
大器构成反馈回路,产生正弦波输出。

本实验将通过搭建RC桥式振荡器电路
并进行实验,来深入了解其工作原理和特性。

实验内容:
1. 搭建RC桥式振荡器电路,包括放大器、RC元件和反馈回路。

2. 连接示波器,观察输出波形,并测量频率和幅度。

3. 调节RC元件数值,观察输出波形的变化。

实验结果:
通过实验观察和测量,我们得到了以下结果:
1. RC桥式振荡器产生了稳定的正弦波输出,频率在几千赫兹到几兆赫兹之间。

2. 调节RC元件数值,可以改变输出波形的频率和幅度,验证了RC桥式振荡器的特性。

讨论:
RC桥式振荡器的频率受到RC元件数值的影响,通过调节RC元件可以改变输
出波形的频率和幅度。

这为RC桥式振荡器在实际应用中提供了灵活性,可以根据需要进行调整。

同时,RC桥式振荡器的稳定性和可靠性也得到了验证,适用于各种电子设备中。

结论:
通过本实验,我们深入了解了RC桥式振荡器的工作原理和特性,验证了其能够产生稳定的正弦波输出,并且频率受到RC元件的影响。

这对于我们进一步应用和设计振荡器电路具有重要的意义。

实验八 RC正弦波振荡器

实验八 RC正弦波振荡器

实验八 RC正弦波振荡器实验目的:1.熟悉仿真软件MULTISIM的使用,掌握基于软件的电路设计和仿真分析方法。

2.熟悉POCKETLAB硬件实验平台,掌握基于功能的使用方法。

3.掌握RC正弦波振荡器的设计和分析方法。

4.掌握RC正弦波振荡器的安装与调试方法。

实验内容:一.仿真实验1.RC相移振荡电路如图8-1所示,在MULTISIM中搭建其开环分析电路,理解起振和稳定的相位条件与振幅条件。

图8-1 RC相移振荡电路所以f=649.7HZ所以放大器的增益绝对值大于29.图8-3 RC相移振荡电路开环仿真图图8-4 RC相移振荡电路开环仿真幅频图和相频图由幅频特性曲线图可知,该电路的振荡频率为640.4004HZ。

2.在MULTISIM中搭建8-1电路,进行瞬态仿真。

所以=19.89*10^-5意向网络增益为1/3,所以为满足起振条件,基本放大器增益应大于3.表8-1 RC相移振荡电路振荡频率计算值仿真值实测值振荡频率649.7HZ 628.099HZ 633HZ3.将8-1电路振荡频率增加或减小10倍,重新设计电路参数。

表8-2 RC相移振荡电路振荡频率改动原件改动前频率减小10倍频率增加10倍R R=10k R=100k;R20=3000kC C=10nF C=100nF60.84HZ C=1nF 6.08kHZC=1nF C=100nFR=100K4.调试修改文氏电桥振荡器,进行瞬态仿真。

表8-3 文氏电桥振荡电路振荡频率C1(uF) R1(K) R2(K) R3(K) R4(K) 0.01 20 10 4.7 16.8表8-4 文氏电桥振荡电路振荡频率设计值仿真值实测值振荡频率800HZ 791.76HZ 830HZ图8-5 文氏电桥振荡器瞬态波形图图8-6 文氏电桥振荡器频谱图一.硬件实验1.电路连接2.瞬态波形观测3.频谱测量图8-7 RC电路瞬态波形图图8-8 RC电路频谱图4.按以上步骤对文氏电桥电路进行相应硬件实验图8-9 文氏电桥振荡器瞬态波形图图8-10 文氏电桥振荡器频谱图实验思考:1.将8-1所示电路中的C从10nF改为0.1nF后,进行仿真,结果如何?请解释原因。

内容1RC桥式正弦波振荡器

内容1RC桥式正弦波振荡器
改变电容C作频率量程切换,而调节R作量程内的频率细调。
2、三角波和方波发生器
电路由同相滞回比较器A1和反相积分器A2构成。比 较器A1输出的方波经积分器式积分可得到三角波Uo,Uo 经电阻R1提供输入信号,形成正反馈,即构成三角波、 方波发生器。
• 方波、三角波发生器输出波形图
• 电路振荡频率 • 方波幅值 • 三角波幅值
(2)改变RW的位置,观察对uO、uO′幅值及频率的影响。 (3)改变R1(或R2), 观察对uO、uO′幅值及频率的影响。
五、实验总结
1、 正弦波发生器 1) 列表整理实验数据,画出波形,把
实测频率与理论值进行比较。 2) 根据实验分析RC振荡器的振幅条件。 3) 讨论二极管D1、D2的稳幅作用。
首先按图连接好实验电路。
(1)接通±12V电源,调节电位器RW,使输出波形从无到有, 从正弦波到出现失真。描绘uO的波形,记下临界起振、正弦波 输出及失真情况下的RW值,分析负反馈强弱对起振条件及输出 波形的影响。
(2)调节电位器RW,使输出电压uO幅值最大且不失真,测 量输出电压UO、反馈电压U+和U-,分析研究振荡的幅值条件。
fO

R2 4R1(Rf R W )Cf
U′om=±UZ
U om

R1 R2
UZ
三、实验设备与器件
1、±12V直流电源 2、双踪示波器 3、集成运算放大器 μA741×2 4、二极管 IN4148×2 5、稳压管 2CW231×1 6、电阻器、电容器若干
四、实验内容
1、 RC桥式正弦波振荡器
一、实验目的
1、 进一步理解用集成运放构成的正弦波、 方波和三角波发生器的工作原理。
2、 学习波形发生器的调整和主要性能指 标的测试方法。

实验八 RC振荡器

实验八  RC振荡器

实验九 RC 振荡器一、实验目的和要求1. 加深理解 RC 串并联正弦波振荡器的组成和工作原理。

2. 验证 RC 振荡器起振的幅值平衡条件。

3. 掌握振荡器电路的调整和测定频率的方法。

二、实验内容和原理R C 正弦波振荡器包括 RC 串并联振荡器、移相式振荡器,双 T 网络振荡器等。

1.起振条件与电路工作原理RC 正弦波振荡器产生正弦波振荡的起振条件相位平衡条件: ( ) L ,. 2 , 1 , 0 2 = = + n n F A p j j (9­1)幅值平衡条件: 1³ ·· F A (9­2)图 9­1 为 RC 串并联式正弦波振荡器的原理图。

由 RC 串并联网络的频率特性可知,当RCf f o p 2 1== (9­3)时, 该网络的 3 / 1 , 0 0= = F F & j (详细分析可参考教材中有关内容), 因此,只需用一个同相放大器与选频网络配合,且同相放大器的电压放大倍数3 ³ uf A ,所组成的电路即可满足起振的幅值和相位条件而产生正弦振荡。

C 1 R 2C 2R 1U F AU 0F图9­1 RC 串联式振荡器原理图图 9­2 为用分立元件组成的 RC 串并联式振荡器电路。

V1、V2 组成两级阻容耦合放大器,用以将正反馈信号放大。

在电路输 出与输入端之间,接有正反馈 RC 网络并兼有选频作用,使整个电路振荡于 一个固有的频率上。

在输出端与 V1 发射极间接有负反馈网络,用于控制负 反馈深度,稳定频率幅度。

2.频率的测量方法测量频率常用的方法有两种:频率计测量法和示波器测量法。

C9 10uFV1 3DG12R615KRf3 100KR8 5.1KC11 10uF R7 15KR9 200V2 3DG6R1015KRf4 100KR12 1KR11 15KR13 100R14 430C13 10uFC10 10uFRf2 2.2K+12VGNDR4 15KC6 0.01uF R5 15KC7 0.01uFUoUi(1)频率计测量法直接将振荡器的输出连接到频率计的输入端, 从频率计的读数便函可知 所测频率的大小。

RC正弦波振荡器

RC正弦波振荡器

RC正弦波振荡器一、实训目的1、掌握RC桥式正弦波振荡器的电路构成及工作原理;2、熟悉正弦波振荡器的调整、测试方法;3、观察参数对振荡频率的影响,学习振荡频率的测试方法;4、熟悉RC正弦波振荡器故障的分析和处理。

二、实训所需挂件及附件序号型号备注1 PMT01电源控制屏该控制屏包含“液晶显示屏”等模块2 PMT-60电子技术实训电源组件该挂件包含“电源及信号源”等模块3 PMT-61电子技术实训组件(一)该挂件包含“RC正弦波振荡器”等模块4 双踪示波器自备三、实训原理RC正弦波振荡器的原理图如下图2-5所示;图2-5 RC桥式正弦波振荡器RC桥式正弦波振荡器又称为文氏桥振荡器,电路由同相放大器和具有选频作用的RC串并联正反馈网络两部分组成,即放大电路A V和选频网络F V。

A V为由集成运放LF353组成的同相放大电路,①脚输出频率为f0的信号通过RC串并联反馈到放大器的输入端③脚。

因为RC选频网络的反馈系数F=1/3,因此,只要使放大器的放大倍数Auf=3,就能满足振幅平衡条件;由于同相放大器的输入信号与输出信号的相位差为00,RC串并联选频网络对于频率为f0信号的相移也为00,所以信号的总相移满足相位平衡条件,属正反馈。

因此,电路对信号中频率为f0的分量能够产生自激振荡,而其他的频率分量由于选频网络的作用,反馈电压低,相位不为零,则不产生自激振荡。

在实用的RC桥式振荡器电路中,反馈电阻Rf(相当于图2-5中的RP2)常采用具有负温度系数的热敏电阻以便顺利起振,当振荡器的输出幅度增大时,流过Rf 的电流增强,随热敏电阻的温度上升其电阻变小,使放大器的增益下降,这将自动调节振荡输出信号趋于稳定。

RC桥式振荡器电路的振荡频率取决于RC选频回路的R1、C1、RP1、C2参数,通常情况下,R1=RP1=R 、C1=C2=C ,振荡频率为)2/(10RC f π=四、实训方法1、用万用表监测使RP1=R1=10K ,用导线从PMT-60挂件上将±15V 电源接到PMT-61挂件的“RC 桥式振荡器”模块的±15V 输入端。

RC桥式正弦波振荡器

RC桥式正弦波振荡器

1, A F 2n (0, …… 6(相位起振条件) )
由于放大器的线性范围是有限的,随着振荡幅度的增大,放大器逐渐由线性放大区进入非线性工作

状态(饱和区或截止区) ,导致放大器的增益逐渐下降,环路增益也由起振时的 F A > 1 逐渐过渡到
• •
A= 反馈网络的反馈系数为:
Xo

………………………………… 1
Xi
• •
F= 则环路增益:
XF

………………………………… 2
1 F= ,称为幅频特性。 11 2 f f — o 32 + f f o ,其中 f o f f — o f f =— a rc tg f o ,称为相频特性。 12 3
F
0
5. 振荡器的三种工作状态(输出失真、不失真和停振) 状态 1: (1)令 Vi =0,连接 VF 与 Vi 两点,调节 RW 使振荡器输出不失真正弦波形。 ,计算放大器 (2)从 Vi 点接入频率为 f o 的正弦信号,用示波器测量 Vi 及 Vo (外加信号后 Vo 不失真) 的电压放大倍数 A 状态 2:
RC 桥式正弦波振荡器
下周实验:110 室;负反馈放大器 一、实验目的
1. 掌握 RC 正弦波振荡器(文氏电桥振荡器)的组成及工作原理。 2. 掌握自激振荡的建立、起振条件、维持振荡的平衡条件。 3. 掌握 RC 正弦波振荡器主要技术指标的测量方法。
二、实验原理
1. 反馈型自激振荡的概念 所谓自激振荡,就是无外加输入信号,电路仍有一定频率、一定幅度的输出信号。
产生自激振荡的初始信号来自于电路通电后的各种起伏和外来扰动。如接通电源瞬间的电冲击、元 器件的热噪声等。这些噪声包含丰富的频率成分,它们经放大器放大后到达输出回路。由于 RC 网络的选 频滤波作用,与 RC 回路固有振荡频率相同或接近的噪声分量,才能在 RC 正反馈选频滤波输出回路产生

RC桥式正弦波震荡器

RC桥式正弦波震荡器

电子技术综合实训报告设计题目:RC桥式正弦波震荡器报告作者:戚晏铭学号: 201408324037指导教师:胡勤国专业:电气工程及其自动化电子电气工程学院2016年6月15日摘要振荡电路由同相放大器和具有选频作用的RC串并联网络两部分组成。

其中,放大元件由集成运放LM741承担,它与R1,RP,R2,R3,V1,V2组成同相放大器,V1,V2起稳幅作用;R4,C1,R5,C2组成RC串并联选频网络,在电路中起正反馈作用。

电路施加正反馈就产生振荡,振荡频率由RC网络的频率特性决定。

RC选频网络对于中心频率f0的放大倍数为F=1/3,而回路起振条件为AF>=1。

故放大电路的电压放大倍数A=(R1+Rf)/R1>=3,即Rf/R1>=2,取Rf/R1=2。

而Rf=RRP+R2//rd其中,rd为二极管的正向动态电阻。

为了减小输入失调电流和漂移的影响,电路应该满足直流平衡条件,即:R=R1//Rf=16KΩ关键词:振荡电路,lm741,放大电路目录1设计目标......................................... 错误!未定义书签。

2设计任务. (1)2.1设计电路 (1)2.2元器件的识别与检测 (2)2.3电路安装 (2)2.电路调试 (3)3测试方案与测试结果 (3)4.测试结果及分析 (4)5.心得体会 (4)一.设计目标1.掌握RC桥式正弦波的安装与调试方式2.掌握示波器测量RC正弦波震荡器输出波形的方法二.设计任务2.1设计电路:RC桥式正弦波震荡器电路原理图它由同相放大器和具有选频作用的RC串并联网络组成,其中,放大原件由集成运放lm741承担,它与R1、RP 、R2、R3、V1、V2组成同相放大器,V1、V2起稳幅作用;R4、C1、R5、C2组成RC串联选频电路在电路中起正反馈作用。

简而言之电路可分为三部分:①、作为基本放大器的运放②、具有选频功能的正反馈网络③、具有稳幅功能的负反馈网络2.2元器件的识别与检测2.3电路的安装对每个原件进行简单的检查,确保其实际值符合要求,排除有错误的原件,然后按照电路图的连接方法进行实物图链接。

RC桥式正弦波振荡器

RC桥式正弦波振荡器

1. RC 桥式正弦波振荡器(文氏电桥振荡器)如图电路主要由两部分组成:(1)正反馈环节:由RC 串、并联电路构成,同时起相位起振作用和选频作用。

(2)负反馈和稳幅环节:由R 3、R 5、R P =R 4及二极管等元件构成,其中R 3、R 5、R P 主要作用是引入负反馈,调节电位器可以改变负反馈深度,以满足振荡的振幅条件和改善波形;稳幅环节是利用两个反向并联二极管VD 1、VD 2正向电阻的非线性特性来实现的,二极管要求采用温度稳定性好且特性匹配的硅管,以保证输出正、负半周波形对称;R 3的作用是削弱二极管非线性的影响,以改善波形失真。

电路的谐振频率:f o =RC π21起振的振幅条件:21≥R R f(其中R f = R P +(R 5// r D ),r D 为二极管正向导通电阻)2. 实验步骤和测量数据(1)调节R P ,使电路起振且波形失真最小。

如果不能起振,说明负反馈太强,应适当调大R P ;如果波形失真严重,应适当调小R P 。

观察起振过程,从正弦波的建立到出现失真。

记录数据并分析负反馈强弱对起振条件及输出波形的影响。

(2)调节电位器R P ,使输出电压u o 幅度最大且不失真,用万用表交流电压档分别测量输出电压U o m 、反馈电压U+和U —,分析振荡的幅度条件。

(3)改变选频网络的参数C 或R 可调整电路的振荡频率,频率粗调通过改变电容C 进行量程切换,而量程内频率细调通过改变电阻R 来实现。

1. 占空比可调方波发生器电路主要由滞回比较器和RC 积分电路组成。

分析时注意电路的连接方式。

电路的谐振频率: f o =)(211321ln )2(1R R C R R P ++ 方波的输出振幅:U o m =±U Z2. 实验步骤和测量数据(1)调节电位器R 5至中心位置,用双踪示波器同时观察并描绘方波u o 及三角波u c 波形,测量其幅度和频率并记录。

(2)改变电位器R 5动点位置,观察u o 、u c 幅度及频率变化情况,把动点调至最上端和最下端,测出频率范围并记录。

rc正弦波振荡器实验报告

rc正弦波振荡器实验报告

rc正弦波振荡器实验报告
一、实验目的
学习RC正弦波振荡器的组成及其振荡条件。

学习如何设计、调试上述电路和测量电路输出波形的频
率、幅度。

二、实验设备
1、实验箱(台)。

2、示波器。

3、频率计。

4、毫伏表。

三、实验内容及步骤
按图13-1接线(1、2两点接通)。

本电路为文氏电桥RC正弦波振荡器,可用来产生频率范围宽、波形较好的正弦波。

电路由放大器和反馈网络组成。

有稳幅环节的文氏电桥振荡器。

(1)接通电源,用示波器观测有无正弦波电压Vo输出。

若无输出,可调节RP ,使Vo为无明显失真的正弦波,并观察Vo值是否稳定。

用毫伏表测量Vo和Vf的有效值,填入表13-1中,
( 2 )观察在R3=R4=10K2、C1=C2=0.01μf和R3=R4=10k2、C1=C2=0.02μf两种情况下的输出波形(不失真),测量V0、Vf及f0, 填入表13-2和表23-4中,并与计算结果比较。

( 2 )观察在R3=R4=10KQ2、C1=C2=0.01μf和R3=R4=10k2、C1=C2=0.02μf两种情况下的输出波形(不失真),测量V0、Vf及f0,
填入表13-2和表23-4中,并与计算结果比较。

3.无稳幅环节的文氏电桥振荡器
断开1、2两点的接线,接通电源调节RP,使Vo输出为无明显失真的正弦波,测量V0、Vf和f0 ,填入表13-3和表23-4中,并与计算结果比较。

五、实验报告
1、整理实验数据,填写表格。

2、测试Vo的频率并与计算结果比较。

rc正弦波振荡器实验报告

rc正弦波振荡器实验报告

rc正弦波振荡器实验报告实验目的:本实验的目的是通过搭建一个RC正弦波振荡器电路,研究RC电路的振荡特性,并分析RC电路中电流和电压的变化规律。

实验设备:- 信号发生器- 电压表- 电流表- 电阻- 电容- 电源- 连接线- 示波器实验原理:RC正弦波振荡器电路由电容C和电阻R组成。

根据基尔霍夫定律,电路中的电压满足以下方程:V = VR + VC,其中VR为电阻上的电压,VC为电容上的电压。

在电容未充电时,电流通过电阻,而电容不导电。

当电压施加到电路上时,电容开始充电,电流开始减小。

随着时间的流逝,电容上的电压也在增加。

当电容经过一段时间充电后,电压达到最大值,电流达到最小值。

此时电容开始放电,电流再次增大。

随着电容的放电,电压逐渐减小。

电容和电阻的相互作用导致电流和电压的周期性变化,形成正弦波。

实验步骤:1. 将信号发生器的正负极分别连接到电阻R和电容C的一个端口。

2. 将电容的另一个端口连接到电阻的另一端,形成一个闭合的回路。

3. 将电流表连接到电阻上,以测量通过电阻的电流。

4. 将电压表连接到电容上,以测量电容上的电压。

实验结果:通过实验观察,我们可以看到电流和电压随着时间的变化呈现正弦波形。

当电流为最大值时,电压达到最小值,当电流为最小时,电压达到最大值。

电流和电压的变化是周期性的,证明了电路中存在振荡现象。

实验讨论:1. 实验中,我们可以通过调节信号发生器的频率来改变振荡的频率。

2. 通过改变电阻R和电容C的数值,我们可以观察到振荡的幅度和频率的变化。

3. RC振荡器电路还可以应用于实际电路中,例如通信信号源的产生、交流电源的输出等。

实验总结:通过本次实验,我们成功搭建了一个RC正弦波振荡器电路,并观察到了电流和电压的周期性变化。

实验结果验证了RC电路的振荡特性,并加深了对振荡器电路的理解。

实验中我们还发现,通过调节信号发生器的频率、改变电阻和电容的数值,可以对振荡的频率和幅度进行调节。

rc桥式振荡器实验报告

rc桥式振荡器实验报告

rc桥式振荡器实验报告
一、实验目的
1.了解桥式振荡器的特性、特征和作用。

2.熟悉半导体放大器内部结构及运行原理,以便合理操作半导体放大器。

3.掌握桥式振荡器的制作技术,以便在以后设计更先进、更精密的电子电路。

二、实验原理
桥式振荡器是一种电子电路,它使用四个半导体放大器来实现振荡。

每个放大器将同
样的函数信号输入其偏置电压,并驱动两个由此冒号的线圈,放大器的输出端口同时绑定
在两个线圈的中间,因此,放大器的输出端口将会接收到由两个线圈共同构成的振荡信号。

此次实验中,我们使用放大器驱动线圈,使它们振荡,来了解741放大器的特性。

三、实验方法
1.准备实验用具:桥式振荡实验板、示波器、可变电容、半导体放大器(741)。

2.按照实验板连接指示画出的图案,将示波器的极性接在桥式振荡器的负极或正极上。

3.将可变电容的接在串联的电阻上,以调整振荡器的频率。

4.调节可变电容调节振荡器的频率,观察在示波器上所显示出来的信号形状。

四、实验结果
调节可变电容后,在示波器上显示出正弦波,表明桥式振荡正常运行。

五、实验得出结论
本次实验证明,741放大器可以驱动桥式振荡器,并能够正常地产生正弦波方波信号
输出。

实验过程中,我们也熟悉了半导体放大器内部结构及运行原理,熟悉了桥式振荡器
的制作技术,为以后设计更先进、更精密的电子电路打下了基础。

【东南大学 模电实验】实验八 RC正弦波振荡器

【东南大学 模电实验】实验八 RC正弦波振荡器

实验八 RC 正弦波振荡器实验目的:1.掌握RC 正弦波振荡器的设计与分析方法2.掌握RC 正弦波振荡器的安装与调试方法实验预习:1.在如图的RC 详细振荡电路中,计算振荡器的频率和振幅起振条件,填表。

振荡频率RCosc 61=ω=4082.5rad/s f=649.75Hz 振幅起振条件29>RR f ,R f =100k+300k=400k Ω,R=10k Ω,满足振幅起振条件。

2.设计文氏电桥振荡器。

要求振幅800Hz 。

k(jw)=VoV f=jwCR C j R Cj R 1//11//111++ωω=1112113)1(R C C R j R ++ωω800*2101相位平衡111121πωωω==⇒=+⇒R C C C R因此可取R1= 20k Ω,C1=10nF 。

32432=++=R R R R Av因此可取R2= 10k Ω,R3= 5k Ω,R4= 16.8k Ω. 电路图如下:实验内容: 一、仿真实验1.在Multisim 中搭试图1的RC 相移振荡电路的开环分析电路,理解起振和稳定的相位条件。

并仿真幅频特性和相频特性图。

拆环后电路:幅频相频特性曲线:2.瞬态仿真图1,查看瞬态波形和频谱。

瞬态波形:f=1/1.644=608.27Hz频谱:f=623.967HzRC相移振荡电路的振荡频率计算值仿真值实测值振荡频率/Hz 649.75 624.0 6333.若要将图1电路的振荡频率减小或增加10倍,重新设计电路。

改动元件改动前改动频率减小10倍C 10nF 100nFR22 100kΩ150kΩR20 300kΩ250kΩ(这里只改动C值的话波形失真,因此改动R22、R20调整限幅电压。

)改动元件改动前改动频率增大10倍C 10nF 1nF4.将预习中设计的文氏电桥振荡期瞬态仿真和频谱分析,将设计参数、仿真得到的振荡频率填入表格。

C1(μF)R1(kΩ)R2(kΩ)R3(kΩ)R4(kΩ)0.01 20 10 5 16.8设计值仿真值实测值振荡频率800Hz 788Hz 810Hz文氏电桥振荡器瞬态仿真:频谱分析:F=785.12Hz二、硬件实验1.将图1在面包板上搭试。

rc桥式正弦波振荡电路工作原理

rc桥式正弦波振荡电路工作原理

一、概述随着现代电子科技的发展,振荡电路在各种电子设备中得到了广泛应用。

而rc桥式正弦波振荡电路作为一种常见的振荡电路,其工作原理对于理解振荡电路的基本原理具有重要意义。

本文将介绍rc桥式正弦波振荡电路的工作原理,帮助读者更好地理解其运行机制。

二、RC桥式正弦波振荡电路的基本概念1. RC桥式正弦波振荡电路是一种采用电容和电阻构成的振荡电路,能够产生正弦波输出信号。

2. 该电路由两个RC正反馈网络组成,通过这两个网络的相互作用,实现了振荡器的正弦波振荡输出。

三、RC桥式正弦波振荡电路的工作原理1. 电路结构RC桥式正弦波振荡电路由两个RC正反馈网络和一个放大器组成。

其中,两个RC网络通过共享一个放大器进行相互耦合,从而实现正弦波振荡输出。

2. 工作过程a. 当电路通电后,由于RC网络的特性,会在两个网络中储存电荷,并在放大器的作用下开始振荡。

b. 两个RC网络中存储的电荷会通过放大器进行放大和反馈,形成正反馈环路。

c. 当正反馈增益等于1时,电路开始产生稳定的正弦波输出信号。

3. 振荡频率振荡频率由RC网络的电容和电阻值来决定,可以通过调节这些元件的数值来改变振荡频率。

四、RC桥式正弦波振荡电路的特点与应用1. 特点a. 输出正弦波形式的信号,适用于一些需要正弦波信号的电子设备。

b. 由于采用了RC网络,电路非常简单,成本较低。

c. 可以通过调节电路元件的数值来改变振荡频率,具有一定的灵活性。

2. 应用a. 在各种工业控制系统中,常常用到正弦波振荡电路,比如在交流电源供电系统中。

b. 在科学研究领域,正弦波振荡电路也被广泛应用,如在实验室中产生需要的正弦波信号等。

五、总结RC桥式正弦波振荡电路作为一种常见的振荡电路,其工作原理相对简单,但是具有重要的理论和实际意义。

通过本文的介绍,读者可以更清楚地了解RC桥式正弦波振荡电路的工作原理及其在实际应用中的特点和重要性。

希望读者能够通过学习,深入理解振荡电路的相关理论知识,为今后的学习和工作打下坚实的基础。

RC桥式正弦波振荡电路

RC桥式正弦波振荡电路

RC桥式正弦波振荡电路
RC桥式正弦波振荡电路是一种由抗衰减RC网络组成的桥式正弦波振荡电路,其信号
源仅是一个静态且定义良好的初始电压,电压在振荡之后变得可见。

振荡电路是电子技术
中重要的一部分,常被用于信号发生器、电视调谐器、视频带处理电路、声音处理电路和
功放等应用方面。

RC桥式正弦波振荡电路的原理是用两个抗衰减RC网络来产生桥式型正弦波,这两个RC网络被称为左侧RC网络和右侧RC网络。

左侧RC网络由能量存储器和高级电位器(HP)组成,而右侧RC网络则由电容器和低级电位器(LP)组成。

另外,具有振荡作用的RC滞
回环与左右侧的RC网络相连接,这样输入的正弦波即可通过RC滞回环变成桥式型正弦波,整个组成就变成RC桥式正弦波振荡电路。

RC桥式正弦波振荡电路的工作原理是,当通过输入端输入一个正弦波激励时,HP以
其韧性为输入电压不断积累电能,而LP以其韧性从输出端抽取电能,当HP蓄尽电能,LP
抽尽电能时,则出现电压反转现象,此时正弦波发出了正弦脉冲,此时RC滞回环将这一
正弦脉冲传递到左右侧RC网络,当正弦脉冲输送给两个RC网络后,左侧RC网络的HP以
其电阻性质积累电能,右侧RC网络的LP以其电阻性质抽取电能,从而起到不断刷新和对
正弦脉冲重新滤波和平滑化的作用,最终产生出了一种平滑的和可视的正弦波振荡效果。

RC桥式正弦波振荡电路有一些优点是其结构简单,功耗小,稳定性好,失真度低,可控性强等,其实用性也很强,用于构建信号发生器、电视调谐器、视频带处理电路、声音
处理电路和功放等,也广泛的应用于现代电子技术中。

实验八 文氏桥式振荡电路

实验八 文氏桥式振荡电路

实验八文氏桥式RC振荡电路
一、实验目的
1、了解正弦波振荡起振条件|AF|>1。

2、加深理解RC正弦波振荡器的工作原理。

3、学会信号频率测量的方法。

二、实验仪器
1、XST-7型电子技术综合实验装置一套
2、万用表一只
3、4320双踪示波器一台
三、实验内容及步骤
1、实验电路原理图如图8.1所示。

(根据实验电路图补充完整)
2、原理:文氏桥式RC振荡电路可以看做是由RC串并联选频网络和一个负反馈放大电路两大部分构成,对于振荡频率f0(f0=1/(2πRC),反馈系统F=1/3,根据起振条件,|AF|>1该电路的起振条件A vf >3,显然电路很容易满足。

可在基本放大电路中引入较强的负反馈,使输出波形很稳定。

3、调整实验线路最佳工作状态,测量实验数据。

调整R W,使A1点的波形为不失真的正弦波,用示波器观测波形,用实验装置的频率计测量振荡电路的振荡频率。

按下表要求进行实验并记录结果
表8.1互补对称功率放大电路的测量
电阻值电容值波形实测频率计算频率R1=1K C=0.01u
R1=1K C=0.1u
R1=5.1K C=0.01u
R1=5.1K C=0.1u
四、实验报告
1、整理实验数据,填写实验数据表格
2、分析实验结果,总结实验收获。

3、回答思考题。

五、思考题
1、文氏桥式振荡电路是由哪几部分组成?
2、文氏桥式振荡电路中RC网络有何作用?RW有何作用?。

实验8RC正弦波振荡器

实验8RC正弦波振荡器

实验8RC正弦波振荡器比较详细的介绍了模拟电子技术中的rc正弦波振荡器实验,参考价值很大进入实验室的几点要求和希望1、要像上理论课一样,积极准备,认真实验;要像上理论课一样,积极准备,认真实验;2、要像到自己家里一样,保持实验环境整洁;要像到自己家里一样,保持实验环境整洁;3、要像爱护自己一样,爱护我们的实验设备。

要像爱护自己一样,爱护我们的实验设备。

实验前的准备工作1、检查实验台和相关设备是否供电正常;检查实验台和相关设备是否供电正常;2、检查实验所用到的电线是否完好无损;检查实验所用到的电线是否完好无损;3、输入设备与测试设备不要随意开关;输入设备与测试设备不要随意开关;4、完成后要关设备电源,整理实验台。

完成后要关设备电源,整理实验台。

比较详细的介绍了模拟电子技术中的rc正弦波振荡器实验,参考价值很大模拟电子技术实验实验八RC正弦波振荡器电工电子实验中心模电实验室2022年3月2022年比较详细的介绍了模拟电子技术中的rc正弦波振荡器实验,参考价值很大主要内容1、实验目的2、实验原理3、实验设备与器件4、实验内容及步骤5、思考题6、实验报告要求很大1实验目的比较详细的介绍了模拟电子技术中的rc正弦波振荡器实验,参考价值很大1实验目的了解选频网络的组成及其选频特性;掌握RC正弦波振荡器的组成及其振荡条件;学会测量、调试选频网络和振荡器。

比较详细的介绍了模拟电子技术中的rc正弦波振荡器实验,参考价值很大2实验原理比较详细的介绍了模拟电子技术中的rc正弦波振荡器实验,参考价值很大2实验原理信号产生电路特点:无输入,自动产生输出(正弦、方波、三角波);原理:正反馈的自激振荡。

类型正弦波振荡电路:RC或LC正弦波振荡电路等;非正弦波振荡电路:比较器、方波/锯齿波产生电路;集成函数发生器:YB1605H、8038等。

产生振荡的条件是什么呢?振荡电路是由什么构成的?产生振荡的条件是什么呢?振荡电路是由什么构成的?很大2实验原理信号产生电路-振荡条件某i+–某f某idA某o某i++某f某idA某oFF&A&AF=&&1+AF&&AF=1&&AF=1&A&AF=&&1AF&&AF=1&&AF=1a+f=180°(2nπ+π)负反馈a+f=0°(2nπ)正反馈比较详细的介绍了模拟电子技术中的rc正弦波振荡器实验,参考价值很大2实验原理信号产生电路-振荡条件振荡平衡条件&&AF=1&&AF=1a+f=0°(2nπ)某idA动画演示某o某fF&&如何起振?AF≥1如何保证输出频率?选频网络(RC/LC选频网络);起振原因是什么?内部噪声、接通电源时的阶跃。

内容1RC桥式正弦波振荡器

内容1RC桥式正弦波振荡器
(3) 用示波器测量振荡频率fO,然后在选频网络的两 个电阻R上并联同一阻值电阻,观察记录振荡频率变化情况, 并与理论值进行比较。
(4)断开二极管D1、D2,重复2)的内容,将测试结果与2) 进行比较,分析D1、D2的稳幅作用。
2、三角波和方波发生器
首先按图连接好实验电路。
(1)将电位器RW调至合适位置,用双踪示波器观察并描绘 三角波输出u0及方波输出uO′,测其幅值、频率及RW值。

电路的振荡频率
fO

1 2π RC

起振的幅值条件
Rf R1
2
式中Rf=RW+R2+(R3 // rD),rD 为二极管正向导通电阻。 调整反馈电阻Rf(调RW),使电路起振,且波形失真最小。 如不能起振,则说明负反馈太强,应适当加大Rf。如波形失真 严重,则应适当减小Rf。 改变选频网络的参数C或 R,即可调节振荡频率。一般采用
改变电容C作频率量程切换,而调节R作量程内的频率细调。
2、三角波和方波发生器
电路由同相滞回比较器A1和反相积分器A2构成。比 较器A1输出的方波经积分器式积分可得到三角波Uo,Uo 经电阻R1提供输入信号,形成正反馈,即构成三角波、 方波发生器。
• 方波、三角波发生器输出波形图
• 电路振荡频率 • 方波幅值 • 三角波幅值
fO

R2 4R1(Rf R W )Cf
U′om=±UZ
U om

R1 R2
UZ
三、实验设备与器件
1、±12V直流电源 2、双踪示波器 3、集成运算放大器 μA741×2 4、二极管 IN4148×2 5、稳压管 2CW231×1 6、电阻器、电容器若干
四、实验内容
1、 RC桥式正弦波振荡器
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

按表8 改变电阻R 和电容C 按表 8-1 改变电阻 R 和电容 C , 用示波器观察是否有 振荡波形,然后再次微调R 振荡波形 , 然后再次微调 Rf, 使输出端波形大而失真 用频率计测出振荡器的频率, 填入表8 小 。 用频率计测出振荡器的频率 , 填入表 8-1 中 , 并 与表中的理论比较。 与表中的理论比较。 表8-1
3.调节电压串联负反馈放大器的放大倍数 仍断开RC选频网络 加电源V 仍断开RC选频网络,加电源VCC,调整两级放大电 RC选频网络, 路的静态工作点,使两个三极管均处于放大状态, 路的静态工作点,使两个三极管均处于放大状态,在 放大器的输入端加上适当大小的交流信号V 放大器的输入端加上适当大小的交流信号 Vi ( 小于 频率约为1 调节负反馈电阻R 1V ) , 频率约为 1KHZ , 调节负反馈电阻 Rf , 使放大倍 稍大于3 示波器监视输出波形不产生失真。 数AV稍大于3。示波器监视输出波形不产生失真。 4.测量振荡频率 放大器调整后,去掉信号源,接上RC选频网络, RC选频网络 放大器调整后,去掉信号源,接上RC选频网络,用 示波器观察是否有振荡波形,然后微调R 示波器观察是否有振荡波形 , 然后微调 Rf , 使输出端 波形大而失真小。用频率计测出振荡器的频率 频率, 波形大而失真小。用频率计测出振荡器的频率,填入 并与表中的理论比较。 表8-1中,并与表中的理论比较。
实验八
一、实验目的
RC桥式正弦波振荡器 RC桥式正弦波振荡器
1.学会测量频率和测试振器; .学会测量频率和测试振器; 2.验证RC桥式振荡器的起振条件 。 .验证 桥式振荡器的起振条件
二、实验仪器设备
函数信号发生器; 1.双踪示波器; 双踪示波器; 2.函数信号发生器; 交流毫伏表; 3.交流毫伏表; DZX-2B型电子学综合实验装置 型电子学综合实验装置; 4.DZX-2B型电子学综合实验装置; 5.电阻器、电容器若干 电阻器、
三、实验原理
● ●
Rw 10K Rf 1K
● ● ● ●
+UCC 100K +12V 5.1K 10μF _ +
R1 16K C1 0.01µF A

1M
10K
10μF_ +
● ● ● ●

10μF _ +
T1

T2 82Ω

C2 0.01µF

R2 16K
15K
U0 + _ 50μF
1.2K 430Ω
五、实验要求
按照实验步骤整理实验数据, 1 . 按照实验步骤整理实验数据 , 并描绘观察的波 形。 由给定电路元件数值计算出振荡频率, 2 . 由给定电路元件数值计算出振荡频率 , 并与实验 值进行比较,分析误差产生的主要原因。 值进行比较,分析误差产生的主要原因。 总结文氏电桥振荡器的振荡条件。 3 . 总结文氏电桥振荡器的振荡条件 。 整理实验数 列表比较实验结果和理论估算值,分析误差原因。 据,列表比较实验结果和理论估算值,分析误差原因。
& VF & F= = & VO 1 R1 C1 1 1+ + + j ωR1 R2 C 2 − R2 C 2 ωR2 C1
当R1 = R2 = R,C1= C2 = C时 , 时
& F= 1 1 3 + j ωRC − ωRC
1 1 f = F= 当频率 ,根据幅度平衡条件 2πRC 时, 3
电路才能维持振荡。 A • F = 1 ,只有A=3电路才能维持振荡。 要使电路自行起振 A • F
1 所以A必须 ≥ 1 ,因 F = ,所以 必须 3

大于3 ,但不能过大。如果太大,振荡幅度值将受到晶体 大于 但不能过大。如果太大, 管非线性的限制,波形将产生严重失真。 管非线性的限制,波形将产生严重失真。
四、实验内容及方法
1.按照图8-1所示的实验电路连接电路; 按照图8 所示的实验电路连接电路; 2.测量RC选频网络的幅频特性 测量RC选频网络的幅频特性 RC 从电路的A 处断开, 不加直流电压V RC串并 从电路的 A 处断开 , 不加直流电压 VCC , 在 RC 串并 联网络两端加3 有效值) 的低频信号( kHz左右 左右) 联网络两端加 3V ( 有效值 ) 的低频信号 ( 1kHz 左右 ) , 改变信号的频率, RC并联端 并联端( 断处) 改变信号的频率,在RC并联端(A断处)测选频网络的 幅频特性。找出A 输出电压最大( 时的输入信 幅频特性。找出A处输出电压最大(约1V)时的输入信 号频率,并于理论值比较。 号频率,并于理论值比较。 注意: 改变信号频率时, 应保证加在RC串并联网 注意 : 改变信号频率时 , 应保证加在 串并联网 络两端的电压值不变。 络两端的电压值不变。 电压值不变
● ●


图8-1 RC桥式振荡器实验电路 桥式振荡器实验电路
1.实验线路图 . 由两部分组成: 图8-1由两部分组成:R1、R2、C1、C 2 组成具有 选频作用的正反馈网络; 组成两级共射极放大器, 选频作用的正反馈网络;T1、T2组成两级共射极放大器, 并接成电压串联反馈,具有输入电阻高, 并接成电压串联反馈,具有输入电阻高,输出电阻低的 特点,其输入、输出阻抗对正反馈影响较小。 特点,其输入、输出阻抗对正反馈影响较小。 2.起振条件 在图8-1电路中,其选频网络的正反馈系数为 在图8 电路中,
RC值 值 R1=R2=16K C1=C2=0.01u R1=R2= K C1=C2=0.01u R1=R2=16K C1=C2= u R1=R2= C1=C2= K u f的计算值 的计算值 f的测量值 的测量值
注意改变电阻R和电容C 电阻R1 R2要同步变换 R1、 要同步变换, 注意改变电阻R和电容C时,电阻R1、R2要同步变换, 电容C1 C2也是同步变换 C1、 也是同步变换。 电容C1、C2也是同步变换。
六、思考题
1.文氏电桥振荡的最高振荡频率受哪些因素限制? 文氏电桥振荡的最高振荡频率受哪些因素限制? 为了改善振荡器的输出波形, 2.为了改善振荡器的输出波形,在文氏电桥振荡 器中采取了什么措施? 器中采取了什么措施?
相关文档
最新文档