(完整)小学五年级简便计算练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学简便运算和巧算
数的加减乘除有时可以运用运算定律、性质、或数量间的特殊关系进性较快的运算这就是简便运算。
其方法有:
一:利用运算定律、性质或法则。
(1) 加法:
交换律,a+b=b+a,
结合律,(a+b)+c=a+(b+c).
(2) 减法运算性质:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c, a-b-c=a-c-b,
(a+b)-c=a-c+b=b-c+a.
(3):乘法:(与加法类似):
交换律,a*b=b*a,
结合律,(a*b)*c=a*(b*c),
分配率,(a+b)xc=ac+bc, (a-b)×c=ac-bc.
(4) 除法运算性质:(与减法类似),
a÷(b×c)=a÷b÷c,
a÷(b÷c)=a÷bxc,
a÷b÷c=a÷c÷b,
(a+b)÷c=a÷c+b÷c,
(a-b)÷c=a÷c-b÷c。
前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。其规律是同级运算中,加号或乘号后面加上或去掉括号,后面数值的运算符号不变。
例1:283+52+117+148=(283+117)+(52+48)=400+200=600。(运用加法交换律和结合律)。减号或除号后面加上或去掉括号,后面数值的运算符号要改变。
例2: 657-263-257=657-257-263=400-263=147.(运用减法性质,相当加法交换律。)
例3: 195-(95+24)=195-95-24=100-24=76 (运用减法性质)
例4; 150-(100-42)=150-100+42=50+42=92. (同上)
例5:(0.75+125)×8=0.75×8+125×8=6+1000=1006. (运用乘法分配律))
例6:( 125-0.25)×8=125×8-0.25×8=1000-2=998. (同上)
例7:(1.125-0.75)÷0.25=1.125÷0.25-0.75÷0.25=4.5-3=1.5。(运用除法性质)
例8: (450+81)÷9=450÷9+81÷9=50+9=59. (同上,相当乘法分配律)
例9:375÷(125÷0.5)=375÷125*0.5=3*0.5=1.5. (运用除法性质)
例10:4.2÷(0。6×0.35)=4.2÷0.6÷0.35=7÷0.35=20. (同上)
例11:12×125×0.25×8=(125×8)×(12×0.25)=1000×3=3000.(运用乘法交换律和结合律) 例12: (175+45+55+27)-75=175-75+(45+55)+27=100+100+27=227. (运用加法性质和结合律)例13:(48×25×3)÷8=48÷8×25×3=6×25×3=450。(运用除法性质, 相当加法性质) (5)和、差、积、商不变的规律。
1:和不变:如果a+b=c,那么,(a+d)+(b-d)=c,
2: 差不变:如果 a-b=c, 那么,(a+d)-(b+d)=c, (a-d)-(b-d)=c
3: 积不变:如果a*b=c, 那么,(a*d)*(b÷d)=c,
4: 商不变:如果a÷b=c, 那么,(a*d)÷(b*d)=c, (a÷d)÷(b÷d)=c.
例14: 3.48+0.98=(3.48-0.02)+(0.98+0.02)=3.46+1=4.46,。(和不变)
例15: 3576-2997=(3576+3)-(2997+3)=3579-3000=579。(差不变)
例16:74.6×6.4+7.46×36=7.46×64+7.46×36=7.46×(64+36)=7.46×100=746.(积不变和分配律)
例17: 12.25÷0.25 =(12.25*4)÷(0.25*4)=49÷1=49。(商不变)。
二:拆数法:
(1)凑整法,
19999+1999+198+6=(19999+1)+(1999+1)+(198+2)+2=22202
(2)利用规律,
7.5×2.3+1.9×2.5-2.5×0.4
=7.5×(0.4+1.9)+1.9×2.5 -2.5×0.4=7.5×0.4+7.5×1.9+1.9×2.5-2.5×0.4
=0.4×(7.5-2.5)+1.9×(7.5+2.5)
=2+19
=21.
2. 1992×20052005-2005×19921992=1992×2005×(10000+1)-2005×1992×(10000+1)=0 三:利用基准数:2072+2052+2062+2042+2083=(2062x5)+10-10-20+21=10311
四:改变顺序,重新组合。
(1):(215+357+429+581)-(205+347+419+571)=215+357+429+581-205-347-419-571
=(215-205)+(429-419)+(357-347)+(581-571)
=40
(2):(378×5×25)×(4×0.8÷3.78)
=378×5×25×4×0.8÷3.78
=(378÷3.78)×(25×4)×(5×0.8)
=100×100×4
=40000。
五:1:求等差连续自然数的和。
当加数个数为奇数时,有:和=中间数x个数。
当加数个数为偶数时,有:和=(首+尾)x个数的一半。
(1):3+6+9+12+15=9*5=45, (2):1+2+3+4+……+10=(1+10)*10÷2=55.
2:求分数串的和。因为1/n-1/(n+1)=1/n(n+1), 1/n+1/(n+1)=(n+(n+1))/[n(n+1)].所以:
(1):1/42+1/56+1/72+1/90+1/110
=1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11
=1/6-1/11
=5/66
(2):5/6-7/12+9/20-11/30+13/42-15/56+……+41/400-43/460
=(1/2+1/3)-(1/3+1/4)+(1/4+1/5)-(1/5+1/6)+(1/6+1/7)-(1/7+1/8)……+(1/20+1/21)-(1/21+1/22)
=1/2-1/22=5/11
3:变形约分法。求:(1.2+2.3+3.4+4.5)÷(12+23+34+45)的值。
因为分母各项是分子各项的10倍。所以有:原式=0.1
六:设数法:求(1+0.23+0.34)*(0.23+0.34+0.65)-(1+0.23+0.34+0.65)*(0.23+0.34)的值。
设a=0.23+0.34, b=0.23+0.34+0.65,原式=(1+a)*b-(1+b)*a
=b+ab-a-ab=b-a
=(0.23+0.34+0.65)-(0.23+0.34)
=0.65.
(二):巧算的方法:除运用上面所说的简便方法外,最重要的是抓住题目(特别是应用题)中的数量关系,充分利用逻辑推理,变解法不明为解法明确,把一般问题转化为特殊问题,