应力状态及强度理论(II).
材料力学性能2
值,也称条件抗扭强度。
贵州大学
贵州正材邦料科力技学有性限能公:司金属在制其作它静载荷下的力学性能
§2-3 扭转
4. 扭转试验特点:
1. 应力状态:为轴类零件的工作受力状态:
最大正应力与力轴成450角,且σmax≈τmax,
应力状态系数α=0.8,大于单向拉伸,适于表现塑性形为 和评价脆性材料;
它是包含了材料的弹性、塑性、形变强化、强度、韧 性(含金属弹性变形功)等因素的综合指标,其中与强 度关系最为紧密。
测试方法分压入法、刻划法、回跳法 压入法:压入被测试材料表面,测表面压痕大小(压
痕面积或深度)
贵州大学
贵州正材邦料科力技学有性限能公:司金属在制其作它静载荷下的力学性能
§2-5 硬度
第二章:金属在其它静载
荷下的力学性能
压缩 弯曲(静) 扭转 硬度
贵州大学
贵州正材邦料科力技学有性限能公:司金属在制其作它静载荷下的力学性能
§2 - 1 应力状态
贵州大学
贵州正材邦料科力技学有性限能公:司金属在制其作它静载荷下的力学性能
§2-1 应力状态
一、强度理论:
三向应力状态: 主应力: σ1>σ2>σ3 最大切应力与主应力面成450角:τmax= (σ1-σ3)/2 广义虎克定律:ε= [σ1-μ(σ2+σ3)]/E
第一强度理论:最大拉应力理论: 第二强度理论:最大拉应变理论: 第三强度理论:最大剪应力理论: 第四强度理论:最大变形能理论:
贵州大学
贵州正材邦料科力技学有性限能公:司金属在制其作它静载荷下的力学性能
§2-1 应力状态
材料力学应力状态和强度理论
x 122.5MPa x 64.6MPa
σy 0
τ y 64.6
(122.5 , 64.6)
D1
B2
o
C
B1
(0 , - 64.6)
由 x , x 定出 D1 点 由 y , y 定出 D2 点 以 D1D2 为直径作应力圆。
D2
A1,A2 两点的横坐标分别代表 a 点的两个主应力
1 oA1 150MPa
1 x 136.5MPa
σ x 136.5MPa σy 0
τx0 τy0
2 3 0
D2 (0,0)
D1(136.5,0)
x 136.5MPa
b
σ1
σ x 136.5MPa τ x 0
σy 0
τy0
1 所在的主平面就是 x 平面 , 即梁的横截面 C 。
解析法求 a 点的主平面和主应力
解: x 100MPa, y 20MPa, x 40MPa, 300
20
300
100 40
x 100MPa, y 20MPa, x 40MPa, 300
x
2
y
x
2
y
cos
2
x
sin
2
x
2
y
sin
2
x
cos
2
300
100
(20) 2
100
(20) 2
cos( 600)
m
F
A
F
m
A
F
F
A
A 点 横截面 m—m 上的应力为: F
A
n
m
F
A
F
m
n
F
A
2
应力状态与强度理论
理论理论能很好的解释石料或混凝土等脆性材 料受轴向压缩时的断裂破坏。
3、最大剪应力理论(第三强度理论):
理论认为最大剪应力是引起塑性屈服的主要 因素,只要最大剪应力τmax达到与材料性质 有关的某一极限值,材料就发生屈服。
单向拉伸下,当与轴线成45。的斜截面上的
τmax= s/2时
任意应力状态下
莫尔强度条件为:
1
Байду номын сангаас
t c
3
t
对于拉压强度不同的脆性材料,如铸铁、 岩石和土体等,在以压为主的应力状态下, 该理论与试验结果符合的较好。
综合以上强度理论所建立的强度条件, 可以写出统一的形式: σr≤[σ]
σr称为相当应力
r1 1
r2 1 2 3
r3 1 3
r4
1 2
理论理论能很好的解释石料或混凝土等脆性材 料受轴向压缩时,沿纵向发生的断裂破坏。
2、最大伸长线应变理论(第二强度理论):
理论认为最大伸长线应变是引起断裂的主要因素。
拉断时伸长线应变的极限值为
断裂准则为:
1
1 E
1
2
11
b
E
3
1 2 3 b
第二强度理论的强度条件:
1 2 3
max
1 3
2
屈服准则: 1 3 s
2
2
1 3 s
第三强度理论建立的强度条件为:
1 3
在机械和钢结构设计中常用此理论。
4、形状改变比能理论(第四强度理论):
第四强度理论认为: 形状改变比能是引起塑性屈服的主要因素。
单向拉伸时,
1
3E
s
2的形状改变比能。
应力状态和强度理论
7.10 强度理论概述 低碳钢在拉伸、压缩和扭转时 低碳钢在拉伸、压缩和扭转时, 当试件的应力达 到屈服点后, 就会发生明显的塑性变形, 到屈服点后 就会发生明显的塑性变形 使其失 去正常的工作能力, 去正常的工作能力 这是材料破坏的一种基本形 塑性屈服。 叫做塑性屈服 式, 叫做塑性屈服。 铸铁拉伸或扭转时, 铸铁拉伸或扭转时 在未产生明显的塑性变形的 情况下就突然断裂, 材料的这种破坏形式, 情况下就突然断裂 材料的这种破坏形式 叫做 脆性断裂。 脆性断裂 。 石料压缩时的破坏也是这种破坏形 式。
混凝土压缩时的力学性能 使用标准立方体试块测定
端面未润滑时的破 端面润滑时的 坏形式 破坏形式
(三)最大剪应力(第三强度)理论 最大剪应力(第三强度) 认为构件的屈服是由最大剪应力引起的。 认为构件的屈服是由最大剪应力引起的。当最 最大剪应力引起的 大剪应力达到单向拉伸试验的极限剪应力时, 大剪应力达到单向拉伸试验的极限剪应力时, 构件就破坏了。 构件就破坏了。 σ1 −σ3 σ s = =τs τ max = τ s τ max =
[
]
1+µ 2 = τ E
E ∴G= 2(1+µ )
7.10 强度理论概述
1.材料破坏的基本形式
在前面的实验中, 在前面的实验中 曾接触过一些材料的 破坏现象, 破坏现象 如果以低碳钢和铸铁两种材料 为例, 它们在拉伸(压缩 压缩)和扭转试验时的破 为例 它们在拉伸 压缩 和扭转试验时的破 坏现象虽然各有不同, 坏现象虽然各有不同 但都可把它归纳为 两类基本形式, 塑性屈服和脆性断裂。 两类基本形式 即塑性屈服和脆性断裂。
第一类强度理论-----脆性断裂的理论 脆性断裂的理论 第一类强度理论
第一强度理论---第一强度理论 最大拉应力理论 第二强度理论---第二强度理论 最大伸长线应变理论
工程力学第11章 应力状态和强度理论
而最大正应力的方位角α0则可由下式确定
式中, 负号表示由x面到最大正应力作用面沿顺时针方向旋转。 因为 tan2α0=tan(180°+2α), 所以式(11-4) 给出两个相差90°的 α0 角, 即α0和 α0'=90°+α0(或α'0=α0-90°), 即这两个面互相垂直。 考虑到图11-8a中A、 B两点位于应力圆上同一直径两端, 即最大正应力所在截面和最小正应力所在截 面互相垂直 , 所以式 (11-4) 所求两个 α0 值即是 A 、B 两点所代表截面的方向。 它们之间的对应关系可以利用下述规则来确定 : 在 α0 和 α0+90°两个方向中 , σmax的方向总是在τx所指向的那一侧。 所以, 最大和最小正应力所在截面的方 位如图11-8b所示。 从图11-8a中还可以看出, 应力圆上存在K、M两个极值点, 由此得单元体在平 行于z轴的截面中最大和最小切应力分别为
11.2.2 平面应力状态分析的图解法
由式(11-1)和(11-2)可知, 任一斜截面α上的正应力σα和切应力τα均随参量α变 化。 所以σα和τα间必有确定的函数关系。 为建立它们间直接关系式, 先将式 (11-1)和式(11-2)改写为
式(c)、式(d)两边平方相加, 即有
从式(e)可以看出, 在以τ、σ为纵横坐标轴的平面内, 式(e)所对应的曲线为圆 (图11-5), 其圆心C的坐标为 , 半径为 , 而圆上任何一点的 纵、横坐标分别代表了单元体上某斜截面上的切应力和正应力。 此圆称为应力 圆。 并按以下步骤绘制应力圆。
的构件, 则必须研究危险点处的应力状态。 所谓一点的应力状态, 就是通过受 力构件内某一点的各个截面上应力情况。 由于构件内的应力分布一般是不均匀的, 所以在分析各个不同方向截面上的应 力时, 不宜截取构件的整个截面来研究, 而是围绕构件中的危险点截取一单元体 来分析, 以此来反映一点的应力状态。 例如, 螺旋桨轴工作时既受拉、又受扭 (图11-1a),若围绕轴表面上一点用纵、横截面截取单元体, 其应力情况如图 11-1b所示, 即处于正应力和切应力的共同作用下; 又如, 在导轨和车轮的接触 处(图11-2a), 单元体A除在垂直方向直接受压外, 由于其横向变形受到周围材 料的阻碍, 因而侧向也受到压力作用, 即单元体A处于三向受压状态。 显然, 要解决这类构件的强度问题, 除应全面研究危险点处各截面的应力外, 还 应研究材料在复杂应力作用下的破坏规律。 前者为应力状态理论的任务, 后者 则为强度理论所要研究的问题。
2.2材料的强度理论与断裂理论
y
H B A D K
ys
o rp a
x
The region ABH represents forces that would be 上述简单分析是以裂纹尖端弹性解为基础的,故 present in an elastic material but cannot be carried 并非严格正确的。屈服发生后,应力必需重分布, in the elastic-plastic material because the stress 以满足平衡条件。 cannot exceed yield. The plastic zone must increase in size in order to carry these forces.
K Ic 如图所示。
1 b 。 2
无损检测发现裂纹长度在4mm以上,设计工作应力为 d
讨论:a 工作应力d=750MNm-2 时,检测手段能否保证防止发生脆断? b 企图通过提高强度以减轻零件重量,若b提高到1900MNm-2 是否合适? c 如果b提高到1900MNm-2 ,则零件的允许工作应力是多少?
计 算 主 应 力
屈 服 准 则
y xy 裂纹尖 y x dy 端屈服 r dx 区域的 (5-1) 2a x 形状与 尺寸
这里仅简单讨论沿裂纹线上屈服区域的大小。 在裂纹线上(=0),注意到 K p a ,有; x y
K1 a ; xy 0 2r 2p r
x= a cos[1 - sin sin3 ] 2 2 2r 2 a cos [1 sin sin3 ] (5-1) y 2 2 2 2r a sin cos cos3 xy r 2 2 2 2
材料力学第六章 应力状态理论和强度理论
单元体的各个面均为主平面,其上的主应力为: 单元体的各个面均为主平面,其上的主t
9
工程力学
Engineering mechanics
§6-1 应力状态理论的概念 和实例
3、三向应力状态(空间应力状态) 、三向应力状态(空间应力状态) 定义:三个主应力均不为零。 定义:三个主应力均不为零。 例如:导轨与滚轮接触点处,取导轨表面任一点 的单元体 的单元体, 例如:导轨与滚轮接触点处,取导轨表面任一点A的单元体, 它各侧面均受到压力作用,属于三向应力状态。 它各侧面均受到压力作用,属于三向应力状态。
工程力学
Engineering mechanics
第六章 应力状态理论 和强度理论
1
工程力学
Engineering mechanics
引
言
前面的分析结果表明, 前面的分析结果表明,在一般情况下杆件横截面上不同点 的应力是不相同的,过一点不同方向面上的应力也是不相同的。 的应力是不相同的,过一点不同方向面上的应力也是不相同的。 因此,当提及应力时,必须明确“哪一个面上哪一点” 因此,当提及应力时,必须明确“哪一个面上哪一点”的应力或 哪一点哪一个方向面上”的应力。 者“哪一点哪一个方向面上”的应力。 如果危险点既有正应力,又有切应力,应如何建立其强度 如果危险点既有正应力,又有切应力, 条件? 条件? 如何解释受力构件的破坏现象? 如何解释受力构件的破坏现象? 对组合变形杆应该如何进行强度计算? 对组合变形杆应该如何进行强度计算? 要全面了解危险点处各截面的应力情况。 要全面了解危险点处各截面的应力情况。
2
工程力学
Engineering mechanics
§6-1 应力状态理论的概念 和实例
一、一点的应力状态 定义:过受力体内一点所有方向面上应力的集合。 定义:过受力体内一点所有方向面上应力的集合。 一点的应力状态的四要素 四要素: 一点的应力状态的四要素: )、应力作用点的坐标 (1)、应力作用点的坐标; )、应力作用点的坐标; )、过该点所截截面的方位 (2)、过该点所截截面的方位; )、过该点所截截面的方位; )、应力的大小 (3)、应力的大小; )、应力的大小; )、应力的类型 (4)、应力的类型。 )、应力的类型。 二、研究应力状态的目的 对受到轴向拉伸(压缩)、扭转、弯曲等基本变形的杆件, 对受到轴向拉伸(压缩)、扭转、弯曲等基本变形的杆件, )、扭转 其危险点处于单向应力状态或纯剪切应力状态,受力简单, 其危险点处于单向应力状态或纯剪切应力状态,受力简单,可直 接由相应的试验确定材料的极限应力,建立相应的强度条件。 接由相应的试验确定材料的极限应力,建立相应的强度条件。
材料力学 第七章 应力状态和强度理论
y
2
2 xy
tan 2a0
2 xy x
y
max
1
2
3
主应力符号与规定: 1 2 3 (按代数值)
§7-3 空间应力状态
与任一截面相对应 的点,或位于应力 圆上,或位于由应 力圆所构成的阴影 区域内
max 1 min 3
max
1
3
2
最大切应力位于与 1 及 3 均成45的截面上
针转为正,顺时针转为负。
tg 2a 0
2 x x
y
在主值区间,2a0有两个解,与此对应的a0也有两个解,其中落
在剪应力箭头所指象限内的解为真解,另一解舍掉。
三、应力圆
由解析法知,任意斜截面的应力为
a
x y
2
a x
x
y
2
y cos2a
2
sin 2a x c
x s os2a
in
2a
广义胡克定律
1、基本变形时的胡克定律
1)轴向拉压胡克定律
x E x
横向变形
y
x
x
E
2)纯剪切胡克定律
G
y
x x
2、三向应力状态的广义胡克定律-叠加法
2
2
1
1
3
3
1
1
E
2
E
3
E
1
1 E
1
2
3
同理
2
1 E
2
3
1
广义胡克定律
3
1 E
3
1
2
7-5, 7-6
§7-4 材料的破坏形式
⒈ 上述公式中各项均为代数量,应用公式解题时,首先应写清已 知条件。
应力状态分析和强度理论
03
弹性极限
材料在弹性范围内所能承受的最大应力状态,当超过这一极限时,材料会发生弹性变形。
01
屈服点
当物体受到一定的外力作用时,其内部应力状态会发生变化,当达到某一特定应力状态时,材料会发生屈服现象。
02
强度极限
材料所能承受的最大应力状态,当超过这一极限时,材料会发生断裂。
应力状态对材料强度的影响
形状改变比能准则
04
弹塑性材料的强度分析
屈服条件
屈服条件是描述材料在受力过程中开始进入屈服(即非弹性变形)的应力状态,是材料强度分析的重要依据。
根据不同的材料特性,存在多种屈服条件,如Mohr-Coulomb、Drucker-Prager等。
屈服条件通常以等式或不等式的形式表示,用于确定材料在复杂应力状态下的响应。
最大剪切应力准则
总结词
该准则以形状改变比能作为失效判据,当形状改变比能超过某一极限值时发生失效。
详细描述
形状改变比能准则基于材料在受力过程中吸收能量的能力。当材料在受力过程中吸收的能量超过某一极限值时,材料会发生屈服和塑性变形,导致失效。该准则适用于韧性材料的失效分析,尤其适用于复杂应力状态的失效判断。
高分子材料的强度分析
01
高分子材料的强度分析是工程应用中不可或缺的一环,主要涉及到对高分子材料在不同应力状态下的力学性能进行评估。
02
高分子材料的强度分析通常采用实验方法来获取材料的应力-应变曲线,并根据曲线确定材料的屈服极限、抗拉强度等力学性能指标。
03
高分子材料的强度分析还需要考虑温度、湿度等环境因素的影响,因为高分子材料对环境因素比较敏感。
02
强度理论
总结词
该理论认为最大拉应力是导致材料破坏的主要因素。
第十四章应力状态分析与强度理论
2t x tan2 a0 sx s y
1) 切应力为0的平面上,正应力为最 大或最小值; 2) 切应力为0的平面是主平面,主平 面上的正应力是主应力,所以主应力 就是最大或者最小的正应力。
将a0代入sa的计算公式,
计算得到最大和最小正应力
2
s max s x s y sx s y 2 t x 2 s min 2
s1 s3
s2
xy 0
yz 0
zx 0
1、2、3为主应变。主应变和主应力的方向是重合的。
14.4
材料的破坏形式
1、材料破坏的基本形式
Ⅰ. 在没有明显塑性变形情况下的脆性断裂; Ⅱ. 产生显著塑性变形而丧失工作能力的塑性屈服。
2.应力状态对材料破坏形式的影响
试验证明:
同一种材料在不同的应力状态下,会发生不同形式的破坏。 压应力本身不能造成材料的破坏,而是由它所引起的切应力等因素在对 材料的破坏起作用;构件内的切应力将使材料产生塑性变形。 在三向压缩应力状态下,脆性材料也会发生塑性变形;拉应力则易于使 材料产生脆性断裂;而三向拉伸的应力状态则使材料发生脆性断裂的倾向 最大。 变形速度和温度对材料的破坏形式也有较大影响。
cos2a t xsin2 a
2 50 1.429 0 70
sa
sx sy
s max
2 2 26MPa (a 27.5) s min 96MPa (a 117.5)
sx s y
代入 a 0 27.5 or 117.5
I
t t s A s t t
sy t
sx
B
sx t
t sy
材料力学--应力状态(强度理论)
1 B 76.9MPa 2 0 3 B 76.9MPa
r3 1 3 2 B 153.8MPa [ ]
B max
F S S max
* z max
dI z
75.08MPa
r3 150.16MPa [ ]
性 材 料
1 2 0纵向开裂 第二强度理论
3 0
斜截面开裂 直接实验 [ ]
三向受压: 1<0 , 3
1
,
max
1
2
3
>
s
第三强度理论
塑
性 一般应力状态下 第三、第四强度理论
材 三向等拉状态 r3 r4 0 第一强度理论
料 三向等压状态,无论脆性材料还是塑性
材料均不发生破坏。
1 b
1
b
n
铸铁拉伸
2020/4/13
铸铁扭转
7
2. 最大伸长拉应变理论(第二强度理论) 无论材料处于什么应力状态,, 最大拉伸
线变形 1 0 发生脆性断裂
1-构件危险点的最大伸长线应变
1 [ 1 ( 2 3 )]/ E
0 -极限伸长线应E
3、校核A点强度:
A
| M |max Iz
yA
17.5 103 1073 108
75 103
122.3MPa
1 122.3MPa 2 3 0
r3 A 122.3MPa [ ]
4、校核B点强度:
B
B
max
| FS |max A腹板
50 103 130 5 106
76.9MPa
2020/4/13
2
max max
满足
max [ ] max [ ]
是否强度就没有问题了?
应力状态分析与强度理论
第五章 应力状态分析与强度理论一、 内容提要 1.应力状态的概念 1.1一点的应力状态通过受力构件的一点的各个截面上的应力情况的集合,称为该点的应力状态。
1.2一点的应力状态的表示方法——单元体研究受力构件内一点处的应力状态,可以围绕该点取一个无限小的正六面体,即单元体。
若单元体各个面上的应力已知或已计算出,则通过该点的其他任意方位截面上的应力就可用解析法或图解法确定。
1.3主平面、主应力单元体上切应力为零的平面称为主平面,主平面上的正应力称为主应力。
过受力构件内任一点总有三对相互垂直的主平面。
相应的主应力用1σ、2σ、3σ来表示,它们按代数值的大小顺序排列,即321σσσ≥≥。
1σ是最大主应力,3σ是最小主应力,它们分别是过一点的所有截面上正应力中的最大值和最小值。
1.4应力状态的分类(1)单向应力状态,只有一个主应力不为零,另两个主应力均为零; (2)二向或平面应力状态,两个主应力不为零,另一个为零; (3)三向或空间应力状态,三个主应力都不为零。
单向应力状态又称简单应力状态,二向、三向应力状态称为复杂应力状态。
2.平面应力状态分析的解析法在平面应力状态的单元体中,有一对平面上的应力等于零,即为主平面,其上主应力为零。
可将单元体用平面图形表示,如图5-1所示。
图5-12.1任意α斜截面上的应力当已知x σ、y σ、yx xy ττ=时,应用截面法,可得ατασστατασσσσσαα2cos 2sin 22sin 2cos 22xy yx xy yx yx +-=--++= (5-1)式中,正应力以拉应力为正,压应力为负;切应力以对单元体内任意点的矩为顺时针转向为正,反之为负;α为斜截面外法线与x 平面外法线即x 轴间的夹角,α角从x 轴量起,反时针转向为正,反之为负。
2.2主应力22min max 22xy yx y x τσσσσσσ+⎪⎪⎭⎫ ⎝⎛-±+=⎭⎬⎫ (5-2) 式中,max σ和min σ分别表示单元体上垂直于零应力面的所有截面上正应力的最大值和最小值。
工程力学第13章应力状态分析和强度理论
max
m in
x
y
2
(
x
2
y
)2
2 xy
——主应力的大小
3)、 切应力 的极值及所在截面
由
x
y
2
sin 2
xy cos 2 ,
令 d
0
d 1
tan
21
x 2 xy
y
(1 ; 1 1 900 )
——最大切应力 所在的位置
z
x
y y
x
z x
2
I 3 1
(1)求平行于σ1的方向面的应力σα 、 τα ,其上之应力与σ1 无关.
1
3
II 2
(2)求平行于σ2的方向面的应力σα、 τα ,其上之应力与σ2 无关.
2
III 1 3
2
(3)求平行于σ3的方向面的应力σα 、 τα ,其上之应力与σ3 无关.
例2、槽形刚体内放置一边长为a = 10 cm 正方形钢块,试求钢 块的三个主应力。F = 8 kN,E = 200 GPa, μ = 0.3。
Fy
解:1) 研究对象ຫໍສະໝຸດ 正方形钢块y F 80 MPa, A
x
?,
z 0.
x 0, y ?, z ? .
y
x b
a
c x x
y
b x
x
a y
c
y t
n 单元体各面面积
x bc : dA
ab: dAcos ac : dAsin
设:斜截面面积为dA,由分离体平衡得:
《工程力学》第 10 章 应力状态理论和强度理论
作应力圆:(1) 注意截面的选取
(2) 注意应力的符号,特别是剪应力 求斜截面上的应力: (1) (2) (3) (4) (5) 找准起始点 角度的旋转以C为圆心 旋转方向相同 2倍角的关系 应力的符号
工程力学电子教案
应力状态理论和强度理论
18
角度的取值范围和对应关系:
y
x
D 2 2 Dx
工程力学电子教案
应力状态理论和强度理论
12
T
T
T I
F
FS
F
x
X
X
M y IZ
QSZ IZb
X
M
X
Y
X
X
工程力学电子教案
应力状态理论和强度理论
13
§10-2 平面应力状态分析
X
Y
Y
x
X
y y
x
X
X
x
Y
Y
1. 求斜截面上的应力
y
平面应力状 态 n
0
dA ( xdA cos ) cos ( xdA cos ) sin ( ydA sin ) sin ( ydA sin ) cos 0
工程力学电子教案
应力状态理论和强度理论
15
y
y
n
Y
X
X
dA
Y
X
x
p
X
x
第九章:复杂应力状态及强度理论
杆在周向截面上没有应力。又由切应力互等定理可知, 杆在径向截面上 B 点处应该有与相等的切应力。于是 此单元体各侧面上的应力如图.
第一节:应力状态概念
三、主平面、主应力、应力状态的分类
主单元体:在一般情况下,表示一点处应力状态的应力单元体在其各个表面上同时 存在有正应力和切应力。但是可以证明:在该点处以不同方式截取的各个单元体中, 必有一个特殊的单元体,在这个单元体的侧面上只有正应力而没有切应力。这样的 单元体称为该点处的主应力单元体或主单元体。
sin 2 cos 2
当 450 时, max
当 00 时, max
低碳钢试件扭转破坏是被剪断的,且其抗剪能力低于其抗拉能力。 铸铁试件扭转破坏是被拉断的,且其抗拉能力低于其抗剪能力。
第二节:二向应力状态分析
例 9-3 图示单元体,x =100MPa,x = – 20MPa, y =30MPa。试求:1) =40º的斜截面上的 和 ;2)确定 A 点处的max、max 和它们所在的
由单向应力状态胡克定律可知:主应力 1、 2和 3 单独作用时,分别对 应的纵向线应变为1/E、2/E和 3/E;令横向变形系数 ,则主应力 2 将引起 1 方向相应的线应变为 – 2 /E;其它同理。故 1 由1 的纵向线 应变与 2、3 分别引起的 1 方向相应的横向线应变三项叠加而成。
主应力表示的 广义胡克定律
第三节:三向应力状态分析
第三节:三向应力状态分析
复杂应力状态下一点处的最大应力 1、一点处的最大正应力
设一点处的主应力单元体如图 a 所示,研究证明,当主应力按 1 2 3
排列时,则有
max 1
min 3
第三节:三向应力状态分析
2、一点处的最大切应力
应力状态分析与强度理论应力状态概述应力状态概述应力状态
相互平行面上同类应力大小相等,指向相反zy5单元体中剪应力为零的截面在受力构件中任一点处,一定存在三对相互垂直的主平面,由主平面构成的单元体即为主单元体主平面上的正应力。
主应力可正,可负,可为零。
3σ≥789●如图所示为承受内压p 的圆筒形薄壁容器。
容器的平均直径为D ,壁厚为δ。
试计算圆筒横截面和纵截面上的应力。
10解:薄壁容器的应力状态分析横截面上的正应力σ’为,称为轴向应力纵截面上的正应力σ’’为,称为环向应力11●由平衡方程()()02042=-⋅''=-'pDl l DpD δσπδπσδσδσ2,4pD pD =''='●主应力排列0,4,2321=='==''=σδσσδσσpDpD 12第六章应力状态分析与强度理论应力状态概述平面应力状态分析三向应力状态分析广义胡克定律工程中常用的四种强度理论14正应力:以拉应力为正切应力:以对单元体有顺时针转动趋势者为正方位角:以从轴逆时针转到斜截面外法线轴为正150=tFcos )sin d (sin )sin d (sin )cos d (cos sin )sin d (cos )sin d (cos )cos d (sin =++-=-+-αασααταασααασααταασαA A A A A A y yx x y yx x 16平面应力状态分析ατασσ2sin 2cos 2xy yx --+ατα2cos 2sin xy +ατασσσ2sin 2cos 2xy yx y+--y x σσ+σατασα+90τα+9017平面应力状态分析例1 已知某点的应力状态如图示,求图示斜截面的030,MPa 50,MPa 60,MPa 40-==ασy )()()()()MPa3.5860sin 5060cos 260406000-=------+)()()()MPa3.1860cos 5060sin 2604000=--+--18主应力和最大剪应力主应力(最大或最小正应力)ατασσ2sin 2cos 2xy yx --+02222=-=-ατατασcos sin )xy y yx xyp σστα--=22tan 方程有两个解:αp ,αp +900一个单元体上的主平面共有三个23得相应的应力圆©αF24点a和b所对应的圆心角为2α,且二角转向相同2522)2(2xyyx yx CA τσσσσ+-±+=='''σ或()应力圆法27应力圆法面内最大剪应力在K 点和M 点,切应力绝对值最大22)2(2xyyx τσσσστ+-±=''-'±='可见,最大与最小切应力数值相等,相差一正负号,两者所在截面相互垂直,并与主应力σ’和σ”所在截面成450夹角。
材料力学应力状态分析和强度理论
材料力学应力状态分析和强度理论材料力学是一门研究物质内部各个部分之间的相互作用关系的科学。
在材料力学中,应力状态分析和强度理论是非常重要的概念和方法,用来描述和分析材料的力学行为和变形性能。
材料的应力状态是指在外力作用下,物体内部各个部分所受到的力的分布情况。
应力有三个分量:法向应力、剪应力和旋转应力。
法向应力是垂直于物体表面的作用力,剪应力是平行于物体表面的作用力,旋转应力则是物体受到扭转力产生的应力分量。
应力状态的描述可以用应力矢量来表示。
应力状态分析的目的是确定材料内部各个部分的应力分布情况,进而推导出物体的变形和破坏行为。
常用的应力状态分析方法有平面应力问题、平面应变问题和三维应力问题。
平面应力问题是指在一个平面上的应变为零,而垂直于该平面的应力不为零;平面应变问题是指在一个平面上的变形为零,而垂直于该平面的应力不为零;三维应力问题则是指在空间中3个方向的应力都不为零。
强度理论是指根据材料的内部应力状态来评估其抗拉强度、抗压强度和抗剪强度等,以判断材料是否能够承受外力而不发生破坏。
常见的强度理论有最大正应力理论、最大剪应力理论和最大扭转应力理论。
最大正应力理论是指在材料的任何一个点,其法向应力都不能超过材料的抗拉强度;最大剪应力理论则是指剪应力不能超过材料的抗剪强度;最大扭转应力理论则是指旋转应力不能超过材料的极限扭转强度。
实际应用中,强度理论通常与材料的断裂理论结合起来,以评估材料的破坏行为。
材料断裂的主要原因是应力超过了材料的强度极限,从而导致材料的破坏。
为了提高材料的强度和抗拉性能,可以通过选择合适的材料、改变材料的结构和制造工艺等方法来实现。
综上所述,材料力学应力状态分析和强度理论是描述和分析材料力学行为和变形性能的重要理论和方法。
通过深入研究应力状态、应力分析和强度理论,可以为材料的设计和制造提供指导和支持,从而提高材料的强度和抗拉性能。
材料力学课件第十一章应力状态分析和强度理论
n
薄壁圆筒的横截面面积
πD 2 F p 4
′
p
A πD
πD 2 F p 4 pD A πD 4
n
D
第十一章
"
p
应力状态和强度理论
(2)假想用一直径平面将圆筒截分为二,并取下半环为研究对象
直径平面
FN
O
FN
d
y
D Fy 0 0 pl 2 sin d plD pD 2 l plD 0 2
2
3 1
1
3 2
第十一章
4.主平面 切应力为零的截面 5.主应力
应力状态和强度理论
主面上的正应力
说明:一点处必定存在这样的一个单元体, 三个相互垂直的面 均为主平面, 三个互相垂直的主应力分别记为1 ,2 , 3 且规定按 代数值大小的顺序来排列, 即
1 2 3
F k
n
(2)当 = 45°时, max 2 min (3)当 = -45° 时, (4)当 = 90°时, 0,
x
2 0
k
11.2
二向和三向应力状态的实例
m n
分析薄壁圆筒受内压时的应力状态
z
y
D
p
m
l
n
(1)沿圆筒轴线作用于筒底的总压力为F
F
k
F
k n
p cos cos
2
F
沿截面切线方向的切应力
k pα
x
p sin
2
sin2
pα
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[s ]
(弯曲)
s max
M max W
[s ]
(弯曲)
max
Fs
S
* z
bI z
[ ]
(扭转)
max
T Wp
[ ]
(正应力强度条件)
s max [s ]
(剪应力强度条件)
max [ ]
上面强度条件没有考虑材料的破坏原因,而是直接根据试
验结果建立的强度条件。这只对危险截面上危险点处是单向应
3.构件由于强度不足而引起的两种破坏(失效)形式
(1) 脆性断裂: 材料无明显的塑性变形即发生断裂,断面较粗糙,且多发
生在最大正应力作用的截面上,如铸铁受拉、扭,低温脆断等。
(2) 塑性屈服(流动): 材料破坏前发生显著的塑性变形,破坏断面粒子较光滑,
且多发生在最大剪应力面上,例如低碳钢拉、扭,铸铁压。
s144.3MPa;s 20;s 320.3MPa;
2
E
s
3
s
1
0.3 210109
(22.344.3)106
34.3106
§8-6 复杂应力状态下的变形比能
一.比能:单位体积积储的变形能
s1
u
1s
2
11
1s
2
2
2
1s
2
3
3
s3
图a
1 2E
s
2 1
s
2 2
s
2 3
2
s
1s
2
s
3s
2
s
1s
3
s2
危险点无论在什么应力状态下,只要三个主应力中的最大拉应力 达到材料的极限应力值,材料就发生脆断破坏。
1、破坏判据: s1 s b ; (s1 0)
2、强度准则: s 1 s ; (s 1 0)
3、实用范围:实用于破坏形式为脆断的构件。
二、最大伸长线应变(第二强度)理论:
此理论认为最大伸长线应变是引起材料脆性断裂的主要原因。 即危险点无论在什么应力状态下,只要最大伸长线应变达到材料的 极限应变值,材料就发生脆断破坏。
§8–4 三向应力状态简介——应力圆法
1、空间应力状态
y
s1
s2
s3
s
z
x
s3
s2
s1
2、三向应力分析
y
s1
maxΒιβλιοθήκη s2s3s3
s2
x
z 图a
s
s1
图b
弹性理论证明,图a单元体内任意截面上的应力都对应
着图b的应力圆上或阴影区内的一点。 整个单元体内的最大剪应力为:
max
s
1s
2
3
§8–5 复杂应力状态下的应力 -- 应变关系 ——(广义胡克定律)
二.体积改变比能和形状改变比能
- sm
s
m
1(s
3
1
s
2
s
3
)
s1
sm
sm
s2 -sm
sm
图b
a
12
E
(s
1s
2
s
3
)b
c 0
s3 -sm 图c
图c单元体的应变能为:
ux
1
6E
s1s 2 2s 2s 3 2s 3s1 2
称为形状改变比能或歪形能。
s 1 -sm
s2 -sm s3 -sm
图c
例 用能量法证明三个弹性常数间的关系。
1、破坏判据: 1 b ;(1 0)
1
1 E
s1
s 2
s3
b
sb
E
s 1 s 2 s 3 s b
2、强度准则: s 1 s 2 s 3 s
3、实用范围:实用于破坏形式为脆断的构件。
三、最大剪应力(第三强度)理论:
此理论认为最大剪应力是引起材料发生塑性屈服的主要原 因。即危险点无论在什么应力状态下,只要最大剪应力达到单 向拉伸材料屈服时的极限剪应力值,材料就发生屈服破坏。
1=24010-6, 2=–16010-6,弹性模量E=210GPa,泊松比为 =0.3, 试求该点处的主应力及另一主应变。
解: 自由面上s 30
所以,该点处的平面应力状态
s 2
s11E 2 12
s 1
210109 10.32
(2400.3160)106
44.3MPa
s
2
E
1
2
2
1
210109 (1600.3240)10620.3MPa 10.32
4. 强度理论:
人们根据大量的破坏现象,通过判断推理、概括,提出了种 种关于材料破坏原因的假说,并找出引起破坏的主要因素,经过 实践检验,不断完善,在一定范围与实际相符合,上升为理论。
强度理论是关于“构件发生强度失效起因”的假说。
§8–9 四个强度理论
一、最大拉应力(第一强度)理论: 此理论认为最大拉应力是引起材料脆性断裂的主要原因。即
力状态或纯剪应力状态这类特殊情况才适用。
2、组合变形杆将怎样破坏? (如何建立强度条件)
P
sx
M
x
工程中的受力构件,当承载达到一定程度时,其材料一 般会在构件危险截面上的危险点处首先发生屈服或裂开而进入 危险状态。因此,为了保证构件能够正常工作,必须找出材料 进入危险状态的原因,并由此建立强度条件。
sy
s x
y
sx
z
1 E
s x
s y
x
y
xy
G
sz
xy
z
x
五、体积应变与应力分量间的关系
V a1a2a3
V1a1(11)a2 (1 2 )a3 (13 )
体积应变:
V1V V
1
2
3
体积应变与应力分量间的关系:
12
E
(s
1
s
2
s
3
)
12
E
(s
x
s
y
s
z
)
例 已知一受力构件自由表面上某一点处的两个面内主应变分别为:
A
xy
纯剪单元体的比能为:
u1 2
2 2G
纯剪单元体比能的主应力表示为:
s3 s1
u
1 2E
s
2 1
s
2 2
s
2 3
2
s
1s
2
s
3s
2
s
1s
3
1 20( )2200( ) 2E
1 2
E
G 21E
§8–8 强度理论的概念
1. 杆件基本变形下的强度条件
(拉压)
s max
FN ,max A
1、破坏判据:
max s
max
s1 s3
2
ss
2
s
s1 s3 ss
2、强度准则:s 1 s 3 s
3、实用范围:实用于破坏形式为屈服的构件。
四、形状改变比能(第四强度)理论: 此理论认为形状改变比能是材料发生塑性屈服的主要原
因。即危险点无论在什么应力状态下,只要形状改变比能达到 单向拉伸屈服时的形状改变比能,材料就发生屈服破坏。
一、单向应力状态的应力--应变关系
y
sx
x
s x
E
y
s
E
x
z
s
E
x
z
x
y
二、纯剪的应力--应变关系
x
y
xy
G
i 0 (ix,y,z)
yz zx 0
xy
z
x
三、复杂状态下的应力 --- 应变关系
sy
x
1 E
s
x
s
y
s
z
y
sx
sz
xy
z
x
依叠加原理,得:
x
sx
E
sy
E
sz
E
y
1 E
s
y
s
z
s
x
z
1 E
s
z
s
x s
y
x
y
xy
G
y
z
yz
G
zx
zx
G
1 E
s
x
s
y
s
z
主应力 --- 主应变关系
1
1 E
s
1
s
2
s
3
2
1 E
s
2
s
3
s
1
3
1 E
s
3
s
2
s
1
方向一致
四、平面应力状态下的应力---应变关系: s z yz zx 0
x
1 E
sx
s y
y
1 E