正弦稳态电路的分析讲解
第2章 正弦稳态电路的分析
u
l
L是一个与i、ψ无关的常数。若线圈中含有铁磁物质,则 L与i、ψ有关,不是常数。 线圈的电感与线圈的形状,几何尺寸,匝数以及周 围物质的导磁性质有关,即 SN 2 L l l为密绕长线圈的长度(m),截面为S(m2), 匝数为N,μ为介质的磁导率。
2.自感电动势
i(t)变化
ψ变化
产生eL(t)
波形图中 正半周 u > 0 , i > 0 (正值),说明实际方向与参考方向相同 负半周 u < 0 , i <0 (负值),说明实际方向与参考方向相反
+
u
_
i,u T Um O
波形: Im
wt
可见:没有设定参考方向,正负值就没有意义,波形图也表达不出 它们的变化规律
2.1.2 正弦交流电量的三要素:
u U m cos( t + ) w U m e j (wt + )的实部 正弦电压u正好等于复数
u Re [U m e j (wt + ) ] Re [U m e jwt e j ] e jwt ] (令U U e j ) Re [U m m m
现在就把பைடு நூலகம்U m U m e j U m 称为正弦电压u的最大值相量
除法:模相除,角相减。
正弦交流电量的表示法 1、瞬时表达式(即时间的正弦或余弦函数式) 2、波形图(即时间的正弦或余弦函数曲线) 3、相量法(用复数表示正弦电量的方法) (1)复数与正弦量的关系
U m e j (wt + ) U m [cos(wt + ) + j sin(wt + )]
特殊相位关系:
u, i
u i O u, i u O u, i u iw t
电路原理-正弦稳态电路的分析
对记录的数据进行分析,验证正 弦稳态电路的原理和性质。
实验结果与讨论
实验结果
通过实验观察和数据记录,可以 得出正弦稳态电路中电压和电流 的波形关系,以及元件参数对波
形的影响。
结果分析
对实验结果进行分析,验证正弦稳 态电路的基本原理,如欧姆定律、 基尔霍夫定律等。
实验讨论
讨论实验中可能存在的误差来源, 如电源稳定性、示波器的测量误差 等。同时,可以探讨如何减小误差、 提高实验精度的方法。
04 正弦稳态电路的分析实例
单相交流电路分析
总结词
分析单相交流电路时,需要计算电流、电压的有效值以及功率等参数,并考虑阻 抗、导纳和相位角等因素。
详细描述
在单相交流电路中,电压和电流都是时间的正弦函数。为了分析电路,我们需要 计算电流和电压的有效值,以及功率等参数。此外,还需要考虑阻抗、导纳和相 位角等因素,以便更准确地描述电路的性能。
实验步骤与操作
3. 观察波形
2. 连接电源
将电源连接到电路中,为电路提 供稳定的交流电压。
使用示波器观察电路中各点的电 压和电流波形,并记录数据。
4. 调整元件参数
通过调整电阻器、电容器和电感 器的参数,观察波形变化,并记 录数据。
1. 搭建正弦稳态电路
5. 分析数据
根据实验要求,使用电阻器、电 容器和电感器搭建正弦稳态电路。
相量法
1
相量法是一种分析正弦稳态电路的方法,通过引 入复数相量来表示正弦量,将时域问题转化为复 数域问题,简化计算过程。
2
相量法的核心思想是将正弦电压和电流表示为复 数形式的相量,并利用相量图进行电路分析。
3
相量法的优点在于能够直观地表示正弦量的相位 关系和幅度关系,简化计算过程,提高分析效率。
正弦电流电路的稳态分析基础知识讲解
T 1T
0
0
2
20 2
I
1 T
I
2 m
T 2
Im 2
0.707Im
Im 2I
i(t ) Im sin(wt Ψ ) 2I sin(wt Ψ )
同理,可得正弦电压有效值与最大值的关系:
1 U 2 Um
或
U m 2U
若一交流电压有效值为U=220V,则其最大值为Um311V;
U=380V,
二、正弦量的相量表示
两个正弦量 i1 2 I1 sin(wt y1 )
u, i
角频率: 有效值:
i1
w
i1
i2
wi2
I1
I2
初相位:
1 O 2
i2 2 I2 sin(wt y2 )
i1+i3i2 i3
w
I3
wt3
无论是波形图逐点相加,或用三角函数做都很繁。
因同频的正弦量相加仍得到同频的正弦量,所以,只 要确定初相位和有效值(或最大值)就行了。于是想到复数, 复数向量也包含一个模和一个幅角,因此,我们可以把正 弦量与复数对应起来,以复数计算来代替正弦量的计算, 使计算变得较简单。
解:
•
I
10030o
A
•
U 220 60o V
试用相量表示i, u .
例2.
•
已知I
5015
A,
f 50Hz .
试写出电流的瞬时值表达式。
解:i 50 2sin(314t 15 ) A
相量图(相量和复数一样可以在平面上用向量表示):
•
U
•
I
i(t) 2Isin(ω t ) I I u(t) 2Usin(ωt θ ) U Uθ
正弦稳态电路分析PPT课件
2
解法二: 采用阻抗Z计算;
·IS
+ 1
U·
2 Z 2 (1 j)(2 j) 2 3 j
1 j 2 j
3
_ j1
-j1
3 j 1 ()
Z
•
U
ZIS
(3
3j 1)50 3
(15
j 5)(V ) 3
P IS 2 Re[Z ] 52 3 75(W )
3 32 (1/ 3)2
75(W )
Q UIS sin φ
152 (5 / 3)2 5
1/ 3 32 (1/ 3)2
8.3(Var)
S UIS 152 (5 / 3)2 5 75.5(VA) cos φ 0.993
第6章 正弦稳态电路分析
例:如图电路中,已知 is 5 2 sin 2(t A ),求电源提供的P、
+
U·S_
·I1
5
j5
3 -j4
解:U s 100V I1 2 45( A) I2 253.1( A)
P1 I12R1 ( 2)2 5 10(W)
或: P1 USI1 cos φ1=10 2 cos 45 10(W)
P2
I
2 2
R2
22
3
12(W)
或: P2 USI2 cos φ2=10 2 cos 53.1 12(W)
例:电路如图,已知 us (t) 10 2 sin 5(t V) ,求电阻R1,R2
消耗的功率,并分析功率关系。
·I2
+ uS(t)_
R1 5 R2 3 L 1H C 0.05F
+
正弦稳态电路的分析基础知识讲解
(R2 R3
I4 IS
j
1 C
)I3
R2 I1
R3 I2
j
1 C
I4
0
_ U S + U n1
jL R1
R2
U n2
j 1
IS
R4
R3
c
节点法:
U n3
U n1 U S
(
R1
1 jL
1 R2
1 R3
)U n2
1 R2
U n1
1 R3
U n3
0
(
1 R3
1 R4
jC )U n3
1 R3
U n2
方法二、
•
I R1
U U1 U 2 55.400 80 115q
55.4 80cos 115cosq
+ U
+
U 1
_ R2
_
L2
+
U 2
_
80sin 115sinq
cos 0.424 64.930
其余步骤同解法一。
例9 移相桥电路。当R2由0时,U• ab如何变化?
IC
+
+
2 7.5
2
例11 求RL串联电路在正弦输入下的零状态响应。
已知:uS 2U cos(t u )
+
解 应用三要素法: uS
iL(0 ) iL(0 ) 0 L R
_
R
+
L uL
iL _
用相量法求正弦稳态解
I U
R jL
R2
U
(L)2
u
Z
I i
iL(t)
iL()
第五章正弦稳态电路分析
(b)
(c)
(a) 同相;(b)正交;(c)反相
图5-6 电压、电流的相位关系
§5-2 正弦量的相量表示法
5.2.1 复数的表示方法及其四则运算
一个复数 (complex number) A可以用几种形式来表示。用代数形式 (rectangular form) 时,有
A a1 ja2
j 1称为虚单位(imaginary unit ) (它在数学中用i代表,而在电工中, i已用来表示电流,故改用j代表)。
p ui
p
1 2
U
m
I
m
(1
cos
2t
)
UmIm 2
UmIm 2
cos 2t
§5-3 电阻、电感和电容元件的交流电路
5.3.1 电阻元件
2.功率(power)
通常所说的电路中功率是指瞬时功率在一个周期内的平均值,称为平
均功率(average power),以大写字母 来表示:
P 1
T pdt 1
2 2 f
T
§ 5-1 正弦量
5.1.3 初相位和相位差
正弦量随时间变化的核心部分是ωt +φi ,它反映了正弦量的变化进程,称 为正弦量的相角或相位(argument)。
t=0时的相位称为初相位或初相(initial phase),即
(t i ) t0 i
初相位的单位可以用弧度或度来表示。通常在|φi|≤π的主值范围内取值。 初相角的大小和正负与计时起点的选择有关。对任一正弦量,初相允许任意指 定,但对于一个电路中的多个相关的正弦量,它们只能相对于一个共同的计时 起点确定各自的相位。
§ 5-1 正弦量
5.1.1 最大值与有效值
第九章正弦稳态电路分析
五、导纳并联
• n个导纳并联,其
等效导纳为
Y
Yeq=Y1+Y2…+Yn
•
I
•
•
+
•
U
Y1
I1
Y2
I2
-
各个导纳的电流分配为
•
IK
YK Yeq
•
I
,K=1,2,…n
例2:已知RLC串联,R=50,L=200mH,C=100F,电源
电压为: u 220 2 cos(314t 30)V
试求感抗,容抗,电抗,阻抗及各元件上的电压。
⑤ 阻抗Z也称为输入阻抗,等效阻抗或驱动点阻抗。
2.阻抗三角形
➢由 Z=R+jX=Z z
Z
可得 Z R2 X 2
X
Z
arctg
X R
Z
R
Z、R、X之间关系可用直角三角形表示,称 为阻抗三角形。
✓另: Z通常为ω的函数 Z(jω)= R(ω) +jX(ω), R(ω)称为电阻分量,X(ω)称为电抗分量 。
Z
• 单位:Ω
关于阻抗的说明:
① 阻抗Z是复数,不是相量;
② 阻抗Z的代数式:Z=R+jX,实部R=Zcos z称为电 阻,虚部X= Zsin z称为电抗;
③ 电抗X可正可负,当X0时,即z 0,称Z是感性的; 当X0,即z 0,称Z是容性的;当X=0时,即z=0,称
Z是阻性的;
④ 电阻R的阻抗ZR=R;电感L的阻抗ZL=jωL,其电抗 XL=ωL,称之为感抗;电容C的阻抗ZC=-j/(ωC), 其电抗XC=-1/(ωC),称之为容抗;
✓三、阻抗和导纳的关系
• 对同一电路而言,其阻抗和导纳为倒数 关系,因此有
第九章 正弦稳态电路的分析
第九章正弦稳态电路的分析 §9-1阻抗和导纳§9-2阻抗(导纳)的串联和并联§9-3正弦稳态电路的分析§9-4正弦稳态电路的功率§9-5复功率§9-6最大传输功率§9-7串联电路的谐振§9-8并联电路的谐振串、并联谐振的特性比较§9-1阻抗和导纳一、阻抗1、阻抗的定义无源线性一端口网络等效电路§9-1阻抗和导纳2、单个元件的阻抗电阻电容电感§9-1阻抗和导纳3、RLC 串联电路的阻抗或§9-1阻抗和导纳对于RLC 串联电路:(1)当ωL >1/ωC 时§9-1阻抗和导纳(2)当ωL <1/ωC时§9-1阻抗和导纳(3)当ωL =1/ωC时§9-1阻抗和导纳二、导纳1、导纳的定义无源线性一端口网络等效电路§9-1阻抗和导纳2、单个元件的导纳电阻电容电感§9-1阻抗和导纳3、RLC 并联电路的导纳或§9-1阻抗和导纳对于RLC 并联电路:(1)当ωL >1/ωC时§9-1阻抗和导纳(2)当ωL <1/ωC 时§9-1阻抗和导纳(3)当ωL = 1/ωC时§9-1阻抗和导纳三、复阻抗和复导纳的等效互换同一个两端口电路阻抗和导纳可以互换,互换的条件为:即:§9-1阻抗和导纳串联电路和其等效的并联电路它的阻抗为:其等效并联电路的导纳为:即等效电导和电纳为:§9-1阻抗和导纳同理,对并联电路,它的导纳为其等效串联电路的阻抗为:即等效电阻和电抗为:§9-1阻抗和导纳)60sin(25 +=t u ωHz f 4103⨯=例9-1电路如图(a)所示,已知:R =15Ω,L =0.3mH,C =0.2μF, ,。
求i ,u R ,u L ,u C 。
VU 605∠=•解:电路的相量模型如图(b )所示,其中:§9-1阻抗和导纳C j L j R Z ωω1-+=A Z U I 4.3149.04.6354.33605-∠=∠∠==••V I L j U L 4.8642.84.3149.0905.56∠=-∠⨯∠==••ωV I R U R 4.3235.24.3149.015-∠=-∠⨯==••V I Cj U C 4.9395.34.3149.0905.261-∠=-∠⨯-∠==••ω因此总阻抗为总电流为电感电压为电阻电压为电容电压为相量图如图(c )所示,各量的瞬时式为:§9-1阻抗和导纳例9-2 RL 串联电路如图(a )所示,求在ω=106rad/s 时的等效并联电路图(b )。
正弦稳态电路的分析
正弦稳态电路的分析1.复数法分析:a. 复数电压和电流表示:将正弦波电流和电压表示为复数形式,即I = Im * exp(jωt),V = Vm * exp(jωt),其中Im和Vm为幅值,ω为角频率,j为虚数单位。
b.使用欧姆定律和基尔霍夫定律来建立复数表达式。
c.找到电路中的频域参数,如电阻、电感和电容等,并使用复数法计算电路中的电流和电压。
d.计算电源电压和电流的相位差,这会决定电路中的功率因数。
2.相量法分析:a.相量表示:将电路中的电流和电压表示为相量形式,即以幅值和相位角表示,例如I=Im∠θ,V=Vm∠θ。
b.使用欧姆定律和基尔霍夫定律来建立相量表达式。
c.对电路中的频域参数应用相量法,计算电路中的电流和电压。
d.计算电源电压和电流的相位差,以确定电路中的功率因数。
无论是复数法还是相量法,分析正弦稳态电路的关键是计算电路中的电流和电压的幅值和相位。
在计算过程中,需要使用复数代数、欧姆定律、基尔霍夫定律以及频域的电路参数等相关知识。
在实际应用中,正弦稳态电路的分析主要包括以下几个方面:1.交流电路中的电阻:电阻对交流电流的影响与直流电路相同,即按欧姆定律计算。
复数法计算时,电流和电压与频率无关,可以直接使用欧姆定律计算。
2.交流电路中的电感:电感器对交流电流的响应取决于电流的频率。
复数法计算电感电压和电流时,需要将频率变量引入到电感的阻抗中。
3.交流电路中的电容:电容器对交流电压的响应取决于电压的频率。
复数法计算电容电压和电流时,需要将频率变量引入到电容的阻抗中。
4.交流电路中的复数阻抗:电路中的电感、电容和电阻组成复数阻抗。
复数阻抗可以用来计算电路中的电流和电压。
根据欧姆定律和基尔霍夫定律,可以建立复数电流和电压之间的关系。
5.交流电路中的功率因数:功率因数是电路中有功功率与视在功率之比。
在分析正弦稳态电路时,可以计算电路中电源电压和电流的相位差,从而确定功率因数。
总结起来,正弦稳态电路的分析步骤包括选择复数法或相量法、建立复数或相量表达式、计算电流和电压的幅值和相位、计算功率因数等。
第九章-正弦稳态电路的分析
例:9-4-2如图,列出节点电压相量方程
33
-j5Ω
1
2
5Ω 10o A
j12Ω
j5Ω -j10Ω
10Ω -j0.5A
设节点与参考节 点如图
(1 5
1 j10
1 j12
1 )U j5 1
(
1 - j5
1 )U j12 2
00
A
I 2
3
.
1
4
-
300
A
I 3.14300 A
R jωL IU2S(略)
练习9-7
习题:9-1 (b)、(e)
23
9-3 (4)
9-7 9-11
说明:9-7 求R、L时,习题解答单纯根据相量电 路列方程求解较麻烦,借助相量图分析得 到电流电压相量,然后,由
Z
R
jωL
U I
部分答案参考:
9 (1 b)Zin 2 j, Yin 0.4 j0.2
=2A。求电流表 A 读数
1
I
解:利用KCL建立电路方程
+
U
-
A
R1
-j 1
A1 I1
I2 A2
R2
1、设I2 20O
I 1
R1
U
j1 ωC
U00
1 ωC
j1 ωC
I1 1A
I1 14 5O
I14 5O
ωC
2 、I I1 I2 0 . 7 0 7 j 0 . 7 0 7 2 I 2 . 7 0 72 0 . 7 0 72 2.8( A )
Yeq Y1 Y2 Yn — 端口等效导纳
两个阻抗并联,则等效导纳:
Y
Y 1
电路理论第九章 正弦稳态电路的分析
(Y,G, B均为电导的量纲)
对于纯电阻电路有:YR
G
1 R
,
对于纯电感电路:YL
1
jL
j 1
L
jBL ;
Bl
1
L
称为感性电纳,简称感纳;
对于纯电容电路:YC jC jBC
对于
BC
R, L,
C ,称为容性电纳,简称容纳;
C 并联电路有:
I
I IR
IL
IC
U R
U
jL
jCU
+ U
即三者构成一个等边三角形。(如图)由相量图可
得:
U1
6
UR
UL I1
3
U s
U 2
U 2 UC
1
C
I1
U2 2U
L
tg
30
U
L
UR
C
I1
U
2 31.85F,
314 200
1
C
2 L
L
1
2 2C
159.2mH
tg30
L
R
R
L
tg30
86.6,
+
,
例题:电路如图,已知,Z1 (10 j50), Us
I
Z2 (400 j1000 ), 如果要使I2和U s
-
的相位差为90( 正交), 应等于多少?
U1
6
UR
3
U s
UL I1
U 2
a
Z1 + U2 Z2
- I2 I2
b
解:对于a点应用KCL有:I I2 I2 (1 )I2 要使I2和U s 的相位差为90 转化为 I 和U s 的相位差为
正弦稳态电路的分析
一、阻抗 1. 一端口的阻抗 不含独立电源N0 ,当它在正弦电源激励下处于稳 不含独立电源N 态时,端口的电压、电流都是同频率的正弦量, 态时,端口的电压、电流都是同频率的正弦量,即 u = 2U cos(ωt +ϕ ) U = U∠ϕ →ɺ
u u
9-1 阻抗与导纳
0
i = 2I cos(ωt +ϕi ) I = I∠ϕi →ɺ 则它的端电压相量与端电流相量的比 阻抗Z 值定义为该一端口N 值定义为该一端口N0的(复)阻抗Z,即
ɺ 解: 选择 U'作为参考相量
ɺ IR
ɺ U'
α =45°
ɺ IC
∵ωL = 200×0.25 = 50Ω= R ∴IR = IL 由几何关系得: 由几何关系得:
ɺ IL
ɺ US ɺ UC
ɺ ɺ ɺ IC = I R + I L ɺ ɺ ɺ US = U′ +UC
UC =US =100V, U′ =100 2V U′ ∴IR = IL = = 2 2A , IC = 2IR = 4A , R IC 1 UC ∴ = ,C= = 2×10−4 F = 200µF ωC IC ωUC
def
R jX
|Z|——阻抗 的模; ϕ Z ——阻抗角; 阻抗Z的模 阻抗角; 阻抗 的模; 阻抗角 R——等效电阻;X——等效电抗。 等效电阻; 等效电抗。 等效电阻 等效电抗 为实数, 称为感性阻抗, (R为实数,X>0称为感性阻抗,X<0称 为实数 X>0称为感性阻抗 X<0称
ɺ U U Z === = ∠(ϕu −ϕi ) =| Z | ∠ϕZ = R + jX ɺ I I
第九章 正弦稳态电路的分析
电路课件第九章正弦稳态电路的分析
04
正弦稳态电路的谐振
串联谐振
串联谐振的定义
在串联电路中,当电路的感抗等 于容抗时,电路呈现纯电阻性质, 此时电路中的电流与电压同相位,
这种现象称为串联谐振。
串联谐振的特点
在串联谐振时,电路的阻抗最小, 电流最大;电感和电容上的电压大 小相等,方向相反,互相抵消。
串联谐振的应用
串联谐振在电子、通信、电力等领 域有广泛应用,如收音机的调谐电 路、无线电通信的滤波器等。
无功补偿作用
无功补偿能够提高电力系统的效率,减少能源浪费,并有助于维持电力系统的 稳定运行。
无功补偿的方法和实现
无功补偿方法
无功补偿的方法包括并联电容器、静止无功补偿器(SVC)、静止无功发生器 (SVG)等。
无功补偿实现
无功补偿的实现通常需要在电力系统中安装相应的无功补偿装置,并根据电力系 统的实际情况进行配置和控制。
分析的重要方法之一。
阻抗和导纳的概念
阻抗是表示电路对电流阻碍作用的物 理量,由电阻、电感和电容共同决定。
在正弦稳态电路中,阻抗和导纳都是 复数,可以用实部和虚部表示。
导纳是表示电路导通能力的物理量, 由电导和电纳共同决定。
阻抗和导纳是分析正弦稳态电路的重 要概念,对于理解电路的工作原理和 计算具有重要意义。
功率因数(Power Factor)是衡量电 力设备效率的指标,它表示了电力设 备在能量转换过程中,有功功率与视 在功率的比值。
功率因数计算
功率因数可以通过测量电压和电流的 波形,然后计算有功功率和视在功率 来实现。在实际应用中,功率因数通 常由电力表直接给出。
无功补偿的概念和作用
无功补偿概念
无功补偿(Reactive Power Compensation)是指在电力系统中,通过引入 无功电源,以改善电力系统的电压质量和稳定性,同时减少线路损耗和变压器 损耗。
电路分析基础-第六章-正弦稳态电路分析
故 对C支路,有
j
I2 jCU CU 90 CUe 2
由A2读数为10A,故 I2 10e j 2
30
由KCL的相量形式,有
I
I1
I2
10e j0
j
10e 2
10
j10 10
2e j45 A
故A的读数为10 2 A
解法2:用相量图求解
因R与C并联,两者端电压相等,故以电压作为参考相量
i(t) 5 sin(100t 15)
u(t) 10 cos(100t 30) i(t) 5 cos(100t 15)
8
6-1-3 正弦量的有效值
在工程上,常将周期量在一个周期内产生的平均效应换算 为在效应上与之相等的直流量,以衡量和比较周期量的效应, 这一直流量就称为周期量的有效值,用相对应的大写字母表 示。
11
6-2 正弦量的相量表示法
正弦量为什么要用相量表示?
正弦稳态电路中,电路中各支路的稳态响应是与激励同 频率的正弦量。激励的频率通常是已知的,因此要求响应, 只要确定它们的振幅和初相这两个量就行了
相量表示法就是用复数来表示正弦量的振幅和初相,将 描述正弦电路的微分方程变换为复数代数方程,而这些方程 在形式上又与直流电路的方程相类似,从而大大简化了正弦 稳态响应的分析与计算。
2
本章的主要内容
6-1 正弦量 6-2 正弦量的相量表示法 6-3 正弦稳态电路的相量模型 6-4 正弦稳态电路的相量分析法 6-5 正弦稳态电路的功率 6-6 三相电路
3
6-1 正 弦 量
6-1-1 正弦量的三要素
正弦电压的瞬时值可表示为:
u (t ) Um
u(t) U m cos(t u )
正弦稳态电路分析解读
求:(1)正弦量的最大值、有效值; (2)角频率、周期、频率; (3)初相角、相位差。
解 : (1)最大值 Um=220 2 V, Im=10
有效值 U=220V, I=10A
2A
(2)角频率ω=314 rad/s, 频率f=50Hz, 周期T=0.02s
根据有效值的定义有:
I 2 RT 0Ti2 Rdt
正弦电流的有效值为:
I
1 T
0Ti 2 dt
1 T
0T
I
2 m
cos2
(t
i)dt
I m 0.707 I m 2
同理,正弦电压的有效值为:
U Um 0.707Um 2
正弦电动势的有效值为:
E
Em 2
0.707 Em
在正弦量的三要素中,一般用有效值来代替最大值表示正 弦量的大小,在工程上,通常所说的正弦电压、电流的大 小都是指其有效值。
e Em cos(t e )
u U m cos(t u )
i I m cos(t i )
4.1.1 正弦量的三要素
正弦量的特征表现在变化的快慢、大小和初始值三个方面, 它们分别由角频率、幅值和初相来确定,统称为正弦量的 三要素。
以正弦电流为例
i Im cos(t i )
幅值
角频率
初相
的初始值
规定初相角的绝对值不超过
即 ≤≤
如果遇到初相角大于 时,应加 初相角小 于 时,应加 2
规定
2 ,如果遇到
来使初相角符合
4.1.2 正弦量的有效值
有效值用来表示正弦量大小
正弦电流的有效值:
让周期电流i和直流电流I分别通过两 个阻值相等的电阻R,如果在相同的 时间T内,两个电阻消耗的能量相等, 则称该直流电流I的值为周期电流i的 有效值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
U S I1
(1 β )Z
Z1
410 10β
j(50 50β
1000)
令 410 10β 0 ,β 41
U S I1
j1000
故 电 流 领 先 电 压90o.
9.4 用相量法分析电路的正弦稳态响应
例6.
移相桥电路。当R2由0时, IC
9.4 用相量法分析电路的正弦稳态响应
解: (1)
I S 单独作用(U S 短路) :
I
'
2
IS
Z3 Z2 Z3
IS
Z1
Z2
I
' 2
Z3
40o
50
5030o 30o 5030o
20030o 2.3130o A
50 3
(2) U S 单独作用(I S 开路) :
第一种分解方法; 第二种分解方法。
9.5 正弦电流电路中的功率
第一种分解方法: p
p有时为正,有时为负;
u UIcos p>0, 电路吸收功率:
i
p<0,电路发出功率;
O
wt
- UIcos(2w t ) UIcos (1-cos2w t)为不
第二种分解方法:
可逆分量,相当于电阻元
UIcos (1-cos2w t) 件消耗的功率。
Z3=15+j15.7 。 求 Zab。
Z1
b
Zab 9.1Z复3 阻Z抗Z11、ZZ复22 导 纳Z 3及其Z等效变换 Z (10 j6.28)(20 j31.9)
10 j6.28 20 j31.9 11.8132.13o 37.65 57.61o
i(t) 2I sin(ωt φ ) φ 为u和i的相位差φ Ψu Ψi
1. 瞬时功率
p(t) ui 2U sinωt 2I sin(ωt φ ) UI[cosφ cos(2ωt φ )] UI cosφ(1 cos 2ωt) UI sinφ sin2ωt
例:下例中选为 ÙR 参考相量
jw L
+
U S
I L
I R
U L
IC
1/jw C R
IC
-
IL
U
IR
用途: ①定性分析
U R= UC
②利用比例尺定量计算
9.4 用相量法分析电路的正弦稳态响应
电阻电路与正弦电流电路相量法分析比较:
电阻电路 :
KCL : i 0
9.4 用相量法分析电路的正弦稳态响应
例4. 已知平衡电桥Z1=R1 , Z2=R2 , Z3=R3+jw L3。 求:Zx=Rx+jwLx。 解:由平衡条件:Z1 Z3= Z2 Zx 得
Z1
Z2
R1(R3+jw L3)=R2(Rx+j wLx)
Zx
Z3
∴ Rx=R1R3 /R2 , Lx=L3 R1/R2
求: 线圈的电阻R2和电感L2 。
解: 已知的都是有效值,画相量图进行定性分析。
U
U 2 U L
2
U 1
U R2 I
U2
U
2 1
U
2 2
2U1U 2
cos 2
θ 2
64.9 o
I U1 / R1 55.4 / 32 1.73A
| Z2 | U 2 / I 80 / 1.73 46.2Ω
+
U ab如何变化?
IC
b
+
U 1 R1
R2
b
IC
U_
- ab
U-+2
R1ºU
º
ab
+
U C
-
U C U C
解: 用相量图分析
U 1 a U 2 U
由相量图可知, 当R2改变, U ab 大小不变, 相位改变;
当R2=0,q =-180;当R2 ,q =0。
电感:
YL
1 jωL
jBL
电 容: YC jωC jBC
(φ' Ψi Ψu )
|Z| X
R 阻抗三角形
|Y| B
G 导纳三角形
9.1 复阻抗、复导纳及其等效变换
.
令
Y
I
. U
Iψi Uψu
I U ψi
ψu
G
jB | Y
| φ'
Y— 复导纳;G—电导(导纳的实部);B—电纳(导纳的虚部);
UIsin sin2w t为可逆
分量,周期性交变,相当
O
wt
于电抗吸收的瞬时功率,
- UIsin sin2w t
与外电路周期性交换。
9.5 正弦电流电路中的功率
瞬时功率实用意义不大,一般讨论所说的功率指一个周 期平均值。
2. 平均功率 P:
1T
1T
P T 0 pdt T 0 [UI cosφ UI cos(ωt φ )]dt
39.45 40.5o 10.89 j2.86 Zab Z 3 Z 15 j15.7 10.89 j2.86
25.89 j18.56 31.935.6o Ω
9.3 相量图
1. 同频率的正弦量才能表示在同一个向量图中
2. 反时针旋转角速度
3. 选定一个参考相量(设初相位为零。)
115
I 1.73
(32 R2 )2 (ωL2 )2
80 I 1.73
解得: R22 (ωL2 )2
41.86 R2 19.58Ω, L2 2π f 0.133H .
9.5 正弦电流电路中的功率
无源一端口网络吸收的功率( u, i 关联)
i
+
u _
无 源
u(t) 2U sinωt
º Y G jB | Y | φ'
Y
1 Z
1 R jX
R jX R2 X 2
G
jB
G
R R2 X 2
,
B
X R2 X 2
| Y | 1 , φ' φ |Z|
一般情况 G1/R
即仍为感性。
B1/X。若Z为感性,X>0,则B<0,
9.1 复阻抗、复导纳及其等效变换
Z
I1
Z1
问 :β 等 于 多 少 时 ,I1和U S 相 位 差90o ?
β I 1 分 析 : 找 出I1和U S 关 系 :U S Z转 I1, Z转实 部 为 零, 相 位 差 为90o.
解: U S ZI Z1 I1 Z (1 β )I1 Z1 I1
9.4 用相量法分析电路的正弦稳态响应
例1. 列写电路的节点电压方程 1 Y3 2
Y1 IS1
Y4
Y5
Y2
+
U S4_
+
U S5_
解:
(Y2 Y3 )U 1 Y3U 2 IS1
Y3U 1 (Y3 Y4 Y5 )U 2
Y4 U S4 Y5 U S5
第9章 正弦稳态电路的分析
9.1 复阻抗、复导纳及其等效变换 9.2 阻抗串联、并联的电路 9.3 向量图 9.4 用向量法分析电路的正弦稳态响应 9.5 正弦电流电路中的功率 9.6 复功率
9.7 最大功率传输 9.8 串联电路的谐振 9.9 并联电路的谐振 9.10 串并连电路的谐振
9.1 复阻抗、复导纳及其等效变换
UI cosφ
P 的单位:W
=u-i:功率因数角。对无源网络,为其等效
阻抗的阻抗角。即
P=|Z|I2cos =RI2 cos :功率因数。
9.5 正弦电流电路中的功率
cos =P/(UI) cos 1, 纯电阻
0, 纯电抗
一般地 , 有 0cosj1 X>0, j >0 , 感性, 滞后功率因数 X<0, j <0 , 容性, 超前功率因数
|Z|—复阻抗的模; —阻抗角。
关系:
| Z |
R2 X 2
X
或
φ arctg R
R=|Z|cos X=|Z|sin
|Z|=U/I
=u-i
|Z| X
R 阻抗三角形
9.1 复阻抗、复导纳及其等效变换
2. 复导纳Y
Y
I U
G
jB
| Y
| φ'
电阻: YR 1/ R
R2 | Z2 | cosθ 2 19.6Ω
X 2 | Z2 | sinθ 2 41.8Ω
L X 2 /(2π f ) 0.133H
9.4 用相量法分析电路的正弦稳态响应
I R1
+ U
+
U 1
_ R2
+ U 2
_பைடு நூலகம்
L2 _
或
I U1 / R1 55.4 / 32 1.73A
KVL : u 0
元件约束关系:
u
Ri
或 i Gu
正 弦 电路 相 量 分 析:
KCL :
I 0