专题:相似三角形的几种基本模型及练习
相似三角形的常见模型
初中数学 ︵ 九年级 ︶培优篇初中数学 ︵ 九年级 ︶培优篇【基本模型】①如图,在ABC 中,点D 在AB 上,点E 在AC 上,//DEBC ,则ADE ABC △△∽,AD AE DEAB AC BC.②模型拓展1:斜交A 字型条件:C ADE ,图2结论:~ADE ACB ;③模型拓展2: 如图,∠ACD =∠B ⇔△ADC ∽△ACB ⇔AD AC CDAC AB BC.初中数学 ︵ 九年级︶培优篇【例1】如图,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1米,继续往前走2米到达B 处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度等于_________.【变式1-1】有一块直角三角形木板,∠B =90°,AB =1.5m ,BC =2m ,要把它加工成一个面积尽可能大的正方形桌面.甲、乙两位同学的加工方法分别如图1、图2所示.请你用学过的知识说明哪位同学的加工方法更好(加工损耗忽略不计).初中数学 ︵ 九年级 ︶培优篇 【变式1-2】(2022•衢州二模)已知菱形ABCD ,E 是BC 边上一点,连接AE 交BD 于点F (1)如图1,当E 是BC 中点时,求证:AF =2EF ;(2)如图2,连接CF ,若AB =5,BD =8,当△CEF 为直角三角形时,求BE 的长; (3)如图3,当∠ABC =90°时,过点C 作CG ⊥AE 交AE 的延长线于点G ,连接DG ,若BE =BF ,求tan ∠BDG 的值.初中数学 ︵九年级 ︶培优篇 ③模型拓展:如图,∠A =∠C ⇔△AJB∽△CJD ⇔A B JA C D JC【例2】如图,在平行四边形ABCD 中,E 为边AD 的中点,连接AC 、BE 交于点F .若△AEF 的面积为2,则△ABC 的面积为( ) A .8B .10C .12D .14初中数学 ︵ 九年级 ︶培优篇 【变式2-1】如图,在△ABC 中,BC =6,AEA F EBFC,动点P 在射线EF 上,BP 交CE 于点D ,∠CBP 的平分线交CE 于点Q ,当CQ =14CE 时,EP +BP 的值为( )A .9B .12C .18D .24【变式2-2】如图,在Rt △ACB 中,∠ACB =90°,AC =4,BC =3,点D 为AC 上一点,连接BD ,E 为AB 上一点,CE ⊥BD 于点F ,当AD =CD 时,求CE 的长.【变式2-3】如图,已知D 是BC 的中点,M 是AD的中点.求AN:NC的值.初中数学 ︵ 九年级︶培优篇【例3】如图,在平行四边形ABCD 中,∠ABC 的平分线交AC 于点E ,交AD 于点F ,交CD 的延长线于点G ,若AF =2FD ,则BEEG的值为( ) A .12B .13C .23D .34【变式3-1】(2020•杭州)如图,在正方形ABCD 中,点E 在BC 边上,连接AE ,∠DAE 的平分线AG 与CD 边交于点G ,与BC 的延长线交于点F .设=λ(λ>0).(1)若AB =2,λ=1,求线段CF 的长. (2)连接EG ,若EG ⊥AF , ①求证:点G 为CD 边的中点. ②求λ的值.初中数学 ︵ 九年级 ︶培优篇【例4】如图,在△ABC 中,45ABC ,AB A D A E ,D A E 90 ,C E,则CD 的长为______.初中数学 ︵ 九年级 ︶培优篇 【变式4-1】矩形ABCD 中,AD =9,AB =12,点E 在对角线BD 上(不与B 、D 重合),EF ⊥AE 交CD 于F 点,连接AF 交BD 于G 点. (1)如图1,当G 为DE 中点时. ①求证:FD =FE ; ②求BE 的长.(2)如图2,若E 为BD 上任意点,求证:AG 2=BG •GE .初中数学 ︵ 九年级 ︶培优篇 【变式4-2】如图,ABC 中,,,AB AC AB AC 点D E 、分别是BC AC 、的中点,AF BE ⊥与点F .(1)求证:2AE FE BE ;(2)求A F C 的大小;(3)若DF=1,求△ABF 的面积.初中数学 ︵ 九年级 ︶培优篇结论:AH ⊥GF ,△AGF ∽△ABC ,GF AHBC AM【例5】如图1,在△ABC 中,AB =AC =5,BC =6,正方形DEFG 的顶点D 、G 分别在AB 、AC 上,EF 在BC 上. (1)求正方形DEFG 的边长;(2)如图2,在BC 边上放两个小正方形DEFG 、FGMN ,则DE= .初中数学 ︵ 九年级 ︶培优篇 【变式5-1】有一块锐角三角形卡纸余料ABC ,它的边BC =120cm ,高AD =80cm ,为使卡纸余料得到充分利用,现把它裁剪成一个邻边之比为2:5的矩形纸片EFGH 和正方形纸片PMNQ ,裁剪时,矩形纸片的较长边在BC 上,正方形纸片一边在矩形纸片的较长边EH 上,其余顶点均分别在AB ,AC 上,具体裁剪方式如图所示. (1)求矩形纸片较长边EH 的长;(2)裁剪正方形纸片时,小聪同学是按以下方法进行裁剪的:先沿着剩余料△AEH 中与边EH 平行的中位线剪一刀,再沿过该中位线两端点向边EH 所作的垂线剪两刀,请你通过计算,判断小聪的剪法是否正确.初中数学 ︵ 九年级︶培优篇 ②拓展:(1)在正方形、长方形中经常会出现射影定理模型,如图,在有射影定理模型.(2)如图,在圆中也会出现射影定理模型.【例6】如图,四边形ABCD 中,AD ∥BC ,∠B =90°,E 为AB 上一点,分别以ED 、EC 为折痕将两个角(∠A 、∠B )向内折起,点A 、B 恰好落在CD 边的点F 处,若AD =3,BC =5,则EF 的长是( ) A.15B .215C .17D .217初中数学 ︵ 九年级 ︶培优篇 【变式6-1】如图所示,在△ABC 中,∠ABC =90°,BD ⊥AC ,DE ⊥BC ,垂足分别为D 、E 两点,则图中与△ABC 相似的三角形有( ) A .4个B .3个C .2个D .1个【变式6-2】如图,在R t △ABC 中,∠ACB =90°,点D 在AB 上,且AD AC =ACAB. (1)求证 △ACD ∽△ABC ;(2)若AD =3,BD =2,求CD 的长.【变式6-3】ABC 中,90ABC ,BD AC ,点E 为B D 的中点,连接A E 并延长交B C 于点F ,且有AF CF ,过F 点作FH AC 于点H . (1)求证:AD E CD B ∽; (2)求证:=2A E EF ; (3)若FHB C 的长.初中数学 ︵ 九年级 ︶培优篇②如图所示,BDE 和ABC 则ABD CBE ∽△△,且相似比为总结:旋转相似型中由公共旋转顶点、一点及其旋转后的对应点组成的三角形与由公共旋转顶点、另一点及其旋转后的对应点组成的三角形相似.初中数学 ︵ 九年级 ︶培优篇【例7】如图,在△ABC 与△ADE 中,∠ACB =∠AED =90°,∠ABC =∠ADE ,连接BD 、CE ,若AC :BC =3:4,则BD :CE 为( ) A .5:3B .4:3C .√5:2D .2:√3【变式7-1】如图,点E 是菱形ABCD 对角线CA 的延长线上任意一点,以线段AE 为边作一个菱形AEFG ,且菱形AEFG ∽菱形ABCD ,相似比是:2,连接EB ,GD .(1)求证:EB =GD ;(2)若∠DAB =60°,AB =2,求GD 的长.初中数学 ︵ 九年级 ︶培优篇 【变式7-2】如图,正方形ABCD ,对角线AC ,BD 相交于O ,Q 为线段DB 上的一点,90MQN ,点M 、N 分别在直线BC 、DC 上.(1)如图1,当Q 为线段OD 的中点时,求证:1132DN BM BC ;(2)如图2,当Q 为线段OB 的中点,点N 在CD 的延长线上时,则线段DN 、BM 、BC 的数量关系为 ;(3)在(2)的条件下,连接MN ,交AD 、BD 于点E 、F ,若:3:1M B M C ,N Q ,求EF 的长.初中数学 ︵ 九年级 ︶培优篇 补充:其他常见的一线三等角图形【例8】【感知】如图①,在四边形ABCD 中,点P 在边AB 上(点P 不与点A 、B 重合),90A B DPC .易证DAP PBC △△∽.(不需要证明) 【探究】如图②,在四边形ABCD 中,点P 在边AB 上(点P 不与点A 、B 重合),A B D PC .若4PD ,8P C ,6BC ,求AP 的长.【拓展】如图③,在ABC 中,8AC BC ,12A B ,点P 在边AB 上(点P 不与点A 、B 重合),连结CP ,作CPE A ,PE 与边BC 交于点E ,当CPE △是等腰三角形时,直接写出AP 的长.初中数学 ︵ 九年级 ︶培优篇 【变式8-1】如图,在矩形ABCD 中,CD =4,E 是BC 的中点,连接AE ,tan ∠AEB 43,P 是AD 边上一动点,沿过点P 的直线将矩形折叠,使点D 落在AE 上的点D ¢处,当A P D △是直角三角形时,PD 的值为( )A .23或67B .83或247C .83或307D .103或187初中数学 ︵ 九年级 ︶培优篇 【变式8-2】(2022秋•温州校级月考) 【推理】如图1,在正方形ABCD 中,点E 是CD 上一动点,将正方形沿着BE 折叠,点C 落在点F 处,连结BE ,CF ,延长CF 交AD 于点G . (1)求证:BCE CDG △△≌. 【运用】(2)如图2,在【推理】条件下,延长BF 交AD 于点H .若45HD HF ,9C E ,求线段DE 的长.【拓展】(3)将正方形改成矩形,同样沿着BE 折叠,连结CF ,延长CF ,BF 交直线AD 于G ,两点,若AB k BC ,45HD HF ,求DEEC的值(用含k 的代数式表示).。
(完整版)初中相似三角形基本知识点和经典例题
初三相似三角形知识点与经典题型知识点 1 相关相似形的看法(1) 形状同样的图形叫相似图形,在相似多边形中,最简单的是相似三角形 .(2) 若是两个边数同样的多边形的对应角相等,对应边成比率,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比( 相似系数 ) .知识点 2 比率线段的相关看法( 1)若是采用同一单位量得两条线段a,b 的长度分别为 m, n ,那么就说这两条线段的比是a mbn ,或写成 a : bm : n .注:在求线段比时,线段单位要一致。
的比,那么这四条线段a,b,c, d 叫做成比率线段,( )在四条线段a, b, c, d 中,若是a 和b 的比等于c 和d 2简称比率线段. 注:①比率线段是有次序的, 若是说 a 是 b, c, d 的第四比率项, 那么应得比率式为:bd .②在比率式ac(a : bcac : d)中,a 、d 叫比率外项, b 、c 叫比率内项 , a 、c 叫比率前项, b 、d 叫比率后b d此时有 b 2项, d 叫第四比率项,若是 b=c ,即a :b b :d 那么 b 叫做 a 、 d 的比率中项, ad 。
( 3)黄金切割:把线段AB 分成两条线段 AC , BC ( AC BC ) ,且使 AC 是 AB 和 BC 的比率中项,即AC 2AB BC ,叫做把线段 AB 黄金切割,点 C 叫做线段 AB 的黄金切割点,其中AC5 1 AB ≈20.618 AB .即ACBC 5 1 简记为:长=短=5 1ABAC 2全 长2注:黄金三角形:顶角是360 的等腰三角形。
黄金矩形:宽与长的比等于黄金数的矩形知识点 3比率的性质( 注意性质立的条件:分母不能够为0)( 1) 基本性质:① a : b c : d adbc ;② a : b b : c b 2a c . ad bc ,除注:由一个比率式只可化成一个等积式,而一个等积式共可化成八个比率式,如了可化为 a : b c : d ,还可化为 a : c b : d , c : d a : b , b : d a : c , b : ad : c , c : a d : b ,d : c b : a , d : b c : a .a b,交换内项 )cd( 2) 更比性质 ( 交换比率的内项或外项) :ac d()c ,交换外项b db ad b.同时交换内外项)ca( 3)反比性质 ( 把比的前项、后项交换) :ac bd .b dac( 4)合、分比性质:a c ab cd .b d bd注:实质上,比率的合比性质可扩展为:比率式中等号左右两个比的前项,后项之间b ad c发生同样和差变化比率仍建立.如:a cac 等等.b da b c da bc d( 5)等比性质:若是ac e m(bdfn 0) ,那么 acem a .b d fnb d f nb注:①此性质的证明运用了“设 k 法”(即引入新的参数 k )这样能够减少未知数的个数,这种方法是相关比率计算变形中一种常用方法.②应用等比性质时,要考虑到分母可否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也建立.如:a c e a 2c 3e a 2c 3e a;其中 b 2d 3 f 0.b d f b 2d 3 f b 2d 3 fb知识点 4比率线段的相关定理1. 三角形中平行线分线段成比率定理: 平行于三角形一边的直线截其他两边( 或两边的延长线) 所得的对应线段成比率 .A由 DE ∥ BC 可得:ADAE 或 BD EC 或 ADAE DB ECADEAABACDE注:BC①重要结论:平行于三角形的一边, 而且和其他两边订交的直线, 所截的三角形的三边 与原三角形三边 对应成比...... ......例 .②三角形中平行线分线段成比率定理的逆定理: 若是一条直线截三角形的两边( 或两边的延长线 ) 所得的对应线段成比率 . 那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法 , 即:利用比率式证平行线 .③平行线的应用:在证明相关比率线段时,辅助线经常做平行线, 但应依照的原则是不要破坏条件中的两条线段的比及所求的两条线段的比 .2. 平行线分线段成比率定理: 三条平行线截两条直线, 所截得的对应线段成比率 .A D 已知 AD ∥ BE ∥CF,B E可得AB DE AB DE BC EFBC EFAB BCCFBC EF或DF或或AC 或DE 等.AC AB DE DFEF注:平行线分线段成比率定理的推论:平行线均分线段定理: 两条直线被三条平行线所截, 若是在其中一条上截得的线段相等, 那么在另一条上截得的线段也相等。
(完整版)专题:相似三角形的几种基本模型及练习
专题:相似三角形的几种基本模型(1)如图:DE ∥BC ,则△ADE ∽△ABC 称为“平截型"的相似三角形。
“A ”字型 “X ”(或8)字型 “A ” 字型(2)如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜截型”的相似三角形。
ABCD E12AABBCC DD EE12412(3) “母子" (双垂直)型 射影定理:由_____________ ,得____________ __,即______________ _; 由_____________ ,得____________ __,即______________ _; 由_____________ ,得____________ __,即______________ _。
“母子” (双垂直)型 “旋转型”(4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形。
(5)一线“三等角”型“K ” 字(三垂直)型(6)“半角”型图1 :△ABC 是等腰直角三角形,∠MAN=12∠BAC ,结论:△A BN ∽△MAN ∽△MCA ; ABEADCAB CDEAACCDEE B EA CD12A B C D 图2图1旋转N M60°120°E DCA 45°EDC B A图2 :△ADE 是等边三角形, ∠DAE=12∠BAC ,结论:△A BD ∽△CAE ∽△CBA; 应用1.如图3,在△ABC 中,∠C =90°,D 是AC 上一点,DE ⊥AB 于点E ,若AC =8,BC =6,DE =3,则AD 的长为 ( ) A .3B .4C .5D .62.如图4,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC ,DE ∥BC ,那么在下列三角形中,与△ABC 相似的三角形是 ( ) A .△DBE B .△AED 和△BDC C .△ABDD .不存在图3 图4 图53.如图5, □ABCD 中, G 是AB 延长线上一点, DG 交AC 于E, 交BC 于F, 则图中所有相似三角形有( )对.A.4 对 B 。
(完整版)相似三角形经典模型总结及例题分类.doc
WORD 格式可编辑相似三角形经典模型总结经典模型平移旋转 180°∽平行型平行型翻折 180°翻折 180°一般特殊翻折 180°斜交型斜交型特殊一边平移一般平移特殊双垂直斜交型双垂直一般【精选例题】“平行型”【例 1】如图,EE1∥FF1∥MM1,若AE EF FM MB ,则S AEE : S四边形EE FF : S四边形FFM M : S四边形 MM C B _________1 1 1 1 1 1AE E1FF 1MM1B CWORD 格式可编辑【例 2】如图,AD∥EF∥MN∥BC,若AD 9,BC 18 , AE:EM :MB 2:3:4,则EF _____ , MN _____A DE FMNB C【例 3】已知,P为平行四边形ABCD 对角线, AC 上一点,过点P 的直线与 AD , BC , CD 的延长线, AB 的延长线分别相交于点 E , F , G , H求证: PE PHPF PGG D CE PFA B H【例 4】已知:在ABC 中, D 为 AB 中点, E 为 AC 上一点,且AE2, BE、 CD相交于点 F ,求BF的值ECEF ADF EB C【例 5】已知:在ABC 中, AD 1AB,延长 BC到F ,使CF1BC,连接 FD交 AC于点 E 2 3求证:① DE EF ② AE 2CEADEB专业知识分享【例 6】已知:D,E为三角形ABC 中 AB 、BC 边上的点,连接 DE 并延长交 AC 的延长线于点 F ,BD: DE AB: AC求证:CEF 为等腰三角形ACDEB F【例7】如图,已知 AB / / EF / /CD ,若 AB a , CD b , EF c ,求证:11 1 .c a bACEB F D【例 8】如图,找出S ABD、 S BED、 S BCD之间的关系,并证明你的结论.CAEB F D【例 9】如图,四边形ABCD中,B D90M是AC上一点,ME AD于点EMF BC,,于点 F 求证:MFME 1AB CDDEMA CFB【例 10】如图,在ABC 中, D 是 AC 边的中点,过 D 作直线 EF 交 AB 于 E ,交 BC 的延长线于 F 求证: AE BF BE CFAEDBC F 【例 11】如图,在线段AB 上,取一点 C ,以 AC , CB 为底在 AB 同侧作两个顶角相等的等腰三角形ADC 和CEB, AE交 CD于点 P, BD交 CE于点Q,求证: CP CQDEP QA C B【例 12】阅读并解答问题 .在给定的锐角三角形ABC 中,求作一个正方形DEFG,使 D, E落在 BC边上, F , G分别落在AC , AB 边上,作法如下:ABC 两边上的正方形D'E'F 'G'如图,第一步:画一个有三个顶点落在第二步:连接 BF ' 并延长交 AC 于点 F第三步:过 F 点作 FE BC ,垂足为点 E第四步:过 F 点作 FG∥BC 交 AB 于点 G第五步:过 G 点作 GD BC ,垂足为点 D四边形 DEFG 即为所求作的正方形问题:⑴证明上述所作的四边形DEFG 为正方形⑵在 ABC 中,如果BC 6 3,ABC 45 , BAC 75 ,求上述正方形DEFG 的边长AG FG'F'E CWORD 格式可编辑“平行旋转型”图形梳理:E'F'AAAF'E'AEF'EFFFEE'FEF'BCBCBBCAEF 旋转到 AE ‘ F ’CAEF 旋转到 AE ‘ F ’AEF 旋转到 AE ‘ F ’AEF 旋转到AE ‘F ’特殊情况: B 、 E'、 F '共线AAEF' EF'E'FE'FBC B CAEF 旋转到 AE ‘ F ’ AEF 旋转到 AE ‘ F ’C , E', F '共线E'AE'AEFEF'FF'BCBCAEF 旋转到 AE ‘ F ’AEF 旋转到 AE ‘ F ’【例 13】已知梯形 ABCD , AD ∥BC ,对角线AC 、 BD 互相垂直,则①证明: AD 2 BC 2AB 2 CD 2ADOB CWORD 格式可编辑【例 14】当AOD ,以点 O 为旋转中心,逆时针旋转度(090 ),问上面的结论是否成立,请说明理由DAOB C【例 15】(全国初中数学联赛武汉选拔赛试题)如图,四边形ABCD 和 BEFG 均为正方形,求AG : DF : CE_________.A DGFB CE“斜交型”【例 16】如图,ABC 中, D 在 AB 上,且 DE∥BC 交 AC 于 E , F 在 AD 上,且 AD2AF AB ,求证:AEF :ACDAFD EB C【例 17】如图,等边三角形ABC中,D,E分别在BC,AB上,且CE BE ,AD ,CE 相交于 M ,求证 : EAM : ECAAEMB DC AGF BE【例 18】如图,四边形ABCD 的对角线相交于点O ,BAC CDB ,求证:DAC CBDADOB C【例 19】如图,设ABBCCA,则 1 2 吗?AD DE EAA1 DE2B C【例 20】在锐角三角形ABC 中, AD , CE 分别为 BC , AB 边上的高,ABC 和BDE 的面积分别等于 18和 2 , DE 2,求 AC 边上的高AEB D C【例 21】如图,在等边ABC 的边 BC 上取点 D ,使BD 1,作CH AD,H为垂足,连结BH。
中考中相似三角形的常见模型及典型例题
B
C
(2)对应边比: AD AE DE AC AB BC
例 1 如图,梯形ABCD中,AD//BC,对角线AC、BD交于点O,BE//CD
交CA延长线于E.求证:OC2 OA OE
E
AD//BC BE//CD
A
D
.O
B
AO OD OC OB OC OD OE OB
C
AO OC OC OE
(1)内角平分线定理: AB BD AC CD
(2)证明:作平行线构造A字型相似
E A
△BAD∽△BEC
B
DC
【模型3】角平分线型
【三角形两边之比等于其夹角的外角平分线外分对边之比】
(1)外角平分线定理: AB BD AC CD
F A E
(2)证明:作平行线构造A字型相似
B
C
D
例 6 阅读与计算,请阅读以下材料,并完成相应的问题:
【二级形态】三垂直模型→K型相似
E
F
△BED∽△CDF
E
F
BD C
BD
C
【模型5】一线三等角相似
【二级形态】三垂直模型→K型相似
△BED∽△CDF
E E
PE
R
BD
F
F
F
M
C
C
BD
C
Q BD
T
☆基本结论1: △BED∽△CDF,将图中相似三角形进行平移仍相似 ☆基本结论2: 矩形内两垂直线段之比等于矩形边长之比:DE PQ ☆基本结论3: 特别地,当矩形PQTR为正方形时,DE=MFM. F QT
(3)求线段的比;
(4)证明线段的等积式。
【模型1】“A”字型&“8”字型
专题07 相似三角形的五种模型(老师版)
专题07 相似三角形的五种模型相似三角形考查范围广,综合性强,其模型种类多,其中有关一线三垂直模型在前面的专题已经很详细的讲解,这里就不在重复。
模型一、A 字型A 字型(平行) 反A 字型(不平行)例.如图,在中,点分别在上,且.(1)求证:;(2)若点在上,与交于点,求证:.【答案】见解析【详解】解:(1)在△AEF 和△ABC 中,∵,,∴△AEF ∽△ABC ;(2)∵△AEF ∽△ABC ,∴∠AEF =∠ABC ,∴EF ∥BC ,∴△AEG ∽△ABD ,△AGF ∽△ADC ,∴,,∴.【变式训练1】已知:如图,点D ,F 在△ABC 边AC 上,点E 在边BC 上,且DE ∥AB ,CD 2=CF •CA .(1)求证:EF ∥BD ;(2)如果AC •CF =BC •CE ,求证:BD 2=DE •BA .ABC ∆,E F ,AB AC AE ABAF AC=AEF ABC ∆∆:D BC AD EF G EG FGBD CD=EAF BAC ∠=∠AE ABAF AC=EG AG BD AD =FG AGCD AD =EG FG BD CD=【答案】见解析【解析】证明:(1)∵DE∥AB,∴CDAC =CECB,∵CD2=CF•CA.∴CDAC =CFCD,∴CFCD=CECB,∴EF∥BD;(2)∵EF∥BD,∴∠CEF=∠CBD,∵AC•CF=BC•CE,∴ACBC =CECF,且∠C=∠C,∴△CEF∽△CAB,∴∠CEF=∠A,∴∠DBE=∠A,∵DE∥AB,∴∠EDB=∠DBA,且∠DBE=∠A,∴△BAD∽△DBE,∴BABD =BDDE∴BD2=BA•DE【变式训练2】如图所示,在△ABC中,DE∥BC,AD=5,BD=10,AE=3.(1)求CE的长.(2)在△ABC中,点D,E,Q分别是AB,AC,BC上,且DE∥BC,AQ交DE于点P.小明认为DPBQ =PEQC,你认为小明的结论正确吗?请说明你的理由.【答案】(1)6;(2)见解析【解析】(1)由DE∥BC,∴△ADE∽△ABC,∴ADAD+BD=AEAE+EC,∵AD=5,BD=10,AE=3,∴CE=6.(2)结论正确,理由如下,在△ABQ中,由于DP∥BQ,∴△ADP∽△ABQ,∴DPBQ =APAQ,同理可得:EPCQ=APAQ,∴DPBQ=EPCQ【变式训练3】如图,在中,,,,平分,交边于点,过点作的平行线,交边于点.(1)求线段的长;(2)取线段的中点,联结,交线段于点,延长线段交边于点,求的值.【答案】(1)4;(2)【解析】解:(1)∵平分,,∴.在中,,,,∴.在中,,,,∴.∴.∵,∴∴.∴.(3)∵点是线段的中点,∴.∵,∴∴.∴.∵,∴∴∴.模型二、8字型与反8字型相似Rt ABC∆90ACB∠=︒60BAC∠=︒6AC=AD BAC∠BC D D CA AB E DE AD MBM DE F BM AC GEFDF23EFDF=AD BAC∠60BAC∠=︒30DAC∠=︒Rt ACD∆90ACD∠=︒30DAC∠=︒6AC=CD=Rt ACB∆90ACB∠=︒60BAC∠=︒6AC=BC=BD BC CD=-=//DE CA BDE BCAV V∽23DE BDCA BC==4DE=M ADDM AM=//DE CA DFM AGM△∽△DF DMAG AM=DF AG=//DE CA BEF BAG△∽△23EF BE BDAG BA BC===23EFDF=例.如图,已知在△ABC 中,BE 平分∠ABC 交AC 于E ,点D 在BE 延长线上,且BA •BC =BD •BE .(1)求证:△ABD ∽△EBC ;(2)求证:AD 2=BD •DE .【答案】见解析【解答】证明:(1)∵BE 平分∠ABC ,∴∠ABD =∠EBC ,∵BA •BC =BD •BE .即ABBC =BDBE ,∴△ABD ∽△EBC ;(2)∵△ABD ∽△EBC ,∴∠BAD =∠BEC ,∠ADB =∠BCE ,∵∠AED =∠BEC ,∴∠BAD =∠AED ,∴△ADE ∽△BEC ,∴△AED ∽△ABD ,∴ADBD =DEAD ,即AD 2=BD •DE .【变式训练1】如图,AD 与BC 交于点O ,EF 过点O ,交AB 与点E ,交CD 与点F ,BO =1,CO =3,AO =32,DO =92.(1)求证:∠A =∠D .(2)若AE =BE ,求证:CF =DF .【答案】【解析】证明:(1)∵BO =1,CO =3,AO =32,DO =92.∴OBOC =AODO ,∵∠AOB =∠COD ,∴△OAB ∽△ODC ,∴∠A =∠D .(2)∵∠A =∠D ,∴AB ∥CD ,∴AEDF =OEOF ,BECF =OEOF ,∴AEDF =BECF .∵AE =BE ,∴CF =DF .【变式训练2】如图,AG ∥BD ,AF :FB =1:2,BC :CD =2:1,求GEED 的值【答案】32【解析】∵AG ∥BD ,∴△AFG ∽△BFD ,∴AGBD =AFBF =12,∵BCCD =2,∴CD =13BD ,∴AGCD =32,∵AG ∥BD ,∴△AEG ∽△CED ,∴GEED =AGCD =32.【变式训练3】如图,四边形ABCD 和四边形ACED 都是平行四边形,点R 为DE 的中点,BR 分别交AC 、CD 于点P 、Q .(1)求证:△PCQ ∽△RDQ ;(2)求BP :PQ :QR 的值.【答案】(1)见解析;(2)【解析】解:(1)∵,∴.又∵.∴.(2)∵四边形和四边形都是平行四边形,∴,.∴,.又∵点是中点,∴.由(1)知,∴,∴.又∵,∴.模型三、AX 型(A 字型及X 字型两者相结合)例.如图,△ABC 中,D .E 分别是AB 、AC 上的点,且BD =2AD ,CE =2AE .(1)求证:△ADE ∽△ABC ;(2)若DF =2,求FC 的长度.【答案】见解析【解答】(1)证明:∵BD =2AD ,CE =2AE ,∴ADAB =AEAC =13,又∵∠DAE =∠BAC ,∴△ADE ∽△ABC ;:3:1:2BP PQ QR =PC DR ∥PCQ RDQ ∠=∠PQC RQD ∠=∠PCQ RDQ △∽△ABCD ACED BC AD CE ==//AC DE PB PR =12PC RE =R DE DR RE =PCQ RDQ △∽△12PQ PC PC QR DR RE ===2QR PQ =3BP PR PQ QR PQ ==+=::3:1:2BP PQ QR =(2)解:∵△ADE ∽△ABC ,∴DE BC =AD AB =13,∠ADE =∠ABC ,∴DE ∥BC ,∴△DEF ∽△CBF ,∴DFCF =DECB ,即2CF =13,∴FC =6.【变式训练1】如图,在菱形ABCD 中,∠ADE 、∠CDF 分别交BC 、AB 于点E 、F ,DF 交对角线AC 于点M ,且∠ADE =∠CDF .(1)求证:CE =AF ;(2)连接ME,若=,AF =2,求的长.【解析】解:(1)∵四边形ABCD 是菱形,∴AD =CD ,∠DAF =∠DCE ,又∵∠ADE =∠CDF ,∴∠ADE ﹣∠EDF =∠CDF ﹣∠EDF ,∴∠ADF =∠CDE ,在△ADF和△CDE 中,,∴△ADF ≌△CDE ,∴CE =AF .(2)∵四边形ABCD 是菱形,∴AB =BC ,由(1)得:CE =AF =2,∴BE =BF ,设BE =BF =x ,∵=,AF =2,∴,解得x ,∴BE =BF ,∵=,且CE =AF ,∴==,∵∠CMD =∠AMF ,∠DCM =∠AMF ,∴△AMF ∽△CMD ,∴,∴,且∠ACB =∠ACB,∴△ABC ~△MEC, ∴∠CAB =∠CME=∠ACB ,∴ME=CE=2.【变式训练2】如图,已知AB ∥CD ,AC 与BD 相交于点E ,点F 在线段BC 上,AB CD =12,BF CF =12.(1)求证:AB ∥EF ;(2)求S △ABE :S △EBC :S △ECD .【答案】见解析【解析】(1)证明:∵AB ∥CD ,∴ABCD =BEED =12,CE BE CDCEME ADF CDF AD CD DAF DCE ∠=∠⎧⎪=⎨⎪∠=∠⎩CE BE CD CE 222x x +=11CE BE CD CE CE BE CD CE CDAFCD CMAF AM=CD CM CEAF AM BE==∵BF CF =12,∴BE ED =BFFC ,∴EF ∥CD ,∴AB ∥EF .(2)设△ABE 的面积为m .∵AB ∥CD ,∴△ABE ∽△CDE ,∴S △ABES △EDC =(ABCD )2=14,∴S △CDE =4m ,∵AECE =ABCD =12,∴S △BEC =2m ,∴S △ABE :S △EBC :S △ECD =m :2m :4m =1:2:4.【变式训练3】如图:AD ∥EG ∥BC ,EG 交DB 于点F ,已知AD =6,BC =8,AE =6,EF =2.(1)求EB 的长;(2)求FG 的长.【答案】见解析【解答】解:(1)∵EG ∥AD ,∴△BAD ∽△BEF ,∴BEBA =EFAD ,即BE BE+6=26,∴EB =3.(2)∵EG ∥∥BC ,∴△AEG ∽△ABC ,∴EGBC =AEAB ,即EG8=66+3,∴EG =163,∴FG =EG ﹣EF=103.模型四、共边角模型(子母型)例.在中,,垂足为,求的长【答案】4【解析】∵,∴,∴,∵,∴,∴,Rt ABC V 90,ACB CD AB ∠=︒⊥,8,2D AD DB ==CD CD AB ⊥90ADC CDB ∠=∠=︒90ACD A ∠+∠=︒90ACB ∠=︒90ACD BCD ∠+∠=︒A BCD ∠=∠∴,∴,∴,∴.【变式训练1】如图,矩形ABCD 中,F 是DC 上一点,BF ⊥AC ,垂足为E ,ADAB =12,△CEF 的面积为S 1,△AEB 的面积为S 2,则S 1S 2的值等于( )A .116B .15C .14D .125【解答】解:∵ADAB =12,∴设AD =BC =a ,则AB =CD =2a ,∴AC =5a ,∵BF ⊥AC ,∴△CBE ∽△CAB ,△AEB ∽△ABC ,∴BC 2=CE •CA ,AB 2=AE •AC ∴a 2=CE •5a ,4a 2=AE •5a ,∴CE =5a5,AE=45a5,∴CE AE =14,∵△CEF ∽△AEB ,∴S 1S 2=(CEAE )2=116,故选:A .【变式训练2】如图,在△ABC 中,∠ACB =90°,CD 是AB 边上的高.如果BD =4,CD =6,那么BC :AC 是( )A .3:2B .2:3C .3:13D .2:13.【答案】B【解答】解:∵∠ACB =90°,CD 是AB 边上的高,∴∠ADC =∠CDB =∠ACB =90°,∵∠A +∠B =90°,∠A +∠ACD =90°,∴∠ACD =∠B ,∴△ACD ∽△CBD ,∴ACBC =CDBD =64=32∴BCAC =23,故选:B .【变式训练3】如图,在△ABC 中,AB=AC ,点P 、D 分别是BC 、AC 边上的点,且∠APD=∠B,(1)求证:AC•CD=CP •BP ;(2)若AB=10,BC=12,当PD ∥AB 时,求BP 的长.【答案】见解析【解析】(1)∵AB=AC ,∴∠B=∠C .∵∠APD=∠B ,∴∠APD=∠B=∠C .∵∠APC=∠BAP+∠B ,∠APC=∠APD+∠DPC ,∴∠BAP=∠DPC ,∴△ABP ∽△PCD ,∴,∴AB•CD=CP•BP .∵AB=AC ,∴AC•CD=CP•BP ;ADC CDB V V ∽CD ADBD CD=28216CD AD BD =⋅=⨯=4CD =BP ABCD CP=(2)∵PD ∥AB ,∴∠APD=∠BAP .∵∠APD=∠C ,∴∠BAP=∠C .∵∠B=∠B ,∴△BAP ∽△BCA,∴.∵AB=10,BC=12,∴,∴BP=.模型五、手拉手模型例.如图,在△ABC 与△ADE 中,∠ACB =∠AED =90°,∠ABC =∠ADE ,连接BD 、CE ,若AC :BC =3:4,则BD :CE 为( )A .5:3B .4:3C .5:2D .2:3【答案】A【解析】∵∠ACB =∠AED =90°,∠ABC =∠ADE ,∴△ABC ∽△ADE ,∴∠BAC =∠DAE ,ACAB =AEAD ,∵∠BAC +∠BAE =∠DAE +∠BAE ,即∠CAE =∠BAD ,∵ACAB =AEAD ,∴△ACE ∽△ABD ,∴BDCE =AB AC ,∵AC :BC =3:4,∠ACB =∠AED =90°,∴AC :BC :AB =3:4:5,∴BD :CE =5:3,选A .【变式训练1】如图,△ABC ∽△ADE ,∠BAC =∠DAE =90°,AB 与DE 交于点O ,AB =4,AC =3,F 是DE 的中点,连接BD ,BF ,若点E 是射线CB 上的动点,下列结论:①△AOD ∽△FOB ,②△BOD ∽△EOA ,③∠FDB +∠FBE =90°,④BF =56AE ,其中正确的是( )A .①②B .③④C .②③D .②③④【答案】D【解析】∵△ABC ∽△ADE ,∴∠ADO =∠OBE ,∵∠AOD =∠BOE ,∴△AOD ∽△EOB ,∴ODOB =OAOE ,∴ODOA =OBOE ,∵∠BOD =∠AOE ,∴△BOD ∽△EOA ,故②正确,BA BPBC BA=101210BP =253∵△AOD ∽△EOB ,△BOD ∽△EOA ,∴∠ADO =∠EBO ,∠AEO =∠DBO ,∵∠ADO +∠AEO =90°,∴∠DBE =∠DBO +∠EBO =90°,∵DF =EF ,∴FD =FB =FE ,∴∠FDB =∠FBD ,∴∠FDB +∠FBE =∠FBD +∠FBE =90°,故③正确,在R t △ABC 中,∵AB =4,AC =3,∴BC =32+42=5,∵△ABC ∽△ADE ,∴DEAE =BCAC =53,∵BF =12DE ,∴2BFAE =53,∴BF =56AE ,故④正确,∵∠ADO =∠OBE ,∴∠ADO ≠∠OBF ,∴无法判断△AOD ∽△FOB ,故①错误.选D .【变式训练2】已知:如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,点F 在DE 的延长线上,AD =AF ,AE •CE =DE •EF .(1)求证:△ADE ∽△ACD ;(2)如果AE •BD =EF •AF ,求证:AB =AC .【答案】见解析【解析】证明:(1)∵AD =AF ,∴∠ADF =∠F ,∵AE •CE =DE •EF ,∴AEDE =EFCE ,又∵∠AEF =∠DEC ,∴△AEF ∽△DEC ,∴∠F =∠C ,∴∠ADF =∠C ,又∵∠DAE =∠CAD ,∴△ADE ∽△ACD .(3)∵AE •BD =EF •AF ,∴AEAF =EFBD ,∵AD =AF ,∴AEAD =EFBD ,∵∠AEF =∠EAD +∠ADE ,∠ADB =∠EAD +∠C ,∴∠AEF =∠ADB ,∴△AEF ∽△ADB ,∴∠F =∠B ,∴∠C =∠B ,∴AB =AC .【变式训练3】已知,ABC 中,AB =AC ,∠BAC =2α°,点D 为BC 边中点,连接AD ,点E 为线段AD 上一动点,把线段CE 绕点E 顺时针旋转2α°得到线段EF ,连接FG ,FD .(1)如图1,当∠BAC =60°时,请直接写出的值;(2)如图2,当∠BAC =90°时,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请写出正确的结论,并说明理由;V BFAE【答案】(1)1;(2)不成立,,理由见解析;(3)E为AD中点时,的最小值=sinα【解析】(1)连接BF,∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∵线段CE绕点E顺时针旋转60°得到线段EF,∴EC=EF,∠CEF=60°,∴△EFC都是等边三角形,∴AC=BC,EC=CF,∠ACB=∠ECF=60°,∴∠ACE=∠BCF,∴△ACE≌△BCF(SAS),∴AE=BF,∴=1.(2)不成立,结论:.证明:连接BF,∵AB=AC,D是BC中点,∴AD⊥BC,∴∠ADC=90°,∴∠BAC=∠CEF=90°,∴△ABC和△CEF为等腰直角三角形,∴∠ACB=∠ECF=45°,∴∠ACE=∠BCF,∴=,∴△ACE∽△BCF,∴∠CBF=∠CAE=α,∴==.课后训练1.如图,在中,、分别是边、的中点,、分别交于点、,则图中阴影部分图形的面积与的面积之比为 A.B.C.D.【解答】B【解析】,是的中点,,,即,同理可得,,,,、分别是边、的中点,,,,AEBFDFDCBFAEAEBFACBCCECFAEBFACBCABCDY E F BC CD AE AF BD G HABCDY()7:127:2413:3613:72//BE AD E B∽∴∆∆BEG DAG∴BG12==BEDG DA13=BG BD13=DH BD13∴=GH BD1136四边形∆∆∴==AGH ABD ABCDS S SE F BC CD//∴EF BD12=EF BD∽∴∆∆CEF CBD,,图中阴影部分图形的面积,即图中阴影部分图形的面积与的面积之比为.2.如图,△ABC 中,D 为BC 中点,E 为AD 的中点,BE 的延长线交AC 于F ,则AF FC 为( ) A .1:5B .1:4C .1:3D .1:2【答案】D【解析】过D 作BF 的平行线,交AC 边于G ,如下图所示:∵D 为BC 中点,DG ∥BF ,∴∠CGD =∠CFB ,又∵∠C =∠C ,∴△CDG ∽△CBF∴CG CF =CD CB =12,即:CG =12CF =FG又E 为AD 的中点,BE 的延长线交AC 于F ,DG ∥BF同理可得:△AEF ∽△ADG ,∴AE AD =AF AG =12,即:AF =12AG =FG∴AF =FG =GC ,∴AF FC =AF 2AF =12=1:2,选D .3.如图平行四边形,为中点,延长至,使,连结交于点,则 .【答案】2:9【解析】如图,连接∵四边形是平行四边形,,,为中点,,,,,,,∴211()24∆∆==CEF CBD S S 1148四边形∆∆∴==CEF BCD ABCD S S S ∴1176824四边形四边形⎛⎫=+= ⎪⎝⎭ABCD ABCD S S Y ABCD 7:24=ABCD F BC AD E :1:3DE AD =EF DC G :DEG BGC S S ∆∆=BGABCD //∴AD BC =AD BC ∴∠=∠E CFG F BC 1122∴==FC BC AD :1:3= DE AD :1:3∴=DE BC :2:3∴=DE CF ∠=∠ E CFG ∠=∠DGE CGF ∽∴∆DGE CGF :4:9∆∆∴=DEG CFG S S为中点,,.4.如图,等边三角形ABC 中,AB =3,点D 是CB 延长线上一点,且BD =1,点E 在直线AC 上,当∠BAD =∠CDE 时,AE 的长为 .【分析】分两种情形分别画出图形,利用相似三角形的性质解决问题即可.【解析】∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,AC =BC =AB =3,∴∠ABD =120°,①当点E 在边AC 上时.作EF ∥AB 交BC 于F ,如图1所示:则△EFC 是等边三角形.∴∠CFE =60°,EF =CF =CE ,∴∠BFE =120°=∠ABD ,∵∠BAD =∠CDE ,∴△ABD ∽△DFE ,∴AB BD =DF EF ,即31=DF EF ,∴DF =3EF ,∴DF =3CF ,∴CD =4CF ,∵BC =3,BD =1,∴CD =BC +BD =4,∴CF =1,∴CE =1,∴AE =AC ﹣CE =2;②点E 在AC 的延长线上时.如图2所示:∵∠ABD =∠DCE =120°,∠BAD =CDE ,∴△ABD ∽△DCE ,∴AB CD =BD CE ,即34=1CE ,解得:CE =43,∴AE =AC +CE =3+43=133;综上所述,当∠BAD =∠CDE 时,AE 的长为2或133;5.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠AED =∠B ,线段AG 分别交线段DE ,BC 于点F ,G ,且AD AC =DF CG .(1)求证:△ADF ∽△ACG ;(2)若AD AC =37,求AF FG的值. F BC 2∆∆∴=BGC CFG S S :4:182:9∆∆∴==DEG BGC S S【解答】(1)证明:∵∠AED =∠B ,∠DAE =∠CAB ,∴△AED ∽△ABC ,∴∠ADF =∠C ,又∵AD AC =DF CG ,∴△ADF ∽△ACG ;(2)解:∵△ADF ∽△ACG ,∴AD AC =AF AG ,∵AD AC =37,∴AF AG =37,∴AF FG =34.6.如图,在平行四边形ABCD 中,点E 在边BC 上,连结AE 并延长,交对角线BD 于点F 、DC 的延长线于点G .如果CE BE =23,求FE EG 的值.【解答】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC .∵AD ∥BE ,∴△BEF ∽△DAF ,∴EF AF =BE DA .又∵BC =BE +CE ,CE BE =23,∴BE =35BC =35DA ,∴EF =35AF ,∴AE =3+53EF =83EF .∵CE ∥AD ,△CEG ∽DAG ,∴GE GA =CE DA =22+3,∴GE =25GA ,∴GE =25−2AE =23×83EF =169EF ,∴FE EG =916.7.已知中,,(如图).以线段为边向外作等边三角形,点是线段的中点,连接并延长交线段于点.(1)求证:四边形为平行四边形;(2)连接,交于点.①若,求的长;②作,垂足为,求证:.【解析】(1)∵是等边三角形 ∴,在中,∴∵点是线段的中点∴∴是等边三角形∴,∴∴∴∴四边形为平行四边形;(2)①如图,连接,交于点 ∵∴∴Rt ABC V 90ACB ∠=︒30CAB ∠=︒AB ABD E AB CE AD F BCFD CD AB M 6AB =BM MN AC ⊥N 111BC AD MN+=ABD △AD AB BD ==60BAD ABD D ∠=∠=∠=︒Rt ABC V 30CAB ∠=︒60ABC ∠=︒E AB 12CE BE AE AB ===BCE V 60CEB CBE ABC ∠=∠=∠=︒BC CE =60ABD CEB ∠=∠=︒//CF BD606060180CBD D CBE ABD D ∠+∠=∠+∠+∠=︒+︒+︒=︒//BC FD BCFD CD AB M //BC FD BCM ADM ~V V BM BC AM AD=∵,∴ ∵∴;②如图,作,垂足为∵,,∴∴,∴,∴ ∴.8.如图,在平行四边形中,过点作,垂足为,连接,为线段上一点,且.(1)求证:;(2)若,,,求的长.【答案】(1)见解析;(2)AE【详解】(1)证明:四边形是平行四边形,,,,;,,,;(2)解:∵四边形是平行四边形,,,.,,.在中,,,,9.如图1,在矩形中,于点.(1)求证:;(2)如图2,若点是边上一点,且.求证:.【答案】(1)见解析;(1)见解析12BC CE AB ==AB AD =12BM BC AM AD ==6AB BM AM =+=123BM AB ==MN AC ⊥N90ACB ∠=︒306090CAD BAC BAD ∠=∠+∠=︒+︒=︒MN AC⊥////BC MN DA AMN ABC V :V C CMN DA ~V V MN AN BC AC =MN CN DA CA=1MN MN AN CN AN CN AC BC DA AC CA AC AC ++=+===111BC AD MN+=ABCD A AE BC ⊥E DE F DE AFE B ∠=∠ADF DEC ∆∆∽8AB =AD =AF =AE ABCD //∴AD BC //AB CD ∴∠=∠ADF CED 180∠+∠=︒B C 180∠+∠=︒ AFE AFD ∠=∠AFE B ∴∠=∠AFD C ∽∴∆∆ADF DEC ABCD 8∴==DC AB ∽∆∆ ADF DEC ∴=AD AFDE DC =12∴=DE // AD BC ⊥AE BC ∴⊥AE AD Rt ADE ∆90∠=︒EAD 12=DE =AD ∴===AE ABCD AE BD ⊥E BE BC AE CD =g g P AD PE EC ⊥AE AB DE AP =g g【详解】证明:∵在矩形中,,,,,,,,,,,;(2)证明:,,,,,,,,,,.10.已知,正方形中,点是边延长线上一点,连接,过点作,垂足为点,与交于点.(1)如图1,求证:;(2)如图2,连接,若,的值.【答案】(1)见解析;(2)【详解】(1)四边形是正方形,,,又,,又,,,在和中,,,;(2)过点作,设,,如图2所示:ABCD =AB CD =AD BC 90∠=︒BAD ⊥ AE BD 90∴∠=∠=︒AEB AED ∴∠+∠=∠+∠BAE ABE BAE EAD ∴∠=∠ABE DAE ∽∴∆∆ABE DAE ∴=AB BE AD AE ∴=CD BE BC AE∴=g g BE BC AE CD ⊥ AE BD ⊥PE EC 90∴∠=∠=︒AED PEC ∴∠=∠AEP DEC 90∠+∠=︒ EAD ADE 90∠+∠=︒ADE CDE ∴∠=∠EAP EDC ∽∴∆∆AEP DEC ∴=AE AP DE CD= AB CD ∴=g g AE AB DE AP ABCD E BC DE B BF DE ⊥F BF CD G CG CE =BD BE =DG =cos DBG ∠cos ∠=DBG ABCD ∴=BC DC 90∠=∠=︒BCG DCE ⊥ BF DE 90∴∠=︒GFD 180∠+∠+∠=︒ GBC BGC GCB 180∠+∠+∠=︒GFD FDG DGF ∠=∠BGC DGF ∆BGC ∆DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩BCG DCE BC DCCBG CDE ()∴∆≅∆BGC DEC ASA ∴=CG CE G ⊥GH BD =CE x =HD y,,又,,,,,,解得:,在中,由勾股定理得:,同理可得:,又,,在中,由勾股定理得:,= CG CE ∴=CG x =+ BE BC CE =+DC DG GC =BC DC =BE =DG ∴=+x x =x ∴=BC Rt BCD ∆6===BD 2=HD =+ BD BH HD 624∴=-=BH Rt HBG ∆===BG cos ∴∠===BH DBG BG。
相似三角形的九大模型
相似三角形的九大模型模型一:A 字型1.如图,在ABC △中,:2:3AF FB =,延长BC 至点D ,使得2BC CD =,求AEEC的值.2.如图,在ABC △中,已知CD 为边AB 上的高,正方形EFGH 的四个顶点分别在ABC △上,求证:111AB CD EF+=.3.如图,在矩形ABCD 中,2AB =,3BC =,点E 、F 、G 、H 分别在矩形ABCD 的各边上,EF HG AC ∥∥,EH FG BD ∥∥,则四边形EFGH 的周长是_________.4.如图,ABC △中,M 是AC 的中点,E 是AB 上一点,且3BE AE =,求BCCD的值.模型二:反A 字型5.如图,D 、E 分别为ABC △的边AB 、AC 上的点,且ADE ACB ∠=∠. (1)求证:AD AB AE AC ⋅=⋅;(2)如果ABC △的面积为m ,3DE =,5BC =,求ADE △的面积.6.如图,在ABC △中,点D 、E 分别在边AB 、AC 上,DE 、BC 的延长线相交于点F ,且EF DF BF CF ⋅=⋅. (1)求证:AD AB AE AC ⋅=⋅;(2)当12AB =,9AC =,8AE =时,求BD 的长与ADEECFS S △△的值.7.将三角形纸片()ABC △按如图所示的方式折叠,使点C 落在AB 边上的点D ,折痕为EF .已知3AB AC ==,4BC =,若以点B 、D 、F 为顶点的三角形与ABC △相似,那么CF 的长度是( )A .2B .127或2 C .127D .125或2 8.将ABC △纸片按如图所示的方式折叠,使点B 落在边AC 上,记为点B ',折痕为EF .已知6AB AC ==,8BC =. (1)求ABC △的周长;(2)若以点B ',F ,C 为顶点的三角形与ABC △相似,求BF 的长.9.如图,在ABC △中,6AB =,8BC =.点D 以每秒1个单位长度的速度由B 向A 运动,同时点E 以每秒2个单位长度的速度由C 向B 运动,当点E 停止运动时,点D 也随之停止.设运动时间为t 秒,当以B ,D ,E 为顶点的三角形与ABC △相似时,求t 的值.10.如图,在锐角三角形ABC 中,点D ,E 分别在边AC ,AB 上,AG BC ⊥于点G ,AF DE ⊥于点F ,EAF GAC ∠=∠. (1)求证:ADE ABC △∽△; (2)若3AD =,5AB =,求AFAG的值.模型三:8字型11.如图,E 是ABCD □的边BA 延长线上一点,连接EC ,交AD 于点F .在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.12.如图,平行四边形ABCD 中,过点B 的直线与对角线AC 、边AD 分别交于点E 和F .过点E 作EG BC ∥,交AB 于G ,则图中相似三角形有( )A .7对B .6对C .5对D .4对13.已知DE AB ∥,2OA OC OE =⋅,求证:AD BC ∥.14.学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB BD ⊥,CD BD ⊥,垂足分别为B ,D ,4m AO =, 1.6m AB =,1m CO =,则栏杆C 端应下降的垂直距离CD 为( )A .0.2mB .0.3mC .0.4mD .0.5m15.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,14AE CF AC ==.连接DE ,DF 并延长,分别交AB 、BC 于点G 、H ,连接GH ,则ADGBGHS S ∆∆的值为( )A .12B .23C .34D .116.如图所示,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则:DF FC =( )A .1:4B .1:3C .2:3D .1:217.如图,在矩形ABCD 中,E 是边AB 的中点,连接DE 交对角线AC 于点F ,若4AB =,3AD =,则CF 的长为 .18.如图,直线a b ∥,:3:5AF FB =,:3:1BC CD =,则:AE EC 为( )A .5:12B .9:5C .12:5D .3:219.如图,在平行四边形ABCD 中,E 是BA 延长线上一点,CE 分别与AD ,BD 交于点G ,F .下列结论:①EG AG GC GD =②EF BF FC FD =;③FC BFGF FD=;④2CF GF EF =⋅,其中正确的个数是( )A .1B .2C .3D .4模型四:蝴蝶型20.如图,四边形ABCD 的对角线AC 、BD 相交于O ,且将这个四边形分成①、②、③、④四个三角形.若::OA OC OB OD =,则下列结论中一定正确的是( )A .①与②相似B .①与③相似C .①与④相似D .③与④相似21.如图,AB CD ∥,线段BC 、AD 相交于点F ,点E 是线段AF 上一点,且满足BEF C ∠=∠,其中9AF =,3DF =,2CF =,则AE =_________.FEDCBA22.如图,在ABC △中,AB AC =,AD BC ⊥,DE AC ⊥,M 为DE 的中点,AM 与BE 相交于点N ,AD 与BE 相交于点F .求证: (1)DE ADCE CD=;(2)BCE ADM △∽△;(3)猜想AM 与BE 的位置关系,并说明理由.23.点D 为Rt ABC △的斜边AB 上一点,点E 在AC 上,连接DE ,CD ,且ADE BCD ∠=∠,CF CD ⊥交DE 的延长线于点F ,连接AF(1)如图1,若AC BC =,求证:AF AB ⊥;(2)如图2,若AC BC ≠,当点D 在AB 上运动时,求证:AF AB ⊥.N FMEDCBA模型五:共边共角型24.如图,在ABC △中,点D 是边AB 上的一点,ADC ACB ∠=∠,2AD =,6BD =,则边AC 的长为( )A .2B .4C .6D .825.已知:如图,ABC △中,AD 是BAC ∠的平分线,AD 的垂直平分线交AD 于E ,交BC 的延长线于F .求证: (1)2FD FB FC =⋅; (2)22::AB AC BF CF =.26.如图,在ABC △中,AB AC a ==,()BC b a b =>.在ABC △内依次作CBD A ∠=∠,DCE CBD ∠=∠,EDF DCE ∠=∠.则EF 等于( )A .32b aB .32a bC .43b aD .43a b27.如图,在矩形ABCD 中,对角线AC 、BD 相交于点G ,E 为AD 的中点,连接BE 交AC 于F ,连接FD ,若90BFA ∠=︒,则下列四对三角形:①BEA △与ACD △;②FED △与DEB △;③CFD △与ABG △;④ADF △与CFB △.其中相似的为( )A .①④B .①②C .②③④D .①②③28.如图,点P 是菱形ABCD 的对角线BD 上一点,连结CP 并延长,交AD 于E ,交BA 的延长线于点F .试问:(1)图中APD △与哪个三角形全等?并说明理由.(2)猜想:线段PC 、PE 、PF 之间存在什么关系?并说明理由.模型六:射影定理29.在Rt ABC △中,90C ∠=︒,CD AB ⊥于D ,下列等式中错误的是( ) A .2AD BD CD ⋅= B .AC BD CB AD ⋅=⋅C .2AC AD AB =⋅ D .222AB AC BC =+30.在Rt ABC △中,CD 是斜边AB 上的高. (1)求证:2CD AD DB =⋅; (2)求证:2CB DB AB =⋅.31.如图,在Rt ABC △中,90CAB ∠=︒,30B ∠=︒,AD CB ⊥于D ,3CD =,则CB = .32.如图,90ADC ACB ∠=∠=︒,ACD B ∠=∠,5AC =,6AB =,则AD = .33.如图,在Rt ABC △中,CD 为斜边AB 上的高,如果3AC =,6AB =,求BD 的值.34.在Rt ABC △中,CD 是斜边AB 上的高线,DE AC ⊥于E ,DF BC ⊥于F ,求证:33BC BFAC AE=.35.在ABC △中,90ACB ∠=︒,CE AB ⊥于点E ,D 在AB 延长线上, 且DCB A ∠=∠,:1:2BD CD =,AE =BCD S △.36.如图,在Rt ABC △中,90ABC ∠=︒,BA BC =.点D 是AB 的中点,连接CD ,过点B 作BG CD ⊥,分别交CD 、CA 于点E 、F ,与过点A 且垂直于AB 的直线相交于点G ,连接DF .给出以下四个结论: ①AG FGAB FB=; ②点F 是GE 的中点;③AF AB =; ④5ABC BDF S S =△△,其中正确的结论序号是 .模型七:三垂直模型37.如图,矩形ABCD中,E是BC的中点,连接AE,过点E作EF AE⊥交DC于点F,连接AF.设ABkAD=,下列结论:(1)ABE ECF△∽△,(2)AE平分BAF∠,(3)当1k=时,ABE ADF△∽△,其中结论正确的是()A.(1)(2)(3)B.(1)(3)C.(1)(2)D.(2)(3)38.如图,一个长方形的ABCD长为8cm,宽为6cm,E为边CD上的一点,现把Rt ADE△沿AE对折使得D点恰好落在边BC上的中点D'处.(1)请说明Rt ABD'△与Rt ECD'△相似;(2)求CE的长.39.(1) 如图1 ,已知AB l∠=︒,ACD⊥,垂足分别为B、E,且C是l上一点,90⊥,DE l△∽△;求证:ABC CED(2) 如图2 ,在四边形ABCD中,已知90BC=,10CD=,∠=︒,3ABCAB=,4DA=BD的长.40.如图,在直角梯形ABCD中,//∠=︒,AD BC,90BC=,CD=BAD=,3 P在线段AB上.若PCD△是以点P为直角顶点的直角三角形,则AP=.模型八:一线三等角41.如图,ABC △中,8AB AC ==,D 为BC 上一点,3BD =,30ADE B ∠=∠=︒,则AE 的长为_________.42.如图,D 是等边ABC △边AB 上的一点,且:1:2AD DB =,现将ABC △折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,则:CE CF =( )A .34B .45C .56D .6743.已知: 如图,ABC △中,90BAC ∠=︒,1AB AC ==,点D 是BC 边上的一个动点 (不 与B ,C 点重合) ,45ADE ∠=︒. (1) 求证:ABD DCE △∽△;(2) 设BD x =,AE y =,求y 关于x 的函数关系式; (3) 当ADE △是等腰三角形时, 求AE 的长 .44.如图,四边形ABCD 中,AD BC ∥,AB DC =,3cm AD =,7cm BC =,60B ∠=︒,P 为BC 边上一点(不与B ,C 重合),连接AP ,过P 点作PE 交DC 于E ,使得APE B ∠=∠.(1)求证:ABP PCE △∽△; (2)求AB 的长;(3)在边BC 上是否存在一点P ,使得:5:3DE EC =?如果存在,求BP 的长;如果不存在,请说明理由.45.如图,M 为线段AB 上一点,AE 与BD 交于点C ,DME A B α∠=∠=∠=,且DM 交AE 于点F ,ME 交BD 于点G .(1)写出图中的三对相似三角形;(2)连接FG ,当AM MB =时,求证:MFG BMG △∽△;(3)在(2)条件下,若45α=︒,AB =,3AF =,求FG 的长.模型九:手拉手46.如图,12∠=∠,要使ABC ADE △∽△,只需要添加一个条件即可,这个条件不可能是( )A .B D ∠=∠ B .C E ∠=∠ C .AD ABAE AC= D .AC BCAE DE= 47.如图,把ABC △绕点A 旋转到ADE △,当点D 刚好落在BC 上时,连结CE ,设AC ,DE ,相交于点F ,则图中相似三角形(不含全等)的对数有( )A .1B .2C .3D .448.如图,在ABC △中,ABC C ∠=∠,将ABC △绕点B 逆时针旋转得DBE △,点E 在AC 上,若3ED =,1EC =,则EB =( )AB .32C D .249.将一幅三角尺(Rt ACB △中,90ACB ∠=︒,60B ∠=︒,在Rt EDF △中,90EDF ∠=︒,45E ∠=︒)如图摆放,点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C ,将EDF △绕点D 顺时针方向旋转角(060)αα︒<<︒,DE '交AC 于点M ,DF '交BC 于点N ,则PMCN的值为( )AB C .12D 50.如图,点A 在线段BD 上,在BD 的同侧作30︒角的直角三角形ABC 和30︒角的直角三角形ADE ,CD 与BE ,AE 分别交于点P ,M ,连接PA 对于下列结论:①BAE CAD △∽△;②M P M D M A M E ⋅=⋅;③图中有5对相似三角形;④AP CD ⊥其中结论正确的个数是( )A .1个B .2个C .4个D .3个51.如图,ABC △为等腰直角三角形,90BAC ∠=︒,1BC =,E 为直角边AB 上任意一点,以线段CE 为斜边作等腰Rt CDE △,连接AD ,下列说法:①AC ED ⊥;②BCE ACD ∠=∠;③AED ECB △∽△;④AD BC ∥;⑤四边形ABCD 面积的最大值为38,其中正确的是__________.52.如图,ABC △中,45BAC ∠=︒,30ACB ∠=︒,将ABC △绕点A 顺时针旋转得到11AB C △,当点1C 、1B 、C 三点共线时,旋转角为α,连接1BB ,交AC 于点D ,下面结论:①1AC C △为等腰三角形;②1AB D BCD △∽△;③135α=︒;④1CA CB =;⑤1AB B C =中,正确结论的个数是( )A .2个B .3个C .4个D .5个53.如图,在正方形ABCD 中,AEF △的顶点E ,F 分别在BC ,CD 边上,高AG 与正方形的边长相等,连接BD 分别交AE ,AF 于点M ,N ,下列说法: ①45EAF ∠=︒;②连接MG ,NG ,则MGN △为直角三角形; ③AMN AFE △∽△;④若2BE =,3FD =,则MN( )A .4B .3C .2D .154.如图,在Rt ABC △中,90ACB ∠=︒,BC aAC b=,CD AB ⊥于点D ,点E 是直线AC 上一动点,连接DE ,过点D 作FD ED ⊥,交直线BC 于点F . (1)探究发现:如图①,若a b =,点E 在线段AC 上,则DEDF= . (2)数学思考①如图②,若点在线段AC 上,则DEDF= ,(用含a ,b 的代数式表示); ②当点E 在直线AC 上运动时,①中的结论是否仍然成立?请仅就图③的情形给出证明;(3)拓展应用:若AC BC =DF =CF 的长.。
相似三角形常见模型(总结)1
相似三角形第一部分 相似三角形模型分析一、相似三角形判定的基本模型认识(一)A 字型、反A 字型(斜A 字型)BDE(平行)BDE(不平行)(二)8字型、反8字型J OADBCAB CD(蝴蝶型)(平行) (不平行) (三)母子型BDD(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:ADC 二、相似三角形判定的变化模型旋转型:由A字型旋转得到。
8字型拓展CB EDA共享性GABEF一线三等角的变形一线三直角的变形第二部分相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD中,AD∥BC,对角线AC、BD交于点O,BE∥CD交CA延长线于E.求证:OEOAOC⋅=2.例2:已知:如图,△ABC中,点E在中线AD上, ABCDEB∠=∠.求证:(1)DADEDB⋅=2;(2)DACDCE∠=∠.例3:已知:如图,等腰△ABC中,AB=AC,AD⊥BC于D,CG∥AB,BG分别交AD、AC于E、F.求证:EGEFBE⋅=2.相关练习:1、如图,已知AD为△ABC的角平分线,EF为AD的垂直平分线.求证:FCFBFD⋅=2.A CDEBGMF EHDCBA2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。
求证:(1)△AME ∽△NMD; (2)ND 2=NC ·NB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。
求证:EB ·DF=AE ·DB4.在∆ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。
求证:∠=︒GBM 905.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为y .(1)求证:AE =2PE ;(2)求y 关于x 的函数解析式,并写出它的定义域; (3)当△BEP 与△ABC 相似时,求△BEP 的面积.双垂型1、如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC 、AB 上的高 求证:(1)△ABD ∽△ACE ;(2)△ADE ∽△ABC ;(3)BC=2ED2、如图,已知锐角△ABC ,AD 、CE 分别是BC 、AB 边上的高,△ABC 和△BDE 的面积分别是27和3,DE=62,求:点B 到直线AC 的距离。
相似三角形中的 基本模型 (共21张PPT)
连接BE并延长BE交CD的延长线于点F,交AC于点G.
(1)若FD=2,
ED BC
1 3
,求线段DC的长.
ቤተ መጻሕፍቲ ባይዱ
(2)求证:
EF BF
GE GB
.
(2)求证 EF GB BF GE .
AD AE ED AC AB BC
模型二:相交线型
例3 如图,要判断△ADE与△ACB相似,添加一个条件,不正
确的是:(C )
A. ∠ADE=∠C C. AE DE
AB CB
B. ∠AED=∠B D. AE AD
AB AC
模型二:相交线型
例4 如图,EC和BD相交于点A,且∠D=∠C, 则△EDA∽ △ BCA ; AD: AC = AE :AB
△BDC∽△CDA △BDC∽△BCA △CDA∽△BCA
练习4 如图,四边形ABCD中,AD∥BC,∠B=90°,E为
AB上一点,分别以ED、EC为折痕将两个角(∠A、∠B)
向内折起,点A、B恰好落在CD边的点F处,AD=3,BC=5,
则EF的长为
.
练习5. 如图,四边形ABCD中,AD∥BC,点E是边AD的中点,
解:∵四边形ABCD是平行四边形
∴BC∥AD,BC=AD
∴△EDF∽△CBF ∴DF:BF=DE:BC 又∵ DE:BC= DE:AD= 2:5 ∴DF:BF=2:5 而BF=15 cm
∴DF=6 cm
A B
ED F
C
模型二:相交线型
△AED∽△ACB AE AD ED AC AB CB
△AED∽△ABC
例4 如图,△ABC中,∠A=∠DBC,BC=3 ,CD=2,
9
则AC= 2 .
模型05 相似三角形中的常见五种基本模型(解析版)
模型探究相似三角形考查范围广,综合性强,其模型种类多,其中有关一线三垂直模型在前面的专题已经很详细的讲解,这里就不在重复.模型一、A字型相似模型A字型(平行)反A字型(不平行)模型二、8字型与反8字型相似模型模型三、AX型相似模型(A字型及X字型两者相结合)模型四、共边角相似模型(子母型)模型五、手拉手相似模型例题精讲考点一、A字相似模型【例1】.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.变式训练【变式1-1】.如图,在△ABC中,DE∥BC,AH⊥BC于点H,与DE交于点G.若,则=.解:∵,∴,∵DE∥BC,∴△ADE∽△ABC,∴,故答案为.【变式1-2】.如图,在△ABC中,M是AC的中点,E是AB上一点,AE=AB,连接EM并延长,交BC的延长线于D,则=__________.解:如图,过C点作CP∥AB,交DE于P,∵PC∥AE,∴△AEM∽△CPM,∴=,∵M是AC的中点,∴AM=CM,∴PC=AE,∵AE=AB,∴CP=AB,∴CP=BE,∵CP∥BE,∴△DCP∽△DBE,∴==,∴BD=3CD,∴BC=2CD,即=2.【变式1-3】.如图,在△ABC中,点D在边AB上,AD=9,BD=7.AC=12.△ABC的角平分线AE交CD于点F.(1)求证:△ACD∽△ABC;(2)若AF=8,求AE的长度.解:(1)∵AD=9,BD=7,AC=12,∴AB=AD+BD=16,∵==,==,∴=,∵∠BAC=∠CAD,∴△ACD∽△ABC;(2)由(1)可知,△ACD∽△ABC,∴∠ABE=∠ACF,∵AE平分∠BAC,∴∠BAE=∠CAF,∴△ABE∽△ACF,∴=,即=,∴AE==.考点二、8字与反8字相似模型【例2】.如图,AG∥BD,AF:FB=1:2,BC:CD=2:1,求的值解:∵AG∥BD,∴△AFG∽△BFD,∴=,∵,∴CD=BD,∴,∵AG∥BD,∴△AEG∽△CED,∴.变式训练【变式2-1】.如图,AB∥CD,AE∥FD,AE、FD分别交BC于点G、H,则下列结论中错误的是()A.B.C.D.解:A、∵AB∥CD,∴=,故本选项不符合题目要求;B、∵AE∥DF,∴△CEG∞△CDH,∴=,∴=,∵AB∥CD,∴=,∴=,∴=,∴=,故本选项不符合题目要求;∵AB∥CD,AE∥DF,∴四边形AEDF是平行四边形,∴AF=DE,∵AE∥DF,∴,∴=,故本选项不符合题目要求;D、∵AE∥DF,∴△BFH∞△BAG,∴,故本选项符合题目要求;故选:D.【变式2-2】.如图,在平行四边形ABCD中,E为边AD的中点,连接AC,BE交于点F.若△AEF的面积为2,则△ABC的面积为()A.8B.10C.12D.14解:如图,∵四边形ABCD是平行四边形,∵EA∥BC,∴△AEF∽△CBF,∵AE=DE=AD,CB=AD,∴====,∴AF=AC,EF=BF,=S△ABC,∴S△ABF=S△ABF=×S△ABC=S△ABC,∴S△AEF=2,∵S△AEF=6S△AEF=6×2=12,故选:C.∴S△ABC【变式2-3】.如图,锐角三角形ABC中,∠A=60°,BE⊥AC于E,CD⊥AB于D,则DE:BC=1:2.解:如图,∵在△ADC中,∠A=60°,CD⊥AB于点D,∴∠ACD=30°,∴=.又∵在△ABE中,∠A=60°,BE⊥AC于E,∴∠ABE=30°,∴=,∴=.又∵∠A=∠A,∴△ADE∽△ACB,∴DE:BC=AD:AC=1:2.故答案是:1:2.考点三、AX型相似模型(A字型及X字型两者相结合)【例3】.如图,在△ABC中,点D和E分别是边AB和AC的中点,连接DE,DC与BE交于点O,若△DOE的面积为1,则△ABC的面积为()A.6B.9C.12D.13.5解:∵点D和E分别是边AB和AC的中点,∴O点为△ABC的重心,∴OB=2OE,=2S△DOE=2×1=2,∴S△BOD=3,∴S△BDE∵AD=BD,=2S△BDE=6,∴S△ABE∵AE=CE,=2S△ABE=2×6=12.故选C.∴S△ABC变式训练【变式3-1】.如图,DE是△ABC的中位线,F为DE中点,连接AF并延长交BC于点G,=1,则S△ABC=24.若S△EFG解:方法一:∵DE是△ABC的中位线,∴D、E分别为AB、BC的中点,如图过D作DM∥BC交AG于点M,∵DM∥BC,∴∠DMF=∠EGF,∵点F为DE的中点,∴DF=EF,在△DMF和△EGF中,,∴△DMF≌△EGF(AAS),=S△EGF=1,GF=FM,DM=GE,∴S△DMF∵点D为AB的中点,且DM∥BC,∴AM=MG,∴FM=AM,=2S△DMF=2,∴S△ADM∵DM为△ABG的中位线,∴=,=4S△ADM=4×2=8,∴S△ABG=S△ABG﹣S△ADM=8﹣2=6,∴S梯形DMGB=S梯形DMGB=6,∴S△BDE∵DE是△ABC的中位线,=4S△BDE=4×6=24,∴S△ABC方法二:连接AE,∵DE是△ABC的中位线,∴DE∥AC,DE=AC,∵F是DE的中点,∴=,∴==,=1,∵S△EFG=16,∴S△ACG∵EF∥AC,∴==,∴==,=S△ACG=4,∴S△AEG=S△ACG﹣S△AEG=12,∴S△ACE=2S△ACE=24,故答案为:24.∴S△ABC【变式3-2】.如图:AD∥EG∥BC,EG交DB于点F,已知AD=6,BC=8,AE=6,EF =2.(1)求EB的长;(2)求FG的长.解:(1)∵EG∥AD,∴△BAD∽△BEF,∴=,即=,∴EB=3.(2)∵EG∥∥BC,∴△AEG∽△ABC,∴=,即=,∴EG=,∴FG=EG﹣EF=.【变式3-3】.如图,已知AB∥CD,AC与BD相交于点E,点F在线段BC上,,.(1)求证:AB∥EF;:S△EBC:S△ECD.(2)求S△ABE(1)证明:∵AB∥CD,∴==,∵,∴=,∴EF∥CD,∴AB∥EF.(2)解:设△ABE的面积为m.∵AB∥CD,∴△ABE∽△CDE,∴=()2=,=4m,∴S△CDE∵==,=2m,∴S△BEC:S△EBC:S△ECD=m:2m:4m=1:2:4.∴S△ABE模型四、子母型相似模型【例4】.如图,点C,D在线段AB上,△PCD是等边三角形,且∠APB=120°,求证:(1)△ACP∽△PDB,(2)CD2=AC•BD.证明:(1)∵△PCD是等边三角形,∴∠PCD=∠PDC=∠CPD=60°,∴∠ACP=∠PDB=120°,∵∠APB=120°,∴∠APC+∠BPD=60°,∵∠CAP+∠APC=60°∴∠BPD=∠CAP,∴△ACP∽△PDB;(2)由(1)得△ACP∽△PDB,∴,∵△PCD是等边三角形,∴PC=PD=CD,∴,∴CD2=AC•BD.变式训练【变式4-1】.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C.D.解:在△ABP和△ACB中,∠BAP=∠CAB,∴当∠ABP=∠C时,满足两组角对应相等,可判断△ABP∽△ACB,故A正确;当∠APB=∠ABC时,满足两组角对应相等,可判断△ABP∽△ACB,故B正确;当时,满足两边对应成比例且夹角相等,可判断△ABP∽△ACB,故C正确;当时,其夹角不相等,则不能判断△ABP∽△ACB,故D不正确;故选:D.【变式4-2】.如图,在△ABC中,点D在AC边上,连接BD,若∠ABC+∠BDC=180°,AD=2,CD=4,则AB的长为()A.3B.4C.D.2解:∵∠ABC+∠BDC=180°,∠ADB+∠BDC=180°,∴∠ADB=∠ABC,∵∠A=∠A,∴△ABC∽△ADB,∴,∵AD=2,CD=4,∴,∴AB2=12,∴AB=2或﹣2(不合题意,舍去),故选:D.【变式4-3】.如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则PA+PB的最小值为2.解:设⊙O半径为r,OP=r=BC=2,OB=r=2,取OB的中点I,连接PI,∴OI=IB=,∵,,∴,∠O是公共角,∴△BOP∽△POI,∴,∴PI=PB,∴AP+PB=AP+PI,∴当A、P、I在一条直线上时,AP+PB最小,作IE⊥AB于E,∵∠ABO=45°,∴IE=BE=BI=1,∴AE=AB﹣BE=3,∴AI==,∴AP+PB最小值=AI=,∵PA+PB=(PA+PB),∴PA+PB的最小值是AI==2.故答案是2.模型五、手拉手相似模型【例5】.如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为.解:连接OA、OD,∵△ABC与△DEF均为等边三角形,O为BC、EF的中点,∴AO⊥BC,DO⊥EF,∠EDO=30°,∠BAO=30°,∴OD:OE=OA:OB=:1,∵∠DOE+∠EOA=∠BOA+∠EOA即∠DOA=∠EOB,∴△DOA∽△EOB,∴OD:OE=OA:OB=AD:BE=:1=,故答案为:.变式训练【变式5-1】.如图,在△ABC与△ADE中,∠BAC=∠DAE,∠ABC=∠ADE.求证:(1)△BAC∽△DAE;(2)△BAD∽△CAE.证明:(1)∵∠BAC=∠DAE,∠ABC=∠ADE.∴△BAC∽△DAE;(2)∵△BAC∽△DAE,∴,∴,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD∽△CAE.【变式5-2】.如图,点D是△ABC内一点,且∠BDC=90°,AB=2,AC=,∠BAD=∠CBD=30°,AD=.解:如图,过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,∵∠BAD=30°,∴∠DAM=60°,∴∠AMD=30°,∴∠AMD=∠DBC,又∵∠ADM=∠BDC=90°,∴△BDC∽△MDA,∴,又∠BDC=∠MDA,∴∠BDC+∠CDM=∠ADM+∠CDM,即∠BDM=∠CDA,∴△BDM∽△CDA,∴=,∵AC=,∴BM=3,在Rt△ABM中,AM===,∴AD=AM=.【变式5-3】.如图,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k为常数),则BD的长为.(用含k的式子表示)解:如图中,∵AE⊥BC,BE=EC,∴AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,∵∠BAD=∠CAG,∴∠BAC=∠DAG,∵AB=AC,AD=AG,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG,∵AD=kAB,∴DG=kBC=4k,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG==.∴BD=CG=,故答案为:.实战演练1.如图,已知DE∥BC,EF∥AB,则下列比例式中错误的是()A.=B.C.D.解:A、∵EF∥AB,∴=,∵DE∥BC,∴=,∴=,故A正确,B、易知△ADE∽△EFC,∴=,∴=,故B正确.C、∵△CEF∽△CAB,∴=,∴=,故C正确.D、∵DE∥BC,∴=,显然DE≠CF,故D错误.故选:D.2.如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA的面积比为()A.2:3B.2:5C.4:9D.:解:∵AD∥BC,∴∠ACB=∠DAC又∵∠B=∠ACD=90°,∴△CBA∽△ACD===,∵=()2=∴△ABC与△DCA的面积比为4:9.故选:C.3.如图,菱形ABCD中,E点在BC上,F点在CD上,G点、H点在AD上,且AE∥HC ∥GF.若AH=8,HG=5,GD=4,则下列选项中的线段,何者长度最长?()A.CF B.FD C.BE D.EC解:∵AH=8,HG=5,GD=4,∴AD=8+5+4=17,∵四边形ABCD为菱形,∴BC=CD=AD=17,∵AE∥HC,AD∥BC,∴四边形AECH为平行四边形,∴CE=AH=8,∴BE=BC﹣CE=17﹣8=9,∵HC∥GF,∴=,即=,解得:DF=,∴FC=17﹣=,∵>9>8>,∴CF长度最长,故选:A.4.如图,在△ABC中,BC=6,E,F分别是AB,AC的中点,动点P在射线EF上,BP 交CE于点D,∠CBP的平分线交CE于点Q,当CQ=CE时,EP+BP的值为()A.6B.9C.12D.18解:如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠M=∠CBM,∵BQ是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴EP+BP=EP+PM=EM,∵CQ=CE,∴EQ=2CQ,由EF∥BC得,△MEQ∽△BCQ,∴=2,∴EM=2BC=2×6=12,即EP+BP=12.故选:C.5.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2,AD=2,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,若BB′=2,则AA′等于()A.B.2C.D.解:过D作DE⊥BC于E,则BE=AD=2,DE=2,设B′C=BC=x,则DC=x,∴DC2=DE2+EC2,即2x2=28+(x﹣2)2,解得:x=4(负值舍去),∴BC=4,AC=,∵将△ABC绕点C顺时针方向旋转后得△A′B′C,∴∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,∴∴△A′CA∽△B′CB,∴,即∴AA′=,故选:A.6.如图,已知,△ABC中边AB上一点P,且∠ACP=∠B,AC=4,AP=2,则BP=6.解:∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,∴AC2=AP•AB,即AB=AC2÷AP=16÷2=8,∴BP=AB﹣AP=6.7.如图,在▱ABCD中,AC、BD相交于点O,点E是OA的中点,联结BE并延长交AD 于点F,如果△AEF的面积是4,那么△BCE的面积是36.解:∵在▱ABCD中,AO=AC,∵点E是OA的中点,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴==,=4,=()2=,∵S△AEF=36,故答案为36.∴S△BCE8.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为8.解:连接BG并延长交AC于H,∵G为ABC的重心,∴=2,∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形,∴CE=DF=4,∵GE∥CH,∴△BEG∽△CBH,∴=2,∴BE=8,故答案为:8.9.如图,已知Rt△ABC中,两条直角边AB=3,BC=4,将Rt△ABC绕直角顶点B旋转一定的角度得到Rt△DBE,并且点A落在DE边上,则sin∠ABE=.解:∵将Rt△ABC绕直角顶点B旋转一定的角度得到Rt△DBE,∴BD=AB,BC=BE,∠ABD=∠CBE,∠DEB=∠ACB,∴∠D=∠BAC=∠BAD=(180°﹣∠ABD),∴∠BEC=(180°﹣∠CBE),∴∠D=∠BEC,∵∠ABC=∠DBE=90°,∴∠DEB+∠BEC=90°,∴∠AEC=90°,∵∠AGB=∠EGC,∴∠ACE=∠ABE,∵在Rt△ABC中,AB=3,BC=4,∴AC=DE=5,过B作BH⊥DE于H,则DH=AH,BD2=DH•DE,∴DH==,∴AD=,∴AE=DE﹣AD=,∴sin∠ABE=sin∠ACE===,故答案为:.10.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=6,AD平分∠BAC,交边BC于点D,过点D作CA的平行线,交边AB于点E.(1)求线段DE的长;(2)取线段AD的中点M,联结BM,交线段DE于点F,延长线段BM交边AC于点G,求的值.解:(1)∵AD平分∠BAC,∠BAC=60°,∴∠DAC=30°,在Rt△ACD中,∠ACD=90°,∠DAC=30°,AC=6,∴CD=2,在Rt△ACB中,∠ACB=90°,∠BAC=60°,AC=6,∴BC=6,∴BD=BC﹣CD=4,∵DE∥CA,∴,∴DE=4;(2)如图,∵点M是线段AD的中点,∴DM=AM,∵DE∥CA,∴,∴DF=AG,∵DE∥CA,∴,∴,∵BD=4,BC=6,DF=AG,∴.11.如图,在菱形ABCD中,∠ADE、∠CDF分别交BC、AB于点E、F,DF交对角线AC 于点M,且∠ADE=∠CDF.(1)求证:CE=AF;(2)连接ME,若=,AF=2,求ME的长.解:(1)∵四边形ABCD是菱形,∴AD=CD,∠DAF=∠DCE,又∵∠ADE=∠CDF,∴∠ADE﹣∠EDF=∠CDF﹣∠EDF,∴∠ADF=∠CDE,在△ADF和△CDE中,,∴△ADF≌△CDE,∴CE=AF.(2)∵四边形ABCD是菱形,∴AB=BC,由(1)得:CE=AF=2,∴BE=BF,设BE=BF=x,∵=,AF=2,∴,解得x=,∴BE=BF=,∵=,且CE=AF,∴==,∵∠CMD=∠AMF,∠DCM=∠AMF,∴△AMF∽△CMD,∴,∴=,且∠ACB=∠ACB∴△ABC∽△MEC∴∠CAB=∠CME=∠ACB∴ME=CE=212.[问题背景](1)如图①,已知△ABC∽△ADE,求证:△ABD∽△ACE.[尝试应用](2)如图②,在△ABC和△ADE中,∠BAC=∠DAE=90°∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,①填空:=1;②求的值.(1)证明:如图①,∵△ABC∽△ADE,∴∠BAC=∠DAE,=,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,=,∴∠BAD=∠CAE,∴△ABD∽△ACE.(2)解:①如图②,∵∠DAE=90°,∠ADE=30°,∴DE=2AE,∴AD===AE,∵=,∴AD=BD,∴AE=BD,∴=1,故答案为:1.②如图②,连接CE,∵∠BAC=∠DAE=90°,∠ABC=∠ADE,∴△BAC∽△CAE,∴=,∴=,∵∠BAD=∠CAE=90°﹣∠CAD,∴△BAD∽△CAE,∴∠ABC=∠ACE,∴∠ADE=∠ACE,∵∠AFD=∠EFC,∴△AFD∽△EFC,∴=,由①得AD=AE,AD=BD,∴==,∴BD=CE,∴AD=×CE=3CE,∴=3,∴=3,∴的值是3.13.如图,在正方形ABCD中,AB=4,E、F分别是BC、CD上的点,且∠EAF=45°,AE、AF分别交BD于点M、N,连接EN、EF.(1)求证:△ABN∽△MBE;(2)求证:BM2+ND2=MN2;(3)①求△CEF的周长;②若点G、F分别是EF、CD的中点,连接NG,则NG的长为.(1)证明:如图1,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABC=90°,∴∠ABD=∠ADB=45°,∴∠ABN=∠MBE=45°,∠BME=∠ABD+∠BAM=45°+∠BAM,∵∠EAF=45°,∴∠BAN=∠EAF+∠BAM=45°+∠BAM,∴∠BAN=∠BME,∴△ABN∽△MBE.(2)证明:如图1,将△ADN绕点A顺时针旋转90°得到△ABH,连接MH,∴∠BAH=∠DAN,AH=AN,HB=ND,∵∠MAN=∠EAF=45°,∴∠MAH=∠BAH+∠BAM=∠DAN+∠BAM=45°,∴∠MAH=∠MAN,∵AM=AM,∴△MAH≌△MAN(SAS),∴MH=MN,∵∠ABH=∠ADN=45°,∴∠MBH=∠ABD+∠ABH=90°,∴BM2+HB2=MH2,∴BM2+ND2=MN2.(3)解:①如图2,将△ADF绕点A顺时针旋转90°得到△ABK,∴AK=AF,∠BAK=∠DAF,BK=DF,∠ABK=∠ADF=90°,∴∠ABK+∠ABE=180°,∴点K、点B、点E在同一条直线上,∵∠EAK=∠BAE+∠BAK=∠BAE+∠DAF=45°,∴∠EAK=∠EAFM,∵AE=AE,∴△EAK≌△EAF(SAS),∴EK=EF,∴BE+DF=BE+BK=EK=EF,∵CB=CD=AB=4,∴CE+EF+CF=CE+BE+DF+CF=CB+CD=4+4=8,∴△CEF的周长是8.②如图2,∵F是CD的中点,∴CF=DF=CD=2,∵∠C=90°,∴CF2+EF2=CE2,∵EF=BE+DF=BE+2,CE=CB﹣BE=4﹣BE,∴22+(4﹣BE)2=(BE+2)2,解得BE=,∴EF=+2=,∵∠MBE=∠MAN=45°,∠BME=∠AMN,∴△BME∽△AMN,∴=,∴=,∴∠AMB=∠NME,∴△AMB∽△NME,∴∠NEM=∠ABM=45°,∴∠ENF=∠MAN+∠NEM=90°,∵G是EF的中点,∴NG=EF=×=,故答案为:.14.问题背景如图(1),已知△ABC∽△ADE,求证:△ABD∽△ACE;尝试应用如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,求的值;拓展创新如图(3),D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB =4,AC=2,直接写出AD的长.问题背景证明:∵△ABC∽△ADE,∴,∠BAC=∠DAE,∴∠BAD=∠CAE,,∴△ABD∽△ACE;尝试应用解:如图1,连接EC,∵∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,∴△ABC∽△ADE,由(1)知△ABD∽△ACE,∴,∠ACE=∠ABD=∠ADE,在Rt△ADE中,∠ADE=30°,∴,∴=3.∵∠ADF=∠ECF,∠AFD=∠EFC,∴△ADF∽△ECF,∴=3.拓展创新解:如图2,过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,∵∠BAD=30°,∴∠DAM=60°,∴∠AMD=30°,∴∠AMD=∠DBC,又∵∠ADM=∠BDC=90°,∴△BDC∽△MDA,∴,又∠BDC=∠MDA,∴∠BDC+∠CDM=∠ADM+∠CDM,即∠BDM=∠CDA,∴△BDM∽△CDA,∴,∵AC=2,∴BM=2=6,∴在Rt△ABM中,AM===2,∴AD=.15.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG、线段DE的数量关系BG=DE及所在直线的位置关系BG⊥DE;②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断;(2)将原题中正方形改为矩形(如图4﹣6),且AB=a,BC=b,CE=ka,CG=kb(a≠b,k>0),则线段BG、线段DE的数量关系=及所在直线的位置关系BG ⊥DE;(3)在第(2)题图5中,连接DG、BE,且a=4,b=3,k=,直接写出BE2+DG2的值为.解:(1)①猜想:BG ⊥DE ,BG =DE ;故答案为:BG =DE ,BG ⊥DE ;②结论成立.理由:如图2中,∵四边形ABCD 和四边形CEFG 是正方形,∴BC =DC ,CG =CE ,∠BCD =∠ECG =90°,∴∠BCG =∠DCE ,∴△BCG ≌△DCE (SAS ),∴BG =DE ,∠CBG =∠CDE ,又∵∠CBG +∠BHC =90°,∴∠CDE +∠DHG =90°,∴BG ⊥DE .(2)∵AB =a ,BC =b ,CE =ka ,CG =kb ,∴==,又∵∠BCG =∠DCE ,∴△BCG ∽△DCE ,∴∠CBG =∠CDE ,==,又∵∠CBG +∠BHC =90°,∴∠CDE +∠DHG =90°,∴BG⊥DE.故答案为:=,BG⊥DE.(3)连接BE、DG.根据题意,得AB=4,BC=3,CE=2,CG=1.5,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+16+2.25+4=.。
相似三角形中常见基本模型及训练
万能解题模型1.(2019·遵义)如图,已知⊙O的半径为1,AB,AC是⊙O的两条弦,且AB=AC,延长BO交AC于点D,连接OA,OC.若AD2=AB·DC,则OD22.(2019·娄底)如图,点D 在以AB 为直径的⊙O 上,AD 平分∠BAC ,DC ⊥AC ,过点B 作⊙O 的切线交AD 的延长线于点E.求证:(1)直线CD 是⊙O 的切线; (2)CD·BE =AD·DE.证明:(1)连接OD. ∵AD 平分∠BAC , ∴∠CAD =∠BAD.∵OA =OD ,∴∠BAD =∠ADO. ∴∠CAD =∠ADO.∴AC ∥OD. ∵CD ⊥AC ,∴CD ⊥OD. 又∵OD 为⊙O 的半径, ∴直线CD 是⊙O 的切线. (2)连接BD.∵BE 是⊙O 的切线,AB 为⊙O 的直径, ∴∠ABE =∠BDE =90°.∵CD ⊥AC ,∴∠C =∠BDE =90°. ∴∠CAD =∠BAE =∠DBE.∴△ACD ∽△BDE.∴CD DE =ADBE.∴CD·BE =AD·DE.3.(2018·巴中)如图,⊙O的两弦AB,CD相交于点P,连接AC,BD,得S△ACP∶S△DBP=16∶9,则AC∶BD =4∶3.4.(2018·扬州)如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,CD与BE,AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP·MD=MA·ME;③2CB2=CP·CM.其中正确的是(A) A.①②③B.①C.①②D.②③相关结论:△ACD∽△ABC∽△CBD,CD2=BD·AD,BC2=BD·AB,AC2=AD·AB.5.(2019·宜宾)如图,已知Rt △ABC 中,CD 是斜边AB 上的高,AC =4,BC =3,则AD =165.6.(2018·安顺)如图,点P 1,P 2,P 3,P 4均在坐标轴上,且P 1P 2⊥P 2P 3,P 2P 3⊥P 3P 4.若点P 1,P 2的坐标分别为(0,-1),(-2,0),则点P 4的坐标为(8,0).7.(2019·南充)如图,在△ABC 中,以AC 为直径的⊙O 交AB 于点D ,连接CD ,∠BCD =∠A. (1)求证:BC 是⊙O 的切线;(2)若BC =5,BD =3,求点O 到CD 的距离.解:(1)证明:∵AC 是⊙O 的直径, ∴∠ADC =90°.∴∠A +∠ACD =90°. ∵∠BCD =∠A ,∴∠ACD +∠BCD =90°. ∴∠ACB =90°.又∵OC 是⊙O 的半径, ∴BC 是⊙O 的切线.(2)过点O 作OH ⊥CD 于点H. ∵∠ACB =∠BDC =90°,∠B =∠B , ∴△ACB ∽△CDB. ∴BC BD =AB BC .∴53=AB 5. ∴AB =253.∴AD =163.∵OH ⊥CD ,∴CH =DH.∵AO =OC ,∴OH =12AD =83.∴点O 到CD 的距离是83.(1)如图1,△CAP ∽△PBD(此图又叫做“三垂图”); (2)如图2、图3,有以下结论: ①△CAP ∽△PBD ;②连接CD ,当点P 为AB 的中点时,△CAP ∽△PBD ∽△CPD.8.(2019·凉山州)如图,在正方形ABCD 中,AB =12,AE =14AB ,点P 在BC 上运动(不与B ,C 重合),过点P 作PQ ⊥EP ,交CD 于点Q ,则CQ 的最大值为4.9.如图,在边长为9的等边△ABC 中,BD =3,∠ADE =60°,求AE 的长.解:∵△ABC是边长为9的等边三角形,∴∠B=∠C=60°,AB=BC=AC=9.∴∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠CDE+∠ADB=120°.∴∠BAD=∠CDE.∴△ABD∽△DCE.∴ABDC=BDCE,即99-3=3CE.∴CE=2.∴AE=9-2=7.【变式】点D,E分别变到CB,AC的延长线上.如图,△ABC是等边三角形,点D,E分别在CB,AC的延长线上,∠ADE=60°.求证:△ABD∽△DCE.证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∴∠ABD=∠DCE=120°.∵∠ABC=∠DAB+∠BDA,∠ADE=∠EDC+∠BDA,∠ABC=∠ADE=60°,∴∠DAB=∠EDC.∴△ABD∽△DCE.10.如图,在矩形纸片ABCD中,将△AMP和△BPQ分别沿PM和PQ折叠(AP>AM),点A和点B都与点E 重合;再将△CQD沿DQ折叠,点C落在线段EQ上点F处.(1)判断△AMP,△BPQ,△CQD和△FDM中有哪几对相似三角形?(不需说明理由)(2)如果AM=1,sin∠DMF=35,求AB的长.基本模型5三角形内接矩形模型解:(1)有三对相似三角形:△AMP ∽△BPQ ∽△CQD.(2)设AP =x ,由折叠的性质,得BP =AP =EP =x.∴AB =DC =2x.由△AMP ∽△BPQ ,得AM BP =APBQ ,∴BQ =x 2.由△AMP ∽△CQD ,得AP CD =AMCQ,∴CQ =2.AD =BC =BQ +CQ =x 2+2,MD =AD -AM =x 2+2-1=x 2+1.在Rt △FDM 中,sin ∠DMF =35,DF =DC =2x ,∴2x x 2+1=35. 解得x 1=3,x 2=13(不合题意,舍去).∴AB =2x =6.11.如图,已知正方形DEFG 的顶点D 、E 在△ABC 的边BC 上,顶点G 、F 分别在边AB 、AC 上.如果BC=4,△ABC 的面积是6,那么这个正方形的边长是 7.。
(完整版)相似三角形的几种基本图形
B EADC相似三角形的几种基本图形:(1)如图:称为“平行线型”的相似三角形.(2)如图:其中∠1=∠2,则△ADE ∽△ABC 称为“相交线型”的相似三角形.ABCD E12AABBCC DD EE12412(∠B=∠D ) (双垂直)(3)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形.(4)一线三等角型二、例题分析1、下列说法不正确的是( )A 、 两对应角相等的三角形是相似三角形;B 、两对应边成比例的三角形是相似三角形;C 、三边对应成比例的三角形是相似三角形;D 、以上有两个说法是正确。
2、如图,DE ∥BC ,EF ∥AB ,则图中相似三角形有( )A 、2对B 、3对C 、4对D 、5对 3、如图,若P 为△ABC 的边AB 上一点(AB>AC ),则下列条件不一定能保证△ACP ∽△ABC 的有( )A 、∠ACP=∠B B 、∠APC=∠ACBC 、ACAP ABAC = D 、ABAC BCPC =4、如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,则下列结论:①BC=2DE ;②△ADE ∽△ABC ;③AD AB AE AC =;其中正确的有 ( )A 、3个B 、2个C 、1个D 、0个ED CBAB EACD 12A BC D E A B CD A B C DE A AB BC CD DE EA BDE ABC PEFA B5、如图AD⊥AB于D,CE⊥AB于E交AB于F,则图中相似三角形的对数是。
;6、已知AD为Rt△ABC斜边BC上的高,且AB=15cm,BD=9cm,则AD= ,CD= 。
7、如图四,在平行四边形ABCD中,AB = 4cm ,AD =7cm , ∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF = ________cm8、已知:如图,ΔABC中,AD=DB,∠1=∠2.求证:ΔABC∽ΔEAD.9、已知,如图,D为△ABC内一点,连结ED、AD,以BC为边在△ABC外作∠CBE=∠ABD,∠BCE=∠BAD求证:△DBE∽△ABC10、已知△ABC中,AB=AC,∠A=36°,BD是角平分线,求证:△ABC∽△BCD11、矩形ABCD中,BC=3AB,E、F,是BC边的三等分点,连结AE、AF、AC,问图中是否存在非全等的相似三角形?请证明你的结论。
专题训练(三) 相似三角形的五种基本模型
专题训练(三)相似三角形的五种基本模型►模型一“X”字型1.如图3-ZT-1,P是▱ABCD的边AB上的一点,射线CP交DA的延长线于点E,则图中的相似三角形有()图3-ZT-1A.0对B.1对C.2对D.3对2.2018·杭州西湖区一模如图3-ZT-2,BE是△ABC的角平分线,延长BE至点D,使得CD=BC.(1)求证:△AEB∽△CED;(2)若AB=2,BC=4,AE=1,求CE的长.图3-ZT-23.如图3-ZT-3,E是▱ABCD的边BC延长线上一点,AE交CD于点F,FG∥AD 交AB于点G.(1)填空:图中与△CEF相似的三角形是________(写出图中与△CEF相似的所有三角形);(2)从(1)中选出一个三角形,并证明它与△CEF相似.图3-ZT-3►模型二“A”字型4.如图3-ZT-4,在△ABC中,点D,E分别在边AB,AC上,且∠AED=∠B.若AB=10,AC=8,AD=4,求AE的长.图3-ZT-45.如图3-ZT-5,在△ABC中,∠C=90°,AC=6 cm,BC=8 cm,点D从点C出发,以2 cm/s的速度沿折线C-A-B向点B运动,同时,点E从点B出发,以1 cm/s的速度沿BC边向点C运动,设点E运动的时间为t(s)(0<t<8).(1)求AB的长;(2)当△BDE是直角三角形时,求t的值.图3-ZT-5►模型三子母型6.如图3-ZT-6所示,点D在△ABC的边AB上,AD=2,BD=4,AC=2 3.求证:△ACD∽△ABC.图3-ZT-67.如图3-ZT-7,CD是Rt△ABC的斜边AB上的高,E是BC上任意一点,EF⊥AB 于点F.求证:AC2=AD·AF+CD·EF.图3-ZT-78.如图3-ZT-8,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F.(1)△AEF与△ABE相似吗?说明你的理由.(2)BD2=AD·FD吗?请说明理由.图3-ZT-8►模型四旋转型9.已知:如图3-ZT-9,△ABD∽△ACE.求证:(1)∠DAE=∠BAC;(2)△DAE∽△BAC.图3-ZT-910.如图3-ZT-10,已知:在△ABC和△EDC中,AB=AC,EC=ED,∠BAC=∠CED,点A,D在直线CE的同侧,直线AE,BD交于点F.(1)当点B,C,E在同一直线上,且∠BAC=60°时(如图(a)),则∠AFB=________°.(2)当点B,C,E不在同一条直线上时(点F不与点A,B重合),如图(b)或图(c).①若∠BAC=α,则在图(b)中,求∠AFB的度数(用含α的式子表示).②在图(c)中,①中的结论是否还成立?若成立,请说明理由;若不成立,则∠AFB等于什么?写出推理过程.图3-ZT-10►模型五一线三等角型11.如图3-ZT-11,等边三角形ABC的边长为6,D是BC边上的动点,∠EDF=60°.(1)求证:△BDE∽△CFD;(2)当BD=1,CF=3时,求BE的长.图3-ZT-11详解详析1.[解析] D ∵四边形ABCD 是平行四边形, ∴AB ∥DC ,AD ∥BC ,∴△EAP ∽△EDC ,△EAP ∽△CBP , ∴△EDC ∽△CBP ,故有3对相似三角形. 故选D.2.解:(1)证明:∵BE 是△ABC 的角平分线, ∴∠ABE =∠CBE . ∵CD =BC ,∴∠CDE =∠CBE =∠ABE . 又∵∠AEB =∠CED , ∴△AEB ∽△CED . (2)∵BC =4,∴CD =4. ∵△AEB ∽△CED , ∴CE AE =CD AB ,即CE 1=42, ∴CE =2.3.[解析] (1)根据已知及相似三角形的判定方法进行分析,从而得到图中与△CEF 相似的三角形;(2)根据已知及相似三角形的判定方法进行分析,从而得到答案. 解:(1)△DAF ,△BEA ,△GF A(2)答案不唯一,选证△DAF ∽△CEF . 证明:∵四边形ABCD 为平行四边形, ∴BE ∥AD ,∴∠1=∠E ,∠2=∠D ,∴△DAF ∽△CEF .4.[解析] 利用两角分别相等的三角形相似得到△AED 与△ABC 相似,由相似得比例式求出AE 的长即可.解:∵∠AED =∠B ,∠A =∠A ,∴△AED ∽△ABC ,∴AE AB =ADAC .∵AB =10,AC =8,AD =4, ∴AE 10=48,∴AE =5. 5.解:(1)由勾股定理,得AB =62+82=10(cm). (2)当点D 在AC 上运动时,∠DEB =∠C +∠CDE >90°, ∴△BDE 不可能是直角三角形.若点D 在AB 上,如图①,当∠BED =90°时,△BDE 是直角三角形, 则BE =t ,AC +AD =2t ,∴BD =6+10-2t =16-2t .∵∠BED =∠C =90°,∠B =∠B , ∴△BDE ∽△BAC , ∴BE BC =BD AB, ∴t 8=16-2t 10,解得t =6413;如图②,当∠EDB =90°时,△BDE 是直角三角形, 则BE =t ,BD =16-2t . 在△BDE 和△BCA 中,∵∠BDE =∠C ,∠B =∠B , ∴△BDE ∽△BCA , ∴BE AB =BD BC, ∴t 10=16-2t 8,解得t =407. ∴当△BDE 是直角三角形时,t 的值为6413或407.6.[解析] 首先利用已知得出AD AC =ACAB,进而利用相似三角形的判定方法得出即可. 证明:∵AD AC =22 3=33,AC AB =2 36=33,∴AD AC =AC AB. 又∵∠A =∠A ,∴△ACD ∽△ABC .7.[解析] 根据垂直的定义得到∠ACB =∠ADC =90°,推出△ACD ∽△ABC ,根据相似三角形的性质得到AC AB =ADAC ,即AC 2=AD ·AB ,由于AB =AF +FB ,等量代换得AC 2=AD ·(AF+FB )=AD ·AF +AD ·FB .通过△ACD ∽△EBF ,根据相似三角形的性质得到AD EF =CDFB,于是得到AD ·FB =CD ·EF ,即可得到结论.证明:∵CD 是Rt △ABC 的斜边AB 上的高,∴∠ACB =∠ADC =90°. 又∵∠A =∠A , ∴△ACD ∽△ABC ,∴AC AB =AD AC, ∴AC 2=AD ·AB . ∵AB =AF +FB ,∴AC 2=AD ·(AF +BF )=AD ·AF +AD ·BF . ∵EF ⊥AB 于点F ,∴∠ADC =∠EFB =∠ACB =90°. ∴∠A +∠ACD =∠A +∠B =90°, ∴∠ACD =∠B , ∴△ACD ∽△EBF , ∴AD EF =CD BF, ∴AD ·BF =CD ·EF ,∴AC 2=AD ·AF +AD ·BF =AD ·AF +CD ·EF . 8.[解析] (1)△AEF 与△ABE 相似,首先根据等边三角形的性质,可得AB =BC ,∠ABC =∠C =∠BAC =60°,即可证明△ABD ≌△BCE ,即可以求得∠AFE =∠BAD +∠ABE =60°=∠BAE ,再根据∠AEF =∠BEA ,即可证明△AEF ∽△BEA ;(2)易证△ABD ∽△BFD ,即可得BD 2=AD ·DF .解:(1)△AEF 与△ABE 相似.理由如下: ∵△ABC 为等边三角形,∴AB =BC ,∠ABC =∠C =∠BAC =60°. 在△ABD 和△BCE 中,⎩⎨⎧AB =BC ,∠ABD =∠C ,BD =CE ,∴△ABD ≌△BCE (SAS),∴∠BAD =∠CBE .又∵∠AFE =∠BAD +∠ABE , ∴∠AFE =∠CBE +∠ABE =60°, ∴∠AFE =∠BAC .在△AEF 和△BEA 中,∵∠AEF =∠BEA ,∠AFE =∠BAE , ∴△AEF ∽△BEA . (2)BD 2=AD ·DF .理由如下: 在△ABD 和△BFD 中,∵∠BDF =∠ADB ,∠FBD =∠BAD , ∴△ABD ∽△BFD , ∴BD FD =AD BD, ∴BD 2=AD ·FD .9.[解析] (1)先利用相似三角形的性质得∠BAD =∠CAE ,则∠BAD +∠BAE =∠CAE +∠BAE ,从而得到结论;(2)先利用△ABD ∽△ACE 得到AD AE =AB AC ,再利用比例的性质得AD AB =AEAC ,而∠DAE =∠BAC ,根据相似三角形的判定方法可得到结论.证明:(1)∵△ABD ∽△ACE , ∴∠BAD =∠CAE ,∴∠BAD +∠BAE =∠CAE +∠BAE ,∴∠DAE =∠BAC . (2)∵△ABD ∽△ACE , ∴AD AE =AB AC , ∴AD AB =AE AC, 而∠DAE =∠BAC ,∴△DAE ∽△BAC . 10.解:(1)60(2)①∵AB =AC ,EC =ED ,∠BAC =∠CED , ∴△ABC ∽△EDC ,∴∠ACB =∠ECD ,BC DC =ACEC ,∴∠BCD =∠ACE ,BC AC =DCEC ,∴△BCD ∽△ACE , ∴∠CBD =∠CAE ,∴∠AFB =180°-∠CAE -∠BAC -∠ABD =180°-∠BAC -∠ABC =∠ACB . ∵AB =AC ,∠BAC =α, ∴∠ACB =90°-12α,∴∠AFB =90°-12α.②不成立,∠AFB =90°+12α.推理过程如下:∵AB =AC ,EC =ED ,∠BAC =∠CED , ∴△ABC ∽△EDC ,∴∠ACB =∠ECD ,BC DC =ACEC ,∴∠BCD =∠ACE ,BC AC =DCEC ,∴△BCD ∽△ACE , ∴∠CBD =∠CAE , ∴∠BDC =∠AEC ,∴∠AFB =∠BDC +∠CDE +∠DEF =∠CDE +∠CED =180°-∠DCE . ∵EC =ED ,∠BAC =∠CED =α,∴∠DCE =90°-12α,∴∠AFB =180°-(90°-12α)=90°+12α.11.解:(1)证明:∵△ABC 为等边三角形, ∴∠B =∠C =60°.∵∠EDF =60°,∴∠BED +∠EDB =∠EDB +∠CDF =120°, ∴∠BED =∠CDF , ∴△BDE ∽△CFD .(2)由(1)知△BDE ∽△CFD , ∴BE CD =BD CF. ∵BC =6,BD =1, ∴CD =BC -BD =5, ∴BE 5=13, ∴BE =53.。
秋九年级数学上册 第4章 相似三角形 专题训练 相似三角形的五种基本模型 (新版)浙教版-(新版)浙
相似三角形的五种基本模型► 模型一 “A ”字型1.如图9-ZT -1,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC ,DE =3,BC =9.(1)求AD AB的值;(2)若BD =10,求EDAD的值.图9-ZT -12.如图9-ZT -2,在Rt △ACB 中,∠C =90°,AC =4 cm ,BC =3 cm ,点P 由点B 出发沿BA 方向向点A 匀速运动,速度为1 cm/s ;点Q 由点A 出发沿AC 方向向点C 匀速运动,速度为2 cm/s.连结PQ ,设运动时间为t s(0<t <2),当t 为何值时,以A ,P ,Q 为顶点的三角形与△ABC 相似?图9-ZT -2►模型二“X”字型3.如图9-ZT-3,已知AB,CD,EF都与BD垂直,垂足分别是B,D,F,且AB=1,CD=3,那么EF的长是( )A.13B.23C.34D.459-ZT-39-ZT-44.如图9-ZT-4,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,M是边BC上一点,BM=3,N是线段MC上的一个动点,连结DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是________.5.2017·株洲如图9-ZT-5所示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连结CF.求证:(1)△ADE≌△CDF;(2)△ABG∽△CFG.图9-ZT -5► 模型三 旋转型6.如图9-ZT -6,已知AB AD =BC DE =ACAE,求证:△ABD ∽△ACE .图9-ZT -67.如图9-ZT -7,在△ABC 和△AED 中,AB ·AD =AC ·AE ,∠CAE =∠BAD ,S △ADE =4S △ABC.求证:DE =2CB .图9-ZT-7►模型四垂直型图9-ZT-88.如图9-ZT-8,在矩形ABCD中,AB=3,BC=4,点P从点A出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是( )图9-ZT-9►模型五一线三等角型图9-ZT-109.如图9-ZT -10,△AOB 是直角三角形,∠AOB =90°,OB =2OA ,点A 在反比例函数y =1x 的图象上.若点B 在反比例函数y =kx的图象上,则k 的值为( ) A .-4 B .4 C .-2 D .210.(1)尝试:如图9-ZT -11①,已知A ,E ,B 三点在同一条直线上,且∠A =∠B =∠DEC =90°.求证:△ADE ∽△BEC ;(2)一位同学在尝试了上题后还发现:如图9-ZT -11②③,只要A ,E ,B 三点在同一条直线上,且∠A =∠B =∠DEC ,则(1)中结论总成立.你同意吗?请选择其中之一说明理由.图9-ZT -1111.如图9-ZT -12,等边三角形ABC 的边长为6,D 是BC 边上的动点,∠EDF =60°. (1)求证:△BDE ∽△CFD ;(2)当BD =1,FC =3时,求BE 的长.图9-ZT -12详解详析1.解:(1)∵DE ∥BC ,∴△AED ∽△ACB ,∴AD AB =DE BC =13.(2)∵AD AB =13,BD =10,∴AD AD +10=13,∴AD =5,∴ED AD =35.2.解:在Rt △ABC 中,AB =BC 2+AC 2=5(cm),由题意知AP =(5-t )cm ,AQ =2t cm.当PQ ∥BC 时,△AQP ∽△ACB ,∴AQ AC =AP AB ,∴2t 4=5-t 5,解得t =107,107<2,符合题意; 当PQ ⊥AB 时,△APQ ∽△ACB ,∴AQ AB =AP AC ,∴2t 5=5-t 4,解得t =2513,2513<2,符合题意. 综上所述,当t =107 或2513 时,以A ,P ,Q 为顶点的三角形与△ABC 相似.3.C [解析]∵AB ,CD ,EF 都与BD 垂直,∴AB ∥EF ∥CD ,∴△ABE ∽△DCE ,∴BE CE =AB CD=13,同理△BEF ∽△BCD ,∴EF CD =BE BC =BE BE +CE =14.∴EF =14CD =34.故选C. 4.256或5013[解析] 如图,作EF ⊥BC 于点F ,DN ′⊥BC 于点N ′且交EM 于点O ′,此时∠MN ′O ′=90°.∵DE 是△ABC 的中位线, ∴DE ∥BC ,DE =12BC =10.∵DN ′∥EF ,∴四边形DEFN ′是平行四边形.∵∠EFN ′=90°,∴四边形DEFN ′是矩形,∴EF =DN ′,DE =FN ′=10.∵AB =AC ,∠A =90°,∴∠B =∠C =45°, ∴BN ′=DN ′=EF =FC =5,MN ′=5-3=2,而DE MN ′=DO ′O ′N ′,∴102=DO ′5-DO ′,∴DO ′=256; 当∠MON =90°时,则△DOE ∽△EFM ,∴DO EF =DE EM.∵EM =EF 2+MF 2=13,∴DO =5013.故答案为256或5013.5.证明:(1)由正方形ABCD 和等腰直角三角形DEF ,得∠ADC =∠EDF =90°,AD =CD ,DE =DF ,∴∠ADE +∠ADF =∠ADF +∠CDF , ∴∠ADE =∠CDF .在△ADE 和△CDF 中,⎩⎪⎨⎪⎧DE =DF ,∠ADE =∠CDF ,AD =CD ,∴△ADE ≌△CDF .(2)如图,延长BA 到点M ,交DE 于点M , ∵△ADE ≌△CDF , ∴∠EAD =∠FCD ,即∠EAM +∠MAD =∠BCD +∠BCF . ∵∠MAD =∠BCD =90°, ∴∠EAM =∠BCF . ∵∠EAM =∠BAG , ∴∠BAG =∠BCF . 又∵∠AGB =∠CGF , ∴△ABG ∽△CFG .6.证明:∵AB AD =BC DE =AC AE,∴△ABC ∽△ADE , ∴∠BAC =∠DAE ,∴∠BAC -∠DAF =∠DAE -∠DAF ,即∠BAD =∠CAE .∵AB AD =AC AE ,∴AB AC =ADAE,∴△ABD ∽△ACE .7.证明:∵AB ·AD =AC ·AE ,∴AB AE =AC AD.又∵∠CAE =∠BAD ,∴∠CAE +∠DAC =∠BAD +∠DAC , 即∠DAE =∠CAB , ∴△ADE ∽△ACB . 又∵S △ADE =4S △ABC ,∴S △ADES △ABC=4, ∴⎝ ⎛⎭⎪⎫DE CB 2=S △ADE S △ABC=4,∴DE CB =2, ∴DE =2CB .8.D [解析] 整个运动过程分成两段:①当点P 在AB 上运动时,即0≤x ≤3,随着x 的增加y 值不变,y =4;②如图,当点P 在BC 上运动时,3<x ≤5, ∵∠BAP +∠DAP =90°, ∠BAP +∠APB =90°, ∴∠DAP =∠APB .又∵∠AED =∠ABP =90°,∴△ADE ∽△PAB ,∴AD AP =DE AB, 即4x =y 3, ∴y =12x.故选D.9.A [解析] 如图,过点A ,B 分别作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C ,D .设点A 的坐标是(m ,n ),则AC =n ,OC =m . ∵∠AOB =90°, ∴∠AOC +∠BOD =90°. ∵∠DBO +∠BOD =90°, ∴∠DBO =∠AOC .又∵∠BDO =∠ACO =90°, ∴△BDO ∽△OCA ,∴BD OC =OD AC =OBOA.∵OB =2OA ,∴BD =2m ,OD =2n .∵点A 在反比例函数y =1x的图象上, ∴mn =1.∵点B 在反比例函数y =k x的图象上,点B 的坐标是(-2n ,2m ), ∴k =-2n ·2m =-4mn =-4.故选A.10.解:(1)证明:∵∠A =∠B =∠DEC =90°,∴∠DEA +∠CEB =90°. ∵∠DEA +∠D =90°,∴∠D =∠CEB ,∴△ADE ∽△BEC .(2)同意,以题图②为例说明:∵∠A =∠DEC ,∠A +∠D =∠DEC +∠CEB ,∴∠D =∠CEB .又∵∠A =∠B ,∴△ADE ∽△BEC .11.解:(1)证明:∵△ABC 是等边三角形,∴∠B =∠C =60°,∴∠EDB +∠BED =120°.∵∠EDF =60°,∴∠CDF+∠EDB=120°,∴∠BED=∠CDF,∴△BDE∽△CFD.(2)∵△BDE∽△CFD,∴BDCF=BECD,即13=BE5,解得BE=53.。
相似三角形的12种基本模型
相似三角形Ⲵ基本模型
【模型概述ᙍ㔤ሬമ】
аǃ八字型
Ҽǃ母子型
1、共角型(A 字型)
(平行)
(不平行)
2、共角共边型
(双垂直)射影定理
B
C
B C
B
【典ර㓳Ґ仈】——母子型(A 型)
1.已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边
AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A
、P 两点的距离为x ,△BEP 的面积为y . (1)求证:AE =2PE ;
(2)求y 关于x 的函数解析式,并写出它的定义域;
【典例㓳Ґ仈】——双垂直型直角三角形˖:
Rt △ABC 中,∠C =90º,CD ⊥AB 于D ,则
∽ ∽ 射影定理:
CD 2
= ·
AC 2
= ·
BC 2
= ·
A
C
B
P
D E
йǃ一线三等角相似模型
一 线 三 等 角
直角形一线三等角
(K 字型)
钝角形一线三等角
锐角形一线三等角
ഋǃ手拉手相似模型
1、定义:
两个相似且共顶点的三角形形成的图形。
2、固定结论:
将三角形顶角(头)朝上,正对读者,读者左边为着手顶点,右边为右手顶点,会得到一对新的相似三角形
ӄǃ十字架相似模型
.。
(完整版)相似三角形模型分析大全(非常全面-经典)
相似三角形模型分析大全1、相似三角形判定的基本模型认识(一)A字型、反A字型(斜A字型)B(平行)B(不平行)(二)8字型、反8字型BCBC(蝴蝶型)(平行)(不平行)(三)母子型B(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(6)双垂型:2、相似三角形判定的变化模型旋转型:由A 字型旋转得到。
8字型拓展B一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E .求证:.OE OA OC ⋅=2例2:已知:如图,△ABC 中,点E 在中线AD 上, .ABC DEB ∠=∠求证:(1); (2).DA DE DB ⋅=2DAC DCE ∠=∠ACDEB例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F .求证:.EG EF BE ⋅=2相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:.FC FB FD ⋅=22、已知:AD 是Rt△ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。
求证:(1)△AME∽△NMD; (2)ND =NC·NB23、已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于D,E是AC上一点,CF⊥BE于F。
求证:EB·DF=AE·DB⊥,垂足为F,延长AD到G,使DG=EF,M是AH的中点。
4.在∆ABC中,AB=AC,高AD与BE交于H,EF BCGBM90求证:∠=︒5.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)已知:如图,在Rt△ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为y .(1)求证:AE =2PE ;(2)求y 关于x 的函数解析式,并写出它的定义域;(3)当△BEP 与△ABC 相似时,求△BEP 的面积.双垂型1、如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC 、AB 上的高A(第25题图)求证:(1)△ABD∽△ACE;(2)△ADE∽△ABC;(3)BC=2ED2、如图,已知锐角△ABC ,AD 、CE 分别是BC 、AB 边上的高,△ABC 和△BDE 的面积分别是27和3,DE=6,求:点B 到直线AC 的距离。
中考数学几何专项——相似模型(相似三角形)
相似模型【相似模型一:A 字型】 特征 模型结论DE ∥BCCBCBBC D E ADA E DA AD:AB=AE:AC=DE:BC 顺着比∠B=∠AEDCB CBDA EDAAD:AC=AE:AB=DE:BC 反着比AD×AB=AE×AC 顺着乘∠B =∠ACDCBED AAD:AC=AC:AB=CD:BC AC²=AD×AB当∠ BAC=90°AD B CB①△ABD ∽△CBA AB ²=BD×BC ②△ACD ∽△BCAAC²=CD×BC③△ADB ∽△CDA AD²=BD×CD特征 模型结论AC ∥BDAD B CO DB A CC A OD BAD B CODBACCAO D B① △BD0∽△ACO ② DO:0C=BO:0A=BD:AC 交叉比③ △AOD 与△C0B 不相似∠B=∠C(也叫蝴蝶型相似)A D BC ODBACCAD B CODBACC① △AOC ∽△DOB② AO:OD=0C:0B=AC:BDAO×OB=OC×0D 顺着比,交叉乘 ③ △BOC∽△DOA特征 模型 结论成比例线段共端点① △ABC ∽△ADE② △ABD∽△ACE特征 模型结论AB ∥EF ∥CDFEBCD AF EDCBA图2① 有两对A 字型相似△BEF ∽△BCD △DEF∽△DAB ② 有一对X 型相似△AEB ∽△DEC ③111AB CD EF+=特征模型结论ECD BAA BDC EEDCBA90度,45度; 120度,60度60°45°图2图1旋转N M 60°120°E D CB A 45°ED C B A ①△ABN ∽△MAN ∽△MCA ②△ABD ∽△CAE ∽△CBA【相似模型六:三角形内接矩形模型】 特征模型结论矩形EFGH 或正方形EFGH 内接与三角形H G FED C BA【相似模型七:十字模型】 特征 模型 结论正方形①若AF=BE,则AF ⊥BE ②若AF ⊥BE ,则AF=BE,长方形PEAB CD矩形ABCD 中,CE ⊥BD ,则△CDE ∽△BCD ,CE CDBD BC平行四边形△GME ∽△HNF△MED ≌△BFA三角形MED CAB在△ABC 中,AB =AC ,AB ⊥AC ,①D 为中点,②AE ⊥BD ,③BE :EC=2:1,④∠ADB =∠CDE ,⑤∠AEB =∠CED ,⑥∠BMC =135°,⑦2BMMC =,这七个结论中,“知二得五”【A 型,X 型,三平行模型】1.如图,在△ABC 中,EF ∥DC ,∠AFE =∠B ,AE =6,ED =3,AF =8,则AC =_________,CDBC=_________.F E DCBABCDE FA2.如图,AB ∥CD ,线段BC ,AD 相交于点F ,点E 是线段AF 上一点且满足∠BEF =∠C ,其中AF =6,DF =3,CF =2,则AE =_________.3.如图,在Rt △ABD 中,过点D 作CD ⊥BD ,垂足为D ,连接BC 交AD 于点E ,过点E 作EF ⊥BD 于点F ,若AB =15,CD =10,则BF :FD =_____________.FEBCAN MEDCBA4.如图,在□ABCD 中,E 为BC 的中点,连接AE ,AC ,分别交BD 于M ,N ,则BM :DN =_____________.5.如图所示,AB ∥CD ,AD ,BC 相交于点E ,过E 作EF ∥AB 交BD 于点F .则下列结论:①△EFD ∽△ABD ;②EF BF CD BD =;③1EF EF FD BF AB CD BD BD +=+=;④111AB CD EF+=.其中正确的有___________. F EDCBA图26.在△ABC 中,AB=9,AC=6,点M 在边AB 上,且AM=3,点N 在AC 边上.当AN= 时,△AMN 与原三角形相似.7.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC 上,使得△ADP 与△ABC 相似,则线段AP 的长为 .8.如图,已知O 是坐标原点,点A.B 分别在y x 、轴上,OA=1,OB=2,若点D 在x 轴下方,且使得△AOB 与△OAD 相似,则这样的点D 有 个.9.如图,在Rt △ACB 中,∠C=90°,AC=16cm ,BC=8cm ,动点P 从点C 出发,沿CA 方向运动;动点Q 同时从点B 出发,沿BC 方向运动,如果点P 的运动速度均为4cm/s ,Q 点的运动速度均为2cm/s ,那么运动几秒时,△ABC 与△PCQ 相似.10.将△ABC的纸片按如图所示的方式折叠,使点B落地边AC上,记为点B',折叠痕为EF,已知AB=AC=8,BC=10,若以点B'.F.C为顶点的三角形与△ABC相似,那么BF的长度是.11.如图,在中,,,是角平分线.求证:(1)(2)12.如图,四边形中,平分,,,为的中点.(1)求证:;(2)与有怎样的位置关系?试说明理由;(3)若,,求的值.13.如图,在中,为上一点,,,,于,连接.(1)求证:;(2)找出图中一对相似三角形,并证明.14.如图,在中,,分别是,上的点,,的平分线交于点,交于点.(1)试写出图中所有的相似三角形,并说明理由(2)若,求的值.15.如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABNM的面积.16.如图,在中,于点,于点,连接,求证: ..17.如图,在△ABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,若EG=3,则AC=________.图1 图218..如图,平行于BC的直线DE把△ABC分成的两部分面积相等.则ADAB= _________.19.如图所示,AD=DF=FB, DE∥FG∥BC,则S1:S2:S3=__________.20.如图,在矩形ABCD中,对角线AC,BD相交于点O,OE⊥BC于点E,连接DE交OC于点F,作FG⊥BC于点G,则线段BG与GC的数量关系是___.21. 如图,已知点C 为线段AB 的中点,CD ⊥AB 且CD=AB=4,连接AD ,BE ⊥AB ,AE 是∠DAB 的平分线,与DC 相交于点F ,EH ⊥DC 于点G ,交AD 于点H ,则HG 的长为 .22.如图1,在△ABC 中,点D 、E 、Q 分别在边AB 、AC 、BC 上,且DE ∥BC ,AQ 交DE 于点P . (1)求证: ;(2)如图,在△ABC 中,∠BAC =90°,正方形DEFG 的四个顶点在△ABC 的边上,连接AG 、AF ,分别交DE 于M 、N 两点.如图2,若AB =AC =1,直接写出MN 的长;如图3,求证MN 2=DM【母子型】1、已知:如图,△ABC 中,∠ACB=90°,CD ⊥AB 于D ,S △ABC=20,AB=10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:相似三角形的几种基本模型
(1)如图:DE ∥BC ,则△ADE ∽△ABC 称为“平截型”的相似三角形.
“A ”字型 “X ”(或8)字型 “A ” 字型
(2)如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜截型”的相似三角形.
A
B
C
D E
1
2A
A
B
B
C
C D
D
E
E
124
1
2
(3) “母子” (双垂直)型 射影定理:
由_____________ ,得____________ __,即______________ _; 由_____________ ,得____________ __,即______________ _; 由_____________ ,得____________ __,即______________ _。
“母子” (双垂直)型 “旋转型”
(4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形. (5)一线“三等角”型
“K ” 字(三垂直)型
(6)“半角”型
图1 :△ABC 是等腰直角三角形,∠MAN=
1
2∠BAC ,结论:△ABN ∽△MAN ∽△MCA ; 1
A
B
E
A
D
C
A
B
D
E
A
A
B
C C D
E
E B
E A
C
D
1
2A
B
C
D 图2
图1
旋转
N M
60°
120°
E D
C
B
A 45°
D
C B A
应用
1.如图3,在△ABC 中,∠C =90°,D 是AC 上一点,DE ⊥AB 于点E ,若AC =8,BC =6,DE =3,则AD 的长为 ( ) A .3
B .4
C .5
D .6
2.如图4,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC ,DE ∥BC ,那么在下列三角形中,与△ABC 相似的三角形是 ( ) A .△DBE B .△AED 和△BDC C .△ABD D .不存在
图3 图4 图5
3.如图5, □ABCD 中, G 是AB 延长线上一点, DG 交AC 于E, 交BC 于F, 则图中所有相似三角形有( )对。
A.4 对 B. 5对 C.6对 D. 7对
4.如图6,在△ABC 中,D ,E 分别是AB ,AC 上的点,在下列条件下:①∠AED =∠B ;②AD ∶AC =AE ∶AB ;③DE ∶BC =AD ∶AC .能判定△ADE 与△ACB 相似的是 ( )A .①② B .①③ C .①②③ D .① 5.如图7,在△ABC 中,点D ,E 分别是AB ,AC 的中点,则下列结论:①BC =2DE ;②△ADE ∽△ABC ; ③
AD AE =AB
AC
.其中正确的有 ( ) A .3个 B .2个 C .1个 D .0个
6.如图8,添加一个条件:_____________________________,使得△ADE ∽△ACB .(写出一个即可)
7.如图9,在四边形ABCD 中,AB ∥CD ,∠B =∠C =90°,点E 在BC 边上,AB =3,CD =2,BC =7.若△ABE 与△ECD 相似,则CE =___________.
图6 图7 图8 图9 8.如图10,已知∠C =∠E ,则不一定能使△ABC ∽△ADE 的条件是 ( )
A .∠BAD =∠CAE
B .∠B =∠D C.B
C DE =AC AE D.AB A
D =AC
AE
9.如图11,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF =1
4CD ,下列结论:①∠BAE =30°,
②△ABE ∽△AEF ,③AE ⊥EF , ④△ADF ∽△ECF .其中正确的个数为 个。
图10 图11
A
B
F
C
D
E
G
A
B
C
D
E
A B
C
D
E F
10.如图12,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,BD =2,AD =8,则CD =______,AC =______,BC =______.
11.如图13,在平面直角坐标系中,直线1
=
+22
y x 与x 轴,y 轴分别交于A ,B 两点,以AB 为边在第二象限内作矩形ABCD ,使AD =5.则点C 的坐标为_______,点D 的坐标为_______.
图12 图13 图14 图15
12.如图14,把一个矩形纸片OABC 放入平面直角坐标系中,使OA ,OC 分别落在x 轴、y 轴上,连接OB ,将纸片OABC 沿OB 折叠,使点A 落在点A ′的位置上.若OB =5,
1
2
BC OC =,则点A ′的坐标为________. 13.如图15,在边长为 9的正三角形ABC 中,BD =3,∠ADE =60°,则 AE 的长为_____.
14.四边形ABCD 中,AB ∥CD ,且AB =2CD ,E ,F 分别是AB ,BC 的中点,EF 与BD 相交于点M . (1)求证:△EDM ∽△FBM ; (2)若DB =9,求BM .
15.在△ABC 中,AB =AC ,BD =CD ,CE ⊥AB 于E .求证:△ABD ∽△CBE .
16.如图,在△ABC 中,D ,E 分别是BC ,AC 的中点,AD ,BE 交于点F .求证:1
2
DF AF =. A'
A
B
C
y x
O
O
x
y
D
C
B
A
C
D
B
A
17.如图所示,Rt △ABC 中,已知∠BAC =90°,AB =AC =2,点D 在BC 上运动(不能到达点B ,C ),过点D 作∠ADE =45°,DE 交AC 于点E . (1)求证:△ABD ∽△DCE ;
(2)当△ADE 是等腰三角形时,求AE 的长.
18.如图,已知矩形ABCD 的边长AB =3 cm ,BC =6 cm.某一时刻, 动点M 从A 点出发沿AB 方向以1 cm/s 的速 度向B 点匀速运动;同时,动点N 从D 点 出发沿DA 方向以2 cm/s 的速度向A 点匀速运动,问: (1)经过多少时间,△AMN 的面积等于矩形ABCD 面积的1
9
(2)是否存在时刻t ,使以A ,M ,N 为顶点的三角形与△ACD 相似?若存在,求t 的值;若不存在,请说明理由.。