开关电源和直流稳压电源比较及其构成以及控制电路
直流稳压电源的分类及原理
直流稳压电源的分类及原理直流稳压电源是一种能够将交流电转换为稳定的直流电并提供给各种电器设备使用的装置。
它主要由变压器、整流电路、滤波电路和稳压电路等组成。
根据其输出方式和输出电压特点,可以将直流稳压电源分为线性稳压电源和开关稳压电源。
一、线性稳压电源线性稳压电源是利用线性元件(如二极管、三极管、场效应管等)将交流电转换为直流电,并通过稳压电路将输出电压维持在稳定的水平。
线性稳压电源的原理如下:1.变压器:将输入电源的电压变换为适合的电压,通常会降低电压。
2.整流电路:通过二极管或三极管将交流电转换为半波或全波的脉动直流电。
3.滤波电路:使用电容器对脉动电流进行滤波,使得输出电流平滑化。
4.稳压电路:通过负反馈机制控制输出电压,使其保持在稳定值。
线性稳压电源具有输出电压稳定性高、噪声和纹波小等优点,适用于对电压稳定性要求较高的场合,如科研实验、仪器设备等。
但由于采用了线性元件,效率较低,体积较大,无法满足高功率需求。
二、开关稳压电源开关稳压电源是利用开关管(如MOSFET、IGBT等)进行高频开关操作,实现输入交流电转换为稳定的直流电的一种电源。
开关稳压电源的原理如下:1.变压器:将输入电源的电压变换为适合的电压,通常会升降电压。
2.整流电路:通过开关管的高频开关操作,将输入电源转换为高频脉冲信号。
3.滤波电路:使用电感和电容对高频脉冲信号进行过滤,使输出电流平滑化。
4.稳压电路:通过负反馈机制控制开关管的开关频率和占空比,使输出电压稳定。
开关稳压电源具有体积小、效率高、功率大等优点,适用于工业控制、通信设备、变频器等大功率、高效率的应用场合。
但开关频率较高,容易产生高频噪声,需要进行精确的电磁干扰控制。
总结来说,直流稳压电源主要分为线性稳压电源和开关稳压电源两种类型。
线性稳压电源适用于对电压稳定性要求较高的场合,而开关稳压电源适用于功率较大、效率要求高的场合。
不同类型的稳压电源具有各自的特点和适用范围,根据实际需求选择合适的类型和规格的电源是非常重要的。
详细解析开关电源电路:工作原理,电路组成,电路图
详细解析开关电源电路:工作原理,电路组成,电路图
随着我国电子电力科技技术不断的发展,不管是在家用或者是其他地方所使用的电源开关,都得到了较大的突破性的实质发展。
目前,就以开关电源来说,几乎被广泛的应用于所有的电子电器设备,是如今当下电子信息产业中最不可缺少的一种电源方式。
开关电源工作原理对于热爱电源物理的人来所,其实还是很好理解开关电源工作原理的,在线性电源中,功率晶体管在工作,而线性电源中导致闭合或者是断开的则是PWM 开关电源,在闭合、断开两种的状态之下,加上功率晶体管的电压是比较小的,就会成产很大的电流,关闭开关电源的时候,则是反过来的,电压大,而电流就会特别的小,而控制开关电源工作原理的控制器,就是为了能够更好的保持稳定性,从而给人们的生活环境带来安全。
开关电源工作原理及工作条件
除了以上讲述的开关电源工作原理之外,而开关电源工作原理在运行的时候,开关电源也是一定的工作条件的,比如开关,在工作的时候,不是线性状态,而是在电子电器工作之下呈现开关状态;另外,直流,开关电源在工作时候,是直流,不是交流;最后一个开关电源的高频,在电子电器工作状态之下,是高频,而不是接近于工作的低频状态哦!在开关电源工作原理中,这些工作条件是一定的。
开关电源工作原理及主要特点
每一样产品的诞生,都有它独自存在的主要特点,就连开关电源也是一样的。
那么除了以上不同的开关电源工作原理之外,开关电源主要的特点是什么呢?首先从外观上看,重量较轻、体积较小,因为没有采用工频变压器,所以开关电源的重量、体积只有线性电源的百分之二十到百分之三十左右;另外还有一个非常重要的特点,从开关电源工作原理上看,。
常见几种开关电源工作原理及电路图
常见几种开关电源工作原理及电路图————————————————————————————————作者:————————————————————————————————日期:一、开关式稳压电源的基本工作原理开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。
因此下面就主要介绍调宽式开关稳压电源。
调宽式开关稳压电源的基本原理可参见下图。
对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。
直流平均电压U。
可由公式计算,即Uo=Um×T1/T式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。
从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。
这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。
二、开关式稳压电源的原理电路1、基本电路图二开关电源基本电路框图开关式稳压电源的基本电路框图如图二所示。
交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。
控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。
这部分电路目前已集成化,制成了各种开关电源用集成电路。
控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。
2.单端反激式开关电源单端反激式开关电源的典型电路如图三所示。
电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。
所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。
当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。
开关电源的结构和基本原理
C9 3 .3u 1 00 V
L8 5 *2 0
MYV1 0 72 71 0 72 71 MYV2
C3A
R1
1
C7
1 02 25 0V ac
1 M 12 06
BR1 KBU8 06
R35
4 30R4K,,1R2506
1 0K 1 20 6
R8--21
6 80 ,12 06
T1 1 2
C20
R45-48
无源PFC
无源PFC一般采用电感补偿方法, 通过使交流输入的基波电流与电 压之间相位差减小来提高功率因 数,但无源PFC的功率因数不是 很高,只能达到0.7~0.8。
位置在第二层滤波之后,全桥整 流电路之前。
有源PFC
输入电压可以从90V到270V;
高于0.99的线路功率因数,并具有低损耗和高可靠等优点;
+3. 3 V
3 30 0u ,6.3V
C29
ቤተ መጻሕፍቲ ባይዱC Tex t
R113
R112
2 .7K 1 20 6 2 .7K 1 20 6
Q3
1 61 6A
Q4
1 61 6A
F R1 04
D28
1 N4 14 8 SM D
F R1 04
D27
1 N4 14 8 SM D
D35
D34
1 0u F,5 0V
2 22 1K V
2 20 u,1 6V
3 00 12 06
C31
R77-80
1 .2K 1 20 6
--5V
L3-4
D11 FR1 07 R44 2 12 06
L13 6 *8
6
D9
开关直流稳压电源设计
开关直流稳压电源设计设计原理:关键参数:开关直流稳压电源的关键参数包括输出电压精度、输出电流、纹波电压和负载调节率等。
输出电压精度表示开关直流稳压电源输出的电压与设定值之间的偏差。
输出电流表示电源能够提供的最大负载电流。
纹波电压表示输出电压的波动情况,是由开关器件的开关操作引起的。
负载调节率表示在负载变化时,输出电压的变化程度。
主要组成部分:一个典型的开关直流稳压电源由以下几个主要组成部分构成:1.输入端:输入端通常有一个交流电源或者一个整流电路,将交流电转换为直流电。
在输入端还可能包含一些滤波电容和短路保护电路。
2.开关电路:开关电路由各种开关器件组成,包括晶体管、场效应管和硅控整流元件等。
开关周期性地打开和关闭,调节输入电压的占空比,从而调节输出电压。
在开关电路中,还可能包含一些保护电路,如过流保护和过压保护等。
3.控制电路:控制电路是开关直流稳压电源中的重要组成部分。
它根据输出电压与设定值之间的偏差,生成控制信号,控制开关器件的开关操作。
控制电路通常由一个误差放大器、一个比较器和一个参考电压源组成。
4.输出端:输出端是开关直流稳压电源输出电压的终点。
它通常由一个输出电感、一个输出滤波电容和一个负载组成。
输出电感和输出电容起到滤波作用,减小输出电压的纹波。
负载则是电源供电的目标设备。
5.反馈回路:反馈回路起到监测输出电压并调整开关操作的作用。
它通常由一个反馈电阻和一个反馈电压比较器组成。
反馈电阻将输出电压分压为反馈电压,反馈电压比较器将反馈电压与设定值进行比较,生成控制信号。
总结:开关直流稳压电源是一种常用的电源设计,用于提供稳定的直流电压输出。
它通过开关器件的开关操作调节输入电压,并通过反馈机制保持输出电压稳定。
设计开关直流稳压电源需要考虑关键参数,包括输出电压精度、输出电流、纹波电压和负载调节率等。
主要的组成部分包括输入端、开关电路、控制电路、输出端和反馈回路。
开关直流稳压电源的设计涉及到多个领域的知识,包括电源电路、电子器件和控制理论等。
稳压电源、开关电源、DC-DC电源、充电电路、恒流源电路详细解析
稳压电源、开关电源、DC-DC电源、充电电路、恒流源电路详细解析用电路元件符号表示电路连接的图,叫电路图。
电路图是人们为研究、工程规划的需要,用物理电学标准化的符号绘制的一种表示各元器件组成及器件关系的原理布局图,可以得知组件间的工作原理,为分析性能、安装电子、电器产品提供规划方案。
电路图是电子工程师必学的基本技能之一,本文集合了稳压电源、DCDC转换电源、开关电源、充电电路、恒流源相关的经典电路资料,为工程师提供最新鲜的电路图参考资料,超全超详细,只能帮你到这了!一、稳压电源1、3~25V电压可调稳压电路图此稳压电源可调范围在3.5V~25V之间任意调节,输出电流大,并采用可调稳压管式电路,从而得到满意平稳的输出电压。
工作原理:经整流滤波后直流电压由R1提供给调整管的基极,使调整管导通,在V1导通时电压经过RP、R2使V2导通,接着V3也导通,这时V1、V2、V3的发射极和集电极电压不再变化(其作用完全与稳压管一样)。
调节RP,可得到平稳的输出电压,R1、RP、R2与R3比值决定本电路输出的电压值。
元器件选择:变压器T选用80W~100W,输入AC220V,输出双绕组AC28V。
FU1选用1A,FU2选用3A~5A。
VD1、VD2选用6A02。
RP选用1W左右普通电位器,阻值为250K~330K,C1选用3300µF/35V电解电容,C2、C3选用0.1µF独石电容,C4选用470µF/35V电解电容。
R1选用180~220Ω/0.1W~1W,R2、R4、R5选用10KΩ、1/8W。
V1选用2N3055,V2选用3DG180或2SC3953,V3选用3CG12或3CG80。
2、10A3~15V稳压可调电源电路图无论检修电脑还是电子制作都离不开稳压电源,下面介绍一款直流电压从3V到15V连续可调的稳压电源,最大电流可达10A,该电路用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,使稳压精度更高,如果没有特殊要求,基本能满足正常维修使用,电路见下图。
电路原理,开关电源和线性电源的对比和电路原理
电路原理,开关电源和线性电源的对比和电路原理我们的供电是220v市电电压,但是,我们所使用的数码产品,工艺越来越发达,所需的直流电压越来越低。
因此,降压电源大规模的使用,是科技发展的必然。
降压电源方案,慢慢的从以前的线性电源转为了效率更高、更轻便的开关电源(笔记本、手机、路由器的充电器)。
谁还记得这个,线性电源标配:工频变压器线性电源原理:利用工频变压器互感降压后,整流滤波为不太稳定的直流电压,若要再高精度的稳定直流电压,再加上电压反馈调整输出,更高稳定度。
优点:电压稳定,纹波很小,没有干扰和噪音。
缺点:庞大体积的工频变压器;庞大的滤波电容;反馈电路的调整管有压降,转换效率低,一般只有30%,还需较大的散热片。
线性电源在前些年还大规模使用,如今,只有些老充电器、音响里等等地方见到。
开关电源原理:将电网电压整流滤波为直流电压,再由开关电子元件将直流电压逆变为高频交流电,再将高频交流电整流滤波为所需电压的直流电,另外,再附加一些控制电路、保护电路,对输出进行微调。
优点:体积小、轻;效率高达70%,发热小;输出电压范围宽;可以升压或降压(线性电源只能降压)。
缺点:高频电压对周围有一定电磁干扰(晚上手机充电最好远离人体);输出纹波比线性电源大;看到这里,应该明白,把220v驱动的灯用在较高电压的直流电中的原因了吧!手头有个功率计,测试一下功率差不多的线性电源和开关电源的空载功率:80瓦的工频变压器,待机3瓦70瓦开关电源,笔记本电源,待机0.3瓦对比开关电源和线性电源原理,日常应用及电源的改造上,尤其是一些电子万年历、路由器等小功率但常开电器,可以改为相同电压的开关电源,从发热上、待机功耗上,让你清凉一夏。
ps:降压供流电源,除了以上两类,日常生活中大规模使用的还有个阻容降压。
低压直流元件的供电,如果用以上两种电源,成本都不低,聪明的人们利用电容对交流电的阻抗作用,设计出了满大街使用的“阻容降压”。
老实说,这种降压方式,确实也促进了电器的生产和普及,而且,在某些小电流供电的使用下,效率不比开关电源差,甚至更高。
直流稳压电源的种类及选用
直流稳压电源的种类及选用一、线性稳压电源:线性稳压电源是最基本、最常见的一种直流稳压电源。
其工作原理是通过调节电源输出级的放大倍数,使输入电压经过放大后得到稳定的输出电压。
线性稳压电源具有输出纹波小、响应速度快等特点,可以提供较为精确的稳定电压输出。
但是线性稳压电源的效率一般较低,而且对输入电压波动较敏感,适用于对电流精度要求较高的场合。
二、开关稳压电源:开关稳压电源是一种采用开关电源技术的稳压电源。
开关稳压电源通过将输入电压通过开关进行高频开关控制,进而输出稳定的直流电压。
相比于线性稳压电源,开关稳压电源具有体积小、效率高、稳压精度高等优点,适用于对功率密度要求较高的场合。
不过开关稳压电源的输出纹波较大,输出电流负载能力一般较差。
三、开关调谐稳压电源:开关调谐稳压电源是一种结合了开关稳压电源和线性稳压电源的特点的稳压电源。
开关调谐稳压电源在线性稳压电源的基础上增加了开关电源的调谐电路,能够通过调谐电路实现线性和开关两种工作状态的切换,从而在保持稳压性能的同时提高电源的效率。
开关调谐稳压电源适用于对电源效率和稳压性能要求兼顾的场合。
四、直流稳压电源选用的要点:在选择直流稳压电源时,需要根据具体的应用需求和电源参数来进行选择。
1.输出电压范围:根据实际需求确定所需的输出电压范围,选择具备输出范围符合要求的稳压电源。
2.输出电流能力:根据所需的最大输出电流来选择电源的输出电流能力。
一般来说,电源的额定输出电流要大于所需的最大输出电流,以保证电源正常工作。
3.稳压性能:稳压电源的稳压性能是选择的关键指标之一、要求电源能够在额定负载下保持较低的输出纹波和较高的稳压精度。
4.效率:效率是衡量电源能量转换效率的指标,一般来说,效率越高,能耗越低。
选择效率较高的电源可以减少能耗和热量散失。
5.其他特性:根据实际需要,还可以考虑电源的保护功能、响应速度、稳定性等特性。
综上所述,直流稳压电源的种类包括线性稳压电源、开关稳压电源和开关调谐稳压电源,根据实际需求和电源参数来选择适合的电源。
开关电源工作原理如何理解及其电路图详细解析
开关电源工作原理如何理解及其电路图详细解析开关模式电源(Switch Mode Power Supply,简称SMPS),又称交换式电源、开关变换器,是一种高频化电能转换装置,是电源供应器的一种。
其功能是将一个位准的电压,透过不同形式的架构转换为用户端所需求的电压或电流。
开关电源的输入多半是交流电源(例如市电)或是直流电源,而输出多半是需要直流电源的设备,例如个人电脑,而开关电源就进行两者之间电压及电流的转换。
开关模式电源(Switch Mode Power Supply,简称SMPS),又称交换式电源、开关变换器,是一种高频化电能转换装置,是电源供应器的一种。
其功能是将一个位准的电压,透过不同形式的架构转换为用户端所需求的电压或电流。
开关电源的输入多半是交流电源(例如市电)或是直流电源,而输出多半是需要直流电源的设备,例如个人电脑,而开关电源就进行两者之间电压及电流的转换。
开关电源不同于线性电源,开关电源利用的切换晶体管多半是在全开模式(饱和区)及全闭模式(截止区)之间切换,这两个模式都有低耗散的特点,切换之间的转换会有较高的耗散,但时间很短,因此比较节省能源,产生废热较少。
理想上,开关电源本身是不会消耗电能的。
电压稳压是透过调整晶体管导通及断路的时间来达到。
相反的,线性电源在产生输出电压的过程中,晶体管工作在放大区,本身也会消耗电能。
开关电源的高转换效率是其一大优点,而且因为开关电源工作频率高,可以使用小尺寸、轻重量的变压器,因此开关电源也会比线性电源的尺寸要小,重量也会比较轻。
若电源的高效率、体积及重量是考虑重点时,开关电源比线性电源要好。
不过开关电源比较复杂,内部晶体管会频繁切换,若切换电流尚加以处理,可能会产生噪声及电磁干扰影响其他设备,而且若开关电源没有特别设计,其电源功率因数可能不高。
主要用途开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通讯设备,视听产品,安防监控,LED灯带,电脑机箱,数码产品和仪器类等领域。
开关型直流稳压电源的电路原理讲解
开关型直流稳压电源的电路原理讲解在之前我们介绍了很多直流稳压电源的设计,不过我们之前介绍的电路,包括分立元件组成的串联型直流稳压电路及集成稳压器均属于线性稳压电路,这是由于其中的调整管总是工作在线性放大区。
线性稳压电路的优点是结构简单,调整方便,输出电压脉动较小。
但是这种稳压电路的主要缺点是效率低,一般只有20%—40%。
由于调整管消耗的功率较大,有时需要在调整管上安装散热器,致使电源的体积和重量增大,比较笨重。
直流稳压电源电路图在一开始我们就提到直流稳压电源的很多缺点,像效率很低,体积大,不易于携带,因此我们有必要去设计一种工作效率高,并且效率也很高,那就是我们的开关电源的设计。
先来介绍一下开关电源,开关电源的分类还有很多种,如果按开关管与负载的连接方式分:串联型和并联型;按开关器件的激励方式分:自激式和他激式;按稳压的控制方式分:脉冲宽度调制型(PWM)、脉冲频率调制型(PFM)和混合调制(即脉宽-频率调制)型。
按开关管的连接和工作方式分:单端式、推挽式、半桥式和全桥式;按开关管的类型分:晶体管、VMOS管和晶闸管。
说了这么多了,我们先来看下开关电源的原理图设计这个工作原理我们可以先分析一下如果当ut < ua="" 时,ub="+" uopp,调整管vt饱和导通,l存储能量,c充电;ue="UI">当 ut > uA 时,uB = -UOPP,调整管VT截止, L释放能量,其感应电动势使D导通,uE =-UD,VD导通。
从这个工作图中我们也可以看出调整管处于开关状态,发射极电位是高低交替的脉冲波形,经 LC 滤波电路后,负载上得到较平滑的输出电压,这里我们最关心的输出电压,对于一定的UI值,通过调节占空比即可调节输出电压UO。
D越大,输出电压UO越大,故称脉宽调制(PWM)型开关稳压电源。
其实开关电源自己本身是具有稳压能力的,因为当输出电压升高时经电压比较器使uB的波形中高电平的时间减小,低电平的时间增加,调整管VT的导通时间ton变小,所以占空比变小D,又造成输出电压的降低。
开关电源的组成结构
开关电源的组成结构
开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比调整输出电压,开关电源的基本构成如下图所示,DC-DC变换器是进行功率变换的器件,是开关电源的核心部件,此外还有启动电路、过流与过压保护电路、噪声滤波器等组成部分。
反馈回路检测其输出电压,并与基准电压比较,其误差通过误差放大器进行放大,控制脉宽调制电路,再经过驱动电路控制半导体开关的通断时间,从而调整输出电压。
开关电源主要包括输入电网滤波器、输入整流滤波器、逆变器、输出整流滤波器、控制电路、保护电路。
输入电网滤波器:消除来自电网,如电动机的启动、电器的开关、雷击等产生的干扰,同时也防止开关电源产生的高频噪声向电网扩散。
输入整流滤波器:将电网输入电压进行整流滤波,为变换器提供直流电压。
逆变器:是开关电源的关键部分。
它把直流电压变换成高频交流电压,并且起到将输出部分与输入电网隔离的作用。
输出整流滤波器:将变换器输出的高频交流电压整流滤波得到需要的直流电压,同时还防止高频噪声对负载的干扰。
控制电路:检测输出直流电压,并将其与基准电压比较,进行放大。
调制振荡器的脉冲宽度,从而控制变换器以保持输出电压的稳定。
保护电路:当开关电源发生过电压、过电流短路时,保护电路使开关电源停止工作以保护负载和电源本身。
开关电源结构与原理
开关电源结构与原理开关电源是一种将交流电转换为稳定的直流电的电源装置。
它能提供很高的效率、较小的体积和重量,并具有较好的功率因素和抗干扰能力。
本文将介绍开关电源的结构和工作原理。
开关电源的结构主要由变压器、整流滤波电路、逆变器和控制电路组成。
1.变压器:开关电源的变压器主要起到将输入交流电转换为适用于开关管的低电压、高电流的作用。
变压器分为输入变压器和输出变压器。
输入变压器将输入电源的高压变换为适合于开关管驱动的较低电压。
输出变压器将低电压、高电流的直流电转换为输出所需的电压。
2.整流滤波电路:开关电源的整流滤波电路主要用于将开关管输出的方波电压转换为直流电压。
整流电路通常采用二极管整流桥,将交流输入转换为脉冲波。
滤波电路使用电容器和电感器等元件,通过滤波作用将脉冲波转换为平滑的直流电压。
3.逆变器:逆变器是开关电源的核心部分,用于将直流电转换为高频脉冲电压。
逆变器一般由多个开关管和输出变压器组成。
在逆变器中,开关管周期性地打开和关闭,产生高频脉冲信号。
输出变压器将高频脉冲信号转换为所需输出电压。
4.控制电路:控制电路的作用是控制开关电源的输出电压和电流稳定在设定值。
控制电路通常由反馈电路、比较器、脉宽调制器和驱动电路等组成。
反馈电路将输出电压与设定值进行比较,并反馈给控制器。
比较器将反馈信号和设定值进行比较,生成脉宽调制信号。
脉宽调制器通过调节开关管的导通时间,控制输出电压的稳定性和大小。
驱动电路负责驱动开关管,控制开关管的开关动作。
开关电源的工作原理主要分为两个阶段:工作周期的高电平(ON)和低电平(OFF)。
1.ON阶段:在输入电压的高电平期间,控制电路将输出电压设定为一个给定值。
此时开关管导通,电源输入电压通过变压器传递到输出端。
输出变压器将低电压、高电流的直流电转换为所需的输出电压。
2.OFF阶段:在输入电压的低电平期间,控制电路将输出电压与给定值进行比较,并生成调节信号。
脉宽调制器按照调节信号的频率和脉宽,调节开关管的导通时间。
开关电源基础知识介绍
开关电源基础知识介绍开关电源基础知识介绍现在电器化中常用的稳压电源有两大类:线性稳压电源和形状型稳压电源。
线性稳压电源亦称串联调整式稳压电源。
它的优点是成本较低、稳压性能好、输出纹波小,它的缺点是工作效率较低,在中小功率应用场合用得较多。
形状型稳压电源是指开关电源中的调整管工作在截止区和饱和区。
它的工作状态就象普通机械开关一样,当调整管截止时相当开关断开,而调整管饱和导通时相当于开关接通。
这种起着开关作用的三极管我们就把它称为开关管,用开关管来稳定输出电源,我们就把它称为开关型稳压电源。
开关型稳压电源具有体积小、抗干扰能力强、损耗小、效率高、具有保护能力等优点。
计算机及其外部设备中,如计算机、打印机和显示器等都使用开关型稳压电源。
开关电源就其与负载联接的形式不同,可分为并联型和串联型两种。
并联型开关电源与串联型开关电源工作原理基本相同,电压调整范围也差不多。
它们主要区别在于:并联型开关电源,其电压输出端与电网间有开关变压器进行电路上的隔离,因此,机板上除与开关变压器初级相连的部分电路外,其余均不与市电相连,因此并联型号开关电源安全性好,容易与外界接口;而串联型号开关电源由于没有隔离变压器,整机的“地“有可能与电网火线相连,致使整机安全性差,不利于与外界接口。
并联型开关电源电路复杂,对开关管要求高,而串联型开关电源电路相对简单得多,成本也低。
开关电源就其开关管的被激励方式的不同,可分为自激式和他激式两种。
自激式开关电源由开关管、启动电路、反馈电路、稳压电路等组成,这种方式电路简单,稳压精度不高。
他激式开关电源中的开关管的工作状态是通过脉宽调制组件来完成的,这种方式虽然电路复杂,但具有稳压精度高、负载能力强等许多优点,现在电器设备中大多使用它源程序式开关电源。
在他激式开关电源中又可分为电压驱动型和电流驱动型两种。
电压驱动型是指通过电压驱动型脉宽调制组件驱动晶体开关管工作。
电流驱动型芯片有TL494、MC494等,在计算机电源中多使用电压驱动型脉宽调制组件。
直流稳压电源电路构成
直流稳压电源电路构成
直流稳压电源电路通常由以下几个主要组成部分构成:
1. 变压器:变压器用于将输入的交流电转换为所需的输出电压等级。
它可以提供适当的电压调整和隔离功能。
2. 整流器:整流器将交流电转换为直流电。
常见的整流器包括单相和三相整流桥等,它们通过将交流电信号转换为单方向的电流来实现整流。
3. 滤波器:滤波器用于平滑整流后的直流电,去除其上的脉动和纹波。
通常使用电容器和电感器组合的滤波电路。
4. 稳压器:稳压器用于保持输出电压的稳定性,即使在负载变化或输入电压波动的情况下也能提供稳定的输出。
常见的稳压器包括线性稳压器和开关稳压器等。
5. 反馈控制电路:反馈控制电路用于监测输出电压并与设定值进行比较,根据比较结果调整稳压器的操作,以实现输出电压的精确控制。
6. 保护电路:保护电路用于保护电源和负载免受过压、过流和短路等异常条件的损害。
常见的保护电路包括过压保护、过流保护和过温保护等。
以上是直流稳压电源电路的主要构成部分,不同的应用场景和需求可能会有所差异,因此实际电路设计可能会有所变化。
各种开关电源电路原理详细解剖
各种开关电源电路原理详细解剖开关电源是一种通过开关器件对输入电压进行快速开关来稳定输出电压的电源。
它可以将输入电压转换成较低或较高的输出电压,并具有体积小、效率高、稳定性好等优点。
以下将详细解剖开关电源的原理。
1.输入电路:开关电源的输入电路通常有电源滤波电路和整流电路组成。
电源滤波电路用于滤除输入电压中的噪声,提供干净的电源给整流电路使用。
整流电路一般采用桥式整流器,它将交流电转换为脉冲形式的直流电。
2.开关器件:开关电源的核心部分是开关器件,一般有开关管(如MOS管、IGBT)或晶闸管等。
开关器件通过控制开关管的导通和截止状态来调节输出电压和电流。
3.控制电路:控制电路用于监测输出电压和电流,并根据需求向开关器件发送开关信号,控制开关器件的开关状态。
常见的控制电路有反馈电路和PWM控制电路。
反馈电路通过比较输出电压和参考电压的差异来调节开关器件的开关状态,以保持输出电压稳定。
PWM控制电路则通过调节开关器件的导通时间和截止时间来控制输出电压的大小。
4.输出电路:输出电路用于将开关器件产生的脉冲电压转换为稳定的直流电。
输出电路通常由输出滤波电路和稳压电路组成。
输出滤波电路用于滤除输出电压中的脉动,提供稳定的输出电压。
稳压电路则通过反馈电路来调节开关器件的开关状态,保持输出电压的稳定。
5.保护电路:开关电源还需要一些保护电路来保护开关器件和其他电路免受异常工作条件的损害。
常见的保护电路有过压保护电路、过流保护电路和短路保护电路等。
综上所述,开关电源的原理是通过控制开关器件的开关状态来调节输出电压和电流。
开关器件由控制电路根据输出电压和电流的需求发送开关信号,控制开关器件的导通和截止。
输入电路和输出电路分别用于提供稳定的输入电源和转换输出电压。
保护电路则用于保护开关器件和其他电路免受异常工作条件的损害。
通过这些环节的协同工作,开关电源可以实现高效率、稳定性好的能量转换。
开关电源与稳压电源的区别
扬州创天电子科技有限公司
开关电源与稳压电源的区别
电源有分开关电源与稳压电源,这两种电源是有区别的,但也存在着相似之处。
开关电源是近代普遍推广的稳压电源,具有效率高、电压范围宽,输出电压稳定等特点,现在应用比较广。
比如现在电脑的ATX电源、笔记本电脑电源适配器、打印机电源、手机充电器等等。
稳压电源是在负载功率变化时,输出电压仍然保持固定的电压值。
开关电源也是稳压电源,但稳压电源不能直接称为开关电源。
稳压电源是使用电子电路输出电压达到稳定目的的电源,有串联型稳压电源、并联型稳压电源、开关稳压电源。
普通的串联稳压电源都安装电源变压器,具有输出电压稳定、波纹小等优点,但是电压范围小,效率低。
并联稳压电源输出电压特别稳定,但是负载能力很差,只在仪表内部做基准用。
开关电源基本电路及原理介绍
开关电源可分为直流开关电源和交流开关电源,是按输出来区分的,交流开关电源输出的是交流电,而直流开关电源输出的是直流电,这里介绍的是直流开关电源。
随着相关元器件的发展,直流开关电源以其高效率在很多场合代替线性电源而获得广泛应用。
直流开关电源与线性电源相比一般成本较高,但在有些特别场合却更简单和便宜,甚至几乎只能用开关电源,如升压和极性反转等。
直流开关电源还可分为隔离的和不隔离的两种,隔离的是采用变压器来实现输入与输出间的电气隔离,变压器还便于实现多路不同电压或多路相同电压的输出。
直流开关电源结构复杂,设计和分析都有较特别的一套理论和方法,这里主要介绍6种基本的不隔离的直流开关电源结构形式和其特点,便于依据应用场合来选择使用。
理想假定:为便于分析,常假定存在如下理想状态1. 电子器件理想:电子开关管Q和D的导通和关断时间为零,通态电压为零,断态漏电流为零2. 电感和电容均为无损耗的理想储能元件,且开关频率高于LC的谐振频率3. 在一个开关周期内,输入电压Vin保持不变4. 在一个开关周期内,输出电压有很小的纹波,但可认为基本保持不变,其值为Vo5. 不计线路阻抗6. 变换器效率为100%一、Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。
图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。
Buck变换器有两种基本工作方式:CCM(Continuous current mode):电感电流连续模式,输出滤波电感Lf的电流总是大于零DCM(Discontinuous current mode):电感电流断续模式,在开关管关断期间有一段时间Lf的电流为零CCM时的基本关系:DCM时的基本关系:DCM可分为两种典型情况:输入电压Vin不变,输出电压Vo变化,常用作电动机速度控制或充电器对蓄电池的恒流充电输入电压Vin变化,输出电压V o恒定,即普通开关稳压电源电感电流临界连续的边界:输入电压恒定不变时:Vin=const理想情况下,在电流断续区输出电压仅由占空比Dy确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源和直流稳压电源比较及其 构成以及控制电路
第8章 典型电力电子装置介绍
T不变
ton
ton
图 8-3 PWM控制方式
开关电源和直流稳压电源比较及其 构成以及控制电路
开关电源和直流稳压电源比较及其 构成以及控制电路
第8章 典型电力电子装置介绍
(3) 稳压范围宽。 开关电源的输出电压由占空比来调节,输入电压的变 化可以通过占空比的大小来补偿。这样,在工频电网电 压变化较大时, 它仍能保证有较稳定的输出电压。 (4) 电路形式灵活多样。 设计者可以发挥各种类型电路的特长, 设计出能满足 不同应用场合的开关电源。 开关电源的缺点主要是存在开关噪声干扰。
第8章 典型电力电子装置介绍
4.开关稳压电源的特点 开关稳压电源具有如下的优点: (1) 功耗小、 效率高。 开关管中的开关器件交替工作在导通—截止—导通的开关状 态,转换速度快, 这使得功率损耗小,电源的效率可以大幅 度提高,可达90%~95%。 (2) 体积小、重量轻。 开关电源效率高,损耗小,可以省去较大体积的散热器; 用起隔离作用的高频变压器取代工频变压器,可大大减小体 积,降低重量;因为开关频率高,输出滤波电容的容量和体 积也可大为减小。
开关电源和直流稳压电源比较及其 构成以及控制电路
第8章 典型电力电子装置介绍
2. 开关稳压电源的基本工作原理
开关稳压电源简称开关电源,这种电源中,起电压调 整,实现稳压控制功能的器件始终以开关方式工作。图 8-2所示为输入输出隔离的开关电源原理框图。
交流输入EM I 滤波器
整流滤波
变换 电路
高频 变压器
开关电源和直流稳压电源比较及其 构成以及控制电路
第8章 典型电力电子装置介绍
交流输入 工频
整流
变压
滤波
器
电路
+
基础 电压
放大器
RL
Uo
取样
-
图 8-1 线性稳压电源
开关电源和直流稳压电源比较及其 构成以及控制电路
第8章 典型电力电子装置介绍
它的基本工作原理为:工频交流电源经过变压器降 压、 整流、滤波后成为一稳定的直流电。图8-1中其余 部分是起电压调节,实现稳压作用的控制部分。电源接 上负载后, 通过采样电路获得输出电压,将此输出电压 与基准电压进行比较。如果输出电压小于基准电压,则 将误差值经过放大电路放大后送入调节器的输入端,通 过调节器调节使输出电压增加,直到与基准值相等;如 果输出电压大于基准电压, 则通过调节器使输出减小。
第8章 典型电力电子装置介绍
频率控制方式中,保持导通时间ton不变,通过改变 频率(即开关周期T)而达到改变占空比的一种控制方式。
由于频率控制方式的工作频率是变化的,造成后续电路 滤波器的设计比较困难,因此,目前绝大部分的开关电 源均采用PWM控制。
开关电源和直流稳压电源比较及其 构成以及控制电路
开关电源和直流稳压电源比较及其 构成以及控制电路
第8章 典型电力电子装置介绍
这种稳压电源具有优良的纹波及动态响应特性, 但 同时存在以下缺点:
(1) 输入采用50 Hz工频变压器, 体积庞大。 (2) 电压调整器件(如图8-1所示的三极管)工作在线 性放大区内,损耗大,效率低。 (3) 过载能力差。
开关电源和直流稳压电源比较及其 构成以及控制电路
第8章 典型电力电子装置介绍
在开关电源中,开关器件工作在开关状态,它产生 的交流电压和电流会通过电路中的其它元器件产生尖峰 干扰和谐振干扰,对这些干扰如果不采取一定的措施进 行抑制、消除和屏蔽,就会严重影响整机正常工作。此 外,这些干扰还会串入工频电网,使电网附近的其它电 子仪器、设备和家用电器受到干扰。因此,设计开关电 源时,必须采取合理的措施来抑制其本身产生的干扰。
开关电源和直流稳压电源比较及其 构成以及控制电路
第8章 典型电力电子装置介绍
8.1.2 在开关稳压电源的主电路中,调频变换电路是核心部分,
其电路形式多种多样,下面介绍输入输出隔离的开关电源 常用的几种高频变换电路的结构和工作原理。
整流 直流输出 滤波器
控制 驱动
取样比 较放大
图 8-2 开关电源的基本框图
开关电源和直流稳压电源比较及其 构成以及控制电路
第8章 典型电力电子装置介绍
其主电路的工作原理为:50 Hz单相交流220 V电压 或三相交流220 V/380 V电压首先经EMI防电磁干扰的 电源滤波器滤波(这种滤波器主要滤除电源的高次谐 波),直接整流滤波(不经过工频变压器降压,滤波电 路主要滤除整流后的低频脉动谐波),获得一直流电压; 然后再将此直流电压经变换电路变换为数十或数百千赫 的高频方波或准方波电压,通过高频变压器隔离并降压 (或升压)后,再经高频整流、滤波电路,最后输出直 流电压。
第8章 典型电力电子装置介绍
8.1 开关电源
8.1.1 1. 线性稳压电源的工作原理及其特点 稳压电源通常分为线性稳压电源和开关稳压电源。 电子技术课程中所介绍的直流稳压电源一般是线性稳压电
源, 它的特点是起电压调整功能的器件始终工作在线性放大区, 其原理框图如图8-1所示, 由50Hz工频变压器、整流器、滤波 器和串联调整稳压器组成。
第8章 典型电力电子装置介绍
3. 开关稳压电源的控制原理
开关电源中,变换电路起着主要的调节稳压作用,这是通
过调节功率开关管的占空比来实现的。设开关管的开关周期为T, 在一个周期内,导通时间为ton,则占空比定义为D=ton/t。在
开关电源中,改变占空比的控制方式有两种,即脉冲宽度调制 (PWM)和脉冲频率调制(PWF)。在脉冲宽度控制中,保
开关电源和直流稳压电源比较及其 构成以及控制电路
第8章 典型电力电子装置介绍
控制电路的工作原理是:电源接上负载后,通过 取样电路获得其输出电压,将此电压与基准电压做 比较后,将其误差值放大,用于控制驱动电路,控 制变换器中功率开关管的占空比,使输出电压升高 (或降低),以获得一稳定的输出电压。
开关电源和直流稳压电源比较及其 构成以及控制电路