果蝇的杂交—三点测交

合集下载

果蝇三点测交试验

果蝇三点测交试验

14.6
m
36.0
实验步骤
1.选取处女蝇:每组做正、反交各1瓶,正交选野生型
为母本,三隐性雄蝇为父本。反交选三隐性雌蝇为母本, 野生型为父本,将母本旧瓶中的果蝇全部麻醉处死,在 8-12h内收集处女蝇5只,将处女蝇和5只雄蝇转移到新 的杂交瓶中,贴好标签,于25℃培养;
2.7d后,释放杂交亲本;
3.再过4-5天,F1成蝇出现,在处死亲本7d后,集中观 察记录F1表型及性别;
实验原理
•三点测交:是通过一次测交和一次杂交, 同时确定三对等位基因的排列顺序和它们 之间的遗传距离。
什么是测交?
测交:杂合子 F1代和隐性纯合 体亲本交配用以 测定杂种或者杂 种后代的基因型 的方法。
孟德尔测交实验
过程:
三杂合体

测交
F2
分析表现 型及数目
计算三个连锁基 因之间的交换值
只能产生2种配子
m sn3 w
×
+++
m sn3 w
×
+++
m sn3 w
××
+ ++
m sn3 w
m sn3 w
m sn3 w
m++ + sn3 w
m sn + + +w
m+w + sn3 +
+ ++
+ ++
+ ++
根据上图,在连锁的三对基因杂种里,交换可以发生 在m-sn3间(单交换),sn3-w之间(单交换),或者 同时发生在m-sn3间和sn3-w间(双交换), 从而产生 八种不同配子。

果蝇的三点测交试验

果蝇的三点测交试验

果蝇的三点测交试验
果蝇的三点测交试验是一种经典遗传学实验,用于研究性状的遗传方式和遗传规律。

该实验利用果蝇容易繁殖、生命周期短、遗传稳定等特点,通过人工控制交配,可以确定
基因型和表型的关系,从而深入了解遗传现象。

实验步骤:
1.饲养果蝇:首先需培育出足够数量、健康的果蝇,确保其基因型和表型的稳定性。

采用人工饲养的方式,果蝇的饲养环境需控制恒温、恒湿、恒光、无杂质。

2.选取实验材料:选择具有稳定性状的果蝇为实验材料。

例如,选取表现为黑色眼睛、有翅膀、灰色体色的果蝇为正常型(wild type),选取表现为白色眼睛、无翅膀、黄色体色的果蝇为突变型(mutant type)。

3.实验设计:设计交配方案,进行杂交。

将正常型的雌性与突变型的雄性交配,产生
F1代。

将F1代的雌性与F1代的雄性进行三点测交试验。

4.观察表型:观察F1代和F2代的表型。

例如,如果F1代的全部表现为正常型,说明突变型的性状为隐性遗传;如果F1代和F2代都表现为正常型和突变型的混合,则说明突
变型的性状为隐性遗传;如果F1代表现为正常型,F2代表现为正常型和突变型比例为3:1,则说明突变型的性状为显性遗传。

5.计算遗传比例:根据后代表型推断基因型,利用遗传学计算方法计算各基因型在后
代中分布的比例。

三点测交试验是一种重要的遗传学方法,通过该方法可以深入了解不同性状的遗传方式,对基因表达和遗传变异进行研究,为进一步揭示生命现象的本质提供了重要的方法和
思路。

果蝇的三点测交与遗传作图

果蝇的三点测交与遗传作图
而根据基因在染色体上直线排列的原理,基因交换频率 的高低与基因间的距离有一定的对应关系。
基因图距就是通过基因间重组值的测定而得到的。
如果基因座位相距很近,重组率与交换率的值相等,直 接将重组值作为基因图距;如果基因间相距较远,两个基 因间往往发生两次以上的交换,必须进行校正,来求出基 因图距。
三点测交:用三杂合体和三隐性个体杂交,获得三因子杂种 (F1),再使F1与三隐性基因纯合体测交,通过对测交后代 表现型及其数目的分析,分别计算三个连锁基因之间的交换值, 从而确定这三个基因在同一染色体上的顺序和距离。通过一次 三点测验可以同时确定三个连锁基因的位置,即相当于进行三 次两点测验,而且能在试验中检测到所发生的双交换。
2、7d后,释放杂交亲本(一定要干净); 3、再过4-5天,F1成蝇出现,在处死亲本7天后,集中观
察记录F1表型及性别。 4、选取5对F1代果蝇,转入一新培养瓶,于25℃培养,
其余F1代果蝇处死; 5、7d后,处死F1亲本; 6、再过5d,F2成蝇出现,开始观察记录,连续统计7d,
观察眼色,翅形及刚毛形态。正交只需统计雄性个体。
三隐性个体为白眼(w)、小翅(m)、焦刚毛(sn3), 这三个基因都位于X染色体上。
三、实验仪器设备:
体视显微镜、恒温培养箱、培养瓶、麻醉瓶、 毛笔、滤纸、培养皿
四、实验原理:
位于同一条染色体上的基因是连锁的,而同源染色体上 的基因之间会发生一定频率的交换,使子代中出现一定数 量的重组型。
重组型出现的多少反映出基因间发生交换的频率的高低。
其雌性个体F2代个体的表型如何?


P:
m sn3 w
×
++ +
m sn3 w

果蝇三点测交实验报告

果蝇三点测交实验报告

竭诚为您提供优质文档/双击可除果蝇三点测交实验报告篇一:果蝇三点测交实验实验报告20XX年11月2日—20XX年11月27器编号___摘要:本实验通过白眼、小翅、焦刚毛三隐性雌果蝇与野生型雄果蝇杂交,得到F1代后使其自交,统计F2代各类果蝇数目,进行连锁分析并验证连锁互换定律。

引言:生殖细胞形成过程中,位于同一染色体上的基因是连锁在一起,作为一个单位进行传递,称为连锁律。

在生殖细胞形成时,一对同源染色体上的不同对等位基因之间可以发生交换,称为交换律或互换律。

连锁和互换是生物界的普遍现象,也是造成生物多样性的重要原因之一。

一般而言,两对等位基因相距越远,发生交换的机会越大,即交换率越高;反之,相距越近,交换率越低。

因此,交换率可用来反映同一染色体上两个基因之间的相对距离。

以基因重组率为1%时两个基因间的距离记作1厘摩(centimorgan,cm)。

基因座位很近,只发生一次交换,重组值=交换率基因座位较远,可发生两次交换,重组值<交换率基因图距就是通过重组值的测定而得到的。

如果基因座位相距很近,重祖率与交换率的值相等,可以直接根据重组率的大小作为有关基因间的相对距离,把基因顺序地排列在染色体上,绘制出基因图。

如果基因间相距较远,两个基因往往发生两次以上的交换,这是如果简单的把重组率看作交换率,那么交换率就会被低估,图距就会偏小。

这时需要利用试验数据进行校正,以便正确估计图距。

基因在染色体上的相对位置的确定除进行两个基因间的测交外,更常用的是三点测交法,三点测交法就是研究三个基因在染色体上的位置。

如a、b、c三个基因是连锁的,要测定三个基因的相对位置可以用野生型果蝇(+++,表示三个相应的野生型基因)与三隐性果蝇(abc,三个突变型基因)杂交,制成三因子杂种abc/+++,再用三隐性个体对雌性三因子杂种进行测交,以测出三因子杂种在减数分裂中产生的配子类型和相应数目。

由于基因间的交换,除产生亲本类型的两种配子外,还有六种重组型配子,因而在测交后代中有8种不同表型的果蝇出现,这样经过数据的统计和处理,一次试验就可以测出三个连锁基因的距离和顺序,这种方法,就叫三点测交或三点试验。

果蝇三点测交实验_沉睿_2009012372

果蝇三点测交实验_沉睿_2009012372

果蝇三点测交实验生93 沈睿2009012372 同组:敖佳明一.实验目的1.理解和验证基因的连锁和交换定律。

2.通过实验计算在同一染色体上控制三对性状的基因的相对位置和图距。

3.深入了解果蝇生活史、世代周期。

二.实验原理1.三点测交通过一次杂交和一次测交,同时确定三对等位基因的排列顺序和它们之间的图距。

首先用野生型果蝇和带有三个隐性性状的果蝇杂交,获得三个基因均为杂合的子代(F1),再使F1与三隐个体测交,得到的后代中多数个体与亲本个体相同,也存在少量与亲本不同的个体,即重组型。

通过对测交后代表型及其数目的分析,分别计算三个连锁基因之间的交换值,从而确定三个基因在同一染色体上的顺序和距离,并能计算出并发率。

2.完全连锁现象雄性果蝇具有较为罕见的基因完全连锁现象,所以在做测交实验时,需挑出杂交F1代处女蝇与三隐雄蝇进行杂交,如果性别反转,则结果会严重偏离实验目的,得不到三对性状的基因的相对位置和图距。

三.实验器材野生型(wt)果蝇一瓶、三隐(白眼w、小翅m、焦刚毛sn,相关基因均在第三号染色体上)果蝇一瓶、双筒解剖镜、广口瓶、麻醉瓶、毛笔、解剖针、乙醚、果蝇培养基、25℃培养箱。

四.实验步骤1.配制培养基培养基成分如下表所示:成分名量成分名量玉米粉180 g 糖稀80 g大豆粉20 g 麦芽糊精80 g琼脂15 g 对羟基苯甲酸甲酯溶液(防腐剂)2.5 g粉末溶于16 ml 95%的乙醇啤酒酵母37 g表1 果蝇培养基成分表先将1.5 L水烧开,然后将玉米粉在烧杯中溶于额外500 ml水,慢慢搅拌并混匀,再慢慢倒入(边加边搅动,防止结块)已煮沸的1.5 L水中,混匀,煮沸后,保温并调节温度至50度,保持3-4小时。

大约保温3小时左右。

将称量好的大豆粉、琼脂、啤酒酵母、麦芽糊精混合搅匀,一块加入保温的玉米糊中,边加边搅拌至混合均匀,提高温度煮沸。

煮沸后先换成小火,再加入称量好的糖稀,慢加快搅,务必防止糖稀粘锅煮糊。

果蝇的杂交—三点测交

果蝇的杂交—三点测交
放3对果蝇,置于25℃条件下培养。 • 杂交后7-10天时倒去杂交亲蝇。 • 挑选F1代雌雄果蝇各3只进行F2代繁殖。 • 7-10天倒去F1代亲蝇。 • F2代数量及性状分离统计(统计至F1代自
交后20天止)。
六. 数据处理
• 先写出所得到的F2代八种表型,记录观 察数。
• 从表型判断是否有基因重组。 • 计算基因间的重组值。
四. 实验步骤
• 选取处女蝇:选取12小时之内孵化出来的贞蝇 • 杂交: • 正交 红眼长翅♀ Ⅹ 白眼小翅焦刚毛♂
反交 白眼小翅焦刚毛♀ Ⅹ 红眼长翅♂ • 每瓶放入3—5对果蝇,贴好标签,注明杂交组
合,杂交日期及实验者姓名。
野生型
三隐性 (白眼、小翅、焦刚毛)
五. 杂交实验安排
• 确定杂交组合并倒去父、母本亲蝇。 Nhomakorabea• 12小时之内挑选贞蝇,正交和反交管各
三. 材料与方法
1.材料: 野生型果蝇: 红眼、长翅 、长刚毛 突变型果蝇: 白眼、小翅 、焦刚毛
2. 试剂: 100%乙醚、琼脂、红糖/蔗糖、玉米粉 、酵母粉、丙酸。
3. 用具: 解剖针、直管瓶、麻醉瓶、棉塞 灭菌锅。
4. 果蝇麻醉方法: 将直管瓶中的果蝇快速倒入麻醉瓶中并立即盖上棉塞, 向麻醉瓶的侧口滴加2-3滴100%乙醚,晃动麻醉瓶至果 蝇麻醉。性状观察实验果蝇深度麻醉,杂交实验则轻 度麻醉。
实验报告
• 统计实验结果,并绘出遗传学图和计算 并发率,干涉。
• 三点测交有什麽优点? • 如果进行常染色体基因三点测交,在实
验程序上与本实验有什麽差别?需要注 意什麽?
实验五 果蝇的杂交—三点测交
• 如果蝇 msn3w 三个基因是连锁的(它们都位于 X染色体上)要测定三个基因的相对位置可以 用野生型果蝇(+ + +)与三隐性果蝇(msn3w) 杂交,形成三因子杂种msn3w/+++,再用三隐性 个体对雌性三因子杂种进行测交,以测出三因 子杂种在减数分裂中产生的配子类型和相应数 目。由于基因间的交换,除产生亲本类型的2 种配子外,还有6种重组型配子,因而在测交 后代中有8种不同表型的果蝇出现,这样经过 数据的统计和处理,一次实验就可以测出3个 连锁基因的距离和顺序,这种方法就叫做三点 测交或三点试验。

果蝇的三点测交

果蝇的三点测交
观察到的双交换百分率 并发率= 两个单交换百分率的乘积 • 干涉=1-并发率
三、实验材料与药品
1、材料: 果蝇 野生型(雄):红眼、长翅、直刚毛 突变型(雌):白眼、小翅、焦刚毛 2、试剂:乙醚 3、果蝇培养基 4、实验器材:毛笔,解剖镜,麻醉瓶
四、实验步骤
• 配置果蝇培养基 • 收集野生型和三隐性的果蝇7对(雌蝇一定是处女 蝇)贴上标签,标上亲本类型,收集日期和实验 者姓名,放入25度培养箱中培养。 • 杂交7—8天后当蛹变黑时放飞种蝇,并在随后的 1—8天里每天观察F1,记录F1的性状,收集50只 左右。 • 将F1分两瓶,每瓶装8~10对雌雄果蝇,进行兄妹 交。 • 7—8天后蛹变黑时放飞F1成蝇,并在随后的若干 天里观察F2,记录F2的性状和数目,每瓶收集200 只左右。
46.7 m sn³ 双交换的交换率为: (3+4)/(121+109+31+33+75+42+3+4)=1.7% 两个单交换百分率的乘积为:29.7%*17.0%=5.1% 并发率为:1.7%/5.1%=0.33 干涉值为:1-0.33=0.67
w
• 由计算得到的并发率为0.33,干涉值为0.67, 0<干涉值<1,总体符合实验理论。
具体过程
10月17日晚上收集雄蝇三只 10月18日早晨收集到两只处女蝇 10月19日误以为培养基被污染,转移果蝇 10月20日死一雌一雄 10月22号培养基表面凹凸不平,产生的幼虫在爬动 10月28日放飞亲代 10月29、30日记录F1的性状 10月31日将F1转移到新培养基中,进行兄妹交 11月2日收集F1到新培养基中,做第二瓶兄妹交 11月5日第一瓶F2幼虫出现 11月7日第一瓶大量蛹呈黄色,第二瓶F2幼虫出现 11月9日晚第一瓶中大量蛹变黑,放飞F1 11月12日第二瓶中大量蛹变黑,放飞F1 11月19日两瓶F2性状观察完

遗传学实验报告——果蝇杂交实验

遗传学实验报告——果蝇杂交实验

遗传学实验报告果蝇双因子杂交、伴性遗传杂交和三点测交实验目的:学习果蝇杂交方法、遗传学数据统计处理方法;实验验证自由组合规律、伴性遗传规律;通过三点测交学习遗传作图。

实验原理: 1. 双因子杂交本实验使用18号野生型果蝇和14号纯合黑檀体、残翅果蝇进行杂交,其中黑檀体对灰体为隐性,残翅对长翅为隐性,两对基因位于非同源染色体上。

正交 反交18♀×14♂ 14♀ × 18♂双因子杂交遗传图解 2. 伴性遗传杂交本实验使用18号野生型果蝇与纯合白眼果蝇杂交,其中白眼相对于红眼是隐性性状,白眼基因位于X 染色体上。

正交 反交18♀ × w ♂ w ♀ × 18♂伴性遗传图解F 1⊗F 2: 灰长:灰残:黑长:黑残=9:3:3:1P灰长黑残F1⊗ F 2: 灰长:灰残:黑长:黑残=9:3:3:1 灰长P 黑残P X +X + X w YP X w X w X+YF 1: X +X w X +YF 1: X +X w Xw Y⊗ ⊗F 2: X + X + X +X + Y X w Y ♀红眼 ♀红眼 ♂红眼 ♂白眼 1 : 1 : 1 : 1 F 2: X +X w X w X X + Y X w Y ♀红眼 ♀白眼 ♂红眼 ♂白眼 1 : 1 : 1 : 1♀红眼♂白眼 ♂白眼♀红眼3. 三点测交本实验使用6号纯合白眼、卷刚毛、小翅果蝇与18号野生型果蝇杂交,获得F 1代后再自由交配即可获得具有8种表型的测交F 2代。

白眼、卷刚毛、小翅均为X 染色体上的隐性性状。

P 6号♀(wsnm/wsnm ) × 18号♂(+++/Y)白卷小红直实验材料:18号野生型果蝇 ,14号纯合黑檀体、残翅果蝇,白眼果蝇,6号纯合白眼、卷刚毛、小翅果蝇;麻醉瓶、酒精灯、玻璃板、毛笔、培养管、酒精棉球、乙醚、解剖镜 实验步骤:1. 杂交前提前将装有不同表型果蝇培养管中的成年果蝇全部放出,确保8-10小时后培养管中的雌果蝇都是刚刚孵化的处女蝇。

实验七、果蝇的三点测交汇报总结

实验七、果蝇的三点测交汇报总结

符合系数= 观察到的双交换频率/ 两个单交换频率的乘积
以三隐雌蝇与野生型雄蝇杂交为例:
五、实验步骤
1、选处女蝇:将母瓶中的果蝇全部麻醉处死或释放,8-12小 时内收集处女蝇3只,和3只雄蝇一起转移到新的培养瓶 中,做好标记,恒温(大约27摄氏度)培养,10.29-30; 实验于10.28开始,第一次麻醉果蝇不知道乙醚使用量 和处理时间,导致挑选雄蝇全部死亡,重新挑选雄蝇;然 后,挑选好的处女蝇,没做好标记工作,导致其他小组拿 错,于是,10.29重新实验,30号才选好亲本。
母本:三隐性雌蝇
父本:野生型雄蝇
2、5天后,释放亲本,发现培养基已有一些幼虫和蛹(如下 图),如下图,11.4;11.2观察,发现一只雌蝇死亡,最 后亲本只剩2只雌蝇和3只雄蝇;
3、6天后,F1代成蝇出现,集中观察记录F1代果蝇表型和 性别;然后,从中挑选1对F1代果蝇,转至新的培养瓶中 恒温培养,如下图,11.10-11.12;
23.1%
14.1%
2.2%
重组值的计算和基因作图
的重组值=23.1%+2.2%=25.3% 的重组值=14.1%+2.2%=16.3% 的重组值=23.1%+2.2%*2+14.1%=41.6%
根据所得重组值,得出果蝇X染色体上三个基因的 顺序和图距如下:
25.3 41.6 16.3
干涉程度计算
11号观察发现F1代5对果蝇均死亡,仍是麻醉过度的致 死;12号于旧的培养瓶中重新挑选果蝇3对,因为棉花塞 太小,果蝇逃走,又果蝇分给其他组3对,导致最后就一 对F1代果蝇作为F2代的母本。
4、9天后,释放F2代亲本,培养瓶中出现成虫;期间发现 培养瓶中出现一些幼虫和蛹,如下图;

果蝇的三点测交

果蝇的三点测交
第二组:P:+ + +/+ + +×msnw/YF1:+ + +/msnw×+ + +/Y(♂个体记录)
此组实验与第一组略有不同,从定义上来说,此组实验并不属于三点测交,但由于雄果蝇Y染色体完全连锁,不发生任何交换,对于此组实验,只能通过F2中雄性个体来确定F1雌果蝇产生的配子中发生了怎样的交换(F2中雌果蝇表型都为野生型,所以在此仅记录了数量)。
3.结果
3.1实验结果记录
3.1.1 杂交组合:msnw/msnw×+++/Y和+++/+++×msnw/Y
3.1.2收集处女蝇时间:2011年10月18日 早7点
3.1.3亲本接种时间:11年10月18日;清除时间:2011年10月25日
3.1.4 F1表现型
表1 F1中表现型数量
亲本
数量
表型
msnw/msnw×+++/Y
②收集三隐性突变体的处女蝇,收集的处女蝇单独存放,备用。
③按实验设计,在每个培养瓶中放入至少2对果蝇,接种完毕,贴好标签,注明杂交组合,实验日期,实验者等项目。在接种前几天应观察培养基是否发霉,如发现霉斑,应立即更换培养瓶
第二周
①7-8天后蛹变黑时,将上周接种的亲本蝇清除干净。
②配制足量培养基。
第三周
在实验中我们还注意到以下现象:①三隐性个体的数量明显少于野生型,其原因是三隐性个体的生存力很弱,在幼虫密度较高时易在自然选择中被淘汰;②表型为m + w和+sn+的个体数量最小,甚至没有,这是双交换造成的,而由于双交换频率很低,可以直接判定sn是位于中间的;③本次实验第一组得出双交换频率为1.4%,而根据两个单交换频率17.7%和12.6%计算出来的理论上的双交换值为2.23%,课件实际双交换频率低于理论上双交换频率,可见每发生一次单交换时,它的临近也发生也发生一次交换的机会就要减少一些,这种现象称为干涉。一般用并发率来表示干涉的大小,计算并发率得0.63,则干涉为0.37。并发率越大,干涉越小。说明w或m的交换对对方是有影响的。

果蝇综合大实验

果蝇综合大实验

生命科学学院遗传学实验报告组员:杨朝雄张晓旭赵慧佳杨明月徐聪吴燕张玮单因子、双因子杂交、伴性遗传和三点测交实验一、实验目的:1、通过对果蝇的杂交实验,正确理解分离定律的实质,并验证与加深理解三个的遗传规律;2、认识伴性遗传的正、反交差别,掌握伴性遗传的特点;3、掌握绘制遗传学图的原理和方法,加深对重组值、遗传学图、双交换、并发率和干涉等概念的理解;4、掌握果蝇的杂交技术,并学会记录交配结果和掌握统计处理的方法;二、实验器材:1、材料: 6号果蝇灰体白眼短翅卷刚毛和26号果蝇黑檀体红眼长翅直刚毛2、试剂:乙醇、乙醚、果蝇培养基等3、器具:麻醉瓶、酒精灯、白瓷板、毛笔、镊子、培养管、棉球等三、实验原理:果蝇具有生活史短、繁殖率高、饲养简便、染色体数目少2n=8和突变性状多等特点,是研究遗传学的好材料;本次设计实验就是利用果蝇进行一系列的遗传学验证实验和染色体基因相对顺序和距离的测定;1、双因子杂交:果蝇的灰体基因E与黑檀体基因e为一对相对性状,而长翅与短翅为另一对相对性状;这两对基因是没有连锁关系的,位于不同染色体上的非等位基因; 因此非同源染色体的这两对非等位基因可以很好的验证自由组合定律;自由组合规律:位于非同源染色体上的两对非等位基因,其杂合体在形成配子时,等位基因彼此分离,进入不同的配子中,非等位基因可自由组合进入同一配子,结果产生4种比例相等的配子;若显性完全, F1自交产生F2代表现出4种表型,比例为3:3:1:1;双因子杂交的遗传规律:双因子杂交正交6♀×26♂灰长黑短F1 灰长2、伴性遗传:位于性染色体上的基因叫作伴性基因,其遗传方式与位于常染色体上的基因有一定差别,它在亲代与子代之间的传递方式与雌雄性别有关,伴性基因的这种遗传方式称为伴性遗传;果蝇的红眼与白眼是一对相对性状,由单基因控制,位于X染色体上,基因之间的关系为红眼对白眼完全显性;当白眼果蝇♀和红眼果蝇♂杂交,F1代中的雌果蝇为红眼,雄果蝇却为白眼;F2代中红眼果蝇∶白眼果蝇=1∶1,在雌果蝇或雄果蝇中红眼果蝇与白眼果蝇的比例均为1∶1;伴性遗传的遗传规律:X w X w X+Y♂白眼♀红眼F1: X+X w X w Y♀红眼♂白眼F2: X+X w X w X w X+ Y X w Y♀红眼♀白眼♂红眼♂白眼3、三点测交位于同一条染色体上的基因是连锁的,而同源染色体上的基因之间会发生一定频率的交换,使子代中出现一定数量的重组型;重组型出现的多少反映出基因间发生交换的频率的高低;而根据基因在染色体上直线排列的原理,基因交换频率的高低与基因间的距离有一定的对应关系;基因图距就是通过基因间重组值的测定而得到的;如果基因座位相距很近,重组率与交换率的值相等,直接将重组值作为基因图距;如果基因间相距较远,两个基因间往往发生两次以上的交换,必须进行校正,来求出基因图距;通过一次三点测验可以同时确定三个连锁基因的位置,即相当于进行三次两点测验,而且能在试验中检测到所发生的双交换;如果两个基因间的单交换并不影响邻近两个基因的单交换,那么预期的双交换频率应当等于两个单交换频率的乘积,但实际上观察到的双交换值往往低于预期值,因为每一次发生单交换,它邻近也发生一次交换的机会就减少,这叫干涉; 三点测交6号♀wsnm/wsnm ⨯ 26号♂+++/Y白卷短 红直长统计F2代各类型及数目填入表格四、实验步骤: 1.准备工作:将麻醉瓶和器具白瓷板、毛笔等领取培养管6支,填写标签并贴在培养管上; 标签写法举例如右:选取6号处女蝇和26号雄蝇:实验前2-3天陆续按组合收集8小时内羽化的果蝇,分离♀♂2果蝇杂交:转移5-6对亲本,记录杂交日期和亲本组合名称; 4、去亲本:杂交后7-8天;F1: ♀+++/wsnm ♂wsnm/Y 红直长 白卷短⊗5、F1代性状观察及自交:去亲本后4-5天进行,连续检查2-3天;移5-6对进行自交无需处女蝇;6、再去亲本:自交后7-8天7、记录结果:去亲本后4-5天进行,连续统计7-8天五、实验记录:记录了11月12日到11月20日的数据;数据总数表一表二表三六、实验数据分析:1、单因子杂交的实验数据分析1预期F2的表型与比例灰体:黑檀体=3:1单因子杂交的χ2测验df=2-1=1;α=;χα2=结论:χ2<χα2;观察值与预期值之间的差异不显著,实验结果符合3:1的分离比;2、双因子杂交的实验数据分析1预期F2的表型与比例:灰长:灰短:黑长:黑短=3:3:1:1双因子杂交的χ2测验df=4-1=3;α=;χα2=结论:χ2<χα2;观察值与预期值之间的差异不显著,实验结果符合3:3:1:1的分离比;3、伴性遗传的实验数据分析1预期F2的表型与比例:红眼雌:白眼雌:红眼雄:白眼雄=1:1:1:1伴性遗传的χ2测验df=4-1=3;α=;χα2=结论:χ2<χα2;观察值和预期值之间的差异不显著,实验结果符合1:1:1:1的分离比4、三点测交的实验数据分析:两端的基因间距离进行校正:%+2×%=%据本次实验结果算出的三个基因的相对顺序和距离w-sn-m三个基因的遗传学图单交换率分别为%和%;双交换率为%并发率=%/%×%=,干扰==;意味着13%的双交换被干涉掉了,说明染色体的一个区段的交换抑制了邻近区段的另一次交换;七、结果讨论:本次遗传学综合大实验历时一个多月,并分为单因子、双因子杂交、伴性遗传和三点测交四个部分;在实验过程中,需要小组成员之间的合作,并且分配好每个人的任务,在观察和统计的过程中要认真、细心;就实验结果来看,一个小组的实验数据是远远不够的,实验数据少导致了在验证伴性遗传、自由结合定律的时候与预期比例有偏差;但是总体来说,本次的实验还是成功的;。

果蝇的三点测交试验

果蝇的三点测交试验

完整版课件ppt
12
果蝇杂合群体中棕身品系的提纯选育
(设计型试验)
试验目的:通过自己设计试验方案,在果蝇F2代群 体中选育出纯种棕身品系,掌握群体中 品系选育的基本原理和方法。
试验材料:棕身、黑体杂交F2代群体。
试验设计:根据所学的遗传学理论知识,设计一个 试验方案,通过两个世代的选育,从果 蝇F2代杂合群体中选育出一个纯种的棕 身品系。
样 表
完整版课件ppt
10
四、实 验 结 果 统 计 分 件ppt
11
四、实 验 结 果 统 计 分 析
5、计算并发率和干涉:
如果两个基因间的单交换并不影响邻近两个基因的单交换。 那么预期的双交换频率应等于两个单交换频率的乘积。但实 际上观察到的双交换频率往往低于预期值。因为每发生一次 单交换,它邻近也发生一次交换的机会就减少一些,这叫做 干涉。一般用并发率来表示干涉的大小。
注意:本实验采用三隐性雌蝇与野生型雄蝇杂 交,F1代雄蝇为三隐性个体,因此可直接用于测 交。
完整版课件ppt
3
三点测交试验中得到测交后代的交配程序
完整版课件ppt
4
二、实 验 准 备
1、用具: 双筒解剖镜或显微镜,麻醉瓶,瓷板,海 绵板,毛笔,镊子,毛边纸,盛有饲料的 牛奶瓶1个,指管2个。
2、药品: 乙醚,酒精。
全部是野生型,雄蝇全部是三隐性。
从F1代中选6~7对果蝇,放到指管中,在23℃下培 养。
这里雌蝇不一定要是处女蝇(为什么?) 若用反交F1雌蝇一定要选处女蝇(为什么?)
完整版课件ppt
6
三、实 验 步 骤
7~8天后倒去亲本。
再过4~5天,F2代成蝇出现。开始观测。 果蝇倒出麻醉,放在白瓷板上,用解剖镜检查眼 色、翅形、刚毛,各类果蝇分别计数。统计过的 果蝇倒掉。 过2天后再检查第二批。最多可连续检查7~8天, 即3~4次。再迟F3代就出现了。 要求至少统计250只果蝇。因为群体越大,重组值 越精确。也可以将几个组的数字相加,用来计算 重组值。

7三点测交法测定果蝇基因重组率

7三点测交法测定果蝇基因重组率

7三点测交法测定果蝇基因重组率三点测交法测定果蝇基因重组率摘要通过选取⿊腹果蝇(Drosophila melanogaster) X染⾊体上的三个基因:⽩眼(w)、⼩翅(m)与焦刚⽑(sn)基因进⾏三点测交实验,统计计算⾮等位基因的重组率,并对照标准基因图谱进⾏χ2检测,验证其相关性。

引⾔⼴泛⽤于遗传学研究的果蝇为⿊腹果蝇(Drosophila melanogaster) , 属于果蝇科、果蝇属, 它作为遗传学模式⽣物有如下特点:1)⽣活史长短随温度⽽不同;2)成年雌性蝇类长到12⼩时才成熟,便于确保雌性蝇类是处⼥蝇;3)繁殖能⼒强;4)突变种类多,染⾊体数⽬少。

位于同源染⾊体上的⾮等位基因在形成配⼦时,多数随所在染⾊体⼀起遗传,若发⽣⾮姊妹染⾊单体之间的交换可产⽣少量的重组型配⼦。

位于同⼀条染⾊体上的基因连在⼀起的伴同遗传的现象称为连锁(linkage)。

连锁现象是英国遗传学家(W. Bateson)等⼈于1906年在⾹豌⾖(Lathyrus doratus )杂交过程中发现。

1911年摩尔根⽤果蝇做杂交实验,发现了同类现象,提出了连锁与互换的概念,称之为遗传学第三定律。

基因的交换率反映了两基因之间的相对距离。

1910年,Morgen TH提出假设:假定沿染⾊体长度上交换的发⽣具有同等的⼏率,那么两个基因位点间的距离可以决定减数分裂过程中发⽣重组染⾊体的发⽣率,即重组分数。

⼈们规定同⼀染⾊体上两个位点间在⼀百次减数分裂发⽣⼀次重组的机会时,定义两位点间的相对距离为⼀个cM(centimorgan)。

根据基因在染⾊体上有直线排列的规律,把每条染⾊体上的基因排列顺序(连锁群)制成图称为遗传学图(genetic map),亦称基因连锁图(gene-linkage map )。

三点测交就是通过⼀次杂交和⼀次测交,同时确定三对等位基因(即三个基因位点)的排列顺序和它们之间的遗传距离,是基因定位的常⽤⽅法。

果蝇的三点试验

果蝇的三点试验

果蝇的三点试验一、实验目的:1、了解绘制遗传学图的原理和方法;2、学习实验结果的数据处理。

二、实验材料、器具和药品:黑腹果蝇品系,野生型果蝇长翅、直刚毛、红眼(+ + +),三隐性果蝇小翅、焦刚毛、白眼(m sn3 w)用具:显微镜,锥形瓶,海绵,镊子药品:乙醚,琼脂,麸皮,蔗糖三、实验原理:基因图距是通过重组值的测定而得到的。

如果基因座位相距很近,重组率和交换率的值相等,可以根据重组率的大小作为有关基因间的相对距离,把基因顺序地排列在染色体上,绘制出基因图。

可是如果基因间相距较远,二个基因间往往发生二次以上的交换,这时如简单地把重组率看作交换率,那么交换率就要低估了,图距自然也随之缩小了。

这时需要利用实验数据进行校正,以便正确估计图距。

根据这个道理,可以确定一系列基因在染色体上的相对位置。

例如a、b、c三个基因是连锁的,要测定三个基因的相对位置可以用野生型果蝇(+ + +,表示三个野生型基因)与三隐性果蝇(a、b、c三个突变隐性基因)杂交,制成三因子杂种abc/+++,再把雌性杂种和三隐性个体测交,由于基因间的交换,从而在下代中得到8种不同表型的果蝇,这样经过数据处理,一次试验就可以测出三个连锁基因的距离和顺序,这种方法,叫做三点测交或三点试验。

四、实验步骤:1、收集三隐性个体的处女蝇,培养在培养瓶中,每瓶5—6只。

2、杂交:挑出野生型雄蝇放到处女蝇瓶中去杂交,每瓶5—6只。

贴好标签,在25℃中去培养。

3、7-8天以后,出现蛹,倒去亲本。

4、再4-5天后,蛹孵化出子一代(F1)成蝇,可以观察到F1雌蝇全部是野生型表型,雄蝇都是三隐性。

5、从F1代中选20-30对果蝇,放到新的培养瓶中继续杂交。

每瓶5-6对。

6、7-8天后,蛹出现,倒去亲本。

7、再4-5天后,蛹孵化出子二代(F2)成蝇,开始观察。

8、把F2果蝇倒出麻醉,放在白瓷板上,用实体显微镜检查眼色、翅形、刚毛。

各类果蝇分别计数。

检查过的果蝇倒掉。

果蝇翅形、刚毛、眼色三对性状的三点测交与遗传作图

果蝇翅形、刚毛、眼色三对性状的三点测交与遗传作图

果蝇翅形、刚毛、眼色三对性状的三点测交与遗传作图唐浩能13335155(中山大学生命科学学院生物技术2013级广州510006)摘要:基因的连锁与互换定律是遗传学的第三大基本定律,通过三点测交实验我们可以很好的反映该定律。

本实验以黑腹果蝇(Drosophila melanogaster)作为实验材料,以果蝇X 染色体上三对非等位基因的交换行为来验证基因在染色体上呈直线排列。

实验中我们以野生型(长翅,直刚毛和红眼)和三隐性(短翅,卷刚毛和白眼)果蝇为亲本材料进行杂交,在F2代中观察到8种表型。

同时,通过计算三点测交F2代8种表型的相对频率,我们可以计算出重组值,进而确定出三基因的排列顺序。

从而最终实现了这三对基因遗传图的制作和基因定位。

关键词:果蝇;三点测交;遗传作图;基因定位引言黑腹果蝇(Drosophila melanogaster)属双翅目昆虫,具有完全变态。

作为实验材料具有如下优点:①生长迅速,周期短,在25℃条件下,10~12d可完成一个世代;②繁殖力较强,每只雌果蝇可以产卵400~500枚,因而可以在短时间内获得多数子代,有利于做遗传学统计分析;③饲料简便易得,容易饲养,成本低,实验所需空间较小,条件简单,容易管理;④突变性状多达400个以上,并且多数是形态变异,便于观察和统计分析;⑤染色体数目少,突变基因容易在染色体上定位。

利用黑腹果蝇可以很好的用来进行基因的连锁与互换定律的验证。

其中所用到的的性状为翅形(长翅、短翅)、刚毛类型(直刚毛、卷刚毛)和眼色类型(红眼、白眼)三对性状。

这三对非等位基因都位于X染色体上。

通过观察F2代表型,可以很好的判断三个基因的连锁关系和遗传图距[1]。

4.1 实验目的1. 学习和掌握用“三点测交”进行基因定位的方法。

2. 了解绘制遗传学图的原理和方法。

3. 加深对重组值、遗传学图、双交换值、并发率和干涉等概念的理解。

4.2 实验原理位于不同染色体上的两对基因,它们所决定的两对相对性状在F2是自由组合的。

遗传学实验报告果蝇三点测交实验

遗传学实验报告果蝇三点测交实验

遗传学实验报告果蝇三点测交实验2009012337 生92 盛心磊同组组员:李骜飞、张延庆、刘昱、郭泽华、薛静雯、王静楠、周央中一、实验目的1.根据给定的果蝇性状设计出合理的实验方案,并按照预定实验方案设计三点测交试验,进行果蝇麻醉,处女蝇挑选,果蝇转移和杂交等操作,并按时观察和记录果蝇的状态、生理特征等信息。

2.学会运用统计学的方法分析实验结果,判定结果的可信程度,了解统计学的重要意义。

3.熟练运用解剖镜,了解果蝇培养的条件和基本的实验方法。

4. 学会计算图距,并学会绘制基因图谱5. 更好地理解基因重组率和图距的概念,进行基因定位,了解X2检验的应用二、实验原理1. 果蝇生活史普通果蝇(Drosophila melanogaster)是双翅目的昆虫,它的生活史从受精卵开始,精力幼虫、蛹和成虫阶段,是一个完全变态的过程。

果蝇繁殖力强,在适宜的温度下(20°-25°,30°以上不育)每只受精的雌蝇能够产卵400个左右,每两个星期完成一个世代。

成熟的雌蝇在交尾后(2-3d)产卵在培养基的表层,经过一天孵化成幼虫,4-5d之后开始化蛹,附在瓶壁上,最后羽化出成虫。

成虫在羽化出8-12h后开始交配,25°下果蝇的寿命是37d。

2. 果蝇性状特征及判定标准雌蝇雄蝇体型较大体型较小腹部椭圆形末端稍尖腹部末端钝圆腹部背面5条黑纹腹部背面3条黑纹最后一条延伸至腹面成一黑斑无性梳第一对足第一跗节有性梳表1 雌雄果蝇主要差异比较(注:性梳为最可靠的鉴别特征,但观察起来稍费时间。

一般在进行大量计数时,选择观察腹部形状以及条纹数进行判定。

)3. 三点测交为确定三个连锁基因在染色体上的顺序和相对距离所作的一次杂交和一次测交。

染色体上两连锁基因距离越远,在它们之间非姊妹染色单体互换的机会就越多,反之就越少,因此可用这两基因间的互换百分数(一般可用它们之间的重组百分数)的大小来表示它们之间距离的远近,而以1%的互换(或重组)定为一个图距,作为连锁基因的距离单位。

果蝇的三点测交实验

果蝇的三点测交实验

果蝇的三点测交实验李国卫131140075一、实验目的验证遗传第三定律——连锁定律掌握连锁分析与计算基因作图的原理和方法了解伴性与非伴性遗传的方式和特点二、实验原理1、三点测交就是把三个基因包括在同一次交配中,那就是用三杂合体abc/+++或者ab+/++c跟三隐性个体abc/abc测交,进行这种试验,一次实验就等于三次“两点实验”,而且带有以下两个优点:1、一次三点测交中得到的三个重组值是在同一基因型背景同一环境条件下得到的,而三次“两点测交实验”就不一定这样,重组值既受基因型背景的影响,也受各种环境条件的影响,所以只有从三点实验所得到的三个重组值才是严格的可以相互比较的。

2、通过三点实验,还可以得到三次两点实验所不能得到的资料,即双交换的资料。

果蝇的白眼,小翅,卷刚毛为X-连锁基因,全部隐性于各自的野生型基因(红眼、长翅、直刚毛),把白眼、小翅、卷刚毛(wmsn/wmsn)与野生型雄果蝇交配(+++/y)。

F1雌果蝇全部为野生型(理论上),雄果蝇则全部表现为三隐突变性,让F1雌雄果蝇互交,在F2中,不管雌雄性别,除了出现双亲类型以为,还会出现新的表形种类,这是由于F1雌果蝇中的两个染色体之间发生了互换的结果,根据基因在染色体上线性排列的遗传理论,对F2进行分析可知不同基因间的连锁距离。

因为这三个基因位于染色体上,所以这个实验也可以用来作为伴性遗传实验,当基因位于性染色体上时,它与性别相联系的遗传现象,跟常染色体上的基因的遗传现象有所不同,这种遗传称为伴性遗传,在果蝇中,性染色体是XY型,就是说,在雌果蝇上有一对染色体XX,在雄果蝇上有一条X染色体一条Y染色体,当基因位于X染色体而Y染色体一般不含有相对的基因就产生伴性遗传,在伴性遗传中,正交和反交产生不同的结果,例如,在本实验中:正交:三隐雌果蝇X野生雄果蝇反交:三隐雄果蝇X野生雌果蝇 x—m—sn/ x—m—sn X +++/Y x—m—sn/Y X +++/+++x—m—sn/Y +++/ x—m—sn +++/Y +++/ x—m—sn 三隐雄野生雌野生雄野生雌2、 1903年,Sutton根据减数分裂中的染色体行为与孟德尔的遗传假设因子行为平行,推测基因位于染色体上。

实验七果蝇的三点测验

实验七果蝇的三点测验

五、实验步骤:
1、选处女蝇:正交选野生型为母本野生型为父本,将母本旧 瓶中的果蝇全部麻醉处死,在8-12h内收集处女蝇5只, 将处女蝇和5只雄蝇转移到新的杂交瓶中,贴好标签, 于25℃培养;
2、7d后,释放杂交亲本(一定要干净); 3、再过4-5天,F1成蝇出现,在处死亲本7天后,集中观
+++ +++ +++
m sn3 w m sn3 w m sn3 w
m++ + sn3 w
m sn3 + + +w
m+w + sn3 +
+ ++ + ++ + ++
雌蝇X染色体上三对基因之间发生交换重组, 产生8种雌配子
m sn3 w 雄蝇产生两种配子
因为F1代雄蝇为三隐性个体,所以F1代雌雄蝇自交 时,即进行测交,F2代可以得到8种表型。
察记录F1表型及性别。 4、选取5对F1代果蝇,转入一新培养瓶,于25℃培养,
其余F1代果蝇处死; 5、7d后,处死F1亲本; 6、再过5d,F2成蝇出现,开始观察记录,连续统计7d,
观察眼色,翅形及刚毛形态。正交只需统计雄性个体。
要求每组至少统计200只果蝇。
思考:正交组合F2统计为什么只需统计雄性个体?其 雌性F2代个体的表型如何?
二、实验材料:
黑腹果蝇品系: 野生型果蝇(+++) 三隐性果蝇(wmsn3)
红眼、长翅、直刚毛 白眼、小翅、焦刚毛
三隐性个体为白眼(w)、小翅(m)、焦刚毛(sn3), 这三个基因都位于X染色体上。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四. 实验步骤
• 选取处女蝇:选取12小时之内孵化出来的贞蝇 • 杂交: • 正交 红眼长翅♀ Ⅹ 白眼小翅焦刚毛♂
反交 白眼小翅焦刚毛♀ Ⅹ 红眼长翅♂ • 每瓶放入3—5对果蝇,贴好标签,注明杂交组
合,杂交日期及实验者姓名。
野生型
三隐性 (白眼、小翅、焦刚毛)

五. 杂交实验安排
• 确定杂交组合并倒去父、母本亲蝇。 • 12小时之内挑选贞蝇,正交和反交管各
• 基因在染色体上的相对位置的确定除进行两个 基因间的测交外,常用的是三点测交法。
2. 试剂: 100%乙醚、琼脂、红糖/蔗糖、玉米粉 、酵母粉、丙酸。
3. 用具: 解剖针、直管瓶、麻醉瓶、棉塞 灭菌锅。
4. 果蝇麻醉方法: 将直管瓶中的果蝇快速倒入麻醉瓶中并立即盖上棉塞, 向麻醉瓶的侧口滴加2-3滴100%乙醚,晃动麻醉瓶至果 蝇麻醉。性状观察实验果蝇深度麻醉,杂交实验则轻 度麻醉。
实验报告
• 统计实验结果,并绘出遗传学图和计算 并发率,干涉。
• 三点测交有什麽优点? • 如果进行常染色体基因三点测交,在实
验程序上与本实验有什麽差别?需要注 意什麽?
实验五 果蝇的杂交—三点测交
一. 目的与要求
• 了解利用三点测验法绘制遗传学图谱 的原理和方法。
• 学习并掌握实验结果的数据统计处理 方法。
二. 原理
• 位于同一条染色体上的基因一般是随着染色体 一起传递的,即这些基因是连锁的。同源染色 体上的基因之间会发生一定频率的交换,因此 其连锁关系发生改变,使子代中出现一定数量 的重组型。重组型出现的多少反映出基因间发 生交换的频率的高低。
放3对果蝇,置于25℃条件下培养。 • 杂交后7-10天时倒去杂交亲蝇。 • 挑选F1代雌雄果蝇各3只进行F2代繁殖。 • 7-10天倒去F1代亲蝇。 • F2代数量及性状分离统计(统计至F1代自
交后20天止)。
六. 数据处理
• 先写出所得到的F2代八种表型,记录观 察数。
• 从表型判断是否有基因重组。 • 计算基因间的重组值。
相关文档
最新文档