高中数学讲义圆锥曲线的性质
高考数学中的圆锥曲线基本概念及相关性质
高考数学中的圆锥曲线基本概念及相关性质圆锥曲线是高中数学中非常重要的一个概念,与其相关的知识点在高考中也是经常出现的考点。
本文将介绍圆锥曲线的基本概念以及其相关性质,希望能对正在备考高考数学的同学有所帮助。
一、圆锥曲线的基本概念圆锥曲线是由圆锥面和一个平面相交而形成的曲线。
根据平面与圆锥面相交的位置和方向不同,可以分为四种圆锥曲线,分别是椭圆、抛物线、双曲线和圆。
1. 椭圆椭圆是圆锥曲线中比较常见的一种曲线。
它可以由一个平面沿着圆锥面的两个平行直母线截取而成。
椭圆有两个焦点和一条长轴和短轴,其特点是离焦点的距离之和等于常数,即椭圆的离心率小于1。
2. 抛物线抛物线是另一种常见的圆锥曲线。
它可以由一个平面沿着圆锥面的一条直母线截取而成。
抛物线有一个焦点和一条准轴,其特点是离焦点的距离等于离准轴的距离。
3. 双曲线双曲线和椭圆和抛物线不同,它可以由一个平面沿着圆锥面的两个非平行直母线截取而成。
双曲线有两个焦点和两条渐近线,其特点是离焦点的距离之差等于常数,即双曲线的离心率大于1。
4. 圆圆是圆锥曲线中最简单的一种曲线,它可以由一个平面与圆锥面的一个直母线相交而得到。
圆是只有一个焦点的特殊情况,它的离心率等于0。
二、圆锥曲线的相关性质除了基本概念之外,圆锥曲线还有一些重要的性质,在高考中也是需要掌握的知识点。
1. 椭圆的性质(1)椭圆的两个焦点与中心三点共线;(2)椭圆的长轴与短轴的长度之比等于焦距之和与焦距之差的比;(3)椭圆的离心率等于焦距之长除以长轴的长度。
2. 抛物线的性质(1)抛物线的对称轴垂直于准轴;(2)抛物线的焦点在准轴上的中点。
3. 双曲线的性质(1)双曲线的两条渐近线一定是不相交的;(2)双曲线的离心率等于距离两个焦点最远的点与焦点之间的距离之比。
4. 圆的性质(1)圆的任何直径经过圆心;(2)圆的内切和外切线垂直于半径并且相切于切点。
总结圆锥曲线作为高中数学中的一个重要概念,其基本概念和相关性质都需要仔细掌握。
高中圆锥曲线性质总结全面经典
高中圆锥曲线性质总结全面经典
一、椭圆的性质
* 椭圆是固定点到平面上所有点的距离之和等于常数的轨迹。
* 椭圆具有两个焦点和长轴、短轴。
焦距定理:椭圆上任意一
点到两个焦点的距离之和等于长轴的长度。
* 椭圆的离心率小于1,且离心率越小,椭圆越圆。
二、双曲线的性质
* 双曲线是固定点到平面上所有点的距离之差等于常数的轨迹。
* 双曲线具有两个焦点和两个虚焦点。
焦距定理:双曲线上任
意一点到两个焦点的距离之差等于常数的绝对值。
* 双曲线的离心率大于1,且离心率越大,双曲线越扁。
三、抛物线的性质
* 抛物线是固定点到平面上所有点的距离等于常数的轨迹。
* 抛物线具有一个焦点和一个直线称为准线。
焦点到准线的距
离等于焦点到抛物线上任意一点的距离。
* 抛物线的离心率等于1,且离心率为1的抛物线为特殊情况。
四、圆形的性质
* 圆是平面上所有距离中心点相等的点的集合。
* 圆的半径是由圆心到圆上任意一点的距离。
* 圆上的弧度是由半径对应的圆心角所确定,弧度等于圆心角
的度数除以360度再乘以2π。
以上是高中圆锥曲线的性质总结。
希望对你有帮助!。
高中数学《§94 圆锥曲线的性质》教学讲解课件
例1.椭圆的几何性质
4.离心率: (特征值)
<1> e c d点点 a d点线
<2> 0<e<1
<3> ① e越接近 1,椭圆就越扁 ② e越接近 0,椭圆就越圆
e
O
e
1
例2.双曲线的几何性质
1.范围:(定义域与值域)
y
o
x
因
x2 a2
y2 b2
1
,故
x2 a2
1
所以
,即x≤ - a或x≥a
双曲线位于不等式 x≤ - a与x≥a表示的区域内
例2.双曲线的几何性质
2.对称性: (奇偶性)
y
在方程 x2 y2 1 中
a2 b2
o
x
①把x换成-x,方程不变,说明双曲线关于 y 轴对称
②把y换成-y,方程不变,说明双曲线关于 x 轴对称 ③把x换成-x,y换成-y,方程不变,说明双曲线关于原点对称
求PF PM min
P
MF 5
P
M 0,1
P
A1,0 F 2,0
一、性质种类有多条 光学物理及数学 二、定义要当性质用 碰到距离想定义
三、课本五条是通性 数法推导是本意 模仿函数论性质 通过范例明方法 陌生曲线用此法 数形结合特征值
1.范围: (定义域与值域) 2.顶点: (截距,零点,极值点) 3.对称性: (奇偶性) 4.渐近线: (渐近性) 5.离心率: (特征值)
高中数学教学讲解课件
§94 圆锥曲线的性质
一、性质种类有多条 光学物理及数学 二、定义要当性质用 碰到距离想定义
三、课本五条是通性 数法推导是本意 模仿函数论性质 通过范例明方法 陌生曲线用此法 数形结合特征值
圆锥曲线的基本概念与性质
圆锥曲线的基本概念与性质1. 圆锥曲线的基本概念与性质圆锥曲线是高中数学中非常重要的一个概念,它是由平面与圆锥相交而产生的曲线。
本文将详细介绍圆锥曲线的基本概念和性质。
1.1 椭圆椭圆是圆锥曲线的一种,它是平面与圆锥不垂直于母线的相交曲线。
椭圆具有以下性质:- 椭圆是一个闭曲线,即从椭圆上的任意一点到椭圆的另一点的距离之和是一个常数,即椭圆的周长。
- 椭圆有两个焦点,对于椭圆上的任意一点,到两个焦点的距离之和等于一个常数。
- 椭圆是一个中心对称图形,它的中心是圆心。
1.2 双曲线双曲线也是圆锥曲线的一种,它是平面与圆锥不垂直于母线的相交曲线。
双曲线具有以下性质:- 双曲线是一个开曲线,即从双曲线上的任意一点到双曲线的另一点的距离之差等于一个常数的绝对值,即双曲线的离心率。
- 双曲线有两个焦点,对于双曲线上的任意一点,到两个焦点的距离之差等于一个常数。
- 双曲线是一个中心对称图形,它的中心是圆锥的顶点。
1.3 抛物线抛物线也是圆锥曲线的一种,它是平面与圆锥平行于母线的相交曲线。
抛物线具有以下性质:- 抛物线是一个开曲线,它有一个焦点和一个直线称为准线。
- 抛物线的焦点到任意一点的距离等于准线到该点的距离。
- 抛物线是一个轴对称图形,它的轴对称于对称轴。
2. 圆锥曲线的应用圆锥曲线在几何学以及其他学科领域中都有广泛的应用。
2.1 几何学在几何学中,圆锥曲线被广泛用于描述平面上的点与直线之间的关系。
例如,在解决两点之间的最短路径问题时,可以利用椭圆的性质来确定最短路径。
2.2 物理学在物理学中,圆锥曲线被应用于描述天体运动、光的传播以及其他各种物理现象。
例如,开普勒行星运动定律中的椭圆轨道就是以椭圆为基础建立的。
2.3 工程学在工程学中,圆锥曲线被广泛应用于建筑设计、桥梁设计等领域。
通过合理利用椭圆和抛物线的性质,可以设计出更加稳定和美观的建筑结构。
3. 结论圆锥曲线是数学中一个重要的概念,在几何学、物理学和工程学等不同领域都有广泛的应用。
高中数学平面几何中的圆锥曲线与方程解析
高中数学平面几何中的圆锥曲线与方程解析在高中数学的学习中,圆锥曲线是一个重要的内容,它是解析几何的一个分支,与方程解析密切相关。
本文将以高中数学的角度,详细介绍圆锥曲线的基本概念、性质以及解析方程的应用。
一、圆锥曲线的基本概念与性质圆锥曲线是平面上一个点与一个定点的距离与一个定直线的距离之比为定值的点的轨迹。
根据这个定义,圆锥曲线可以分为椭圆、双曲线和抛物线三种类型。
1. 椭圆椭圆是圆锥曲线中的一种,它的定义是一个点到两个定点的距离之和等于常数的点的轨迹。
椭圆的解析方程为:$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$其中,a和b分别表示椭圆的长半轴和短半轴。
在解析几何中,椭圆有许多重要的性质。
例如,椭圆的离心率小于1,焦点在椭圆的内部,且椭圆是对称的。
这些性质在解题过程中起到了重要的作用。
2. 双曲线双曲线也是圆锥曲线的一种,它的定义是一个点到两个定点的距离之差等于常数的点的轨迹。
双曲线的解析方程为:$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$双曲线的性质与椭圆有很大的不同。
双曲线的离心率大于1,焦点在双曲线的外部,且双曲线也是对称的。
这些性质在解析几何中起到了重要的作用。
3. 抛物线抛物线是圆锥曲线中的一种,它的定义是一个点到一个定点的距离等于一个定直线的距离的点的轨迹。
抛物线的解析方程为:$y^2 = 2px$抛物线的性质与椭圆和双曲线也有所不同。
抛物线是对称的,焦点在抛物线的内部,且抛物线的开口方向由系数p的正负决定。
二、解析方程的应用解析方程是研究圆锥曲线的重要工具,通过解析方程可以确定圆锥曲线的形状、位置以及与坐标轴的交点等。
1. 求解焦点坐标对于给定的圆锥曲线,可以通过解析方程来求解其焦点坐标。
以椭圆为例,已知椭圆的解析方程为$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,我们可以通过求解方程组$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$和$(x - c)^2 + y^2 = a^2$来确定焦点的坐标。
高中数学圆锥曲线知识点总结
高中数学圆锥曲线知识点总结
高中数学圆锥曲线知识点总结
一、圆锥曲线的基本概念
1、圆锥曲线:平面内以圆为母线的曲线,又称为圆锥线,是数学上的一类曲线。
2、离心率:圆锥曲线的离心率是有两个参数确定的:它们是焦距a和准线焦距c。
3、双曲线:双曲线是一类特殊的圆锥曲线,a>0, c>0时,它概括了圆锥曲线的一般情况,称为双曲线。
二、圆锥曲线的性质
1、改变离心率可以改变圆锥曲线的形状,当离心率大于1时,曲线呈双曲线,当离心率小于1时,曲线呈凹凸线;
2、圆锥曲线的焦点与顶点之间的距离是两个焦距的和,a+c;
3、圆锥曲线的切线方程的斜率是1/(a+c);
4、圆锥曲线的半矢量的方向是以焦点为圆心,从焦距a出发的方向;
5、圆锥曲线的曲率半径是2a+c;
6、圆锥曲线的弧长是一定积分的表达式,是确定的;
7、圆锥曲线的曲线方程是确定的,但极坐标表示法有两种形式,要根据离心率来确定;
三、圆锥曲线的应用
1、圆锥曲线的应用着重于机械设计领域,如齿轮的设计和制造;
2、圆锥曲线的半径可以用于圆弧的求解和曲线的精度检验;
3、圆锥曲线的弧长可以用于求解同轴运动的轮毂的周长;
4、圆锥曲线的曲线方程可以用于二维图形的绘制;
5、圆锥曲线的曲线方程可以用于求解曲面曲线的面积和表面积;
6、圆锥曲线的曲线方程可以用于求解椭圆锥曲线的主曲线参数,以求解椭球面的曲线参数;
7、圆锥曲线的曲率半径可以用于求解圆的曲率半径参数;
8、圆锥曲线的切线可以用于求解圆弧的切线参数;
9、圆锥曲线的球面可以用于求解曲面的曲率方向;
10、圆锥曲线的曲线可以用于运动学分析和机器学习算法中的运动路径规划。
圆锥曲线几何性质总汇
圆锥曲线的几何性质一、椭圆的几何性质(以22a x +22by =1(a ﹥b ﹥0)为例)1、⊿ABF 2的周长为4a(定值) 证明:由椭圆的定义12121212242AF AF a AF AF BF BF a BF BF a +=⎫⎪⇒+++=⎬+=⎪⎭即24ABF Ca =2、焦点⊿PF 1F 2中: (1)S ⊿PF1F2=2tan2θ∙b(2)(S ⊿PF1F2)max = bc(3)当P 在短轴上时,∠F 1PF 2最大 证明:(1)在12AF F 中∵ 22212124cos 2PF PF c PF PF θ+-=⋅∴ ()2121212c o s 2P F P F P F P F P Fθ⋅=+-⋅∴ 21221cos b PF PF θ⋅=+∴ 1222112sin cos tan 21cos 2PF F b S b θθθθ-=⨯⋅=⋅+ (2)(S ⊿PF1F2)max =max 122c h bc ⨯⨯= (3 ()()()2222222212002222222120004444cos 12222PF PF c a ex a ex c a c PF PF a e x a e x θ+-++---===-⋅-+ 当0x =0时 cos θ有最小值2222a c a- 即∠F 1PF 2最大 3、 过点F 1作⊿PF 1F 2的∠P 的外角平分线的垂线,垂足为M 则M 的轨迹是x 2+y 2=a 2证明:延长1F M 交2F P 于F ,连接OMxxx由已知有 1P F F P = M 为1F F 中点 ∴ 212O M F F ==()1212PF PF +=a 所以M 的轨迹方程为 222x y a +=4、以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2内切证明:取1PF 的中点M ,连接OM 。
令圆M 的直径1PF ,半径为∵ OM =()2111112222PF a PF a PF a r =-=-=- ∴ 圆M 与圆O 内切∴ 以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2内切5、任一焦点⊿PF 1F 2的内切圆圆心为I ,连结PI 延长交长轴于则 ∣IR ∣:∣IP ∣=e证明:证明:连接12,F I F I 由三角形内角角平分线性质有 ∵1212121222F R F R F R F R I R ce P I P F P F P F P F a +=====+ ∴IRPI= e6、以任一焦点弦为直径的圆与相应准线相离。
圆锥曲线经典性质总结及证明
③当 2a | F1F2 | 时,|| PF1 | | PF2 || 2a 不表示任何图形;④两定点 F1, F2 叫做双曲线的焦点,| F1F2 | 叫做焦距。
(2)双曲线的性质
①范围:从标准方程 x 2 a2
y2 b2
1,看出曲线在坐标系中的范围:双曲线在两条直线 x a 的外侧。即 x2
圆锥曲线的方程与性质
1.椭圆
(1)椭圆概念:平面内与两个定点 F1 、 F2 的距离的和等于常数 2 a (大于| F1F2 | )的点的轨迹叫做椭圆。这两
个定点叫做椭圆的焦点,两焦点的距离 2c 叫椭圆的焦距。若 M 为椭圆上任意一点,则有| MF1 | | MF2 | 2a 。
椭圆的标准方程为: x2 a2
y
b 所围成的矩形里;
②对称性:在曲线方程里,若以 y 代替 y 方程不变,所以若点 (x, y) 在曲线上时,点 (x, y) 也在曲线上,所
以曲线关于 x 轴对称,同理,以 x 代替 x 方程不变,则曲线关于 y 轴对称。若同时以 x 代替 x , y 代替 y 方程
也不变,则曲线关于原点对称。
y2 b2
1(
a
b
0
)(焦点在
x
轴上)或
y a
2 2
x2 b2
1( a b 0 )(焦点在 y 轴上)。
注:①以上方程中 a, b 的大小 a b 0 ,其中 b2 a2 c2 ;
②在 x2 a2
y2 b2
1和
y2 a2
x2 b2
1两个方程中都有 a b 0 的条件,要分清焦点的位置,只要看 x2 和
点与曲线的关系:若曲线 C 的方程是 f(x,y)=0,则点 P0(x0,y0)在曲线 C 上 f(x0,y 0)=0;点 P0(x0,y0)不在曲线 C 上 f(x0,y0)≠0。
高中数学第八章圆锥曲线知识点
高中数学第八章圆锥曲线知识点第八章圆锥曲线是高中数学的一个重要章节,本章内容涵盖了圆锥曲线的基本定义、性质和相关的解题方法。
在本文档中,我们将详细介绍圆锥曲线的相关知识点,帮助同学们更好地理解和掌握这一部分内容。
一、圆锥曲线的基本定义1. 圆锥曲线的定义圆锥曲线是由一个固定点(焦点)和一个动点(在直线上移动)确定的几何图形。
根据焦点的位置和直线与曲线的交点情况,圆锥曲线分为椭圆、双曲线和抛物线三种情况。
2. 椭圆的定义椭圆是平面上与两个固定点的距离之和等于常数的点(焦点),构成的几何图形。
3. 双曲线的定义双曲线是平面上与两个固定点的距离之差等于常数的点(焦点),构成的几何图形。
4. 抛物线的定义抛物线是平面上与一个固定点的距离等于另一个固定点到直线的距离,构成的几何图形。
二、圆锥曲线的性质1. 椭圆的性质椭圆的离心率小于1,焦点在椭圆的内部。
椭圆有两个主轴,相互垂直,长度分别为2a和2b,其中2a是椭圆的长轴,2b是椭圆的短轴。
椭圆的面积为πab。
2. 双曲线的性质双曲线的离心率大于1,焦点在双曲线的外部。
双曲线有两个虚轴和两条实轴,相互垂直。
双曲线的面积无限大。
3. 抛物线的性质抛物线的离心率等于1,焦点在抛物线的内部。
抛物线有一个对称轴,与焦点和顶点的距离相等。
抛物线的面积为2/3 × a × h,其中a是焦点到顶点的距离,h是对称轴的长度。
三、圆锥曲线的解题方法1. 椭圆的解题方法(1)求解椭圆的标准方程,确定椭圆的中心、长轴和短轴;(2)求解椭圆的焦点和离心率;(3)利用椭圆的性质解题,例如求点到椭圆的距离或求椭圆上一点的坐标。
2. 双曲线的解题方法(1)求解双曲线的标准方程,确定双曲线的中心、虚轴和实轴;(2)求解双曲线的焦点和离心率;(3)利用双曲线的性质解题,例如求点到双曲线的距离或求双曲线上一点的坐标。
3. 抛物线的解题方法(1)求解抛物线的标准方程,确定抛物线的顶点、对称轴和焦点;(2)利用抛物线的性质解题,例如求点到抛物线的距离或求抛物线上一点的坐标。
圆锥曲线的基本概念与性质解析
圆锥曲线的基本概念与性质解析圆锥曲线是数学中的一个重要概念,通过对锥体的切割而得到的曲线形状。
它包括椭圆、抛物线和双曲线三种基本形式,并具有各自独特的性质和特点。
本文将对圆锥曲线的基本概念进行详细解析,并探讨它们的性质。
一、圆锥曲线的定义圆锥曲线是指通过对一个圆锥体进行切割而产生的曲线。
切割方式可以是与锥轴平行的切割、与锥轴垂直的切割或者与锥轴倾斜的切割。
二、椭圆椭圆是一个重要的圆锥曲线,它的定义是所有到两个给定点(称为焦点)的距离之和等于常数的点的轨迹。
椭圆具有以下性质:1. 焦点之间的距离等于椭圆的长度。
2. 椭圆的离心率小于1,且离心率越小椭圆越接近于圆形。
3. 对称轴是通过两个焦点和中心点的直线。
4. 焦点到椭圆上任一点的距离相等。
三、抛物线抛物线是另一种重要的圆锥曲线,它的定义是所有到一个给定点(称为焦点)的距离等于给定直线(称为准线)的距离的点的轨迹。
抛物线具有以下性质:1. 抛物线的焦点与准线距离相等。
2. 对称轴是通过焦点和抛物线上顶点的直线。
3. 抛物线的离心率等于1,离心率大于1的曲线不属于抛物线。
四、双曲线双曲线是圆锥曲线中的另一种形式,它的定义是所有到两个给定点(焦点)的距离之差等于常数的点的轨迹。
双曲线具有以下性质:1. 双曲线的离心率大于1。
2. 焦点之间的距离等于双曲线的长度。
3. 双曲线有两条渐近线,它们与双曲线的曲线趋于无限远时趋于平行。
五、圆锥曲线的应用圆锥曲线在几何学和物理学等领域有广泛的应用。
椭圆的形状在天体运动等领域有重要意义,抛物线的形状广泛应用于抛射物的运动分析,双曲线则在电磁波传播等方面有重要应用。
结论圆锥曲线是通过对圆锥体进行切割而得到的曲线形状,包括椭圆、抛物线和双曲线三种基本形式。
它们具有各自独特的性质和特点,广泛应用于数学、几何学和物理学等领域。
通过对圆锥曲线的深入理解和研究,我们可以进一步探索其在实际问题中的应用和意义。
高中数学圆锥曲线知识全归纳
圆锥曲线一、椭圆及其性质第一定义平面内一动点P 与两定点F 1、F 2距离之和为常数(大于F 1F 2 )的点轨迹第二定义平面内一动点到定点与到准线的距离比是常数的点轨迹MF 1d 1=MF 2d 2=e 焦点焦点在x 轴上焦点在y 轴上图形yxF 1F 2abc O A 1A 2B 2B 1x =a 2cx =-a 2c y x F 1F 2ab c A 1A 2B 2B 1y =a2cy =-a2c标准方程x 2a 2+y 2b 2=1a >b >0y 2a 2+x 2b2=1a >b >0范围-a ≤x ≤a 且-b ≤y ≤b-b ≤x ≤b 且-a ≤y ≤a顶点A 1-a ,0 ,A 2a ,0 ,B 10,-b ,B 20,bA 10,-a ,A 20,a ,B 1-b ,0 ,B 2b ,0轴长长轴长=2a ,短轴长=2b ,焦距=F 1F 2 =2c ,c 2=a 2-b 2焦点F 1-c ,0 、F 2c ,0F 10,-c 、F 20,c焦半径PF 1 =a +e x 0,PF 2 =a -e x 0PF 1 =a -e y 0,PF 2 =a +e y 0焦点弦左焦点弦|AB |=2a +e (x 1+x 2),右焦点弦|AB |=2a -e (x 1+x 2).离心率e =c a=1-b 2a20<e <1 准线方程x =±a 2cy =±a 2c切线方程x 0x a 2+y 0y b 2=1x 0xb 2+y 0y a 2=1通径过椭圆焦点且垂直于对称轴的弦长AB =2b 2a(最短焦点弦)焦点三角形(1)由定义可知:|PF 1|+|PF 2|=2a ,周长为:2a +2c (2)焦点三角形面积:S △F 1PF 2=b 2×tan θ2(3)当P 在椭圆短轴上时,张角θ最大,θ≥1-2e 2cos (4)焦长公式:PF 1 =b 2a -c αcos 、MF 1 =b 2a +c αcos MP =2ab 2a 2-c 22αcos =2ab 2b 2+c 22αsin (5)离心率:e =(α+β)sin α+βsin sin yxF 1F 2θαP OMβ第一定义平面内一动点P与两定点F1、F2距离之差为常数(大于F1F2)的点轨迹第二定义平面内一动点到定点与到准线的距离比是常数的点轨迹MF1d1=MF2d2=e焦点焦点在x轴上焦点在y轴上图形yxF1F2bc虚轴实轴ayxF1F2实轴虚轴标准方程x2a2-y2b2=1a>0,b>0y2a2-x2b2=1a>0,b>0范围x≤-a或x≥a,y∈R y≤-a或y≥a,x∈R 顶点A1-a,0、A2a,0A10,-a、A20,a轴长虚轴长=2b,实轴长=2a,焦距=F1F2=2c,c2=a2+b2焦点F1-c,0、F2c,0F10,-c、F20,c焦半径|PF1|=a+e x0,|PF2|=-a+e x0左支添“-”离心率e=ca=1+b2a2e>1准线方程x=±a2c y=±a2c渐近线y=±ba x y=±ab x切线方程x0xa2-y0yb2=1x0xb2-y0ya2=1通径过双曲线焦点且垂直于对称轴的弦长AB=2b2a(最短焦点弦)焦点三角形(1)由定义可知:|PF1|-|PF2|=2a(2)焦点直角三角形的个数为八个,顶角为直角与底角为直角各四个;(3)焦点三角形面积:S△F1PF2=b2÷tanθ2=c∙y(4)离心率:e=F1F2PF1-PF2=sinθsinα-sinβ=sin(α+β)sinα-sinβyxF1F2Pθαβ定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.方程y 2=2px p >0y 2=-2px p >0x 2=2py p >0x 2=-2py p >0图形yxF x =-p2yxFx =p2y xFy =-p2yxFy =p2顶点0,0对称轴x 轴y 轴焦点F p2,0 F -p 2,0 F 0,p 2 F 0,-p 2准线方程x =-p 2x =p2y =-p 2y =p 2离心率e =1范围x ≥0x ≤0y ≥0y ≤0切线方程y 0y =p x +x 0y 0y =-p x +x 0x 0x =p y +y 0x 0x =-p y +y 0通径过抛物线焦点且垂直于对称轴的弦AB =2p (最短焦点弦)焦点弦AB 为过y 2=2px p >0 焦点的弦,A (x 1,y 1)、B (x 2,y 2),倾斜角为α.则:(1)AF =x 1+p 2BF =x 2+p2AB =x 1+x 2+p ,(2)x 1x 2=p 24y 1y 2=-p 2(3)AF =p 1-αcos BF =p 1+αcos 1|FA |+1|FB |=2P (4)AB =2psin 2αS △AOB =p 22αsin AB 为过x 2=2py (p >0)焦点的弦,A (x 1,y 1)、B (x 2,y 2),倾斜角为α.则:(1)AF =p 1-αsin BF =p1+αsin (2)AB =2p 2αcos S △AOB=p 22αcos (3)AF BF=λ,则:α=λ-1λ+1sin yxFx =-p 2αABO yxFαABOy 2=2px (p >0)y 2=2px (p >0)四、圆锥曲线的通法F 1F 2POxyOxyFP MOxyF 1F 2P椭圆双曲线抛物线点差法与通法1、圆锥曲线综述:联立方程设交点,韦达定理求弦长;变量范围判别式,曲线定义不能忘;弦斜中点点差法,设而不求计算畅;向量参数恰当用,数形结合记心间.★2、直线与圆锥曲线的位置关系(1)直线的设法:1若题目明确涉及斜率,则设直线:y =kx +b ,需考虑直线斜率是否存在,分类讨论;2若题目没有涉及斜率或直线过(a ,0)则设直线:x =my +a ,可避免对斜率进行讨论(2)研究通法:联立y =kx +bF (x ,y )=0得:ax 2+bx +c =0判别式:Δ=b 2−4ac ,韦达定理:x 1+x 2=−b a ,x 1x 2=ca(3)弦长公式:AB =(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=(1+k 2)⋅[(x 1+x 2)2-4x 1x 2]=1+1k2(y 1+y 2)2−4y 1y 2 3、硬解定理设直线y =kx +φ与曲线x 2m +y 2n=1相交于A (x 1,y 1)、B (x 2,y 2)由:y =kx +φnx 2+my 2=mn,可得:(n +mk 2)x 2+2kφmx +m (φ2-n )=0判别式:△=4mn (n +mk 2-φ2)韦达定理:x 1+x 2=-2kmφn +mk 2,x 1x 2=m (φ2-n )n +mk 2由:|x 1-x 2|=(x 1+x 2)2-4x 1x 2,代入韦达定理:|x 1-x 2|=△n +mk 2★4、点差法:若直线l 与曲线相交于M 、N 两点,点P (x 0,y 0)是弦MN 中点,MN 的斜率为k MN ,则:在椭圆x 2a 2+y 2b 2=1(a >b >0)中,有k MN ⋅y 0x 0=−b 2a2;在双曲线x 2a 2−y 2b 2=1(a >b >0)中,有k MN ⋅y 0x 0=b 2a2;在抛物线y 2=2px (p >0)中,有k MN ⋅y 0=p .(椭圆)设M 、N 两两点的坐标分别为(x 1,y 1)、(x 2,y 2),则有x 12a 2+y 12b 2=1,⋯⋯(1)x 22a 2+y 22b 2=1.⋯⋯(2) (1)−(2),得x 12−x 22a 2+y 12−y 22b 2=0.∴y 2−y 1x 2−x 1⋅y 2+y 1x 2+x 1=−b 2a2.又∵k MN =y 2−y 1x 2−x 1,y 1+y 2x 1+x 2=2y 2x =y x .∴k MN ⋅y x =−b 2a2.圆锥曲线的参数方程1、参数方程的概念在平面直角坐标系中,曲线上任意一点的坐标x ,y 都是某个变数t 的函数x =f (t )y =g (t )并且对于t 的每一个允许值,由这个方程所确定的点M (x ,y )都在这条曲线上,该方程就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.※2、直线的参数方程(1)过定点P (x 0,y 0)、倾斜角为α(α≠π2)的直线的参数方程x =x 0+t cos αy =y 0+t sin α (t 为参数)(2)参数t 的几何意义:参数t 表示直线l 上以定点M 0为起点,任意一点M (x ,y )为终点的有向线段的长度再加上表示方向的正负号,也即|M 0M|=|t |,|t |表示直线上任一点M 到定点M 0的距离.当点M 在M 0上方时,t >0;当点M 在M 0下方时,t <0;当点M 与M 0重合时,t =0;(3)直线方程与参数方程互化:y −y o =tan α(x −x o )⇔x =x 0+t cos αy =y 0+t sin α(t 为参数)(4)直线参数方程:x =x 0+aty =y 0+bt (t 为参数),当a 2+b 2=1时,参数方程为标准型参数方程,参数的几何意义才是代表距离.当a 2+b 2≠1时,将参数方程化为x =x 0+aa 2+b 2t y =y 0+ba 2+b 2t 然后在进行计算.★3、圆的参数方程(1)圆心(a ,b ),半径r 的圆(x -a )2+(y -b )2=r 2参数方程x =a +r cos θy =b +r sin θ (θ为参数);特别:当圆心在原点时,半径为r 的圆x 2+y 2=r 2的参数方程为:x =r cos θy =r sin θ (θ是参数).(2)参数θ的几何意义:θ表示x 轴的正方向到圆心和圆上任意一点的半径所成的角.(3)消参的方法:利用sin 2θ+cos 2θ=1,yxF 1F 2PN OMyxM 0tαO M 1αP (x ,y )rxy可得圆方程:(x -a )2+(y -b )2=r 2★4、椭圆的参数方程(1)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为x =a cos φy =b sin φ (φ为参数);椭圆y 2a 2+x 2b2=1(a >b >0)的参数方程为x =b cos φy =a sin φ (φ为参数);(2)参数θ的几何意义:参数θ表示椭圆上某一点的离心角.如图所示,点P 对应的离心角为θ=∠QOx (过P 作PQ ⊥x 轴,交大圆即以2a 为直径的圆于Q ),切不可认为是θ=∠POx .5、双曲线的参数方程(1)双曲线x 2a 2-y 2b 2=1(a >b >0)的参数方程x =a sec φy =b tan φ (φ为参数);sec φ=1cos φ双曲线y 2a 2-x 2b2=1(a >b >0)的参数方程x =b cot φy =a csc φ (φ为参数);csc φ=1sin φ(2)参数θ的几何意义:参数θ表示双曲线上某一点的离心角.※6、抛物线的参数方程(1)抛物线y 2=2px 参数方程x =2pt 2y =2pt(t 为参数,t =1tan α);(2)参数t 的几何意义:抛物线上除顶点外的任意一点与原点连线的斜率的倒数.t =1k OP仿射变换与齐次式1、仿射变换:在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间.※2、椭圆的变换:椭圆b 2x 2+a 2y 2=a 2b 2变换内容x =x y=a b y x =xy =b a yx =b a x y=yx =a b x y =y圆方程x 2+y 2=a 2x 2+y 2=b 2图示yxAB OCyxABOCyxAB OCyxAB OC 点坐标A (x 0,y 0)→A '(x 0,a by 0)A (x 0,y 0)→A '(b ax 0,y 0)斜率变化k '=a bk ,由于k A 'C '⋅k B 'C '=−1.k AC ⋅k BC =b a k A 'C '⋅b a k B 'C '=−b 2a 2k '=a bk ,由于k A 'C '⋅k B 'C '=−1.k AC ⋅k BC =b a k A 'C '⋅b a k B 'C '=−b 2a2弦长变化则AB =1+k 2x 1-x 2 ⇒A 'B '=1+k '2x 1-x 2 =1+(a b)2k 2x 1-x 2 yxαPOQ面积变化S△ABC=b a S△A'B'C'(水平宽不变,铅锤高缩小)S△ABC=a b S△A'B'C'(水平宽扩大,铅垂高不变)3、中点弦问题,k OP⋅k AB=−b2a2,中垂线问题k OPk MP=b2a2,且x M=c2x0a2y N=-c2y0b2,拓展1:椭圆内接△ABC中,若原点O为重心,则仿射后一定得到△OB'C'为120°的等腰三角形;△A'B'C'为等边三角形;拓展2:椭圆内接平行四边形OAPB(A、P、B)在椭圆上,则仿射后一定得菱形OA'P'B' 4、面积问题:(1)若以椭圆x2a2+y2b2=1对称中心引出两条直线交椭圆于A、B两点,且k OA⋅k OB=−b2a2,则经过仿射变换后k OA'⋅k OB'=−1,所以S△AOB为定值.(2)若椭圆方程x2a2+y2b2=1上三点A,B,M,满足:①k OA⋅k OB=−b2a2②S△AOB=ab2③OM=sinαOA+cosαOBα∈0,π2,三者等价※5、平移构造齐次式:(圆锥曲线斜率和与积的问题)(1)题设:过圆锥曲线上的一个定点P作两条直线与圆锥曲线交于A、B,在直线PA和PB斜率之和或者斜率之积为定值的情况下,直线AB过定点或者AB定斜率的问题.(2)步骤:①将公共点平移到坐标原点(点平移:左加右减上减下加)找出平移单位长.②由①中的平移单位长得出平移后的圆锥曲线C ,所有直线方程统一写为:mx+ny=1③将圆锥曲线C 展开,在一次项中乘以mx+ny=1,构造出齐次式.④在齐次式中,同时除以x2,构建斜率k的一元二次方程,由韦达定理可得斜率之积(和).圆锥曲线考点归类(一)条件方法梳理1、椭圆的角平分线定理(1)若点A、B是椭圆x2a2+y2b2=1(a>b>0)上的点,AB与椭圆长轴交点为N,在长轴上一定存在一个点M,当仅当则x M⋅x N=a2时,∠AMN=∠BMN,即长轴为角平分线;(2)若点A、B是椭圆x2a2+y2b2=1(a>b>0)上的点,AB与椭圆短轴交点为N,在短轴上一定存在一个点M,当仅当则y M⋅y N=b2时,∠AMN=∠BMN,即短轴为角平分线;※2、关于角平分线的结论:若直线AO的斜率为k1,直线CO的斜率为k2,EO平分∠AOC则有:k1+k2=tanα+tan(π-α)=0角平分线的一些等价代换条件:作x轴的对称点、点到两边的距离相等.3、四种常用直线系方程(1)定点直线系方程:经过定点P 0(x 0,y 0)的直线系方程为y -y 0=k (x -x 0)(除直线x =x 0),其中k 是待定的系数;经过定点P 0(x 0,y 0)的直线系方程为A (x -x 0)+B (y -y 0)=0,其中A ,B 是待定的系数.(2)共点直线系方程:经过两直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0的交点的直线系方程为(A 1x +B 1y +C 1)+λ(A 2x +B 2y +C 2)=0(除l 2),其中λ是待定的系数.(3)平行直线系方程:直线y =kx +b 中当斜率k 一定而b 变动时,表示平行直线系方程.与直线Ax +By +C =0平行的直线系方程是Ax +By +λ=0(λ≠0),λ是参变量.(4)垂直直线系方程:与直线Ax +By +C =0(A ≠0,B ≠0)垂直的直线系方程是Bx -Ay +λ=0,λ是参变量.4、圆系方程(1)过直线l :Ax +By +C =0与圆C :x 2+y 2+Dx +Ey +F =0的交点的圆系方程是x 2+y 2+Dx +Ey +F +λ(Ax +By +C )=0,λ是待定的系数.(2)过圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0的交点的圆系方程是x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0,λ是待定的系数.★(二)圆锥曲线过定点问题1、直线过定点的背景:(1)直线过定点模型:A ,B 是圆锥曲线上的两动点,M 是一定点,其中α,β分别为MA ,MB 的倾斜角,则:①、MA ⋅MB 为定值⇔直线AB 恒过定点;②、k MA ⋅k MB 为定值⇔直线AB 恒过定点;③、α+β=θ(0<θ<π)⇔直线AB 恒过定点.(2)抛物线中直线过定点:A ,B 是抛物线y 2=2px (p >0)上的两动点,α,β分别为OA ,OB 的倾斜角,则:OA ⊥OB ⇔k OA ⋅k OB =-1⇔α-β =π2⇔直线AB 恒过定点(2p ,0).(3)椭圆中直线过定点模型:A ,B 是椭圆x 2a 2+y 2b2=1(a >b >0)上异于右顶点D 的两动点,其中α,β分别为DA ,DB 的倾斜角,则可以得到下面几个充要的结论:DA ⊥DB ⇔k DA ⋅k DB =-1⇔α-β =π2⇔直线AB 恒过定点(ac 2a 2+b 2,0)2、定点的求解方法:1含参形式简单的直线方程,通过将直线化为y -y 0=k (x -x 0)可求得定点坐标(x 0,y 0)2含参形式复杂的通过变换主元法求解定点坐标.变换主元法:将直线化为h (x ,y )+λf (x ,y )=0,解方程组:h (x ,y )=0f (x ,y )=0 可得定点坐标.eg :直线方程:(2m +1)x +(m -5)y +6=0,将m 看作主元,按照降幂排列:(2x +y )m+x -5y +6=0,解方程组:2x +y =0x -5y +6=0,解得:x =-611y =1211,求得直线过定点(-611,1211).3、关于以AB 为直径的圆过定点问题:(1)直接法:设出参数后,表示出圆的方程.圆的直径式方程:(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0(2)由特殊到一般:利用赋值法,先求出几个位置的圆方程,联立圆方程解出公共交点,该交点即为圆所过的定点,再利用向量数量积为0证明点恒在圆上.★(三)圆锥曲线面积问题1、面积的求解方法:(1)S △ABC =12MN ∙d ,从公式可以看出,求面积重在求解弦长和点到线的距离.(2)S △ABC =12×水平宽×铅锤高,主要以点的坐标运算为主.(3)S △AOB =12x 1y 2-x 2y 1例题1.在平面直角坐标系xOy 中,已知点O 0,0 ,A x 1,y 1 ,B x 2,y 2 不共线,证明:△AOB 的面积为S △AOB =12x 1y 2-x 2y 1 .2、面积中最值的求解(1)f (x )=αx 2+βx +φx +n型:令t =x +n ⇒x =t -n 进行代换后裂项转化为:y =at +bt (2)f (x )=x +n αx 2+βx +φ型:先在分母中配出分子式f (x )=x +n α(x +n )2+λ(x +n )+υ令t =x +n ,此时:y =t αt 2+λt +υ,分子分母同时除t ,此时y =1αt +υt+λ,再利用对勾函数或不等式分析最值.(3)f (x )=αx +βx +n型:令t =x +n ⇒x =t 2-n 进行代换后裂项,可转化为:y =at +bt五、椭圆的二级结论1.PF1+PF2=2a2.标准方程x2a2+y2b2=13.PF1d1=e<14.点P处的切线PT平分△PF1F2在点P处的外角.5.PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.6.以焦点弦PQ为直径的圆必与对应准线相离.7.以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.8.设A1、A2为椭圆的左、右顶点,则△PF1F2在边PF2(或PF1)上的旁切圆,必与A1A2所在的直线切于A2 (或A1).9.椭圆x2a2+y2b2=1(a>b>0)的两个顶点为A1(-a,0),A2(a,0),与y轴平行的直线交椭圆于P1、P2时A1P1与A2P2交点的轨迹方程是x2a2-y2b2=1.10.若点P0(x0,y0)在椭圆x2a2+y2b2=1a>b>0上,则在点P0处的切线方程是x0xa2+y0yb2=1.11.若P0(x0,y0)在椭圆x2a2+y2b2=1外,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是x0xa2+y0yb2=1.12.AB是椭圆x2a2+y2b2=1的不平行于对称轴的弦,M为AB的中点,则k OM⋅k AB=-b2a2.13.若P0(x0,y0)在椭圆x2a2+y2b2=1内,则被PO所平分的中点弦的方程是x0xa2+y0yb2=x02a2+y02b2.14.若P0(x0,y0)在椭圆x2a2+y2b2=1内,则过PO的弦中点的轨迹方程是x2a2+y2b2=x0xa2+y0yb2.15.若PQ是椭圆x2a2+y2b2=1(a>b>0)上对中心张直角的弦,则1r12+1r22=1a2+1b2(r1=|OP|,r2=|OQ|).16.若椭圆x2a2+y2b2=1(a>b>0)上中心张直角的弦L所在直线方程为Ax+By=1(AB≠0),则(1)1a2+1 b2=A2+B2;(2)L=2a4A2+b4B2a2A2+b2B2.17.给定椭圆C1:b2x2+a2y2=a2b2(a>b>0),C2:b2x2+a2y2=a2-b2a2+b2ab2,则(i)对C1上任意给定的点P(x0,y0),它的任一直角弦必须经过C2上一定点M a2-b2a2+b2x0,-a2-b2a2+b2y0. (ii)对C2上任一点P (x0 ,y0 )在C1上存在唯一的点M ,使得M 的任一直角弦都经过P 点.18.设P(x0,y0)为椭圆(或圆)C:x2a2+y2b2=1(a>0,.b>0)上一点,P1P2为曲线C的动弦,且弦PP1,PP2斜率存在,记为k1,k2,则直线P1P2通过定点M(mx0,-my0)(m≠1)的充要条件是k1⋅k2=-1+m1-m⋅b2a2.19.过椭圆x2a2+y2b2=1(a>0,b>0)上任一点A(x0,y0)任意作两条倾斜角互补的直线交椭圆于B,C两点,则直线BC有定向且k BC=b2x0a2y0(常数).20.椭圆x2a2+y2b2=1(a>b>0)的左右焦点分别为F1,F2,点P为椭圆上任意一点∠F1PF2=γ,则椭圆的焦点三角形的面积为S△F1PF2=b2tanγ2,P±ac c2-b2tan2γ2,±b2c tanγ2.21.若P为椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1,F2是焦点,∠PF1F2=α,∠PF2F1=β,则a-ca+c=tanα2tanβ2.22.椭圆x2a2+y2b2=1(a>b>0)的焦半径公式:|MF1|=a+ex0,|MF2|=a-ex0(F1(-c,0),F2(c,0),M(x0,y0)).23.若椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,左准线为L,则当2-1≤e<1时,可在椭圆上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项.24.P为椭圆x2a2+y2b2=1(a>b>0)上任一点,F1,F2为二焦点,A为椭圆内一定点,则2a-|AF2|≤|PA|+|PF1|≤2a+|AF2|,当且仅当A,F2,P三点共线时,等号成立.25.椭圆x2a2+y2b2=1(a>b>0)上存在两点关于直线l:y=k(x-x0)对称的充要条件是x02≤(a2-b2)2a2+b2k2.26.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P是椭圆x=a cosϕy=b sinϕ(a>b>0)上一点,则点P对椭圆两焦点张直角的充要条件是e2=11+sin2ϕ.29.设A,B为椭圆x2a2+y2b2=k(k>0,k≠1)上两点,其直线AB与椭圆x2a2+y2b2=1相交于P,Q,则AP=BQ.30.在椭圆x 2a 2+y 2b 2=1中,定长为2m (o <m ≤a )的弦中点轨迹方程为m 2=1-x 2a 2+y 2b 2a 2cos 2α+b 2sin 2α ,其中tan α=-bx ay ,当y =0时,α=90∘.31.设S 为椭圆x 2a 2+y 2b2=1(a >b >0)的通径,定长线段L 的两端点A ,B 在椭圆上移动,记|AB |=l ,M(x 0,y 0)是AB 中点,则当l ≥ΦS 时,有(x 0)max =a 2c -l 2e c 2=a 2-b 2,e =c a;当l <ΦS 时,有(x 0)max =a 2b4b 2-l 2,(x 0)min=0.32.椭圆x 2a 2+y 2b2=1与直线Ax +By +C =0有公共点的充要条件是A 2a 2+B 2b 2≥C 2.33.椭圆(x -x 0)2a 2+(y -y 0)2b2=1与直线Ax +By +C =0有公共点的充要条件是A 2a 2+B 2b 2≥(Ax 0+By 0+C )2.34.设椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记∠F 1PF 2=α,∠PF 1F 2=β,∠F 1F 2P =γ,则有sin αsin β+sin γ=c a =e.35.经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则|P 1A 1|⋅|P 2A 2|=b 2.36.已知椭圆x 2a 2+y 2b2=1(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP ⊥OQ .(1)1|OP |2+1|OQ |2=1a 2+1b2;(2)|OP |2+|OQ |2的最小值为4a 2b 2a 2+b 2;(3)S ΔOPQ 的最小值是a 2b 2a 2+b 2.37.MN 是经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)焦点的任一弦,若AB 是经过椭圆中心O 且平行于MN 的弦,则|AB |2=2a |MN |.38.MN 是经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)焦点的任一弦,若过椭圆中心O 的半弦OP ⊥MN ,则2a |MN |+1|OP |2=1a 2+1b2.39.设椭圆x 2a 2+y 2b2=1(a >b >0),M (m ,o )或(o ,m )为其对称轴上除中心,顶点外的任一点,过M 引一条直线与椭圆相交于P 、Q 两点,则直线A 1P 、A 2Q (A 1,A 2为对称轴上的两顶点)的交点N 在直线l :x =a2m(或y =b 2m)上.40.设过椭圆焦点F 作直线与椭圆相交P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF .41.过椭圆一个焦点F的直线与椭圆交于两点P、Q,A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.42.设椭圆方程x2a2+y2b2=1,则斜率为k(k≠0)的平行弦的中点必在直线l:y=kx的共轭直线y=k x上,而且kk =-b2 a2 .43.设A、B、C、D为椭圆x2a2+y2b2=1上四点,AB、CD所在直线的倾斜角分别为α,β,直线AB与CD相交于P,且P不在椭圆上,则PA⋅PBPC⋅PD=b2cos2β+a2sin2βb2cos2α+a2sin2α.44.已知椭圆x2a2+y2b2=1(a>b>0),点P为其上一点F1,F2为椭圆的焦点,∠F1PF2的外(内)角平分线为l,作F1、F2分别垂直l于R、S,当P跑遍整个椭圆时,R、S形成的轨迹方程是x2+y2=a2c2y2=a2y2+b2x x±c2 a2y2+b2x±c2.45.设△ABC内接于椭圆Γ,且AB为Γ的直径,l为AB的共轭直径所在的直线,l分别交直线AC、BC于E和F,又D为l上一点,则CD与椭圆Γ相切的充要条件是D为EF的中点.46.过椭圆x2a2+y2b2=1(a>b>0)的右焦点F作直线交该椭圆右支于M,N两点,弦MN的垂直平分线交x轴于P,则|PF||MN|=e2.47.设A(x1,y1)是椭圆x2a2+y2b2=1(a>b>0)上任一点,过A作一条斜率为-b2x1a2y1的直线L,又设d是原点到直线L的距离,r1,r2分别是A到椭圆两焦点的距离,则r1r2d=ab.48.已知椭圆x2a2+y2b2=1(a>b>0)和x2a2+y2b2=λ(0<λ<1),一直线顺次与它们相交于A、B、C、D四点,则│AB│=|CD│.49.已知椭圆x2a2+y2b2=1(a>b>0),A、B、是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0),则-a2-b2a<x0<a2-b2 a.50.设P点是椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1、F2为其焦点记∠F1PF2=θ,则(1)|PF1||PF2|=2b21+cosθ.(2)SΔPF1F2=b2tanθ2.51.设过椭圆的长轴上一点B(m,o)作直线与椭圆相交于P、Q两点,A为椭圆长轴的左顶点,连结AP和AQ分别交相应于过H点的直线MN:x=n于M,N两点,则∠MBN=90∘⇔a-ma+m=a2n-m2 b2(n+a)2.52.L是经过椭圆x2a2+y2b2=1(a>b>0)长轴顶点A且与长轴垂直的直线,E、F是椭圆两个焦点,e是离心率,点P∈L,若∠EPF=α,则α是锐角且sinα≤e或α≤arcsin e(当且仅当|PH|=b时取等号).53.L是椭圆x2a2+y2b2=1(a>b>0)的准线,A、B是椭圆的长轴两顶点,点P∈L,e是离心率,∠EPF=α,H是L与X轴的交点c是半焦距,则α是锐角且sinα≤e或α≤arcsin e(当且仅当|PH|=ab c时取等号).54.L是椭圆x2a2+y2b2=1(a>b>0)的准线,E、F是两个焦点,H是L与x轴的交点,点P∈L,∠EPF=α,离心率为e,半焦距为c,则α为锐角且sinα≤e2或α≤arcsin e2(当且仅当|PH|=b c a2+c2时取等号).55.已知椭圆x2a2+y2b2=1(a>b>0),直线L通过其右焦点F2,且与椭圆相交于A、B两点,将A、B与椭圆左焦点F1连结起来,则b2≤|F1A|⋅|F1B|≤(2a2-b2)2a2(当且仅当AB⊥x轴时右边不等式取等号,当且仅当A、F1、B三点共线时左边不等式取等号).56.设A、B是椭圆x2a2+y2b2=1(a>b>0)的长轴两端点,P是椭圆上的一点,∠PAB=α,∠PBA=β,∠BPA=γ,c、e分别是椭圆的半焦距离心率,则有(1)|PA|=2ab2|cosα|a2-c2cos2α.(2)tanαtanβ=1-e2.(3)SΔPAB=2a2b2b2-a2cotγ.57.设A、B是椭圆x2a2+y2b2=1(a>b>0)长轴上分别位于椭圆内(异于原点)、外部的两点,且x A、x B的横坐标x A⋅x B=a2,(1)若过A点引直线与这椭圆相交于P、Q两点,则∠PBA=∠QBA;(2)若过B引直线与这椭圆相交于P、Q两点,则∠PAB+∠QAB=180∘.58.设A、B是椭圆x2a2+y2b2=1(a>b>0)长轴上分别位于椭圆内(异于原点),外部的两点,(1)若过A点引直线与这椭圆相交于P、Q两点,(若BP交椭圆于两点,则P、Q不关于x轴对称),且∠PBA=∠QBA,则点A、B的横坐标x A、x B满足x A⋅x B=a2;(2)若过B点引直线与这椭圆相交于P、Q两点,且∠PAB+∠QAB=180∘,则点A、B的横坐标满足x A⋅x B=a2.59.设A,A 是椭圆x2a2+y2b2=1的长轴的两个端点,QQ 是与AA 垂直的弦,则直线AQ与A Q 的交点P的轨迹是双曲线x2a2-y2b2=1.60.过椭圆x2a2+y2b2=1(a>b>0)的左焦点F作互相垂直的两条弦AB、CD则8ab2a2+b2≤|AB|+|CD|≤2(a2+b2)a.61.到椭圆x 2a 2+y 2b2=1(a >b >0)两焦点的距离之比等于a -c b (c 为半焦距)的动点M 的轨迹是姊妹圆(x ±a )2+y 2=b 2.62.到椭圆x 2a 2+y 2b2=1(a >b >0)的长轴两端点的距离之比等于a -c b (c 为半焦距)的动点M 的轨迹是姊妹圆x ±a e 2+y 2=b e 2.63.到椭圆x 2a 2+y 2b2=1(a >b >0)的两准线和x 轴的交点的距离之比为a -c b (c 为半焦距)的动点的轨迹是姊妹圆x ±a e 2 2+y 2=b e 2 2(e 为离心率).64.已知P 是椭圆x 2a 2+y 2b2=1(a >b >0)上一个动点,A ,A 是它长轴的两个端点,且AQ ⊥AP ,A Q ⊥AP ,则Q 点的轨迹方程是x 2a 2+b 2y 2a4=1.65.椭圆的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和长轴之长的比例中项.66.设椭圆x 2a 2+y 2b 2=1(a >b >0)长轴的端点为A ,A ,P (x 1,y 1)是椭圆上的点过P 作斜率为-b 2x 1a 2y 1的直线l ,过A ,A 分别作垂直于长轴的直线交l 于M ,M ,则(1)|AM ||A M |=b 2.(2)四边形MAA M 面积的最小值是2ab .67.已知椭圆x 2a 2+y2b2=1(a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC ⎳x 轴,则直线AC 经过线段EF 的中点.68.OA 、OB 是椭圆(x -a )2a 2+y 2b 2=1(a >0,b >0)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB必经过一个定点2ab 2a 2+b 2,0 .(2)以OA 、OB 为直径的两圆的另一个交点Q 的轨迹方程是x -ab 2a 2+b 2 2+y 2=ab 2a 2+b 2 2(x ≠0).69.P (m ,n )是椭圆(x -a )2a 2+y 2b2=1(a >b >0)上一个定点,PA 、PB 是互相垂直的弦,则(1)直线AB 必经过一个定点2ab 2+m (a 2-b 2)a 2+b 2,n (b 2-a 2)a 2+b 2 .(2)以PA 、PB 为直径的两圆的另一个交点Q 的轨迹方程是x -ab 2+a 2m a 2+b 2 2+y -b 2n a 2+b 2 2=a 2[b 4+n 2(a 2-b 2)](a 2+b 2)2(x ≠m 且y ≠n ).70.如果一个椭圆短半轴长为b ,焦点F 1、F 2到直线L 的距离分别为d 1、d 2,那么(1)d 1d 2=b 2,且F 1、F 2在L 同侧⇔直线L 和椭圆相切.(2)d 1d 2>b 2,且F 1、F 2在L 同侧⇔直线L 和椭圆相离,(3)d 1d 2<b 2,或F 1、F 2在L 异侧⇔直线L 和椭圆相交.71.AB 是椭圆x 2a 2+y 2b2=1(a >b >0)的长轴,N 是椭圆上的动点,过N 的切线与过A 、B 的切线交于C 、D两点,则梯形ABDC的对角线的交点M的轨迹方程是x2a2+4y2b2=1(y≠0).72.设点P(x0,y0)为椭圆x2a2+y2b2=1(a>b>0)的内部一定点,AB是椭圆x2a2+y2b2=1过定点P(x0,y0)的任一弦,当弦AB平行(或重合)于椭圆长轴所在直线时(|PA|⋅|PB|)max=a2b2-(a2y02+b2x02)b2.当弦AB垂直于长轴所在直线时,(|PA|⋅|PB|)min=a2b2-(a2y02+b2x02)a2.73.椭圆焦三角形中,以焦半径为直径的圆必与以椭圆长轴为直径的圆相内切.74.椭圆焦三角形的旁切圆必切长轴于非焦顶点同侧的长轴端点.75.椭圆两焦点到椭圆焦三角形旁切圆的切线长为定值a+c与a-c.76.椭圆焦三角形的非焦顶点到其内切圆的切线长为定值a-c.77.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)78.椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.79.椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.80.椭圆焦三角形中,椭圆中心到内点的距离、内点到同侧焦点的距离、半焦距及外点到同侧焦点的距离成比例.81.椭圆焦三角形中,半焦距、外点与椭圆中心连线段、内点与同侧焦点连线段、外点与同侧焦点连线段成比例.82.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足连线必与另一焦半径所在直线平行.83.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足的距离为椭圆长半轴的长.84.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,垂足就是垂足同侧焦半径为直径的圆和椭圆长轴为直径的圆的切点.85.椭圆焦三角形中,非焦顶点的外角平分线与焦半径、长轴所在直线的夹角的余弦的比为定值e.86.椭圆焦三角形中,非焦顶点的法线即为该顶角的内角平分线.87.椭圆焦三角形中,非焦顶点的切线即为该顶角的外角平分线.88.椭圆焦三角形中,过非焦顶点的切线与椭圆长轴两端点处的切线相交,则以两交点为直径的圆必过两焦点.89.已知椭圆x2a2+y2b2=1(a>0,b>0)(包括圆在内)上有一点P,过点P分别作直线y=b a x及y=-b a x的平行线,与x 轴于M ,N ,与y 轴交于R ,Q .,O 为原点,则:(1)|OM |2+|ON |2=2a 2;(2)|OQ |2+|OR |2=2b 2.90.过平面上的P 点作直线l 1:y =b a x 及l 2:y =-b ax 的平行线,分别交x 轴于M ,N ,交y 轴于R ,Q .(1)若|OM |2+|ON |2=2a 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).(2)若|OQ |2+|OR |2=2b 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).91.点P 为椭圆x 2a 2+y 2b2=1(a >0,b >0)(包括圆在内)在第一象限的弧上任意一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N ,交直线y =-b ax 于Q ,R ,记ΔOMQ 与ΔONR 的面积为S 1,S 2,则:S 1+S 2=ab 2.92.点P 为第一象限内一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N ,交直线y =-b ax 于Q ,R ,记△OMQ 与△ONR 的面积为S 1,S 2,已知S 1+S 2=ab 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).93.过椭圆焦点垂直于长轴的弦(通径)是最短的弦,长为2b 2a,过焦点最长弦为长轴.94.过原点最长弦为长轴长2a ,最短弦为短轴长2b .95.与椭圆x 2a 2+y 2b 2=1(a >b >0)有共焦点的椭圆方程为x 2a 2+λ+y 2b 2+λ=1(a >b >0,λ>-b 2).96.与椭圆y 2a 2+x 2b 2=1(a >b >0)有共焦点的椭圆方程为y 2a 2+λ+x 2b 2+λ=1(a >b >0,λ>-b 2).97.焦点三角形:椭圆上的点P (x 0,y 0)与两焦点F 1,F 2构成的△PF 1F 2叫做焦点三角形.若r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①当r 1=r 2时,即点P 为短轴端点时,θ最大;cos θ=r 21+r 22-4c 22r 1r 2=r 1+r 2 2-2r 1r 2-4c22r 1r 2=4b 22r 1r 2-1=2b 2r 1r 2-1≥2b 2r 1+r 222-1=2b 2-a 2a 2=b 2-c 2a 2当且仅当r 1=r 2时,等号成立.②S =12|PF 1||PF 2|sin θ=c |y 0|=sin θ1+cos θb 2=b 2tan θ2,当|y 0|=b ,即点P 为短轴端点时,S 取得最大值,最大值为bc ;③△PF 1F 2的周长为2(a +c ).98.AB 为过F 的焦点弦,则1FA +1FB =2ab 299.已知椭圆Γ:x 2a 2+y 2b2=1a >b >0 的左右焦点分别为F 1、F 2.椭圆Γ在点P 处的切线为l ,Q ∈l .且满足∠AQF1=θ0<θ<π2,则点Q在以C0,±cθcot为圆心,a θsin为半径的圆上.六、双曲线的二级结论1.PF1-PF2=2a2.标准方程x2a2-y2b2=13.PF1d1=e>14.点P处的切线PT平分△PF1F2在点P处的内角.5.PT平分△PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以实轴为直径的圆,除去实轴的两个端点.6.以焦点弦PQ为直径的圆必与对应准线相交.7.以焦点半径PF1为直径的圆必与以实轴为直径的圆外切.8.设P为双曲线上一点,则△PF1F2的内切圆必切于与P在同侧的顶点.9.双曲线x2a2-y2b2=1(a>0,b>0)的两个顶点为A1(-a,0),A2(a,0),与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹方程是x2a2+y2b2=1.10.若点P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)上,则在点P0处的切线方程是x0xa2-y0yb2=1.11.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)外,则过P0作双曲线的两条切线切点为P1、P2,则切点弦P1P2的直线方程是x0xa2-y0yb2=1.12.若AB是双曲线x2a2-y2b2=1(a>0,b>0)的不平行于对称轴且过原点的弦,M为AB的中点,则k OM⋅k AB=b2a2.13.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)内,则被P0所平分的中点弦的方程是x0xa2-y0yb2=x02a2-y02 b2 .14.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)内,则过Po的弦中点的轨迹方程是x2a2-y2b2=x0xa2-y0y b2.15.若PQ是双曲线x2a2-y2b2=1(b>a>0)上对中心张直角的弦,则1r12+1r22=1a2-1b2(r1=|OP|,r2=|OQ|).16.若双曲线x2a2-y2b2=1(b>a>0)上中心张直角的弦L所在直线方程为Ax+By=1(AB≠0),则(1)1a2-1 b2=A2+B2;(2)L=2a4A2+b4B2|a2A2-b2B2|.17.给定双曲线C1:b2x2-a2y2=a2b2(a>b>0),C2:b2x2-a2y2=a2+b2a2-b2ab2,则(i)对C1上任意给定的点P(x0,y0),它的任一直角弦必须经过C2上一定点M a2+b2a2-b2x0,-a2+b2a2-b2y0. (ii)对C2上任一点P (x0 ,y0 )在C1上存在唯一的点M ,使得M 的任一直角弦都经过P 点.18.设P(x0,y0)为双曲线x2a2-y2b2=1(a>0,b>0)上一点,P1P2为曲线C的动弦,且弦PP1,PP2斜率存在,记为k1,k2,则直线P1P2通过定点M(mx0,-my0)(m≠1)的充要条件是k1⋅k2=1+m1-m⋅b2a2.19.过双曲线x2a2-y2b2=1(a>0,b>o)上任一点A(x0,y0)任意作两条倾斜角互补的直线交双曲线于B,C两点,则直线BC有定向且k BC=-b2x0a2y0(常数).20.双曲线x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1,F2,点P为双曲线上任意一点∠F1PF2=γ,则双曲线的焦点角形的面积为S△F1PF2=b2cotγ2=b2γ2tan,P±ac c2+b2cot2γ2,±b2c cotγ2.21.若P为双曲线x2a2-y2b2=1(a>0,b>0)右(或左)支上除顶点外的任一点,F1,F2是焦点,∠PF1F2=α,∠PF2F1=β,则c-ac+a=tan α2cotβ2(或c-ac+a=tanβ2cotα2).22.双曲线x2a2-y2b2=1(a>0,b>o)的焦半径公式:F1(-c,0),F2(c,0)当M(x0,y0)在右支上时,|MF1|=ex0+a,|MF2|=ex0-a.当M(x0,y0)在左支上时,|MF1|=-ex0-a,|MF2|=-ex0+a.23.若双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,左准线为L,则当1<e≤2+1时,可在双曲线上求一点P,使得PF1是P到对应准线距离d1与PF2的比例中项.24.P为双曲线x2a2-y2b2=1(a>0,b>0)上任一点,F1,F2为二焦点,A为双曲线左支内一定点,则|AF2|-2a≤|PA|+|PF1|,当且仅当A,F2,P三点共线且P在左支时,等号成立.25.双曲线x2a2-y2b2=1(a>0,b>0)上存在两点关于直线l:y=k(x-x0)对称的充要条件是x02>(a2+b2)2 a2-b2k2k≠0且k≠±a b .26.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P是双曲线x=a secϕy=b tanϕ(a>0,b>0)上一点,则点P对双曲线两焦点张直角的充要条件是e2=11-tan2ϕ.29.设A,B为双曲线x2a2-y2b2=k(a>0,b>0,k>0,k≠1)上两点,其直线AB与双曲线x2a2-y2b2=1相交于P,Q,则AP=BQ.30.在双曲线x2a2-y2b2=1中,定长为2m(m>0)的弦中点轨迹方程为m2=1-x2a2-y2b2a2cosh2t+b2sinh2t,coth t=-aybx,x=0时t=0,弦两端点在两支上x2a2-y2b2-1a2sinh2t+b2cosh2t,coth t=-bxay,y=0时t=0,弦两端点在同支上31.设S为双曲线x2a2-y2b2=1(a>0,b>0)的通径,定长线段L的两端点A,B在双曲线右支上移动,记|AB|=l,M(x0,y0)是AB中点,则当l≥ΦS时,有(x0)min=a2c+l2e c2=a2+b2,e=c a;当l<ΦS时,有(x0)min=a2b4b2+l2.32.双曲线x2a2-y2b2=1(a>0,b>0)与直线Ax+By+C=0有公共点的充要条件是A2a2-B2b2≤C2.33.双曲线(x-x0)2a2-(y-y0)2b2=1(a>0,b>0)与直线Ax+By+C=0有公共点的充要条件是A2a2-B2b2≤(Ax0+By0+C)2.34.设双曲线x2a2-y2b2=1(a>0,b>0)的两个焦点为F1、F2,P(异于长轴端点)为双曲线上任意一点,在△PF1F2中,记∠F1PF2=α,∠PF1F2=β,∠F1F2P=γ,则有sinα±(sinγ-sinβ)=c a=e.35.经过双曲线x2a2-y2b2=1(a>0,b>0)的实轴的两端点A1和A2的切线,与双曲线上任一点的切线相交于P1和P2,则|P1A1|⋅|P2A2|=b2.36.已知双曲线x2a2-y2b2=1(b>a>0),O为坐标原点,P、Q为双曲线上两动点,且OP⊥OQ.(1)1|OP|2+1 |OQ|2=1a2-1b2;(2)|OP|2+|OQ|2的最小值为4a2b2b2-a2;(3)SΔOPQ的最小值是a2b2b2-a2.37.MN是经过双曲线x2a2-y2b2=1(a>0,b>0)过焦点的任一弦(交于两支),若AB是经过双曲线中心O且平行于MN的弦,则|AB|2=2a|MN|.38.MN是经过双曲线x2a2-y2b2=1(a>b>0)焦点的任一弦(交于同支),若过双曲线中心O的半弦OP⊥。
方法技巧专题07圆锥曲线的概念及其几何性质
方法技巧专题07圆锥曲线的概念及其几何性质圆锥曲线是平面几何中的一个重要概念,是指由一个动点P在平面上,以一个定点F为焦点和一个定直线L为准线,满足动点P到焦点F的距离与动点P到准线L的距离的比值始终保持不变的轨迹。
根据这个定义可以推导出圆锥曲线的几何性质。
一、圆锥曲线的种类根据焦点和准线的位置不同,圆锥曲线分为三种:1.当焦点F在线上准线L上时,得到的是一个圆。
2.当焦点F在准线L上方时,得到的是一个椭圆。
3.当焦点F在准线L下方时,得到的是一个双曲线。
二、圆锥曲线的性质1.定义性质:圆锥曲线上的任意一点P到焦点F的距离与点P到准线L的距离的比值始终保持不变。
这个比值称为离心率,用e表示。
2.焦点和准线之间的距离:对于椭圆和双曲线,焦点到准线的距离是有限的。
对于双曲线,焦点到准线的距离大于焦点到曲线上任意一点的距离。
对于椭圆,焦点到准线的距离小于焦点到曲线上任意一点的距离。
3.长轴和短轴:对于椭圆,长轴是两个焦点之间的距离的2倍,而短轴是两个准线之间的距离的2倍。
长轴和短轴的长度决定了椭圆的形状。
4.焦点和准线的关系:焦点位于准线的内部,且焦点到准线的距离等于焦点到曲线上最远的点的距离。
每条曲线上都存在两个焦点,两个焦点是关于准线的镜像。
5.对称性:圆锥曲线具有轴对称性。
对于椭圆和双曲线,轴是通过两个焦点的直线,称为主轴。
对于圆和抛物线,轴是和准线平行的直线,称为准轴。
6.双曲线的渐近线:双曲线有两条渐近线,分别与曲线无限延伸的两个分支趋于平行。
渐近线的斜率是曲线离心率e的倒数。
7.抛物线的焦点性质:抛物线的焦点是准线上的一个点,且抛物线上任意一点到焦点的距离等于该点到准线的垂直距离。
三、圆锥曲线的应用圆锥曲线广泛应用于科学和工程中的各个领域,如天文学、物理学、航天工程、建筑设计等。
其中一些应用包括:1.天体运动:天体运动中的椭圆轨道和抛物线轨道可以用圆锥曲线来描述。
2.反射器:抛物线可以用于设计反射器,如车灯和卫星碟天线。
圆锥曲线知识点总结
圆锥曲线知识点总结圆锥曲线是解析几何中的重要内容,由平面与一个双曲面、椭圆面或者抛物线面相交而得到。
在高中数学课程中,学习圆锥曲线是必不可少的。
本文将对圆锥曲线的定义、基本方程、性质和应用进行总结。
一、圆锥曲线的定义圆锥曲线就是平面与一个双曲面、椭圆面或者抛物线面相交而得到的曲线,在平面上的图像可以呈现出不同的形状。
二、圆锥曲线的基本方程1. 双曲线:双曲线的基本方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$。
其中,a和b分别为椭圆的两个半轴。
2. 椭圆:椭圆的基本方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。
其中,a和b分别为椭圆的两个半轴。
3. 抛物线:抛物线的基本方程为:$y^2=2px$。
其中,p为抛物线的焦距。
三、圆锥曲线的性质1. 双曲线的性质:双曲线的两个分支镜像对称于原点,焦点到曲线的距离之差为常数。
双曲线还具有渐近线,即曲线趋近于两根直线。
2. 椭圆的性质:椭圆的两个焦点在椭圆的长轴上,且焦点到任意点的距离之和为常数。
此外,椭圆也具有主轴、短轴和焦距等重要概念。
3. 抛物线的性质:抛物线的焦点位于抛物线的顶点上,且焦点到抛物线上任意点的距离等于焦点到该点的法线距离。
四、圆锥曲线的应用1. 双曲线的应用:双曲线在电磁学中有广泛的应用,例如电磁波的传播、天线的辐射以及电磁场分布等方面。
2. 椭圆的应用:椭圆在力学、天文学和导航等领域有着重要的应用。
例如椭圆轨道运动的物体、天体运动规律的研究以及导航系统中的卫星轨道等。
3. 抛物线的应用:抛物线在物理学和工程学中有着广泛的应用。
例如自由落体运动、射击运动以及卫星的发射轨道等。
综上所述,圆锥曲线是解析几何中的重要内容,通过本文的总结,我们了解了圆锥曲线的定义、基本方程、性质和应用。
在学习过程中,我们需要深入理解每个曲线的特点和应用领域,为解决实际问题提供有力的数学工具。
希望本文对你对圆锥曲线的学习有所帮助。
圆锥曲线的基本性质与应用
圆锥曲线的基本性质与应用圆锥曲线是平面上一类重要的几何图形,具有许多重要的性质和应用。
在本文中,我们将介绍圆锥曲线的基本性质、如何描述圆锥曲线、圆锥曲线在数学和自然科学中的应用等方面。
一、圆锥曲线的基本性质圆锥曲线是由一个可旋转的直角三角形通过旋转而产生的。
这个过程形成了三种类型的圆锥曲线:椭圆、双曲线和抛物线。
椭圆是一种具有中心对称性的圆锥曲线,它的两个焦点之间的距离是一定的,被称为椭圆的长轴。
椭圆的轴比是轴的长度之比,通常用e表示,并且e总是小于1。
椭圆在数学、物理和天文学中都有着广泛的应用,如描述行星轨道和电子轨道等。
双曲线也是一种具有中心对称性的圆锥曲线,但是它的两个焦点之间的距离却是一定的,被称为双曲线的轴。
双曲线的轴比是轴的长度之比,它总是大于1。
双曲线在数学、物理和天文学等领域中也有很多应用,如描述分子结构和测量天体距离等。
抛物线是一种只有一个焦点的圆锥曲线,它的轴是与曲线平行的直线。
抛物线在物理学中也有广泛的应用,如描述空气力学中的运动情况和设计天文望远镜等。
二、描述圆锥曲线的方式描述圆锥曲线的方式有很多种,其中最常见的是使用方程或参数来描述。
方程描述圆锥曲线通常用矩阵和向量的形式表示,而参数描述则需要指定曲线上的点的位置。
参数的方式是使用一个参数方程来描述曲线,其中曲线上的点可通过参数t计算得到。
例如,椭圆的参数方程可以表示为:x = acos(t)y = bsin(t)其中a、b分别是椭圆长轴和短轴的长度,t是椭圆上的点的参数。
三、圆锥曲线在数学和自然科学中的应用圆锥曲线在数学和自然科学中有许多应用。
在数学领域,椭圆曲线通常用于数论、代数几何和密码学等领域,而双曲线曲线则常用于微积分、微分几何和流体力学等领域。
抛物线曲线也经常用于机械学和空气力学等领域。
在自然科学领域,圆锥曲线同样有着广泛的应用。
例如,椭圆曲线可用于描述行星轨道、电子轨道和分子结构等,在物理学和化学中具有重要作用。
高中数学圆锥曲线知识点总结
高中数学中,圆锥曲线是重要的内容之一。
以下是对圆锥曲线的知识点进行总结:1. 圆锥曲线的定义:圆锥曲线是在平面上由一个固定点(焦点)和一个到该点的固定距离之比(离心率)确定的曲线。
2. 椭圆:-定义:椭圆是所有到两个焦点的距离之和等于常数的点的集合。
-基本方程:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中$a$和$b$分别代表椭圆的半长轴和半短轴。
-离心率:$e=\frac{\sqrt{a^2-b^2}}{a}$,离心率满足$0<e<1$。
3. 双曲线:-定义:双曲线是所有到两个焦点的距离之差的绝对值等于常数的点的集合。
-基本方程:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中$a$和$b$分别代表双曲线的半长轴和半短轴。
-离心率:$e=\frac{\sqrt{a^2+b^2}}{a}$,离心率满足$e>1$。
4. 抛物线:-定义:抛物线是所有到一个焦点的距离等于到直线(准线)的距离的点的集合。
-基本方程:$y^2=4ax$,其中$a$为抛物线的焦点到准线的距离的一半。
5. 圆:-定义:圆是到一个固定点的距离等于常数的点的集合。
-基本方程:$(x-h)^2+(y-k)^2=r^2$,其中$(h,k)$为圆心的坐标,$r$为半径的长度。
6. 圆锥曲线的性质:-焦点和准线:椭圆和双曲线有两个焦点和一条准线,抛物线有一个焦点和一条准线,圆只有一个焦点和没有准线。
-对称性:椭圆和双曲线关于$x$轴、$y$轴对称,抛物线关于$y$轴对称。
-焦点与离心率的关系:椭圆和双曲线的离心率小于1,抛物线的离心率等于1,圆的离心率为0。
-焦点与直径的关系:椭圆和双曲线的焦点在直径上,抛物线的焦点在对称轴上。
7. 焦点和准线的性质:-椭圆和双曲线:对于椭圆和双曲线,焦点到准线的距离等于焦点到曲线上任意点的距离之差的一半。
同时,准线也是曲线的对称轴。
圆锥曲线的定义与基本性质
圆锥曲线的定义与基本性质圆锥曲线是仿射空间中的一类特殊曲线,由一个固定点(焦点)到一个固定直线(准线)上所有点的距离与一个常数之比为定值的点构成。
圆锥曲线包括椭圆、双曲线和抛物线三种类型。
在本文中,我们将探讨圆锥曲线的一些基本定义及性质。
一、圆锥曲线的定义圆锥曲线是由一个固定点 p(称为焦点)和一个不包含 p 点的直线 l(称为准线)所确定的曲线。
圆锥体沿着准线 l 延伸,取一个点 r,使得 pr:rd 是定值,其中 d 为点 r 到直线 l 的距离。
设 F1,F2 是焦点,l 为准线,e 为离心率,则 e=PF1/PS,其中 S 是公共焦点。
- 当 e<1 时,得到椭圆;- 当 e=1 时,得到抛物线;- 当 e>1 时,得到双曲线。
例如,下图中,以点 F 为焦点,线段 CD 为准线,且焦距PF/CD=1/2,得到的曲线就是抛物线。
二、圆锥曲线的参数方程对于椭圆而言,可以使用参数方程来描述:x=a costy=b sint其中 a 和 b 分别代表椭圆在 x 轴和 y 轴方向上的半径,t 为变量。
类似的,可以得到双曲线和抛物线的参数方程。
三、圆锥曲线的焦点和直径对于圆锥曲线,焦点和直径是十分重要的性质之一。
对于椭圆而言,每一条直径的中点都会落在坐标系的第一象限中,且椭圆的两个焦点都位于坐标轴上。
对于双曲线而言,每一条直径的中点都会落在 x 轴中线上,且双曲线的两个焦点都位于 x 轴上。
对于抛物线而言,它没有焦点,但总存在一个顶点,即曲线的最高点或最低点,每一条与顶点连线垂直于开口的那一侧的直线都称为该抛物线的一条直径。
四、圆锥曲线的离心率和倾角离心率 e 是一个很重要的度量曲线形状的参数,表示焦点与准线之间距离的比值。
其定义为 e=PF/PS,其中 PF 为焦点到曲线表面上一点的距离,PS 为焦点到准线的距离。
而圆锥曲线的倾角则是准线与 x 轴的夹角。
对于椭圆和双曲线而言,倾角的值随着离心率的增大而减小,对于抛物线而言,则为 45 度。
高中数学圆锥曲线知识点总结
高中数学圆锥曲线知识点总结高中数学圆锥曲线知识点总结一、基本概念1、圆锥曲线:圆锥曲线是由一系列圆及其与它们的共轭切面围成的曲线,也可以看作是由一条曲线以及一个光滑曲面所围成的曲线空间。
2、圆弧:圆弧是曲线上一定角度范围内的闭合曲线,实际中常用于表示圆的片段。
3、渐开线:渐开线是由来自同一个圆的两个圆弧构成的弧线,渐开线的共轭切面是一条直线,而此直线又可在空间上做一个新的圆锥曲线。
二、圆锥曲线的性质1、圆锥曲线的曲线部分是由圆弧和渐开线组成的,曲线上每个点都是圆切弧上的一个点;2、圆锥曲线的表面部分是一个椭圆锥曲面,其参数方程由三个椭圆锥参数函数组成,其积分可以计算出圆锥曲面上的面积;3、点P(x,y,z)在圆锥曲线上,则其有连续的x,y,z三个坐标参数,并且满足圆锥曲线的参数方程;4、圆锥曲线的曲线部分是椭圆锥曲线,并且任一点在曲线上的切线方向都是一致的;5、圆锥曲线的曲线与曲面的连接,是一条中间缝合曲线,即渐开线,渐开线也可以看作是空间曲线上的锥面的交线。
6、圆锥曲线的曲线部分与表面部分的连接,是一条中间缝合曲线,被称为椭圆锥曲线,椭圆锥曲线也是一条空间曲线上的椭圆锥面的交线。
7、圆锥曲线的曲线部分与表面部分之间的交点的曲线,也被称为椭圆锥曲线,它也可以看作是圆锥曲线上的椭圆锥线的交点的曲线。
三、圆锥曲线的应用1、圆锥曲线在建筑学上常用于建造拱顶、圆顶、屋顶等,这些曲线具有很好的象征性;2、圆锥曲线在航空和航天工程上常用于设计飞机、火箭的运动轨迹;3、圆锥曲线在汽车制造上常用于设计汽车的底盘,以实现更好的操控性能;4、圆锥曲线在计算机渲染上常用于设计三维物体,以获得更加逼真的渲染效果;5、圆锥曲线在绘画上常用于创作凹凸有致的曲线,以实现更加自然的线条。
总之,圆锥曲线是一种非常有用的曲线,它在不同领域有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
② 由焦半径公式可得:双曲线上距离焦点最近的点为双曲线的顶点,距离为
ca
( 8)焦点三角形面积: 设双曲线上一点 P x0, y0 S ,则 VPF1F2
(三)抛物线:
b2 cot (其中 2
PF1F2 )
1、定义:平面内到一定点的距离等于到一条定直线(定点不在定直线上)的距离的点的轨迹 为抛物线
2、抛物线的标准方程及焦点位置:
c :与焦点有关: F1 c,0 , F2 c,0 , F1F2 2c 称为焦距 ( 2)对称性:椭圆关于 x 轴, y 轴对称,且关于原点中心对称
( 3)椭圆上点的坐标范围:设 P x0, y0 ,则 a x0 a, b y0 b
( 4)通径:焦点弦长的最小值 ① 焦点弦:椭圆中过焦点的弦
② 过焦点且与长轴垂直的弦
1
2b2
2 1 cosPF1F2 sin F1PF2
b 2 sin F1PF2
b 2 tan F1PF2
1 cos F1PF2
2
S 因为 VPF1F2
1 2 2c y0
c
y0
,所以
b2
tan F1PF2 2
c y0 ,由此得到的推论:
① F1PF2 的大小与 y0 之间可相互求出
② F1PF2 的最大值: F1PF2 最大
0,b2
a2
c2
焦点在哪个轴上,则标准方程中哪个字母的分母更大
2、椭圆的性质:以焦点在
x 轴的椭圆为例:
x2 a2
y2 b2 1 a b 0
( 1) a :与长轴的顶点有关: A1 a,0 , A2 a,0 , A1A2 2a 称为长轴长
b :与短轴的顶点有关: B1 0, b , B2 0,b , B1B2 2b 称为短轴长
x2 a2
y2 b2 1 a 0,b 0 中,求渐近线即解:
x2 a2
y2 b2
0 ,变
形为 y
b x ,所以 y a
b x 即为双曲线的渐近线 a
② 渐近线的几何特点: 直线 x a, x a, y b, y b 所围成的矩形, 其对角线即为双曲线
的渐近线
③ 渐近线的作用:一是可以辅助作出双曲线的图像;二是渐近线的斜率也能体现
y
p x ,不妨设 y kx 1 与 y
p x平行, 则有 k
p
。从相切可想到与抛物线
42
42
42
联立消元后的方程
0:
y px 1 42
x2 2 py
x2 p2 x 2 p 0 , 所 以 22
2
p
8p 0 解得 p 4
22
答案: A
例 3:如图,F1, F2是椭圆
x2 C1 : m2
y2
x2
n 2 1 m n 0 与双曲线 C2 : a 2
又因为 a 2 b 2 c 2 5
答案: C
2 5ab 4a2 b2 a2 b2 5
2a
a2
3 解得:
b2
11 2 ,故选 C 1 2
例 5:(2014 ,山东, 10)已知 a
b
0 ,椭圆 C1 的方程为
x2 a2
y2 b2
1 ,双曲线 C 2 的方程是
x2 a2
y2 b2
1 , C1 与 C2 的离心率之积为
2 x ,进而与椭圆方程联立,
解:通过 C 2 可得 F1 5,0 , F2 5,0 , c 5
b2 x2 a2 y2 a2 b2 不妨设 AB : y 2 x ,则
y 2x
x2
a 2b2 4a2 b2 ,所以 x
ab 4a 2 b2
利用弦长公式可得 d 1 22 x1 x2
2 5ab 2 a
4a 2 b2 3
11 e12 e22
m2 a2 c2 c2
m2 a2 c2
,本题与焦半 径相关,所以考虑
AF1 AF2 2m, AF1 AF2 2a 。结合 AF1 的中点与 F1F2 的中点可得双曲线的渐近线与
AF2 平行,从而 AF1
2
AF2 ,所以有 AF1
2
AF2
2
F1F2
4c2 ,联系上面条件可得:
4c2
)
A. 5
B. 4 2
C. 3
D. 5
思路:先从常系数方程入手,抛物线
y2 12 x 的焦点为 3,0 ,即双曲线中的 c 3 ,所以
b2 c2 a 2 5 ,从而双曲线方程为:
x2
y2 1 ,其渐近线方程: y
45
5 x ,由对称
2
性可得焦点到两渐近线的距离相等,不妨选择
l : 5x 2 y 0 ,右焦点 F2 3,0 ,所以
( 1)焦点在 x 轴正半轴: y2 2 px p 0 ,焦点坐标
p ,0
2
( 2)焦点在 x 轴负半轴: y2 2 px p 0 ,焦点坐标
p ,0
2
( 3)焦点在 y 轴正半轴: x2 2 py p 0 ,焦点坐标 0, p 2
( 4)焦点在 y 轴负半轴: x2
2 py p 0 ,焦点坐标 0, p 2
SVPF1F2 最大
y 0 最大
P 为短轴顶点
(二)双曲线:
1、定义:平面上到两个定点 F1, F2 距离差的绝对值为一个常数(小于
F1F2 )的点的轨迹称
为双曲线, 其中 F1, F2 称为椭圆的焦点, F1F2 称为椭圆的焦距; 如果只是到两个定点 F1, F2 距
离差为一个常数,则轨迹为双曲线的一支 2、标准方程:
① 设椭圆上一点 P x0, y0 ,则 PF1 a ex0, PF2 a ex0 (可记为“左加右减” )
② 焦半径的最值:由焦半径公式可得:焦半径的最大值为
a c ,最小值为 a c
( 7)焦点三角形面积:
S 证明: VPF1 F2
1 2 PF1
SVPF1F 2
b2 tan (其中 2
PF2 sin F1PF2
y2 2 px p 0 焦点的直线与抛物线交于 A x1, y1 , B x2 , y2 ,
则 AB x1 x2 p ( AB AF BF ,再由焦半径公式即可得到)
二、典型例题:
例 1:已知双曲线 x 2 4
y2 b2
1 的右焦点与抛物线
y2
12x 的焦点重合, 则该双曲线的焦点到
其渐近线的距离等于(
小结:通过方程即可判断出焦点的位置与坐标:那个字母是一次项,则焦点在哪条轴上;其
坐标为一次项系数除以 4,例如: x2 4 y ,则焦点在 y 轴上,且坐标为 0,1
3、焦半径公式:设抛物线 4、焦点弦长:设过抛物线
uuur y2 2 px p 0 的焦点为 F , A x, y ,则 AF
p x
2
A. a2 13 2
B. a 2 13
C. b2 1 2
D. b 2 2
思路:因为 C1,C 2 有公共焦点,所以通过 C 2 可得 F1 5,0 , F2 5,0 ,从而 c 5 ,圆的
直径为 2a ,所以 AB 截椭圆的弦长为
2a
。由双曲线得
AB : y
3
再利用弦长公式即可得到关于 a (或 b )的方程,解方程即可
PF1
PF2
2a ,则双曲线标准方程为:
y2 a2
x2 b2
1,其中 a 0,b 0,b2
c2
a2
焦点在哪个轴上,则对应字母作为被减数
2、双曲线的性质:以焦点在
x2 x 轴的双曲线为例: a2
y2 b2 1 a 0, b 0
( 1) a :与实轴的顶点有关: A1 a,0 , A2 a,0 , A1A2 2a 称为实轴长
则p (
)
A. 4
B. 3
C. 2
Байду номын сангаас
D. 1
思路:本题涉及圆锥曲线和字母较多,所以首先要确定核心变量,从所求出发可尝试以
p作
为 核 心 变 量 , 抛 物 线 x2
2 py 的 焦 点 为
p 0,
, 所以 可得 b
p
,因为
2
2
2a 4 2
x2 4 y2
a 2 2 ,所 以双 曲线方 程为 8
p2 1 , 可 求 得 渐 近 线 方 程 为
b :与虚轴的顶点有关: B1 0, b , B2 0,b , B1B2 2b 称为虚轴长
c :与焦点有关: F1 c,0 , F2 c,0 , F1F2 2c 称为焦距 ( 2)对称性:双曲线关于 x 轴, y 轴对称,且关于原点中心对称
( 3)双曲线上点坐标的范围:设 P x0, y0 ,则有 x0 a 或 x0 a , y0 R
2b2 PQ
a
说 明 : 假 设 PQ 过 F1 c,0 , 且 与 长 轴 垂 直 , 则 P c, y0 , Q c, y0 , 所 以
c2 a2
y02 b2
1
y02
b4 a2 ,可得 y0
b2 。则 PQ
a
2b2 a
c ( 5)离心率: e ,因为 c a ,所以 e 0,1
a ( 6)焦半径公式:称 P 到焦点的距离为椭圆的焦半径
dF2 l
35
5
2
2
5
2
答案: A 小炼有话说: ( 1)一道题含多个圆锥曲线方程,往往以某些特殊点(焦点,顶点)为桥梁联 接这些方程,在处理时通常以其中一个曲线方程(不含参)为入手点,确定特殊点的坐标, 进而解出其他圆锥曲线的要素 答案: A
x2 y2 例 2 : 已知双曲线 a 2 b 2 1 a 0,b 0 的实轴长为 4 2 ,虚轴的一个端点与抛物线 x2 2 py p 0 的焦点重合,直线 y kx 1与抛物线相切且与双曲线的一条渐近线平行,