定积分总结

合集下载

定积分的计算方法总结

定积分的计算方法总结

定积分的计算方法总结引言定积分是微积分中重要的概念之一,它可以用于求取曲线下的面积、求解物理问题中的积分以及解决各种与变化量有关的问题。

本文将总结定积分计算的常用方法,包括基本定积分公式、换元积分法和分部积分法。

基本定积分公式基本定积分公式是计算定积分时最基础也是最常用的方法之一。

以下为常见的基本定积分公式:1.$\\int x^m dx = \\frac{1}{m+1}x^{m+1}$,其中m为常数,m eq−1。

2.$\\int \\frac{1}{x} dx = \\ln|x|$,其中x为正实数。

3.$\\int e^x dx = e^x$。

4.$\\int \\sin x dx = -\\cos x$。

5.$\\int \\cos x dx = \\sin x$。

6.$\\int \\tan x dx = -\\ln|\\cos x|$。

换元积分法换元积分法是一种常用的定积分计算方法,它通过引入一个新的变量来简化被积函数的形式。

具体步骤如下:1.选择一个适当的变量代换,通常选择与题目给定的被积函数中具有根号、三角函数等特殊形式相关的变量。

2.根据选择的变量代换,将被积函数中的所有变量都用新的变量表示。

3.计算新的被积函数的导数,并将被积函数转换为对新变量的积分。

4.计算新的积分。

以下是换元积分法的一个例子:求解定积分$\\int 2x(x^2+1)^3 dx$。

解:设u=x2+1,则du=2xdx。

将被积函数中的所有x用u表示,则原积分变为$\\int u^3 du$。

计算新的积分得$\\frac{1}{4}u^4 + C$,其中C为常数。

最后,将u替换回x得到最终结果$\\frac{1}{4}(x^2+1)^4 + C$。

分部积分法分部积分法是解决定积分问题中的另一种常用方法,它是利用乘积的导数公式来简化积分计算的步骤。

具体步骤如下:1.选择一个适当的分部积分公式。

分部积分公式为$\\int u dv = uv -\\int v du$。

定积分的计算方法总结

定积分的计算方法总结

定积分的计算方法总结定积分的计算方法总结总结是在某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而得出教训和一些规律性认识的一种书面材料,它可以帮助我们总结以往思想,发扬成绩,是时候写一份总结了。

总结怎么写才能发挥它的作用呢?下面是小编为大家整理的定积分的计算方法总结,希望对大家有所帮助。

定积分1、定积分解决的典型问题(1)曲边梯形的面积(2)变速直线运动的路程2、函数可积的充分条件定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。

定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f (x)在区间[a,b]上可积。

3、定积分的若干重要性质性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。

推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg (x)dx。

推论|∫abf(x)dx|≤∫ab|f(x)|dx。

性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b—a)≤∫abf(x)dx≤M(b—a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。

性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξ,使下式成立:∫abf(x)dx=f(ξ)(b—a)。

4、关于广义积分设函数f(x)在区间[a,b]上除点c(a<c<b)外连续,而在点c的邻域内无界,如果两个广义积分∫acf(x)dx与∫cbf(x)dx都收敛,则定义∫abf(x)dx=∫acf(x)dx+∫cbf(x)dx,否则(只要其中一个发散)就称广义积分∫abf(x)dx发散。

定积分的应用1、求平面图形的'面积(曲线围成的面积)直角坐标系下(含参数与不含参数)极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式S=R2θ/2)旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx,其中f(x)指曲线的方程)平行截面面积为已知的立体体积(V=∫abA(x)dx,其中A(x)为截面面积)功、水压力、引力函数的平均值(平均值y=1/(b—a)*∫abf(x)dx)。

考研定积分知识点总结

考研定积分知识点总结

一、定积分的定义和性质1. 定积分的概念定积分是微积分学中的重要概念,它是对函数在一个区间上的积分值进行求解的操作。

具体来说,如果函数f(x)在区间[a,b]上是连续的,则我们可以通过定积分的形式来求解函数f(x)在区间[a,b]上的积分值,即∫(a to b) f(x)dx。

这里,∫表示积分符号,a和b分别表示区间的起点和终点,f(x)表示要求解的函数,dx表示积分变量,并代表着在区间[a,b]上x的变化范围。

因此,定积分的求解可以看做是对函数在一个区间上的积分值进行求解的过程。

2. 定积分的性质定积分具有一系列的性质,这些性质在定积分的求解中起着重要的作用。

主要的性质包括线性性、可加性、积性、保号性、保序性等。

具体来说,线性性指的是定积分的线性组合仍然可以进行积分求解;可加性指的是如果一个区间可以分解成若干个子区间,那么对应的积分值也可以进行求和;积性指的是如果一个函数是另一个函数的乘积,那么对应的积分值也可以进行相乘;保号性指的是如果函数在区间上恒大于等于零(小于等于零),那么对应的积分值也恒大于等于零(小于等于零);保序性指的是如果函数在区间上恒大于等于另一个函数(小于等于另一个函数),那么对应的积分值也恒大于等于(小于等于)另一个函数在相同区间上的积分值。

这些性质在定积分的具体求解中是非常有用的,可以帮助我们简化求解的过程,提高计算的效率。

二、定积分的计算1. 定积分的计算方法定积分的计算方法主要包括定积分的定义法、不定积分法、分部积分法、换元积分法和定积分的几何意义。

其中,定积分的定义法是直接根据定积分的定义进行求解;不定积分法是将定积分转化成不定积分,通过求解不定积分再将得到的结果代入原来的定积分式中,从而得到最终的定积分值;分部积分法是将被积函数进行分解,然后利用分部积分公式对各项进行积分求解;换元积分法是通过变量代换的方法将被积函数进行转化,然后再进行积分求解;定积分的几何意义则是利用定积分代表曲线下面积的特性来进行求解。

数学定积分知识总结

数学定积分知识总结

定积分1. 概念: 定积分源自于求曲边梯形的面积, 它的计算形式为:01()lim ()nbk k a k f x dx f x λξ→==∆∑⎰, 结果是一个数值, 其值的大小取决于两个因素(被积函数与积分限).2. 几何意义: 是曲线[](),y f x a b =介于之间与x 轴所围的面积的代数和;3. 经济意义: 若()f x 是某经济量关于x 的变化率(边际问题), 则()ba f x dx ⎰是x 在区间[],ab 中的该经济总量.4. 性质: 本章共列了定积分的八条性质, 其中以下几条在计算定积分中经常用到.(1)()()baabf x dx f x dx =-⎰⎰;(2)[]()()()()b bbaaaf xg x dx f x dx g x dx ±=±⎰⎰⎰;(3)()()bbaakf x dx k f x dx =⎰⎰; (4)()()()bcbaac f x dx f x dx f x dx =+⎰⎰⎰;(5)00()2()aaaf x f x dx f x dx f x -⎧⎪=⎨⎪⎩⎰⎰为奇函数时()()为偶函数时.1.公式: 若()f x 在[],a b 上连续, ()F x 是()f x 的一个原函数, 则()()()baf x dx F b F a =-⎰.2.换元法: 若()f x 在[],a b 连续, ()x t ϕ=在[],c d 上有连续的导数'()t ϕ, 且()t ϕ单调, 则有()()(())'()bdx t acf x dxf t t dt ϕϕϕ=⋅⎰⎰.3. 分部积分法: 若()u x 与()v x 在[],a b 上有连续的导数, 则有()()()()()()bbaabu x dv x u x v x v x du x a =⋅-⎰⎰.1.=⎰__42a π_____; 2. 定积分112121x e dx x⎰ = ___e e -_____;3. 若广义积分2011k dx x +∞=+⎰ , 其中k 为常数,则k = __π2_____;4. 定积分1321sin x xdx -=⎰__0____ ; 5.1211xdx x -=+⎰___0___; 6. 30(sin )xt t dt '=⎰__3sin x x _____ ;7. 广义积分211dx x +∞=⎰__1_____ ; 8. ()bad f x dx dx =⎰ __0______; 9. 设 )(x f 在 [,]a b 上连续,则()()bbaaf x dx f t dt -=⎰⎰ __0_____ ;10. 若函数 )(x f 在 [,]a b 上连续,)(x h 可导,则()()h x ad f t dt dx=⎰_)()]([x h x h f '⋅_____ ;11. 当 =x _0___ 时,⎰-=xt dt te x F 02)( 有极值;12. 设 0()xt f x te dt =⎰ ,则 (0)f ''= __1_______ ;13. 若2kxedx +∞-=⎰ ,则 k = ___21_______ ;14.21(ln )edx x x +∞=⎰_1_______ ; 15. 2131x x e dx -=⎰__0_________ ;二1.arctan xxdx =⎰ ( B )(A)1112-+x(B) 21arctan ln(1)2x x x -+ (C) 1112++x (D) 211x + 2. 下列积分可直接使用牛顿─莱不尼兹公式的有 ( A )(A)53201x dx x +⎰(B)1-⎰ (C)4322(5)xdx x -⎰ (D)11ln eedx x x ⎰ 3. 设 )(x f 为连续函数,则()xaf t dt ⎰为 ( C )(A) ()f t 的一个原函数 (B) ()f t 的所有原函数 (C) )(x f 的一个原函数 (D) )(x f 的所有原函数4.11()()22xf t dt f x =-⎰,且 (0)1f =,则 ()f x = ( A ) (A) 2x e (B)12x e (C) 2x e (D) 212x e 5.1211dx x -=⎰ ( D ) (A) -2 (B) 2 (C) 0 (D) 发散三、1.求下列各函数的导数:(1)211()1xF x dt t =+⎰解:.1111)(212x dt t dx d x F x +=+='⎰ (2)02()cos xF x t tdt =⋅⎰ 求'()F π解:.cos )('.cos cos )cos (cos )(222020202ππππ-===-=-=='⎰⎰⎰F x x tdt t dx d tdt t dx d tdt t dx d x F x x x (3)22()1tx xte F x dt t =+⎰解:⎰⎰⎰⎰⎰+-+=+++=+=x tx t x t x t x x t dt tte dx d dt t te dx d dt t te dt t te dx d dt t te dx d x F 020********)11(1)('222 2223222221)(121)()(122x xe x e x x xe x dx d x e x xx x x +-+=+-⋅+= 2.求下列各极限: (1)203sin limxx tdt x →⎰解:).(3lim 3sin lim )()sin (limsin lim312202203020320上代换倒数第二步用等价无穷===''=→→→→⎰⎰xx x x x tdt xtdt x x xx xx (2)02(2)limxt t x e e dtx-→+-⎰解:.02lim )2()2(lim 22lim )())2((lim)2(lim0002002=-=''-+=-+=''-+=-+-→-→-→-→-→⎰⎰xx x x x x x x x xt t x xt t x e e x e e x e e x dt e e xdte e 3.求下列各定积分:(1)1(1)x dx -⎰10221|)(x x -= (2)120(3)x x dx +⎰103313ln 1|)3(x x+=(3)20cos 2xdx π⎰2021|2sin πx = (4)1310x e dx -⎰=10331103|)(x x e e dx e e =⎰ (5)212x dx -⎰⎰⎰+-=-200122xdx xdx (6)0cos x dx π⎰⎰⎰-=πππ22cos cos 0xdx xdx(7)2adx ⎰a ax x a ax dx x x a a 0221340|)()2(2321+-=+-=⎰(8)21201x dx x +⎰⎰+-=102)111(dx x (9)4⎰ 解:令t =x 2,则d t =2x d x ,当t =0时,x =0;当t =4时,x =2.于是.|))1ln((2)111(2121120202040x x dx x dx x x dt t +-=+-=+=+⎰⎰⎰(10)20ax ⎰解:令x =a sin t ,则d x =a cos t d t ,当x =0时,t =0;当x =a 时,t =2π.于是.|)4sin ()4cos 1(24cos 1)2(sin )2sin ()cos (sin cos sin cos sin sin 16041880402402214242242222202224242424242222πππππππππa a a a a at t dt t dt tdt t dt t a dtt t a tdt t a tdta t a a t a dx x a x =-=-=-=====⋅-⋅=-⎰⎰⎰⎰⎰⎰⎰⎰(11)101dx x+⎰解:令x =t 2,则d x =2t d t ,当x =0时,t =0;当x =1时,t =1.于是).1(2|)arctan (2)111(212211410102102210210π-=-=+-=+=⋅+=+⎰⎰⎰⎰t t dt tdtt t tdt t tdx x x(12)21dx x⎰解:令x =sec t ,则d x =tan t sect t d t ,当x =1时,t =0;当x =2时,t =3π.于是.|)(tan )1(sec tan sec tan sec 1sec 133330121212212ππππt t dt t tdt tdtt tt dx xx -=-==⋅-=-⎰⎰⎰⎰(13)2210x e dx -⎰20122121221|)12(--=-=⎰x x e x d e (14)0cos3xdx π⎰ππ031031|3sin )3(3cos x x xd ==⎰(15)20cos 2xdx π⎰ππ0210)sin (2cos 1x x dx x +=+=⎰ (16)212ln e xdx x+⎰=⎰⎰+=2200ln 2e e dx x x dx x22220221000|)(ln |ln 2)(ln ln 12e e e e x x x xd dx x +=+=⎰⎰. (17)210x xe dx ⎰101221|22x x e dx e ==⎰(18)120x ⎰⎰-=133311dx x.|)1()1()1(110394103331133312321x x d x dx x --=---=-=⎰⎰(19)1201x xe dx e +⎰ .|)arctan()(1110102x x x e de e =+=⎰ (20)12⎰⎰-=2121)(arcsin )(arcsin 2x d x2121|)(arcsin 331-=x四、解答题1.求0()(4)xF x t t dt =-⎰在区间[]1,5-上的最大值与最小值;解:)4()(-='x x x F ,令0)(='x F ,得x =0,x =4.由此可得在),4[]0,(+∞-∞ 上F(x)单调增加,在[0,4]单调减少. 由此可知,在[-1,5]中,F(x)在x =0处取极大值,极大值为F(0)=0;在x =4处取极小值,极小值为F(4)=.|)2()4()4(332402331424-=-=-=-⎰⎰t t dt t t dt t t又F(-1)=.|)2()4()4(371023311240-=-=-=---⎰⎰t t dt t t dt t tF(5)=.|)2()4()4(325502331525-=-=-=-⎰⎰t t dt t t dt t t故在[-1,5]上的最大值为F(0)=0,最小值为F(4)=.332- 2.设20()(1)xf t dt x x =+⎰, 求(0),'(0)f f ;解:两边求导得26)(,23)1(2))1(()(222+='+=++='+=x x f x x x x x x x x f ,故.2)0(,0)0(='=f f。

定积分的知识点总结

定积分的知识点总结

定积分的知识点总结一、定积分的基本概念定积分是微积分学中的重要概念,可以用来计算曲线下的面积,曲线的弧长,质心等物理量。

定积分的基本思想是将曲线下的面积划分为无穷多个微小的矩形,然后求和得到整体的面积。

定积分的符号表示为∫。

对于一个函数f(x),在区间[a, b]上的定积分表示为:∫[a, b]f(x)dx其中,a和b为区间的端点,f(x)为函数在该区间上的取值。

定积分表示在区间[a, b]上的函数f(x)所确定的曲线下的面积。

二、定积分的计算方法1. 黎曼和定积分的计算基本思想是将曲线下的面积划分为很多个小矩形,然后对这些小矩形的面积求和。

这就是定积分的计算方法。

在实际计算中,根据黎曼和的定义,我们可以将区间[a, b]等分为n个小区间,每个小区间长度为Δx=(b-a)/n,然后在每个小区间上取一个样本点xi,计算f(xi)Δx的和:∑[i=1,n]f(xi)Δx当n趋近于无穷大时,这个和就可以逼近定积分的值。

这就是黎曼和的基本思想。

2. 定积分的几何意义定积分可以用来计算曲线下的面积,也可以用来计算曲线的弧长。

对于一个函数f(x),其在区间[a, b]上的定积分表示的是曲线y=f(x)和x轴之间的面积。

这个面积就是曲线下的面积。

如果函数f(x)在区间[a, b]上非负且连续,那么函数y=f(x)、直线x=a、x=b以及x轴所围成的区域的面积就是∫[a, b]f(x)dx。

3. 定积分的物理意义定积分还可以用来计算物理量,比如质量、质心等。

在物理学中,可以用定积分来计算物体的质量、质心等物理量。

对于一个连续的物体,将其质量密度函数表示为ρ(x),则物体的质量可以表示为定积分:M=∫[a, b]ρ(x)dx三、定积分的性质1. 线性性定积分具有线性性质,即∫[a, b](c1f1(x)+c2f2(x))dx=c1∫[a, b]f1(x)dx+c2∫[a, b]f2(x)dx。

其中c1、c2为常数,f1(x)、f2(x)为函数。

定积分的计算方法总结

定积分的计算方法总结

定积分的计算方法总结导读:定积分1、定积分解决的典型问题(1)曲边梯形的面积(2)变速直线运动的路程2、函数可积的充分条件●定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。

●定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。

3、定积分的若干重要性质●性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。

●推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx。

●推论|∫abf(x)dx|≤∫ab|f(x)|dx。

●性质设M及m分别是函数f(x)在区间[a,b]上的'最大值和最小值,则m(b-a)≤∫abf(x)dx≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。

●性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。

4、关于广义积分设函数f(x)在区间[a,b]上除点c(a 定积分的应用1、求平面图形的面积(曲线围成的面积)●直角坐标系下(含参数与不含参数)●极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式S=R2θ/2)●旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx,其中f(x)指曲线的方程)●平行截面面积为已知的立体体积(V=∫abA(x)dx,其中A(x)为截面面积)●功、水压力、引力●函数的平均值(平均值y=1/(b-a)*∫abf(x)dx)【定积分的计算方法总结】1.定积分计算方法总结2.不定积分的方法总结3.定积分证明题方法总结六篇4.极限的计算方法总结5.不定积分知识点总结6.高中定积分的概念课件7.也谈计息天数的计算方法散文8.《小数加减法的计算方法》教学反思范文上文是关于定积分的计算方法总结,感谢您的阅读,希望对您有帮助,谢谢。

定积分的计算知识点总结

定积分的计算知识点总结

定积分的计算知识点总结一、定积分的定义。

1. 概念。

- 设函数y = f(x)在区间[a,b]上连续,用分点a=x_0将区间[a,b]等分成n个小区间,每个小区间长度为Δ x=(b - a)/(n)。

在每个小区间[x_i - 1,x_i]上取一点ξ_i(i =1,2,·s,n),作和式S_n=∑_i = 1^nf(ξ_i)Δ x。

当nto∞时,如果S_n的极限存在,则称这个极限为函数y = f(x)在区间[a,b]上的定积分,记作∫_a^bf(x)dx,即∫_a^bf(x)dx=limlimits_n→∞∑_i = 1^nf(ξ_i)Δ x。

- 这里a与b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积表达式。

2. 几何意义。

- 当f(x)≥slant0时,∫_a^bf(x)dx表示由曲线y = f(x),直线x = a,x = b以及x 轴所围成的曲边梯形的面积。

- 当f(x)≤slant0时,∫_a^bf(x)dx表示由曲线y = f(x),直线x = a,x = b以及x 轴所围成的曲边梯形面积的相反数。

- 当f(x)在[a,b]上有正有负时,∫_a^bf(x)dx表示位于x轴上方的曲边梯形面积减去位于x轴下方的曲边梯形面积。

二、定积分的基本性质。

1. 线性性质。

- ∫_a^b[k_1f(x)+k_2g(x)]dx = k_1∫_a^bf(x)dx + k_2∫_a^bg(x)dx,其中k_1,k_2为常数。

2. 区间可加性。

- ∫_a^bf(x)dx=∫_a^cf(x)dx+∫_c^bf(x)dx,其中a < c < b。

3. 比较性质。

- 如果在区间[a,b]上f(x)≥slant g(x),那么∫_a^bf(x)dx≥slant∫_a^bg(x)dx。

- 特别地,<=ft∫_a^bf(x)dxright≤slant∫_a^b<=ftf(x)rightdx。

定积分知识点总结等价

定积分知识点总结等价

定积分知识点总结等价在本文中,我们将对定积分的基本概念、性质和求解方法进行总结,希望能够帮助读者更好地理解和运用定积分。

一、定积分的基本概念定积分可以看作是一个区间上面积的度量,它描述了函数在一定区间上的总体变化情况。

在数学上,定积分可以理解为函数在指定区间内的面积或者是曲线的弧长,在物理上可以表示为质量、能量、熵等的总量。

1.1 定积分的定义设f(x)在区间[a, b]上有定义,且[a, b]是有限闭区间,将[a, b]上的分割记作Δ,记Δ的任一分点为x0, x1, ..., xn,对应的区间为[x0, x1], [x1, x2], ..., [xn-1, xn]。

则对应的分割Δ表示为:Δ = {x0, x1, ..., xn}Δ的长度记作δxi = xi - xi-1,假设Δ长度的最大值为δ = max{δxi}。

我们将区间[a, b]分成n个小区间,当n趋于无穷大时,(也就是每个小区间的长度趋于0),则这个过程称为区间[a, b]的分割,也称之为区间[a, b]的划分。

对于函数f(x)在区间[a, b]上的定积分,可以用如下的极限形式定义:∫(a->b)f(x)dx = lim(Δ->0)Σ(i=1->n)f(xi*)δxi其中,xi*是区间[xi-1, xi]上的任意一点。

1.2 定积分的几何意义定积分的几何意义是非常直观的,它表示了曲线与坐标轴以及两条直线之间的面积。

当函数f(x)在区间[a, b]上是非负的时候,定积分表示了曲线y=f(x)与x轴以及直线x=a, x=b之间的面积。

当函数f(x)在区间[a, b]上是有正有负的时候,定积分表示了曲线y=f(x)与x轴之间的面积,其中函数f(x)在区间[a, b]上的正值与负值部分面积互相抵消,最终得到曲线与x轴之间的面积。

1.3 定积分的物理意义在物理上,定积分可以用来描述某一物理量在一定的时间或空间范围内的总量。

例如,对于质量密度为ρ(x)的一根杆在区间[a, b]上的质量总量可以表示为:m = ∫(a->b)ρ(x)dx这里ρ(x)dx表示了杆上长度为dx的小段的质量。

定积分证明题方法总结六

定积分证明题方法总结六

定积分证明题方法总结六篇定积分是历年数学的考查重点,其中定积分的证明是考查难点,同学们经常会感觉无从下手,小编特意为大家总结了定积分的计算方法,希望对同学们有帮助。

篇一:定积分计算方法总结一、不定积分计算方法1. 凑微分法2. 裂项法3. 变量代换法1) 三角代换2) 根幂代换3) 倒代换4. 配方后积分5. 有理化6. 和差化积法7. 分部积分法(反、对、幂、指、三)8. 降幂法二、定积分的计算方法1. 利用函数奇偶性2. 利用函数周期性3. 参考不定积分计算方法三、定积分与极限1. 积和式极限2. 利用积分中值定理或微分中值定理求极限3. 洛必达法则4. 等价无穷小四、定积分的估值及其不等式的应用1. 不计算积分,比较积分值的大小1) 比较定理:若在同一区间[a,b]上,总有f(x)>=g(x),则 >= ()dx2) 利用被积函数所满足的不等式比较之 a)b) 当0 2. 估计具体函数定积分的值积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m则M(b-a) 3. 具体函数的定积分不等式证法1) 积分估值定理2) 放缩法3) 柯西积分不等式≤ %4. 抽象函数的定积分不等式的证法1) 拉格朗日中值定理和导数的有界性2) 积分中值定理3) 常数变易法4) 利用泰勒公式展开法五、变限积分的导数方法篇二:定积分知识点总结 1、经验总结(1) 定积分的定义:分割—近似代替—求和—取极限(2)定积分几何意义:①f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积 ab②f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积的相a反数(3)定积分的基本性质:①kf(x)dx=kf(x)dx aabb②[f1(x)f2(x)]dx=f1(x)dxf2(x)dx aaa③f(x)dx=f(x)dx+f(x)dx aac(4)求定积分的方法:baf(x)dx=limf(i)xi ni=1nbbbbbcb①定义法:分割—近似代替—求和—取极限②利用定积分几何意义’③微积分基本公式f(x)F(b)-F(a),其中F(x)=f(x) ba篇三:定积分计算方法总结 1、原函数存在定理●定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。

定积分知识总结(总9页)

定积分知识总结(总9页)

定积分知识总结(总9页)1. 定积分的定义定积分是数学中的一个概念,它表示将一个函数沿着一条给定的路径积累起来的总和。

在数学上,定积分是描述函数在一定区间上的面积、体积、虚功等概念的一种工具。

(1)可加性:若f(x)在[a,b]、[b,c]上可积,则:∫(a,c)f(x)dx=∫(a,b)f(x)dx+∫(b,c)f(x)dx∫(a,b)f(x)dx≥03. 函数可积的充分条件Riemann可积的充分条件有:(1)区间[a,b]上f(x)存在上下积分,且上下积分相等;(2)对任意ϵ>0,可找到划分P及加细之后的划分P1,使得S(P1,f)-s(P1,f)<ϵ,其中S(P1,f)表示P1的上和式,s(P1,f)表示P1的下和式。

4. 定积分的计算方法定积分可以通过换元法、分部积分法、牛顿-莱布尼茨公式等数学方法进行计算。

(1)求曲线下面的面积;(2)求曲线绕x轴或y轴旋转的体积;(3)求物理问题中的虚功;(4)求平均值、方差等统计量。

6. 常用定积分公式$\int x^ndx={x^{n+1}}/{n+1}+C$$\int\sin xdx=-\cos x+C$7. 例题(1)计算定积分: $\int_{0}^{\frac{\pi}{2}}\sin xdx$解:$ \int_{0}^{\frac{\pi}{2}}\sin xdx=\left . -\cos x \right |\begin{matrix} 0\\\frac{\pi}{2} \end{matrix} =1$8. 求导与积分的对应关系如果函数f(x)在区间[a,b]上可导,则:$\int_{a}^{b}f'(x)dx = f(b)-f(a)$微积分是数学的一个分支,其中包括微分和积分两个部分。

微积分对象是函数的导数和原函数。

定积分是微积分中的积分部分,用于计算函数在一定区间内的积累量。

因此,微积分中的求导和积分是密不可分的,两者相辅相成,是微积分学中的核心概念。

高数定积分知识点总结

高数定积分知识点总结

高数定积分知识点总结一、定积分的定义定积分是微积分中的一个重要概念,它是对一个函数在一个区间上的积分结果进行计算的过程。

在数学上,定积分是用来计算曲线下面的面积或者函数在某一区间上的平均值的方法。

定积分可以写成以下形式:\[ \int_{a}^{b} f(x)dx \]其中,\( f(x) \)是被积函数,\( a \)和\( b \)是积分区间的端点。

定积分的计算过程就是求解被积函数在给定区间上的曲线下面的面积。

定积分在物理学、工程学和经济学等领域都有着广泛的应用,是微积分中不可或缺的重要工具。

二、定积分的性质1. 定积分的可加性如果函数\( f(x) \)在区间\([a, b]\)上是可积的,那么对于任意的\( c \)满足\( a \leq c \leq b \),都有:\[ \int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx \]这个性质表明了定积分的可加性,即在一个区间上进行积分的结果可以根据任意划分点\( c \)进行分割。

2. 定积分的线性性对于任意的实数\( \alpha, \beta \)和函数\( f(x), g(x) \),如果\( f(x), g(x) \)在区间\([a, b]\)上是可积的,那么有:\[ \int_{a}^{b} (\alpha f(x) + \beta g(x))dx = \alpha \int_{a}^{b} f(x)dx + \beta \int_{a}^{b} g(x)dx \]这个性质表明了定积分的线性性,即在一个区间上进行线性组合的函数的积分等于线性组合的函数的积分的线性组合。

3. 定积分的保号性如果在区间\([a, b]\)上有\( f(x) \geq 0 \),那么有:\[ \int_{a}^{b} f(x)dx \geq 0 \]这个性质表明了定积分的保号性,即当被积函数在一个区间上非负时,其积分结果也是非负的。

(总结)定积分计算方法总结

(总结)定积分计算方法总结

(本文档仅供参考用途,所载资料皆来自整理,欢迎大家分享交流)
定积分计算方法总结、定积分的计算方法
1.利用函数奇偶性
2.利用函数周期性
3.参考不定积分计算方法
二、定积分与极限
1.积和式极限
2.利用积分中值定理或微分中值定理求极限
3.洛必达法则
4.等价无穷小
三、定积分的估值及其不等式的应用
1.不计算积分,比较积分值的大小
1)比较定理:若在同一区间[a,b]上,总有
f(x)>=g(x),则>=()dx
2)利用被积函数所满足的不等式比较之a)
b)当0<x<兀/2时,2/兀<<1
2.估计具体函数定积分的值
积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m则
1。

定积分知识点总结高中

定积分知识点总结高中

定积分知识点总结高中一、定积分的概念定积分是微积分中的重要概念之一,它是对一个区间上函数的积分进行求解的一种方法。

在数学上,定积分可以用来求解曲线与坐标轴所围成的图形的面积、求解物体的质量、求解物体的质心和求解函数的平均值等。

二、定积分的符号表示定积分的符号表示为∫abf(x)dx,其中∫表示积分的意思,a和b分别表示积分的区间,f(x)表示被积函数,而dx表示自变量。

三、定积分的基本性质1. 定积分的区间可以是一个闭区间也可以是一个开区间。

2. 定积分的积分域是一段区间上的一个函数。

3. 定积分的值只与积分的上限和下限以及积分函数的具体形式有关,与被积函数在区间上函数值的具体大小无关。

四、定积分的计算方法1. 定积分的计算方法有多种,其中最常用的方法有两种:换元积分法和分部积分法。

2. 换元积分法是将定积分中的自变量进行替换,从而使积分的形式更容易计算。

3. 分部积分法是将被积函数进行分解,从而使积分的形式更容易计算。

五、定积分的应用1. 定积分可以用来求解曲线与坐标轴所围成的图形的面积。

这是定积分最基本的应用之一。

2. 定积分可以用来求解物体的质量。

例如,如果我们知道一个物体的密度分布函数,在定积分的帮助下可以求解出物体的总质量。

3. 定积分可以用来求解物体的质心。

通过定积分可以计算出物体在某一方向上的平均位置。

4. 定积分可以用来求解函数的平均值。

通过定积分可以求解被积函数在一段区间上的平均值。

六、定积分的图形表示1. 在定积分的图形表示中,定积分表示的是曲线与坐标轴所围成的图形的面积。

2. 定积分的图形表示与被积函数在指定区间上的图像有关,可以通过被积函数的图像来判断定积分的正负值,从而得到面积的正负值。

七、定积分的应用实例1. 一块形状不规则的地块的面积可以通过定积分来求解。

2. 一根线密度不均匀的杆子的质量可以通过定积分来求解。

3. 一个质点在一段区间内的平均位置可以通过定积分来求解。

第五章-定积分总结

第五章-定积分总结

有效沟通,架起家校合作桥梁在家庭教育中,家长与学校之间的沟通是至关重要的。

有效的沟通可以帮助家长了解学校的教育理念和教学情况,帮助学校了解学生在家庭中的情况和需求,从而促进家校合作,共同促进学生的成长和发展。

架起家校合作的桥梁,加强家长与学校之间的沟通,是非常重要的。

有效的沟通需要双方都有一定的意识和技巧。

家长要重视和主动参与学校的家长会、家长学堂等活动,了解学校的教学管理、教师教学进程和教育理念,并与教师和学校管理者建立良好的关系。

学校也要重视家长的参与和意见,主动与家长沟通,了解家庭的情况,尊重家长的选择。

只有双方都重视起家校合作,才能够建立起有效的沟通桥梁。

家长应该了解学校的教学情况,主动了解学生的学习情况。

家长可以通过参加家长会、家长学堂等方式了解学校的教学理念和教学方式,同时关注学生的在校表现、学习习惯等方面的情况。

在了解学校的情况的基础上,家长可以有针对性地对学生进行家庭教育,帮助他们更好地适应学校的教学要求。

也可以对学校进行合理的建议,共同促进学校的发展和改进。

双方应该保持常态化的沟通,建立稳定的合作桥梁。

只有通过不断的沟通和交流,双方才能够建立起稳定的合作关系。

家长应该与学校保持密切的联系,了解学校的最新情况,及时反馈学生在家庭中的情况和需求。

学校也应该与家长保持密切的联系,了解学生的情况和家庭的需求,及时对家长提出的问题进行解决。

通过这种双向的沟通和反馈,才能够建立起稳定的、顺畅的合作桥梁。

有效的家校沟通是架起家校合作桥梁的重要基础。

只有双方都重视和主动参与家校沟通,才能够建立起稳定、顺畅的合作关系,共同促进学生的成长和发展。

希望家长和学校能够共同努力,为孩子们提供更好的教育服务。

定积分知识点总结

定积分知识点总结

定积分知识点总结一、定积分的概念定积分是微积分中的一个重要概念,它是求解曲线下面积的一种方法。

当我们要计算一个曲线在两个点之间的面积时,可以使用定积分来求解。

定积分通常由一个区间上的函数来定义,它表示这个函数在这个区间上的面积。

二、定积分的符号表示定积分通常用符号∫关于x代表积分,下限和上限之间的函数表示要积分的函数,dx表示积分变量。

即∫ab f(x)dx表示在区间[a, b]上的函数f(x)的定积分。

三、定积分的性质1. 线性性质:若f(x)和g(x)是[a, b]上的可积函数,k1和k2是常数,则有∫ab(k1f(x)+k2g(x))dx=k1∫abf(x)dx+k2∫abg(x)dx。

2. 区间可加性:若f(x)在[a, b]和[b, c]上都可积,则有∫ac f(x)dx=∫ab f(x)dx+∫bc f(x)dx。

3. 积分的保号性:若在[a, b]上有f(x)≥0,则∫ab f(x)dx≥0。

4. 积分的单调性:若在[a, b]上有f(x)≥g(x),则∫ab f(x)dx≥∫ab g(x)dx。

五、定积分的计算方法1. 几何法:通过几何图形的面积来计算定积分,通常使用在能够用几何图形表示的函数上,例如多项式函数。

2. 积分表法:通过积分表中的已知积分公式,来计算定积分,通常用于一些常见函数。

3. 定积分的换元积分法:通过变量替换的方法来进行定积分的计算,通常适用于需要进行一定变量替换后才能计算的函数。

4. 定积分的分部积分法:通过分部积分的方法来进行定积分的计算,通常适用于需要进行一定的分部积分后才能计算的函数。

六、定积分的应用定积分在数学和物理学中有着极其重要的应用,例如计算曲线下面积、求解函数的平均值、求解体积、求解质量、质心和弧长等。

在数学中,定积分是微积分的基础,它还被广泛应用于概率统计、微分方程、傅立叶变换等领域。

在物理学中,定积分被用来求解各种场和力的功、能量、质心等问题。

定积分知识复习总结

定积分知识复习总结

定积分知识总结一、基本概念和性质(1)定义[]()[]())()(lim )()()(,,,,0max ...,)()(lim lim )(11111111011-=∞→-=----∞→∞→=∞→-⋅-⋅=-⋅≈=→-∞→==-⋅=⋅∑∑∑∑⎰i i ni i n i i ni i i i i i i i i i i i i i i i i n i nn i n ni iban x x f x x f S x x f S I S I S I x x I x x n b x x x a n b a x x f S dx x f ξξξξξ④求极限:即③求和:,上任取一点在上用矩形代替在上的代数面积为在②记时,要求当<<<个小区间,区间分成①把的定义:[]dxx g dx x f dx x g x f ab babababa⋅⋅+⋅⋅=⋅⋅+⋅-=⎰⎰⎰⎰)()()()(12βαβα②线性运算性质:①)定积分的性质()()()(=⋅⋅-=⋅⎰⎰⎰aaabba dx x f dxx f dx x f()))(定要求的区间可积即可,不一其中,包含③区间的可加性:b a c c b a dxx f dx x f dx x f bccaba,,,()()()(∈⋅+⋅=⋅⎰⎰⎰[][][][]⎰⎰⎰⎰⎰⎰⋅⋅≥≡=⋅≥⋅≥⋅≥≥⋅≥babababab abadxx g dx x f x g x f x g x f b a x g x f x f x f dx x f x f x f b a x f dxx g dx x f x g x f b a x g x f dx x f x f b a x f )()(),()(),()(,)(),(0:0)(00:0)(0)(0)(0)(,)()()(),()(,)()(0)(0)(,)(>则:不恒等于且上连续,在区间推论:若区间上都等于则是指在整个;,也可能整个区间均为可能个别点上等于>,则不恒等于,上连续,在⑥若则上可积且在,⑤若,则上可积且在④ [][][][][])()()(,,)()()()(,)(,)()()(,)(a b f dx x f b a b a x f a b M dx x f a b m M m b a x M x f m b a x f dxx f dx x f b a x f bababa ba-⋅=⋅∈-≤⋅≤-∈≤≤⋅≤⋅⎰⎰⎰⎰ξξ,使得:点上连续,则至少存在一在闭区间若⑨(积分中值定理)均为常数,则:,,,上可积,在⑧若上可积,则在⑦若二、微积分基本公式1、积分上限函数及其导数定义:设函数)(x f 在区间],[b a 上连续,对于任意],[b a x ∈,)(x f 在区间],[x a 上也连续,所以函数)(x f 在],[x a 上也可积.显然对于],[b a 上的每一个x 的取值,都有唯一对应的定积分⎰xadt t f )(和x 对应,因此⎰xadt t f )(是定义在],[b a 上的函数.记为⎰=Φxadt t f x )()(,],[b a x ∈.称)(x Φ叫做变上限定积分,有时又称为变上限积分函数.定理1:如果函数)(x f 在区间],[b a 上连续,则⎰=Φxadt t f x )()(在],[b a 上可导,且)()()()(b x a x f dt t f dxd x xa ≤≤==Φ'⎰定理2、3:如果)(x f 在区间],[b a 上连续,则它的原函数一定存在,且其中的一个原函数为⎰=Φxadt t f x )()(.2、牛顿——莱布尼茨公式定理4(微积分基本公式)如果函数)(x f 在区间],[b a 上连续,且)(x F 是)(x f 的任意一个原函数,那么⎰-=b aa Fb F dx x f )()()(.证 由定理5.2知,⎰=Φx adt t f x )()(是)(x f 在区间],[b a 的一个原函数,则)(x Φ与)(x F 相差一个常数C ,即C x F dt t f x a+=⎰)()(.又因为C a F dt t f a a+==⎰)()(0,所以)(a F C -=.于是有)()()(a F x F dt t f x a -=⎰.所以 ⎰-=baa Fb F dx x f )()()(成立.为方便起见,通常把)()(a F b F -简记为ba x F )(或b a x F )]([,所以公式可改写为)()()()(a F b F x F dx x f b a b a-==⎰三、定积分的积分法1、定积分的换元积分法定理1设函数)(x f 在区间],[b a 上连续,并且满足下列条件:(1))(t x ϕ=,且)(αϕ=a ,)(βϕ=b ;(2))(t ϕ在区间],[βα上单调且有连续的导数)(t ϕ';(3)当t 从α变到β时,)(t ϕ从a 单调地变到b . 则有⎰⎰'=b adt t t f dx x f βαϕϕ)()]([)(上述公式称为定积分的换元积分公式.在应用该公式计算定积分时需要注意以下两点:①从左到右应用公式,相当于不定积分的第二换元法.计算时,用 把原积分变量 换成新变量 ,积分限也必须由原来的积分限 和 相应地换为新变量 的积分限 和 ,而不必代回原来的变量 ,这与不定积分的第二换元法是完全不同的.②从右到左应用公式,相当于不定积分的第一换元法(即凑微分法).一般不用设出新的积分变量,这时,原积分的上、下限不需改变,只要求出被积函数的一个原函数,就可以直接应用牛顿—莱布尼兹公式求出定积分的值. 2、定积分的分部积分法设函数)(x u u =和)(x v v =在区间],[b a 上有连续的导数,则有)()()]()([)()(x du x v x v x u x dv x u bab ab a⎰⎰-=.上述公式称为定积分的分部积分公式.选取)(x u 的方式、方法与不定积分的分部积分法完全一样.四、定积分的应用1、定积分应用的微元法为了说明定积分的微元法,我们先回顾求曲边梯形面积A 的方法和步骤: (1)将区间],[b a 分成n 个小区间,相应得到n 个小曲边梯形,小曲边梯形的面积记为i A ∆),2,1(n i =;(2)计算i A ∆的近似值,即i i i x f A ∆≈∆)(ξ(其中],[,11i i i i i i x x x x x --∈-=∆ξ); (3)求和得A 的近似值,即i ni i x f A ∆≈∑=1)(ξ;(4)对和取极限得⎰∑=∆==→bai ni i dx x f x f A )()(lim 1ξλ.下面对上述四个步骤进行具体分析:第(1)步指明了所求量(面积A )具有的特性:即A 在区间],[b a 上具有可分割性和可加性.第(2)步是关键,这一步确定的i i i x f A ∆≈∆)(ξ是被积表达式dx x f )(的雏形.这可以从以下过程来理解:由于分割的任意性,在实际应用中,为了简便起见,对i i i x f A ∆≈∆)(ξ省略下标,得x f A ∆≈∆)(ξ,用],[dx x x +表示],[b a 内的任一小区间,并取小区间的左端点x 为ξ,则A ∆的近似值就是以dx 为底,)(x f 为高的小矩形的面积(如图5.7 阴影部分),即dx x f A )(≈∆.通常称dx x f )(为面积元素,记为dx x f dA )(=.将(3),(4)两步合并,即将这些面积元素在],[b a 上“无限累加”,就得到面积A .即⎰=ba dx x f A )(.一般说来,用定积分解决实际问题时,通常按以下步骤来进行: (1)确定积分变量x ,并求出相应的积分区间],[b a ;(2)在区间],[b a 上任取一个小区间],[dx x x +,并在小区间上找出所求量F 的微元dx x f dF )(=;(3)写出所求量F 的积分表达式⎰=ba dx x f F )(,然后计算它的值.利用定积分按上述步骤解决实际问题的方法叫做定积分的微元法. 注 能够用微元法求出结果的量F 一般应满足以下两个条件: ①F 是与变量x 的变化范围],[b a 有关的量;②F 对于],[b a 具有可加性,即如果把区间],[b a 分成若干个部分区间,则F 相应地分成若干个分量.2、定积分求平面图形的面积(1)直角坐标系下面积的计算(1)由曲线)(x f y =和直线0,,===y b x a x 所围成曲边梯形的面积的求法前面已经介绍,此处不再叙述.(2)求由两条曲线)(),(x g y x f y ==,))()((x g x f ≥及直线b x a x ==,所围成平面的面积A (如图5.8所示).下面用微元法求面积A . ①取x 为积分变量,],[b a x ∈.②在区间],[b a 上任取一小区间],[dx x x +,该区间上小曲边梯形的面积dA 可以用高)()(x g x f -,底边为dx 的小矩形的面积近似代替,从而得面积元素dx x g x f dA )]()([-=. ③写出积分表达式,即⎰-=badx x g x f A )]()([.⑶求由两条曲线)(),(y x y x ϕψ==,))()((y y ϕψ≤及直线d y c y ==,所围成平面图形(如图5.9)的面积. 这里取y 为积分变量,],[d c y ∈, 用类似 (2)的方法可以推出:⎰-=dcdy y y A )]()([ψϕ.(2)极坐标系下面积的计算设曲边扇形由极坐标方程)(θρρ=与射线)(,βαβθαθ<==所围成(如图5.13所示).下面用微元法求它的面积A.以极角θ为积分变量,它的变化区间是],[βα,相应的小曲边扇形的面积近似等于半径为)(θρ,中心角为θd 的圆扇形的面积,从而得面积微元为θθρd dA 2)]([21=于是,所求曲边扇形的面积为 ⎰=βαθθρd A 2)]([21.3.定积分求体积 (1)旋转体的体积旋转体是一个平面图形绕这平面内的一条直线旋转而成的立体.这条直线叫做旋转轴.设旋转体是由连续曲线)0)()((≥=x f x f y 和直线b x a x ==,及x 轴所围成的曲边梯形绕x 轴旋转一周而成(如图5.15).取x 为积分变量,它的变化区间为],[b a ,在],[b a 上任取一小区间],[dx x x +,相应薄片的体积近似于以)(x f 为底面圆半径,dx 为高的小圆柱体的体积,从而得到体积元素为dx x f dV 2)]([π=,于是,所求旋转体体积为dx x f V bax ⎰=2)]([π.(2)平行截面面积为已知的立体体积设一物体被垂直于某直线的平面所截的面积可求,则该物体可用定积分求其体积.不妨设直线为x 轴,则在x 处的截面面积)(x A 是x 的已知连续函数,求该物体介于a x =和)(b a b x <=之间的体积(如图5.19).取x 为积分变量,它的变化区间为],[b a ,在微小区间],[dx x x +上)(x A 近似不变,即把],[dx x x +上的立体薄片近似看作)(x A 为底,dx 为高的柱片,从而得 到体积元素dx x A dV )(=.于是该物体的体积为⎰=badx x A V )(.类似地,由曲线)(y x ϕ=和直线d y c y ==,及y 轴所围成的曲边梯形绕y 轴旋转一周而成(如图5.16),所得旋转体的体积为dy y V dcy ⎰=2)]([ϕπ.。

定积分常用公式总结归纳

定积分常用公式总结归纳

定积分常用公式总结归纳在数学中,定积分是微积分中的重要概念之一,它广泛应用于求曲线下面积、求物理量以及解决各种数学问题。

而为了更好地应用定积分,了解和掌握常用的定积分公式是非常必要的。

本文将对一些常用的定积分公式进行总结和归纳,以帮助读者更好地理解和应用定积分。

一、常数函数定积分公式:对于一个常数函数f(x)=c,其中c为常数,它的定积分公式为:∫_[a]^[b] cdx = c(b-a)二、幂函数定积分公式:1. 对于幂函数f(x)=x^n,其中n≠-1,它的定积分公式为:∫_[a]^[b] x^n dx = [1/(n+1)]*[x^(n+1)]_[a]^[b]2. 对于特殊的幂函数f(x)=x^{-1},也就是倒数函数,它的定积分公式为:∫_[a]^[b] (1/x)dx = ln|x|_[a]^[b]三、指数函数定积分公式:1. 对于指数函数f(x)=e^x,它的定积分公式为:∫_[a]^[b] e^x dx = e^x_[a]^[b]2. 对于指数函数的倍数f(x)=ce^x,其中c为常数,它的定积分公式为:∫_[a]^[b] ce^x dx = c*e^x_[a]^[b]四、三角函数定积分公式:1. 对于正弦函数f(x)=sin(x),它的定积分公式为:∫_[a]^[b] sin(x) dx = -cos(x)_[a]^[b]2. 对于余弦函数f(x)=cos(x),它的定积分公式为:∫_[a]^[b] cos(x) dx = sin(x)_[a]^[b]3. 对于正切函数f(x)=tan(x),它的定积分公式为:∫_[a]^[b] tan(x) dx = -ln|cos(x)|_[a]^[b]五、换元法定积分公式:换元法是解决一些较为复杂的定积分问题的常用方法,根据变量替换的不同,其定积分公式也会有所变化。

1. 对于一般形式的换元法,设y=g(x)为一可导函数,其反函数x=h(y),则有:∫_[a]^[b] f(g(x))g'(x)dx = ∫_[g(a)]^[g(b)] f(y)dy2. 对于三角函数的换元法,设y=asin(x)或y=acos(x)时,其中a为常数,有:∫_[a]^[b] f(asin(x))cos(x)dx = ∫_[f(asin(a))]^[f(asin(b))] f(y)dy∫_[a]^[b] f(acos(x))(-sin(x))dx = ∫_[f(acos(a))]^[f(acos(b))] f(y)dy3. 对于指数函数的换元法,设y=ln(x)时,有:∫_[a]^[b] f(e^x)dx = ∫_[ln(a)]^[ln(b)] f(y)e^ydy以上列举的只是一部分常用的定积分公式,实际上还有很多其他的定积分公式可以应用。

定积分计算方法总结

定积分计算方法总结

定积分计算方法总结
定积分计算方法总结
导语:学习需要总结,只有总结,才能真正学有所成。

以下是定积分计算方法总结,供各位阅读和参考。

一、定积分的计算方法
1.利用函数奇偶性
2.利用函数周期性
3.参考不定积分计算方法
二、定积分与极限
1.积和式极限
2.利用积分中值定理或微分中值定理求极限
3.洛必达法则
4.等价无穷小
三、定积分的估值及其不等式的应用
1.不计算积分,比较积分值的大小
1)比较定理:若在同一区间[a,b]上,总有
f(x)>=g(x),则>=()dx
2)利用被积函数所满足的不等式比较之a)
b)当0<x<兀2时,2兀<<1
2.估计具体函数定积分的值
积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m

M(b-a)<=<=M(b-a)
3.具体函数的定积分不等式证法
1)积分估值定理
2)放缩法
3)柯西积分不等式
≤%
4.抽象函数的定积分不等式的证法
1)拉格朗日中值定理和导数的有界性
2)积分中值定理
3)常数变易法
4)利用泰勒公式展开法
四、不定积分计算方法
1.凑微分法
2.裂项法
3.变量代换法
1)三角代换
2)根幂代换
3)倒代换
4.配方后积分
5.有理化
6.和差化积法。

定积分计算方法总结归纳

定积分计算方法总结归纳

定积分计算方法总结归纳
导语:学习需要总结,只有总结,才能真正学有所成。

以下是定积分计算方法总结,供各位阅读和参考。

一、定积分的计算方法
1. 利用函数奇偶性
2. 利用函数周期性
3. 参考不定积分计算方法
二、定积分与极限
1. 积和式极限
2. 利用积分中值定理或微分中值定理求极限
3. 洛必达法则
4. 等价无穷小
三、定积分的估值及其不等式的应用
1. 不计算积分,比较积分值的大小
1) 比较定理:若在同一区间[a,b]上,总有
f(x)>=g(x),则>= ()dx
2) 利用被积函数所满足的不等式比较之a)
b) 当0 2. 估计具体函数定积分的值
积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m则
M(b-a) 3. 具体函数的定积分不等式证法
1) 积分估值定理
2) 放缩法
3) 柯西积分不等式
≤%
4. 抽象函数的定积分不等式的证法
1) 拉格朗日中值定理和导数的有界性
2) 积分中值定理
3) 常数变易法
4) 利用泰勒公式展开法
四、不定积分计算方法
1. 凑微分法
2. 裂项法
3. 变量代换法
1) 三角代换
2) 根幂代换
3) 倒代换
4. 配方后积分
5. 有理化
6. 和差化积法
7. 分部积分法(反、对、幂、指、三)
8. 降幂法
搜集整理,仅供参考学习,请按需要编辑修改。

定积分证明题方法总结六篇

定积分证明题方法总结六篇

定积分证明题方法总结六篇定积分证明题方法总结六篇篇一:定积分计算方法总结一、不定积分计算方法1.凑微分法2.裂项法3.变量代换法1)三角代换2)根幂代换3)倒代换4.配方后积分5.有理化6.和差化积法7.分部积分法(反、对、幂、指、三)8.降幂法二、定积分的计算方法1.利用函数奇偶性2.利用函数周期性3.参考不定积分计算方法三、定积分与极限1.积和式极限2.利用积分中值定理或微分中值定理求极限3.洛必达法则4.等价无穷小四、定积分的估值及其不等式的应用1.不计算积分,比较积分值的大小1)比较定理:若在同一区间[a,b]上,总有f(x)>=g(x),则>=()dx2)利用被积函数所满足的不等式比较之a)b)当0<x<兀2时,2兀<<12.估计具体函数定积分的值积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m 则M(b-a)<=<=M(b-a)3.具体函数的定积分不等式证法1)积分估值定理2)放缩法3)柯西积分不等式≤%4.抽象函数的定积分不等式的证法1)拉格朗日中值定理和导数的有界性2)积分中值定理3)常数变易法4)利用泰勒公式展开法五、变限积分的导数方法篇二:定积分知识点总结1、经验总结(1)定积分的定义:分割—近似代替—求和—取极限(2)定积分几何意义:①f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积ab②f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积的相a反数(3)定积分的基本性质:①kf(x)dx=kf(x)dx aabb②[f1(x)f2(x)]dx=f1(x)dxf2(x)dx aaa③f(x)dx=f(x)dx+f(x)dx aac(4)求定积分的方法:baf(x)dx=limf(i)xi ni=1nbbbbbcb①定义法:分割—近似代替—求和—取极限②利用定积分几何意义’③微积分基本公式f(x)F(b)-F(a),其中F(x)=f(x)ba篇三:定积分计算方法总结1、原函数存在定理●定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定积分讲义总结 内容一 定积分概念
一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ∆(b a
x n
-∆=
),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1
1
()()n n
n i i i i b a
S f x f n
ξξ==-=∆=∑∑
如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。

记为:()b
a
S f x dx =

其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。

说明:(1)定积分
()b
a
f x dx ⎰
是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b
a
f x dx ⎰,而不是n S .
(2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和:
1()n
i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a
f x dx f n ξ→∞=-=∑⎰ 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力()F x kx =(k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所作的功.
分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解. 解: 将物体用常力F 沿力的方向移动距离x ,则所作的功为W F x =⋅. 1.分割
在区间[]0,b 上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间:
0,b n ⎡⎤⎢⎥⎣⎦,2,b b n n ⎡⎤
⎢⎥⎣⎦,…,()1,n b b n -⎡⎤⎢⎥⎣⎦
记第i 个区间为()1,(1,2,,)i b i b i n n
n -⎡⎤⋅=⎢

⎣⎦L ,其长度为()1i b i b b
x n n n -⋅∆=-= 把在分段0,
b n ⎡
⎤⎢⎥⎣
⎦,2,b b n n ⎡⎤
⎢⎥⎣⎦,…,()1,n b b n -⎡⎤⎢⎥⎣⎦
上所作的功分别记作:1W ∆,2W ∆,…,n W ∆ (2)近似代替 有条件知:()()11i i b i b b W F x k n n n --⎛⎫∆=⋅∆=⋅⋅ ⎪
⎝⎭
(1,2,,)i n =L (3)求和
()1
1
1n n
n i i i i b b W W k n
n
==-=∆=⋅⋅∑∑
=()()22222
110121122n n kb kb kb n n n n -⎛⎫
++++-==-⎡⎤ ⎪⎣
⎦⎝⎭
L
从而得到W 的近似值 2112n kb W W n ⎛⎫
≈=- ⎪⎝⎭
(4)取极限22
1
1lim lim lim 122n
n i n n n i kb kb W W W n →∞→∞→∞=⎛⎫==∆=-= ⎪⎝⎭∑ 所以得到弹簧从平衡位置拉长b 所作的功为:
22kb
内容二 定积分的几何意义
从几何上看,如果在区间[,]a b 上函数()f x 连续且恒有0)(≥x f ,那么定积分
dx x f a
b

)(表示由直线
0),(,=≠==y b a b x a x 和曲线)(x f y =所围成的曲边梯形(如图中的阴影部分)的面积,这就是定积分
dx x f a
b

)(的几何意义。

说明:一般情况下,定积分
()b
a
f x dx ⎰
的几何意义是介于x 轴、函数()f x 的图形以及直线,x a x b ==之间各部分面
积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积去负号。

分析:一般的,设被积函数()y f x =,若()y f x =在[,]a b 上可取负值。

考察和式()()()12()i n f x x f x x f x x f x x ∆+∆++∆++∆L L 不妨设1(),(),,()0i i n f x f x f x +<L
于是和式即为()()()121(){[()][]}i i n f x x f x x f x x f x x f x x -∆+∆++∆--∆++-∆L L ⎰
=∴a
b
dx x f )(阴影A 的面积—阴影B 的面积(即x 轴上方面积减x 轴下方的面积)
例2.计算定积分
2
1
(1)x dx
+⎰
分析:所求定积分即为如图阴影部分面积,面积为52。

即:2
1
5(1)2
x dx +=

1
2
y
x
o
内容三 定积分的性质
性质1 a b dx b
a
-=⎰1
性质2 ⎰⎰
=b
a
b
a dx x f k dx x kf )()( (其中k 是不为0的常数) (定积分的线性性质)
性质3
1212[()()]()()b
b b
a
a
a
f x f x dx f x dx f x dx ±=±⎰
⎰⎰(定积分的线性性质)
性质4
()()()()b
c
b
a
a
c
f x dx f x dx f x dx
a c
b =+<<⎰⎰⎰其中 (定积分对积分区间的可加性)
说明:①推广:1212[()()()]()()()b
b
b
b
m m a
a
a
a
f x f x f x dx f x dx f x dx f x ±±±=±±±⎰
⎰⎰⎰L L
②推广: 12
1
()()()()k
b
c c b
a
a
c c f x dx f x dx f x dx f x dx =+++⎰
⎰⎰⎰L
内容四 微积分基本定理
一般地,如果函数()F x 是[,]a b 上的连续函数,并且)()('x f x F =,那么()()()b
a
f x dx F b F a =-⎰
这个结论叫做微积分基本定理。

基本积分公式:
(1)⎰-≠∈+=
+b
a b
a m m m Q m x m dx x )1,(1
11; (2)⎰=b
a b a x dx x
ln 1
; (3)

=b
a
b a
x x e dx e ; (4)⎰=
b
a b a
x
x
a
a dx a ln ;
(5)⎰
=b
a b a x xdx sin cos ;
(6)
⎰-=b
a
b
a
x
xdx cos sin
例3 求
.12
dx x
x b
a

+
解 因为
22
1222===1122
2212(1)(1)2x C x C ++=++g 即
1
22
20
(1)1x +=1
22
(1)x +,所以
2

=1
2
22
(1)
1x +=
内容五 定积分的简单应用
. 1、 曲边图形面积:()b
a
S f x dx =⎰;
2、 变速运动路程2
1
()t t S v t dt =⎰

3、 变力做功 ()b
a
W F r dr
=

例4.求抛物线y 2 = x 与x – 2y – 3 = 0所围成的图形的面积.
解:如图:由2230y x
x y ⎧=⎨--=⎩
得A (1,– 1),B (9,3).
选择x 作积分变量,则所求面积为
1
011
[()][(3)]2
S x x dx x x dx =--+--⎰⎰=19
9
011
121(3)2dx xdx x dx +--⎰⎰⎰ =3321992201142332||()|33423
x x x x +--=.。

相关文档
最新文档