中考数学知识点训练题(全等三角形)
中考数学复习《全等三角形》专题(卷1)
《全等三角形》中考复习一. 选择题1. 如图,AB=AC,点D,E分别在AB,AC上,添加下列条件,不能判定△ABE≅△ACD的是( )A.BD=CEB.∠BDC=∠BECC.∠ACD=∠ABED.BE=CD2. 如下图,在△ABC中,∠C=90∘,∠B=30∘,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N 为圆心,大于12MN的长为半径画弧,两弧交于点P ,连结AP 并延长交BC于点D.则下列说法中正确的是()①AD是∠BAC的角平分线;②∠ADC=60∘;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.①②③④B.②③④C.①②D.①②③3. 如图,若△MNP≅△MEQ,则点Q应是图中的()A.点AB.点BC.点CD.点D4. 全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形如图①,若运动方向相反,则称它们是镜面合同三角形如图②,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合如图①,两个镜面合同三角形要重合,则必须将其中一个翻转180∘如图②,下列各组合同三角形中,是镜面合同三角形的是( )A. B. C. D.5. 对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理6. 如图,已知∠AOB,用直尺和圆规按照以下步骤作图:①以O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;②画射线O′A′,以O′为圆心,OC的长为半径画弧,交O′A′于点C′③以C′为圆心,CD的长为半径画弧,与第②步中所画的弧相交于点D′④过点D′画射线O′B′根据以上操作,可以判定△OCD≅ΔO′C′D′,其判定的依据是()A.SSSB.SASC.ASAD.HL7. 如图,在扇形OAB中,点C是弧AB上任意一点(不与点A,B重合),CD//OA交OB于点D,点I是△OCD 的内心,连结OI,BI,∠AOB=β,则∠OIB等于()A.180∘−βB.180∘−12β C.90∘+12β D.90∘+β8. 小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1,2,3,4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带( )A.第1块B.第2块C.第3块D.第4块二. 填空题三角形具有稳定性,所以要使六边形木架不变形,至少要钉上________根木条.如图,在x、y轴上分别截取OA、OB,使OA=OB,再分别以点A、B 为圆心,以大于12AB的长度为半径画弧,两弧交于点C.若C的坐标为(3a,−a+8),则a=________.如图,在菱形ABCD中,已知AB=4,∠ABC=60∘,∠EAF=60∘,点E在CB的延长线上,点F在DC的延长线上,有下列结论:①BE=CF;②∠EAB=∠CEF;③△ABE∼△EFC;④若∠BAE=15∘,则点F到BC的距离为2√3−2.正确序号________.如图,△ABC中,点A的坐标为(0, 1),点C的坐标为(4, 3),如果要使△ABD与△ABC全等,那么点D的坐标是________.三. 解答题如图,小明用五根宽度相同的木条拼成了一个五边形,已知AE//CD,∠A=12∠C,∠B=120∘.(1)∠D+∠E=________度;(2)求∠A的度数;(3)要使这个五边形木架保持现在的稳定状态,小明至少还需钉上________根相同宽度的木条.根据要求完成下列各题.(1)如图1,在∠AOB的内部有一点P.①过点P画直线PC//OA交OB于点C;②过点P画直线PD⊥OA,垂足为D.(2)如图2,AB⊥BF,CD⊥BF,∠1=∠2,试说明∠3=∠E在下面解答中填空.解:∵AB⊥BF,CD⊥BF(已知),∴∠ABF=∠________=90∘(________),∴AB//CD(________)∵∠1=∠2(已知),∴AB//EF(________),∴CD//EF(平行于同一条直线的两条直线互相平行),∴∠3=∠E(________)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF= BD,连接BF.(1)线段BD与CD有何数量关系,为什么?(2)当△ABC满足什么条件时,四边形AFBD是矩形?请说明理由.(3)当△ABC满足________条件时,四边形AFBD是正方形?(直接写出结论,不用说明理由)一条大河两岸的A、B处分别立着高压线铁塔,如图所示.假设河的两岸平行,你在河的南岸,请利用现有的自然条件、皮尺和标杆,并结合你学过的全等三角形的知识,设计一个不过河便能测量河的宽度的好办法.(要求,画出示意图,并标出字母,结合图形简要叙述你的方案)参考答案与试题解析一. 选择题1.【答案】D【解析】欲使△ABE≅△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.2.【答案】A【解析】①连接NP,MP,根据SSS定理可得△ANP≅△AMP,故可得出结论;②先根据三角形内角和定理求出∠CAB的度数,再由AD是∠BAC的平分线得出∠1=∠2=30∘,根据直角三角形的性质可知∠ADC=60∘;③根据∠1=∠B可知AD=BD,故可得出结论;④先根据直角三角形的性质得出∠2=30∘,CD=12AD,再由三角形的面积公式即可得出结论.3.【答案】D【解析】此题暂无解析4.【答案】B【解析】认真阅读题目,理解真正合同三角形和镜面合同三角形的定义,然后根据各自的定义或特点进行解答.5.【答案】B【解析】根据圆的有关定义、垂线段的性质、三角形的稳定性等知识结合生活中的实例确定正确的选项即可.6.【答案】A【解析】此题暂无解析7.【答案】B 【解析】此题暂无解析8.【答案】B【解析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.二. 填空题【答案】3【解析】三角形具有稳定性,所以要使六边形木架不变形需把它分成三角形,即过六边形的一个顶点作对角线,有几条对角线,就至少要钉上几根木条.【答案】2【解析】此题暂无解析【答案】①②【解析】①只要证明△BAE≅△CAF即可判断;②根据等边三角形的性质以及三角形外角的性质即可判断;③根据相似三角形的判定方法即可判断;④求得点F到BC的距离即可判断.【答案】(4, −1)或(−1, 3)或(−1, −1)【解析】因为△ABD与△ABC有一条公共边AB,故本题应从点D在AB的上边、点D在AB的下边两种情况入手进行讨论,计算即可得出答案.三. 解答题【答案】180(2)五边形的内角和为(5−2)×180∘=540∘,由(1)可知,∠D+∠E=180∘,又∠B=120∘,∠A=12∠C.设∠A=x,则∠C=2x,∴∠A+∠B+∠C+∠D+∠E=540∘,即x+120∘+2x+180∘=540∘,解得x=80∘,∴∠A=80∘.2【解析】(1)根据平行线性质,两直线平行同旁内角互补即可得到180∘.先由AE//CD,根据平行线的性质得出∠E+∠D=180∘.再根据∠B=120∘,∠A=12∠C,设∠A=x∘,则∠C=2x∘.利用五边形的内角和为540∘列出方程x+120+2x+180=540,求解即可.根据五边形不具有稳定性,而三角形具有稳定性即可求解.【答案】解:(1)①如图,直线PC即为所求;②如图,直线PD即为所求;(2)解:∵AB⊥BF,CD⊥BF(已知),∴∠ABF=∠CDF=90∘(垂直的定义),∴AB//CD(同位角相等,两直线平行)∵∠1=∠2(已知),∴AB//EF(内错角相等,两直线平行),∴CD//EF(平行于同一条直线的两条直线互相平行),∴∠3=∠E(两直线平行,同位角相等)【解析】此题暂无解析【答案】解:(1)BD=CD.理由如下:依题意得AF // BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,{∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≅△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF // BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90∘,∴四边形AFBD是矩形.AB=AC,∠BAC=90∘【解析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90∘,由等腰三角形三线合一的性质可知必须是AB=AC.【答案】解:在河南岸AB的垂线BF上取两点C、E,使CE=BE,再定出BF的垂线CD,使A、E、D在同一条直线上,这时测得CD的长就是AB的长.如图所示:【解析】已知等边及垂直,在直角三角形中,可考虑AAS证明三角形全等,从而推出线段相等.。
人教版九年级中考数学 考点复习 全等三角形 专题练习
人教版九年级中考数学考点复习全等三角形专题练习一.选择题(本大题共10道小题)1. 已知图中的两个三角形全等,则∠1等于( )A.47°B.57°C.60°D.73°2. 如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是( )A.∠ABC=∠DCBB.AB=DCC.AC=DBD.∠A=∠D3. 如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )A.AB=DEB.∠A=∠DC.AC=DFD.AC∥FD4. 如图,等腰△ABC中,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是( )A.AD=AEB.BE=CDC.∠ADC=∠AEBD.∠DCB=∠EBC5. 如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F.若∠BCE=65°,则∠CAF的度数为( )A.30°B.25°C.35°D.65°6. 在正方形网格中,∠AOB的位置如图所示,则下列各点中到∠AOB两边距离相等的点是( )A.点QB.点NC.点RD.点M7. 工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA,OB上分别取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C,D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是( )A.SASB.ASAC.AASD.SSS8. 如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36o.连接AC、BD交于点M,连接OM.下列结论:①∠AMB=36o;②AC=BD;③OM平分∠AOD;④MO平分∠AMD其中正确的结论个数有( )个.A.4B.3C.2D.19. 下面是黑板上出示的尺规作图题需要回答横线上符号代表的内容.如图,已知∠AOB,求作:∠DEF,使∠DEF=∠AOB.作法:(1)以△为圆心,任意长为半径画弧,分别交OA,OB于点P,Q;(2)作射线EG,并以点E为圆心,○长为半径画弧交EG于点D;(3)以点D为圆心,* 长为半径画弧交前弧于点F;(4)作⊕,则∠DEF即为所求作的角.A.△表示点EB.○表示PQC.*表示EDD.⊕表示射线EF10. 如图,在△ABC和△ADE中,∠CAB=∠DAE=36°,AB=AC,AD=AE.连结CD,连结BE并延长交AC,AD于点F,G.若BE恰好平分∠ABC,则下列结论错误的是( )A.∠ADC=∠AEBB.CD∥ABC.DE=GED.BF2=CF·AC二.填空题(本大题共6道小题)11. 如图,点B 、F 、C 、E 在一条直线上,已知FB=CE,AC ∥DF,请你添加一个适当的条件 使得△ABC ≌△DEF.12. 如图,四边形ABCD 中,∠BAC =∠DAC,请补充一个条件 ,使得△ABC ≌△ADC.13. 如图,AC =AD,∠1=∠2,要使△ABC ≌△AED,应添加的条件是 .(只需写出一个条件即可)14. 如图,AC=AD,∠1=∠2,要使ABC AED ≌△△,应添加的条件是______(只需写出一个条件即可)15. 如图,点P 为定角∠AOB 的平分线上的一个定点,点M,N 分别在射线OA,OB 上(都不与点O 重合),且∠MPN 与∠AOB 互补.若∠MPN 绕着点P 转动,那么以下四个结论:①P M =PN 恒成立;②MN 的长不变;③OM+ON 的值不变;④四边形PMON 的面积不变.其中正确的为_____.(填番号)16. 如图,在△ABC 中,AB =AC,点D 在BC 上(不与点B,C 重合).只需添加一个条件即可证明△ABD ≌△ACD,这个条件可以是 (写出一个即可).三.解答题(本大题共6道小题)17. 如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.18. 如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.19. 如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.20. 如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DFA的度数.21. 在Rt△ABC中,∠ACB=90°,CB=CA=22,点D是射线AB上一点,连接CD,在CD右侧作∠DCE =90°,且CE=CD,连接AE,已知AE=1.(1)如图,当点D在线段AB上时,①求∠CAE的度数;②求CD的长;(2)当点D在线段AB的延长线上时,请直接写出∠CAE的度数和CD的长.22. 如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.。
中考数学复习《全等三角形》专题训练-附带参考答案
中考数学复习《全等三角形》专题训练-附带参考答案一、选择题1.下列选项中表示两个全等的图形的是()A.形状相同的两个图形B.周长相等的两个图形C.面积相等的两个图形D.能够完全重合的两个图形2.如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,则不一定能使△ABE≌△ACD的条件是()A.AB=AC B.∠B=∠CC.∠AEB=∠ADC D.CD=BE3.如图是用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是()A.SAS B.ASA C.AAS D.SSS4.如图△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.25°B.30°C.35°D.65°5.如图EF=CF,BF=DF则下列结论不一定正确的是()A.△BEF≌△DCF B.△ABC≌△ADEC.DC=AC D.AB=AD6.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=3,则PQ的最小值为()A.2 B.3 C.4 D.57.如图,CD⊥AB,BE⊥AC,垂足分别为点D,点E,BE、CD相交于点O.∠1=∠2,则图中全等三角形共有()A.2对B.3对C.4对D.5对8.如图,AD 是△ABC中∠BAC的平分线,DE⊥AB于点E,△ABC的面积为12,DE =2,AB = 7,则 AC 的长是()A.3 B.4 C.5 D.6二、填空题9.如图,∠ACD=∠BCE,BC=EC,要使△ABC≌△DEC,则可以添加的一个条件是.10.如图所示,在△ABC中,∠C=90°,AB=8,AD是△ABC的一条角平分线.若CD=2,则△ABD的面积为.11.如图,在Rt△ABC中,∠BAC=90°,分别过点B,C作过点A的直线的垂线BD,若BD=4cm,CE=3cm则DE= cm.12.如图,把两根钢条AB,CD的中点连在一起做成卡钳,已知AC的长度是6cm,则工件内槽的宽BD是cm.13.如图,△ABC为等腰直角三角形AC=BC,若A(−3,0),C(0,2),则点B的坐标为.三、解答题14.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°(1)求证:△ADE≌△CDE.(2)求∠BDC度数.15.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A =25°,∠D =15°,求∠ACB 的度数.16.如图,AB =AC ,AD =AE ,∠BAC =∠DAE.(1)求证:△ABD ≌△ACE ;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,在ABC 中90C ∠=︒,BD 是ABC ∠的平分线,DE AB ⊥于点E ,点F 在BC 上,连接DF ,且AD DF =. (1)求证:CF AE =;(2)若3AE =,BF=4,求AB 的长.18.如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD =2BF+DE .1.D2.D3.D4.A5.C6.B7.C8.C9.AC =DC (答案不唯一)10.811.712.613.(2,-1)14.(1)证明:∵DE 是线段AC 的垂直平分线 ∴DA=DC ,AE=CE在△ADE 与△CDE 中:DA=DCAE=CEDE=DE∴△ADE ≌△CDE (SSS );(2)解:∵△ADE ≌△CDE .∴∠DCA=∠A=50°∴∠BDC=∠DCA+∠A=100°15.(1)证明:∵∠BCE =∠DCA∴∠BCE +∠ACE =∠DCA +∠ECA即∠BCA =∠DCE .在△BCA 和△DCE 中{∠BCA =∠DCE AC =EC ∠A =∠E∴△BCA ≌△DCE (ASA )(2)解:∵△BCA ≌△DCE∴∠B =∠D =15°.∵∠A =25°∴∠ACB =180°−∠A −∠B =140°.16.(1)证明:∵∠BAC =∠DAE∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC∴∠1=∠EAC在△ABD 和△ACE 中{AB =AC ∠1=∠EAC AD =AE∴△ABD ≌△ACE (SAS )(2)解:∵△ABD ≌△ACE∴∠ABD =∠2=30°∵∠1=25°∴∠3=∠1+∠ABD =25°+30°=55°.17.(1)证明:(1)∵90C ∠=︒∴DC BC ⊥又∵BD 是ABC ∠的平分线DE AB ⊥∴DE DC = 90AED ∠=︒在Rt AED △和Rt FCD △中∵AD DFDE DC =⎧⎨=⎩∴()Rt Rt AED FCD HL ≌△△∴CF AE =.(2)解:由(1)可得3CF AE ==∴437BC BF CF =+=+=∵DE AB ⊥∴90DEB ∠=︒∴DEB C ∠=∠∵BD 是ABC ∠的平分线∴ABD CBD ∠=∠在BED 和BCD △中∵DEB C EBD CBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()BED BCD AAS ≌△△ ∴7BE BC ==∴7310AB BE AE =+=+=∴AB 的长为10.18.(1)证明:∵90BAD CAE ∠=∠=︒∴90BAC CAD ∠+∠=︒ 90CAD DAE ∠+∠=︒ ∴BAC DAE ∠=∠在△BAC 和△DAE 中∵AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴()BAC DAE SAS ≌△△;(2)解:∵90CAE ∠=︒,AC=AE∴45E ∠=︒由(1)知BAC DAE ≌△△∴45BCA E ∠=∠=︒∵AF BC ⊥∴90CFA ∠=︒∴45CAF ∠=︒∴4590135FAE FAC CAE ∠=∠+∠=︒+︒=︒;(3)证明:延长BF 到G ,使得FG FB = ∵AF BG ⊥∴90AFG AFB ∠=∠=︒在△AFB 和△AFG 中∴BF GF AFB AFG AF AF =⎧⎪∠=∠⎨⎪=⎩∴()AFB AFG SAS ≌△△∴AB AG = ABF G ∠=∠∵BAC DAE ≌△△∴AB AD = CBA EDA ∠=∠ CB=ED ∴AG AD = ABF CDA ∠=∠∴CGA CDA ∠=∠∵45GCA DCA ∠=∠=︒∴在△CGA 和△CDA 中GCA DCA CGA CDA AG AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CGA CDA AAS ≌△△∴CG CD =∵22CG CB BF FG CB BF DE BF =++=+=+ ∴2CD BF DE =+.。
中考数学-三角形全等的判定专题训练题
1、如图(1):AD⊥BC,垂足为D,BD=CD。求证:△ABD≌△ACD。
5、如图(5)Leabharlann AB⊥BD,ED⊥BD,AB=CD,BC=DE。 求证:AC⊥CE。
2、如图(2):AC∥EF,AC=EF,AE=BD。 求证:△ABC≌△EDF。
3、如图(3):DF=CE,AD=BC,∠D=∠C。求证:△AED≌△BFC。
(1)求证:AE=CD,(2)若BD=5㎝,求AC的长。
15、如图15△ABC中,AB=2AC,∠BAC=90°,延长BA到D,使AD= AB,延长AC到E,使CE=AC。求证:△ABC≌△AED。
16、如图(16)AD∥BC,AD=BC,AE=CF。求证:(1)DE=DF,(2)AB∥CD。
17、如图:在△ABC中,AD⊥BC于D,AD=BD,CD=DE,E是AD上一点,连结BE并延长交AC于点F。求证:(1)BE=AC,(2)BF⊥AC。
11、如图(11)在△ABC和△DBC中,∠1=∠2,∠3=∠4,P是BC上任一点。求证:PA=PD。
12、如图(12)AB∥CD,OA=OD,点F、D、O、A、E在同一直线上,AE=DF。求证:EB∥CF。
13、如图(13)△ABC≌△EDC。求证:BE=AD。
14、如图(14)在△ABC中,∠ACB=90°,AC=BC,AE是BC的中线,过点C作CF⊥AE于F,过B作BD⊥CB交CF的延长线于点D。
43、如图:AB=FE,BD=EC,AB∥EF。求证:(1)AC=FD,(2)AC∥EF,(3)∠ADC=∠FCD。
44、如图:AD=AE,∠DAB=∠EAC,AM=AN。 求证:AB=AC。
45、如图:AB=AC,BD=CE。求证:OA平分∠BAC。
2024年中考数学《全等三角形》专题练习附带答案
2024年中考数学《全等三角形》专题练习附带答案学校:___________班级:___________姓名:___________考号:___________知识重点1、全等三角形的概念:(1)能够完全重合的两个三角形叫做全等三角形。
(2)把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
2、全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。
3、三角形全等的判定:(1)边边边(SSS):三边分别相等的两个三角形全等。
(2)边角边(SAS):两边和它们的夹角分别相等的两个三角形全等。
(3)角边角(ASA):两角和它们的夹边分别相等的两个三角形全等。
(4)角角边(AAS):两角和其中一个角的对边分别相等的两个三角形全等。
(5)斜边、直角边(HL):斜边和一条直角边分别相等的两个直角三角形全等。
一、选择题1.下列各选项中的两个图形属于全等形的是()A.B.C.D.2.如图,△ABC≌△EDC,AC=3cm,DC=5cm,则BE=()A.1cm B.2cm C.3cm D.4cm3.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.30°C.35°D.25°4.小亮设计了如下测量一池塘两端AB的距离的方案:先取一个可直接到达点A,B的点O,连接AO,BO,延长AO至点P,延长BO至点Q,使得OP=AO,OQ=BO再测出PQ的长度,即可知道A,B之间的距离.他设计方案的理由是()A.SAS B.AAS C.ASA D.SSS5.如图,点F,E在AC上AD=CB,∠D=∠B添加一个条件,不一定能证明△ADE≌△CBF的是()A.AD∥BC B.DE∥FB C.DE=BF D.AE=CF6.如图所示∠E=∠D,CD⊥AC于点C,BE⊥AB于点B,AE交BC于点F,且BE=CD,则下列结论不一定正确的是()A.AB=AC B.BF=EF C.AE=AD D.∠BAE=∠CAD 7.如图,OD平分∠AOB,DE⊥AO于点E,DE=5 F是射线OB上的任意一点,则DF的长度不可能是()A.4 B.5 C.5.5 D.68.如图,AD是△BAC的平分线,DE⊥AB于点E,S△ABC=32,DE=4,AB=9,则AC的长是()A.5 B.6 C.7 D.8二、填空题9.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯的水平长度DF 相等,那么判定△ABC与△DEF全等的依据是.10.若△ABC≌△DEF,A与D,B与E分别是对应顶点∠A=50°,∠B=60°则∠F=. 11.如图,△ABC的面积为25cm2,BP平分∠ABC,过点A作AP⊥BP于点P,则△PBC的面积为;12.如图,在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,已知BC=8,DE=2则△BCE 的面积等于.13.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,若BD=7cm,CE=5cm,则DE= cm.三、解答题14.如图,点B,C,E,F在同一直线上,AB=DF,AC=DE,BE=CF.求证:AB∥DF.15.如图,在Rt△ABC中∠B=90°,CD∥AB,DE⊥AC于点E,且CE=AB.求证:△CED≅△ABC.16.如图,在四边形ABCD中,∠B=∠C=90°,E是BC的中点,AE平分∠DAB.求证:CD+AB=AD.17.已知:如图,CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC,求证:(1)OD=OE;(2)OB=OC.18.如图,在△ABC中AC>AB,射线AD平分∠BAC,交BC于点E,点F在边AB的延长线上AF=AC,连接EF.(1)求证:△AEC≌△AEF.(2)若∠AEB=50°,求∠BEF的度数.19.如图,在Rt△ABC中,∠BAC=90°,∠ABC=60°,AD,CE分别平分∠BAC,∠ACB.(1)求∠AOE得度数;(2)求证:AC=AE+CD.参考答案1.A2.B3.C4.A5.D6.B7.A8.C9.HL10.70°11.12.5cm212.813.1214.解:∵ BE=CF∴BE−CE=CF−CE∴BC=FE∵ AB=DF,AC=DE∴△ABC≌△DFE(SSS)∴∠B=∠F∴AB∥DF.15.证明:∵DE⊥AC,∠DEC=90°又∵∠B=90°∴∠DEC=∠B=90°∵CD∥AB,∴∠A=∠DCE在△CED和△ABC中{∠DCE=∠A CE=AB∠DEC=∠B∴△CED≅△ABC(ASA).16.证明:如图,过点E作EF⊥AD于F∵∠B=90°,AE平分∠DAB∴BE=EF在Rt△EFA和Rt△EBA中{EF=EBAE=AE∴Rt△EFA和≌Rt△EBA(HL).∴AF=AB∵E是BC的中点∴BE=CE=EF在Rt△EFD和Rt△ECD中{EF=ECDE=DE∴Rt△EFD和≌Rt△ECD(HL).∴DF=CD∴CD+AB=DF+AF=AD∴CD+AB=AD.17.(1)证明:∵AO平分∠BAC,CD⊥AB,BE⊥AC ∴OD=OE(2)证明:∵CD⊥AB,BE⊥AC∴∠BDO=∠CEO=90°在△BDO和△CEO中{∠BDO=∠CEO DO=CO∠BOD=∠COE∴△BDO≌△CEO(ASA)∴OB=OC18.(1)证明:射线AD平分∠BAC∴∠CAE=∠FAE 在△AEC和△AEF中{AC=AF∠CAE=∠FAE AE=AE∴△AEC≌△AEF(SAS);(2)解:∵△AEC≌△AEF(SAS)∴∠AEC=∠AEF∵∠AEB=50°∴∠AEC=180°−∠AEB=180°−50°=130°∴∠AEF=∠AEC=130°∴∠BEF=∠AEF−∠AEB=80°∴∠BEF为80°.19.18.(1)解:∵∠BAC=90°,∠ABC=60°∴∠ACB=30°∵AD平分∠BAC,CE平分∠BAC∴∠CAD=12∠BAC=45°,∠ACE=12∠ACB=15°∵∠AOE是△AOC的外角∴∠AOE=∠CAD+∠ACE=60°;(2)证明:在AC上截取CF=CD,连接OF∵CE平分∠ACB∴∠DCO=∠FCO在△DCO和△FCO中{CD=CF∠DCO=∠FCOOC=OC∴△DCO≌△FCO(SAS)∴∠COD=∠COF∵∠AOE=60°∴∠COD=∠COF=60°∴∠AOF=180°−∠AOE−∠COF==60°∴∠AOE=∠AOF∵AD平分∠BAC∴∠EAO=∠FAO在△EAO和△FAO中{∠EAO=∠FAO AO=AO∠AOE=∠AOF∴△EAO≌△FAO(ASA)∴AE=AF∵AC=AF+CF∴AC=AE+CD.。
中考数学复习考点题型专练19--全等三角形(解析版)
中考数学复习考点题型专练专题19全等三角形(满分:100分时间:90分钟)班级_________ 姓名_________学号_________ 分数_________ 一、单选题(共10小题,每小题3分,共计30分)1.(2022·浙江湖州市·中考真题)在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积. 如图是由5个边长为1的小正方形拼成的图形,P是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是()A.D【答案】D【分析】根据中心对称的性质即可作出剪痕,根据三角形全等的性质即可证得EM=DN,利用勾股定理即可求得.【详解】于G.如图,EF为剪痕,过点F作FG EM∵EF 将该图形分成了面积相等的两部分,∴EF 经过正方形ABCD 对角线的交点,∴,AF CN BF DN ==.易证PME PDN ∆∆≌,∴EM DN =,而AF MG =,∴1EG EM MG DN AF DN CN DC =+=+=+==.在Rt FGE ∆中,EF ==故选:D.2.(2022·黑龙江中考真题)如图,四边形ABCD 中,AB=AD ,AC=5,∠DAB=∠DCB=90°,则四边形ABCD 的面积为( )A .15B .12.5C .14.5D .17【答案】B【分析】过A 作AE ⊥AC ,交CB 的延长线于E ,判定△ACD ≌△AEB ,即可得到△ACE 是等腰直角三角形,四边形ABCD 的面积与△ACE 的面积相等,根据S △ACE =12×5×5=12.5,即可得出结论. 【详解】如图,过A 作AE ⊥AC ,交CB 的延长线于E ,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,又∵AD=AB,∴△ACD≌△AEB,∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,∵S△ACE=12×5×5=12.5,∴四边形ABCD的面积为12.5,故选B.3.(2022·青海中考真题)如图,把直角三角形ABO放置在平面直角坐标系中,已知30OAB∠=,B 点的坐标为()0,2,将ABO沿着斜边AB翻折后得到ABC,则点C的坐标是()A.()4B.(2,C.)D.【答案】C【分析】过点C 作CD ⊥y 轴,垂直为D ,首先证明△BOA ≌△BCA ,从而可求得BC 的长,然后再求得∠DCB=30°,接下来,依据在Rt △BCD 中,求得BD 、DC 的长,从而可得到点C 的坐标.【详解】OAB BAC 30∠∠==,BOA BCA 90∠∠==,AB AB =,BOA ∴≌BCA ,OB BC 2∴==,CBA OBA 60∠∠==,过点C 作CD y ⊥轴,垂直为D ,则DCB 30∠=,1DB BC 12∴==,DC BC 2== )C ∴, 故选C .4.(2022·新疆中考真题)如图,在△ABC 中,∠C=90°,∠A=30°,以点B 为圆心,适当长为半径的画弧,分别交BA ,BC 于点M 、N ;再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D ,则下列说法中不正确的是()A .BP 是∠ABC 的平分线B .AD=BDC .:1:3CBD ABD S S D .CD=12BD 【答案】C【分析】A 、由作法得BD 是∠ABC 的平分线,即可判定;B 、先根据三角形内角和定理求出∠ABC 的度数,再由BP 是∠ABC 的平分线得出∠ABD =30°=∠A,即可判定;C ,D 、根据含30°的直角三角形,30°所对直角边等于斜边的一半,即可判定.【详解】解:由作法得BD 平分∠ABC ,所以A 选项的结论正确;∵∠C =90°,∠A =30°,∴∠ABC =60°,∴∠ABD =30°=∠A ,∴AD =BD ,所以B 选项的结论正确;∵∠CBD =12∠ABC =30°, ∴BD =2CD ,所以D 选项的结论正确;∴AD =2CD ,∴S △ABD =2S △CBD ,所以C 选项的结论错误.故选C .5.(2022·湖南张家界市·中考真题)如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A .4B .3C .2D .1【答案】C【分析】如图,过点D 作DE AB ⊥于E ,根据已知求出CD 的长,再根据角平分线的性质进行求解即可.【详解】如图,过点D 作DE AB ⊥于E ,AC 8=,1DC AD 3=,1CD 8213∴=⨯=+, C 90∠︒=,BD 平分ABC ∠,DE CD 2∴==,即点D 到AB 的距离为2,故选C .6.(2022·山东潍坊市·中考真题)如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .③连接OE 交CD 于点M .下列结论中错误的是( )A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠D .12OCED S CD OE =⋅四边形 【答案】C【分析】利用基本作图得出是角平分线的作图,进而解答即可.【详解】由作图步骤可得:OE 是AOB ∠的角平分线,∴∠COE=∠DOE ,∵OC=OD ,OE=OE ,OM=OM ,∴△COE ≌△DOE ,∴∠CEO=∠DEO ,∵∠COE=∠DOE ,OC=OD ,∴CM=DM ,OM ⊥CD ,∴S 四边形OCED =S △COE +S △DOE =111222OE CM OE DM CD OE +=, 但不能得出OCD ECD ∠=∠,∴A 、B 、D 选项正确,不符合题意,C 选项错误,符合题意,故选C .7.(2022·山东临沂市·中考真题)如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,若4AB =,3CF =,则BD 的长是( )A .0.5B .1C .1.5D .2【答案】B【分析】根据平行线的性质,得出A FCE ∠=∠,ADE F ∠=∠,根据全等三角形的判定,得出ADE CFE ∆≅∆,根据全等三角形的性质,得出AD CF =,根据4AB =,3CF =,即可求线段DB 的长.【详解】∵//CF AB ,∴A FCE ∠=∠,ADE F ∠=∠,在ADE ∆和FCE ∆中A FCE ADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ADE CFE AAS ∆≅∆,∴3AD CF ==,∵4AB =,∴431DB AB AD =-=-=.故选B .8.(2022·广西河池市·中考真题)如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上,BE CF =,则图中与AEB ∠相等的角的个数是()A .1B .2C .3D .4【答案】C【分析】根据正方形的性质,利用SAS 即可证明△ABE ≌△BCF ,再根据全等三角形的性质可得∠BFC=∠AEB ,进一步得到∠DAE=∠AEB ,∠BFC=∠ABF ,从而求解.【详解】证明:∵四边形ABCD 是正方形,∴,,90AB BC AB BC ABE BCF =∠=∠=︒∕∕,在ABE ∆和BCF ∆中,AB BC ABE BCF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴()ABE BCF SAS ∆∆≌,∴BFC AEB ∠=∠,∴BFC ABF ∠=∠,又有EAD AEB ∠=∠故图中与AEB ∠相等的角的个数是3.故选C .9.(2022·四川宜宾市·中考真题)如图,,ABC ECD ∆∆都是等边三角形,且B ,C ,D 在一条直线上,连结,BE AD ,点M ,N 分别是线段BE ,AD 上的两点,且11,33BM BE AN AD ==,则CMN ∆的形状是()A .等腰三角形B .直角三角形C .等边三角形D .不等边三角形【答案】C【分析】先证明BCE ACD ≅,得到BE AD =,根据已知条件可得AN BM =,证明△△BCM ACN ≅,得到=60MCN ∠︒,即可得到结果;【详解】∵,ABC ECD ∆∆都是等边三角形,∴BC AC =,CE CD =,60BCA DCE ∠=∠=︒,∴+BCA ACE DCE ACE ∠∠=∠+∠,∴BCE ACD ∠=∠,在BCE 和ACD △中,BC AC BCE ACD CE CD ⎧=⎪∠=∠⎨⎪=⎩,∴()△△BCE ACD SAS ≅,∴BE AD =,CBMACN ∠=∠, 又∵11,33BM BE AN AD ==, ∴BM AN =,在BCM 和ACN △中,BM AN CBM ACN BC AC ⎧=⎪∠=∠⎨⎪=⎩,∴()△△BCM ACNSAS ≅, ∴BCM ACN ∠=∠,MC NC =,∴+60BCM ACMACN ACM ∠∠=∠+∠=︒, ∴CMN ∆是等边三角形.故答案选C .10.(2022·广西中考真题)如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为( )A .40︒B .45︒C .50︒D .60︒【答案】C【分析】利用等腰三角形的性质和基本作图得到CG AB ⊥,则CG 平分ACB ∠,利用A B ∠=∠和三角形内角和计算出ACB ∠,从而得到BCG ∠的度数.【详解】由作法得CG AB ⊥,∵AB AC =,∴CG 平分ACB ∠,A B ∠=∠,∵1804040100ACB ∠=︒-︒-︒=︒, ∴1502BCG ACB ∠=∠=︒. 故选:C . 二、填空题(共5小题,每小题4分,共计20分)11.(2022·广西玉林市·中考真题)如图,将两张对边平行且相等的纸条交叉叠放在一起,则重合部分构成的四边形ABCD_________菱形(是,或不是).【答案】是【分析】 如图(见解析),先根据“两张对边平行且相等的纸条”得出//,//,AB CD AD BC BE DF =,再根据平行四边形的判定可得四边形ABCD 是平行四边形,然后根据三角形全等的判定定理与性质可得AB AD =,最后根据菱形的判定即可得.【详解】如图,过点B 作BE AD ⊥,交DA 延长线于点E ,过点D 作DF AB ⊥,交BA 延长线于点F 由题意得://,//,AB CD AD BC BE DF =∴四边形ABCD 是平行四边形在ABE △和ADF 中,90BAE DAF AEB AFD BE DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩(AAS)ABE ADF ∴≅AB AD ∴=∴平行四边形ABCD 是菱形故答案为:是.12.(2022·黑龙江鹤岗市·中考真题)如图,Rt ABC ∆和Rt EDF ∆中,//BC DF ,在不添加任何辅助线的情况下,请你添加一个条件______,使Rt ABC ∆和Rt EDF ∆全等.【答案】AB ED =,答案不唯一【分析】本题是一道开放型的题目,答案不唯一,可以是AB =ED 或BC =DF 或AC =EF 或AE =CF 等,只要符合全等三角形的判定定理即可.【详解】∵Rt ABC ∆和Rt EDF ∆中,∴90BAC DEF ∠=∠=︒,∵//BC DF ,∴DFE BCA ∠=∠,∴添加AB ED =,在Rt ABC ∆和Rt EDF ∆中DFE BCA DEF BAC AB ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()Rt Rt AAS ABC EDF ∆∆≌,故答案为:AB ED =答案不唯一.13.(2022·辽宁本溪市·中考真题)如图,在ABC ∆中,M ,N 分别是AB 和AC 的中点,连接MN ,点E 是CN 的中点,连接ME 并延长,交BC 的延长线于点D ,若4BC =,则CD 的长为_________.【答案】2【分析】依据三角形中位线定理,即可得到MN=12BC=2,MN //BC ,依据△MNE ≌△DCE (AAS ),即可得到CD=MN=2.【详解】解:∵M ,N 分别是AB 和AC 的中点,∴MN 是△ABC 的中位线,∴MN=12BC=2,MN ∥BC , ∴∠NME=∠D ,∠MNE=∠DCE ,∵点E 是CN 的中点,∴NE=CE ,∴△MNE ≌△DCE (AAS ),故答案为:2.14.(2022·甘肃天水市·中考真题)如图,在边长为6的正方形ABCD 内作45EAF ∠=︒,AE 交BC 于点E ,AF 交CD 于点F ,连接EF ,将ADF ∆绕点A 顺时针旋转90︒得到ABG ,若3DF =,则BE 的长为__________.【答案】2【分析】根据旋转的性质可得AG=AF ,GB=DF ,∠BAG =∠DAF ,然后根据正方形的性质和等量代换可得∠GAE =∠F AE ,进而可根据SAS 证明△GAE ≌△F AE ,可得GE=EF ,设BE=x ,则CE 与EF 可用含x 的代数式表示,然后在Rt △CEF 中,由勾股定理可得关于x 的方程,解方程即得答案.【详解】解:∵将△ADF 绕点A 顺时针旋转90︒得到△ABG ,∴AG=AF ,GB=DF ,∠BAG =∠DAF ,∵45EAF ∠=︒,∠BAD =90°,∴∠BAE +∠DAF =45°,∴∠BAE +∠BAG =45°,即∠GAE =45°,∴∠GAE =∠F AE ,又AE=AE ,∴△GAE ≌△F AE (SAS ),设BE=x ,则CE =6-x ,EF=GE=DF+BE =3+x ,∵DF =3,∴CF =3,在Rt △CEF 中,由勾股定理,得:()()222633x x -+=+,解得:x =2,即BE =2.故答案为:2.15.(2022·黑龙江齐齐哈尔市·中考真题)如图,已知在△ABD 和△ABC 中,∠DAB =∠CAB ,点A 、B 、E 在同一条直线上,若使△ABD ≌△ABC ,则还需添加的一个条件是______.(只填一个即可)【答案】AD =AC (∠D =∠C 或∠ABD =∠ABC 等)【分析】利用全等三角形的判定方法添加条件即可求解.【详解】解:∵∠DAB =∠CAB ,AB =AB ,∴当添加AD =AC 时,可根据“SAS ”判断△ABD ≌△ABC ;当添加∠D =∠C 时,可根据“AAS ”判断△ABD ≌△ABC ;当添加∠ABD =∠ABC 时,可根据“ASA ”判断△ABD ≌△ABC .故答案为AD =AC (∠D =∠C 或∠ABD =∠ABC 等).三、解答题(共5小题,每小题10分,共计50分)16.(2022·柳州市柳林中学中考真题)如图,已知OC 平分∠MON ,点A 、B 分别在射线OM ,ON 上,且OA =OB .求证:△AOC ≌△BOC .【答案】见解析【分析】根据角平分线的性质和全等三角形的判定方法可以证明结论成立.【详解】证明:∵OC 平分∠MON ,∴∠AOC =∠BOC ,在△AOC 和△BOC 中,OA OB AOC BOC OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOC (SAS ).17.(2022·江苏连云港市·中考真题)如图,在四边形ABCD 中,//AD BC ,对角线BD 的垂直平分线与边AD 、BC 分别相交于M 、N .(1)求证:四边形BNDM 是菱形;(2)若24BD =,10MN =,求菱形BNDM 的周长.【答案】(1)见解析;(2)52【分析】(1)先证明BON DOM ≌△△,得到四边形BNDM 为平行四边形,再根据菱形定义证明即可; (2)先根据菱形性质求出OB 、OM 、再根据勾股定理求出BM ,问题的得解.【详解】(1)∵//AD BC ,∴CBD ADB ∠=∠.∵MN 是对角线BD 的垂直平分线,∴OB OD =,MB MD =.在BON △和DOM △中,CBD ADB OB OD BON DOM ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()BON DOM ASA ≌,∴MD NB =,∴四边形BNDM 为平行四边形.又∵MB MD =,∴四边形BNDM 为菱形.(2)∵四边形BNDM 为菱形,24BD =,10MN =.∴90BOM ︒∠=,1122OB BD ==,152OM MN ==. 在Rt BOM △中,13BM ===.∴菱形BNDM 的周长441352BM ==⨯=.18.(2022·湖南湘西土家族苗族自治州·中考真题)如图,在正方形ABCD 的外侧,作等边角形ADE ,连接BE 、CE .(1)求证:BAE CDE △≌△;(2)求AEB ∠的度数.【答案】(1)见解析;(2)15°.【分析】(1)利用正方形的性质得到AB=CD ,∠BAD=∠CDA ,利用等边三角形的性质得到AE=DE ,∠EAD=∠EDA=60°即可证明;(2)由AB=AD=AE ,得到△ABE 为等腰三角形,进而得到∠ABE=∠AEB ,且∠BAE=90°+60°=150°,再利用三角形内角和定理即可求解.【详解】解:(1)证明:∵四边形ABCD 是正方形,∴AB=CD ,且∠BAD=∠CDA=90°,∵△ADE 是等边三角形,∴AE=DE ,且∠EAD=∠EDA=60°,∴∠BAE=∠BAD+∠EAD=150°,∠CDE=∠CDA+∠EDA=150°,∴∠BAE=∠CDE ,在△BAE 和△CDE 中:=⎧⎪∠=∠⎨⎪=⎩AB CD BAE CDE AE DE ,∴()△≌△BAE CDE SAS .(2)∵AB=AD ,且AD=AE ,∴△ABE 为等腰三角形,∴∠ABE=∠AEB ,又∠BAE=150°,∴由三角形内角和定理可知:∠AEB=(180°-150°)÷2=15°.故答案为:15°.19.(2022·江苏宿迁市·中考真题)如图,在正方形ABCD 中,点E ,F 在AC 上,且AF=CE .求证:四边形BEDF 是菱形.【答案】见解析【分析】由正方形的性质可得AB=AD=CD=BC ,∠DAE=∠BAE=∠BCF=∠DCF=45°,由“SAS”可证△ABE ≌△ADE ,△BFC ≌△DFC ,△ABE ≌△CBF ,可得BE=BF=DE=DF ,可得结论.【详解】∵四边形ABCD 是正方形,∴AB=AD=CD=BC ,∠DAE=∠BAE=∠BCF=∠DCF=45°,在△ABE 和△ADE 中,AB AD BAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADE (SAS ),∴BE=DE ,同理可得△BFC ≌△DFC ,可得BF=DF ,∵AF=CE ,∴AF-EF=CE-EF ,即AE=CF ,在△ABE 和△CBF 中,AB BC BAE BCF AE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBF (SAS ),∴BE=BF ,∴BE=BF=DE=DF ,∴四边形BEDF 是菱形.20.(2022·江苏南通市·中考真题)(1)如图①,点D 在AB 上,点E 在AC 上,AD =AE ,∠B =∠C .求证:AB =AC .(2)如图②,A 为⊙O 上一点,按以下步骤作图:①连接OA ;②以点A 为圆心,AO 长为半径作弧,交⊙O 于点B ;③在射线OB 上截取BC =OA ;④连接AC .若AC =3,求⊙O 的半径.【答案】(1)见解析;(2)⊙O【分析】(1)根据“AAS “证明△ABE ≌△ACD ,然后根据全等三角形的性质得到结论;(2)连接AB ,如图②,由作法得OA=OB=AB=BC ,先判断△OAB 为等边三角形得到∠OAB=∠OBA=60°,再利用等腰三角形的性质和三角形外角性质得到∠C=∠BAC=30°,然后根据含30度的直角三角形三边的关系求OA 的长.【详解】(1)证明:在△ABE 和△ACD 中B C A A AE AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (AAS ),∴AB =AC ;(2)解:连接AB ,如图②,由作法得OA =OB =AB =BC ,∴△OAB 为等边三角形,∴∠OAB =∠OBA =60°,∵AB =BC ,∴∠C =∠BAC ,∵∠OBA =∠C+∠BAC ,∴∠C =∠BAC =30°∴∠OAC =90°,在Rt △OAC 中,OA =3AC =3×3即⊙O .。
全等三角形知识点演练(5大核心考点,91题)讲练)2023年中考数学一轮大单元复习
专题4.3 全等三角形考点1:全等形和全等三角形性质例1.(1)(2022秋·江苏连云港·八年级校考阶段练习)下列图标中,不是由全等图形组合成的是()A.B.C.D.(2)(2023秋·浙江台州·八年级统考期末)如图,△ABC≌△DEF,且∠A=55°,∠B=75°,则∠F=______°.(3)(2022秋·湖南岳阳·八年级校考期中)如图,△ABC≌△DEC,点B、C、D在同一直线上,且BD=12,AC=7,则CE长为____________.知识点训练1.(2023秋·河北邢台·八年级统考期末)与下图全等的图形是()A.B.C.D.2.(2020秋·江苏常州·八年级常州市清潭中学校考期中)找出下列各组图中的全等图形()A.②和⑥B.②和⑦C.③和④D.⑥和⑦3.(2022秋·福建龙岩·八年级统考期末)如图,△DBC≌△ECB,且BE与CD相交于点A,下列结论错误的是()A.BE=CD B.AB=ACC.∠D=∠E D.BD=AE4.(2023秋·四川自贡·八年级统考期末)如图所示,△ABC≌△AEF,∠B=∠E,有以下结论:①AC=AE;②EF=BC;③∠EAB=∠FAC;④∠EFA=∠AFC.其中正确的个数是()5.(河北省唐山市2022-2023学年八年级上学期期末考试数学试题)如图,△ABC≌△DEC,点B,C,D在同一条直线上,且CE=1,CD=3,则BD的长是()A.1.5B.2C.3.5D.46.(2023秋·四川南充·八年级统考期末)如图,点A,E,C在同一直线上,△ABC≌△DEC,AE=3,CD=8,则BC的长为()A.3B.5C.8D.117.(2023秋·天津·八年级统考期末)如图,已知△ABC≌△DEF,CD平分∠BCA,DF与BC交于点G.若∠A=26°,∠CGF=83°,则∠E的度数是()A.34°B.36°C.38°D.40°8.(2022秋·河南许昌·八年级统考期中)如图所示的图案是由全等的图形拼成的,其中AD=0.8,BC=1.6,则AF=()9.(2022秋·山东菏泽·八年级统考期中)下列说法正确的是()A.形状相同的两个三角形全等B.三个角都分别相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等10.(2022秋·山东烟台·七年级统考期中)下列说法:①角是轴对称图形;②等腰三角形有三条对称轴;③关于某直线成轴对称的两个三角形全等;④两个全等三角形一定关于某条直线成轴对称.其中正确的个数是()A.1个B.2个C.3个D.4个11.(2022秋·江苏宿迁·八年级统考期中)如图所示的网格是由9个相同的小正方形拼成的,图形的各个顶点均为格点,则∠1−∠2−∠3的度数为().A.30°B.45°C.55°D.60°12.(2023·福建南平·统考一模)如图,在△ABC中,∠BAC=135°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E.当点A、D、E在同一条直线上时,下列结论不正确...的是()A.△ABC≌△DEC B.AE=AB+CDC.AD=√2AC D.AB⊥AE13.(2021秋·陕西商洛·八年级统考期末)在平面直角坐标系内,点O为坐标原点,A(−4,0),B(0,3).若在该坐标平面内有一点P(不与点A、B、O重合)为一个顶点的直角三角形与Rt△ABO全等,且这个以点P 为顶点的直角三角形与Rt△ABO有一条公共边,则所有符合条件的三角形个数为()A.3个B.4个C.6个D.7个14.(2023秋·云南曲靖·八年级统考期末)如图,在平面直角坐标系中,点A的坐标为(3,0),点B的坐标为(0,6),点C在x轴上运动(不与点A重合),点D在y轴上运动(不与点B重合),当以点C、O、D为顶点的三角形与△AOB全等时,则点D的坐标为______.15.(2023秋·江苏镇江·八年级统考期末)如图,△AOD≌△BOC,∠A=30°,∠C=50°,∠AOC=150°,则∠COD=______°.16.(2023秋·四川南充·八年级统考期末)如图,△ABC绕点C旋转得到△DEC,点E在边AB上,若∠B=75°,则∠ACD的度数是_________.考点2:全等三角形的判定及应用例2.(1)(2023秋·山东威海·七年级统考期末)为了测量湖的宽度AB,小明同学先从A点走到点O处,再继续向前走相同的距离到达点C(即OC=OA),然后从点C沿与AB平行的方向,走到与点O,B共线的点D处,测量C,D间的距离就是湖的宽度.下列可以判断△OCD≌△OAB的是()A.SSS B.SSA C.SAS D.ASA(2)(2023秋·黑龙江齐齐哈尔·八年级统考期末)如图,已知∠CAE=∠DAB,AC=AD,请你再添加一个条件:___________,使△ABC≌△AED.(3)(2023秋·江苏徐州·八年级统考期末)根据下列条件,能确定△ABC(存在且唯一)的是()A.AB=2,BC=3,AC=6B.AC=4,BC=3,∠A=60°C.AB=5,BC=3,∠B=30°D.∠A=45°,∠B=45°,∠C=90°(4)(2023秋·广东汕头·八年级统考期末)如图,在△ABC中,∠ACB=65°,∠BAC=70°,AD⊥BC于点D,BM⊥AC于点M,AD与BM交于点P,则∠BPC=______.例3(2022秋·浙江宁波·八年级校考期末)如图,在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,P是OC的中点,D是BC延长线上一点,满足PB=PD.(1)求证∠1=∠2;(2)探究CD与AP之间的数量关系,并给出证明.例4.(2023秋·黑龙江齐齐哈尔·八年级统考期末)综合与实践【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图(1),△ABC中,AB=8,AC=6,求BC边上的中线AD的取值范围,经过组内合作交流.小明得到了如下的解决方法:延长AD到点E,使DE=AD请根据小明的方法思考:(1)由已知和作图得到△ADC≌△EDB的理由是()A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是___________.【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑倍长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图(2),AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.知识点训练1.(2022秋·浙江温州·八年级校考期中)如图,在Rt△ABC中,∠ACB=90∘,∠ABC=25∘,O为斜边中点,将线段OA绕点O逆时针旋转a(0∘<α<90∘)至OP,若CB=CP,则α的值为()A.80∘B.65∘C.50∘D.40∘2.(2023秋·山东威海·七年级统考期末)如图,△ABC和△BDE都是等边三角形,点A,D,E在同一条直线上,BE=2,CE=4,则AE=()A.6B.5C.8D.73.(海南省海口市(部分校)2022-2023学年八年级上学期期末检测数学试题(A))如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,等腰直角△ABC的三个顶点A、B、C分别在直线l2、l1、l3上,∠ACB=90°,则△ABC的面积为()D.25A.10B.12C.2524.(2022秋·黑龙江双鸭山·八年级统考期末)如图所示的网格是由9个相同的小正方形拼成的,图形的各个顶点均为格点,则∠2+∠3的度数为()A.30°B.45°C.55°D.60°5.(2022秋·安徽黄山·八年级统考期末)如图,已知等边△ABC和等边△BPE,点P在BC的延长线上,EC的延长线交AP于点M,连接BM,有下列结论:①AP=CE;②∠PME=60°;③MB平分∠AME;④AM+MC=BM,其中正确的结论是()A.①②③B.①②④C.①③④D.①②③④6.(2022秋·山西吕梁·八年级统考期末)如图,点E,F在线段AC上,AE=CF,AD⊥DF,CB⊥BE,要根据“HL”证明Rt△ADF≌Rt△CBE,则还需添加的一个条件是()A.AF=CE B.∠A=∠C C.AD=CB D.AD∥BC7.(2023·全国·九年级专题练习)如图,点O为△ABC的内心,∠B=60°,BM≠BN,点M,N分别为AB,BC上的点,且OM=ON.甲、乙、丙三人有如下判断:甲:∠MON=120°;乙:四边形OMBN的面积为定值;丙:当MN⊥BC时,△MON的周长有最小值.则下列说法正确的是()A.只有甲正确B.只有乙错误C.乙、丙都正确D.只有丙错误8.(2023秋·浙江台州·八年级统考期末)如图,AB与CD相交于点O,且OA=OB,添加下列选项中的一个条件,不能判定△AOC和△BOD全等的是()A.OC=ODB.∠A=∠BC.AC=BDD.AC∥BD9.(2023秋·浙江台州·八年级统考期末)如图,射线OC为∠AOB的平分线,点M,N分别是边OA,OB上的两个定点,且OM<ON,点P在OC上,满足PM=PN的点P的个数有()A.0个B.1个C.2个D.无数个10.(2023秋·河南新乡·八年级统考期末)在△ABC和△DEF中,已知AB=DE,∠A=∠D,下列条件:①AC= DF;②∠B=∠E;③∠C=∠F;④BC=EF.其中一定能判定△ABC≌△DEF的个数为()A.1B.2C.3D.411.(2022秋·四川广安·八年级统考期末)如图,AB=DC,若要用“SSS”证明△ABC≌△DCB,需要补充一个条件,这个条件是__________.12.(2022秋·福建莆田·八年级统考期末)数学社团活动课上,甲乙两位同学玩数学游戏.游戏规则是:两人轮流对△ABC及△A′B′C′的对应边或对应角添加一组等量条件(点A′,B′,C′分别是点A,B,C的对应点),某轮添加条件后,若能判定△ABC与△A′B′C′全等,则当轮添加条件者失败,另一人获胜.1甲AB=A′B′=2cm2乙∠A=∠A′=35°3甲…上表记录了两人游戏的部分过程,则下列说法正确的是___________.(填写所有正确结论的序号)①若第3轮甲添加∠C=∠C′=45°,则甲获胜;②若第3轮甲添加BC=B′C′=3cm,则甲必胜;③若第2轮乙添加条件修改为∠A=∠A′=90°,则乙必胜;④若第2轮乙添加条件修改为BC=B′C′=3cm,则此游戏最多4轮必分胜负.13.(2023秋·山东淄博·七年级统考期末)如图,点C,E,B,F在同一条直线上,AB=DE,AC=DF,BF=CE.说明AC∥DF.14.(2023秋·江苏南京·八年级统考期末)如图AB=AD,CB=CD,AC,BD相交于点E.(1)求证△ABC≅△ADC;(2)求证BE=DE.15.(2022秋·山西吕梁·八年级统考期末)如图,△ABC是等边三角形,点D,E分别在BC,CA的延长线上,且CD=AE.求证:∠D=∠E.16.(2023秋·广东汕头·八年级统考期末)如图,已知点O在等边△ABC的内部,∠AOB=105°,∠BOC=α,以OC为边作等边△COD,连接AD.(1)求证:AD=BO;(2)当α=150∘时,试判断△AOD的形状,并说明理由;17.(2023秋·江苏南京·八年级统考期末)如图,在四边形ABCD中,连接BD,AB∥CD,且AB=CD.(1)求证:△ABD≅△CDB;(2)若AB=BD,∠ABD=48°,求∠C的度数.18.(2023秋·浙江宁波·八年级校考期末)如图,在四边形ABCD中,P为CD边上的一点,BC∥AD.AP、BP 分别是∠BAD、∠ABC的角平分线.(1)若∠BAD=70°,则∠ABP的度数为_______,∠APB的度数为____________;(2)求证:AB=BC+AD;(3)设BP=3a,AP=4a,过点P作一条直线,分别与AD,BC所在直线交于点E、F,若AB=EF,直接写出AE的长(用含a的代数式表示)考点3:角平分线性质定理和逆定理例5.(2023秋·广东汕头·八年级统考期末)如图,DE⊥AB于点E,DF⊥AC于点F,若BD=CD,BE=CF.(1)求证:AD 平分∠BAC ;(2)请猜想AB +AC 与AE 之间的数量关系,并给予证明.例6.(2022秋·湖北武汉·八年级校考期末)如图,在△ABC 中,E 是BC 中垂线上一点,EM ⊥AB 于M ,EN ⊥AC 于N ,BM =CN .求证:AE 平分∠BAC .知识点训练1.(2022秋·贵州铜仁·九年级统考期中)如图,在平面直角坐标系中,△OAB 的顶点B 的坐标为(6,0),OC 平分∠AOB 交AB 于点C ,反比例函数y =k x (x >0)的图象经过点A ,C .若S △AOC :S △BOC =2:3,则k 的值为( )A .5√716B .45√716C .454D .916 2.(2023秋·山东济宁·八年级统考期末)如图,Rt △ABC 中,∠C =90°,∠ABC =60°,以顶点B 为圆心、适当长为半径作弧,在边BC 、BA 上截取BE 、BD ;然后分别以点D 、E 为圆心、以大于DE 的长为半径作弧,两弧在∠CBA 内交于点F ;作射线BF 交AC 于点G .若AC =6,P 为边AB 上一动点,则GP 的最小值为( )A.3B.2C.1D.无法确定3.(2023秋·山东淄博·七年级统考期末)如图,已知AB=AC,∠A=36°,AB的垂直平分线MD交AC于点D,AB于点M,以下结论:①△BCD是等腰三角形;②BD是△ACB的角平分线;③△BCD的周长C△BCD=AC+ BC;④△ADM≌△BCD.正确的有()A.①③B.①②C.①②③D.③④4.(2023秋·黑龙江牡丹江·八年级统考期末)如图,已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠EAD=90°,BD,CE交于点F,连接AF,下列结论:①BD=CE;②∠AEF=∠ADF;③BD⊥CE;④AF 平分∠CAD;⑤∠AFE=45°,其中结论正确的序号是()A.①②③④B.①②④⑤C.①③④⑤D.①②③⑤5.(2022秋·福建泉州·八年级统考期末)小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角两边距离相等的点在这个角的平分线上.B.角平分线上的点到角两边的距离相等.C.三角形三个内角的平分线交于同一个点.D.三角形三个内角的平分线的交点到三条边的距离相等.6.(2023秋·河北邢台·八年级统考期末)如图,在△ABC中,∠BAC=60°,角平分线BE,CD相交于点P,若AP=4,AC=6,则S△APC=().A.4B.6C.12D.247.(2023秋·江苏泰州·八年级统考期末)已知,如图,△ABC中,∠ABC=48°,∠ACB=84°,点D、E分别在BA、BC延长线上,BP平分∠ABC,CP平分∠ACE,连接AP,则∠PAC的度数为()A.45°B.48°C.60°D.66°8.(2023秋·河北沧州·八年级统考期末)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=108∘,连接AC,BD交于点M,连接OM.甲、乙、丙三人的说法如下,下列判断正确的是()甲:AC=BD;乙:∠CMD>∠COD;丙:MO平分∠BMCA.乙错,丙对B.甲和乙都对C.甲对,丙错D.甲错,丙对9.(2023秋·重庆大足·八年级统考期末)如图,△ABC的三边AC、BC、AB的长分别是8、12、16,点O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S△OAC的值为()A.4:3:2B.5:3:2C.2:3:4D.3:4:510.(2022秋·甘肃庆阳·八年级统考期中)庆阳市是传统的中药材生产区,优越的地理气候条件形成了较独特的资源禀赋,孕育了丰富的中药植物资源和优良品种,素有“天然药库”“中药之乡”的美称.如图,三条公路把A、B、C三个盛产中药材的村庄连成一个三角形区域,此地区决定在这个三角形区域内修建一个中药材批发市场,要使批发市场到三条公路的距离相等,则这个批发市场应建在()A.三角形的三条中线的交点处B.三角形的三条角平分线的交点处C.三角形的三条高的交点处D.以上位置都不对11.(2022秋·海南海口·八年级校联考期末)如图,在△ABC中,∠A=90°,BD平分∠ABC,BC=12,AD=4,则△DBC的面积为__________.12.(2023·湖南衡阳·校考一模)如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON⊥BC于点N,若OM=ON,则∠ABO=_______度.13.(2023秋·湖北省直辖县级单位·八年级统考期末)如图,△ABC与△BDE都为等边三角形,连接AE与CD,延长AE交CD于点F,连接FB.给出下面四个结论:①AE=CD;②∠AFC=60°;③BF平分∠EBD;④FB 平分∠EFD.其中所有正确结论的序号是__________.14.(2023春·浙江金华·八年级浙江省义乌市后宅中学校考阶段练习)已知:OP平分∠MON,点A,B分别在边OM,ON上,且∠OAP+∠OBP=180°.(1)如图1,当∠OAP=90°时,求证:OA=OB;(2)如图2,当∠OAP<90°时,作PC⊥OM于点C.求证:①PA=PB;②请直接写出OA,OB,AC之间的数量关系.15.(2022春·广东茂名·八年级统考期中)如图,在Rt△ABC中,∠A=90°,∠B=30°,CM平分∠ACB交AB 于点M,过点M作MN∥BC交AC于点N,若AN=1,求BC的长.考点4:线段垂直平分线性质定理和逆定理例7. (1)(2023秋·浙江宁波·八年级宁波市第七中学校考期末)如图,△ABC中,AB<AC<BC,如果要使用尺规作图的方法在BC上确定一点P,使PA+PB=BC,那么符合要求的作图痕迹是()A.B.C.D.(2)(2023秋·云南曲靖·八年级统考期末)如图,在△ABC中,∠BAC=110°,EF是边AB的垂直平分线,垂足为E,交BC于F.MN是边AC的垂直平分线,垂足为M,交BC于N.连接AF、AN则∠FAN的度数是()A.70B.55C.40D.30(3)(2022秋·新疆乌鲁木齐·八年级校考期末)电信部门要再S区修建一座手机信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条高速公路OC,OD的距离也必须相等,则发射塔应建在()A.∠COD的平分线上任意某点处B.线段AB的垂直平分线上任意某点处C.∠COD的平分线和线段AB的交点处D.∠COD的平分线和线段AB垂直平分线的交点处例8.(2023春·重庆沙坪坝·八年级重庆南开中学校考开学考试)如图,在△ABC中,EF是AB的垂直平分线,AD⊥BC于点D,且D为CE的中点.(1)求证:BE=AC;(2)若∠C=70°,求∠BAC的度数.知识点训练1.(2022秋·海南海口·八年级校联考期末)如图,在△ABC中,DE垂直平分BC,若AB=6,AC=8,则△ABD 的周长等于()A.11B.13C.14D.162.(2023秋·河南南阳·八年级统考期末)如图,等腰△ABC的底边BC长为6,面积是24,E为腰AB的垂直平分线MN上一动点.点D为BC的中点,则△BDE的周长的最小值为()A.6B.8C.10D.113.(2023秋·福建泉州·八年级校联考期末)如图,根据尺规作图的痕迹,计算∠α的度数为()A.56∘B.68∘C.28∘D.34∘4.(2023秋·山东东营·八年级统考期末)如图,平行四边形ABCD的对角线AC、BD交于点O,DE平分∠ADCAB,连接OE.下列结论:①S▱ABCD=AD⋅BC;②DB平分∠CDE;③AO=交AB于点E,∠BCD=60°,AD=12DE;④OE垂直平分BD.其中正确的个数有()A.1个B.2个C.3个D.4个5.(2022秋·河北石家庄·八年级统考期末)如图,在△ABC中,AB=AC,尺规作图:(1)分别以B,C为圆心,BC长为半径作弧,两弧交于点D;(2)连接AD,BD,CD,AD与BC交于点E,则下列结论中错误的是()A.△ABD≌△ACD B.△DBE≌△DCEC.△BCD是等边三角形D.BC垂直平分AD6.(2023秋·黑龙江牡丹江·八年级统考期末)如图,在△ABC中,∠ACB=90°,∠A=75°,DE垂直平分AB,交AB于点D,交BC于点E,若BE=8cm,则AC为______cm.7.(2023秋·重庆万州·八年级统考期末)如图,在△ABC中,边AC的垂直平分线交BC于点D,交AC于点E,连接AD,若AD是∠BAC的角平分线,且AB=AD时,则∠B=___________°.8.(2023秋·山东淄博·七年级统考期末)如图,已知AB是线段CD的垂直平分线,垂足为点F.E是AB上的一点,∠CEF=30°,CF=2.试求△CED的周长.9.(2022秋·山西吕梁·八年级统考期末)如图,在△ABC中,AB=BC,EF是AB的垂直平分线,交AB于点E,交BC于点F.(1)按要求作图:作∠ABC的平分线BD,交AC于点D,交EF于点O,连接OA,OC(尺规作图,保留痕迹,不写作法);(2)求证:点O在BC的垂直平分线上;(3)若∠CBD=20°,求∠COF的度数.10.(2023秋·黑龙江齐齐哈尔·八年级统考期末)如图,∠AOB=30°,M,N分别是射线OA,OB上的动点,OP平分∠AOB,OP=9,则△PMN的周长的最小值为()C.6D.27A.9B.9211.(2022秋·山东临沂·八年级校考期末).如图,电信部门要在S区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A,B距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应修建在什么位置?在图上标出它的位置.(保留作图痕迹)12.(2023·全国·九年级专题练习)如图,∠HAB=30°,点B与点C关于射线AH对称,连接AC.D点为射线AH 上任意一点,连接CD.将线段CD绕点C顺时针旋转60°,得到线段CE,连接BE.(1)求证:直线EB是线段AC的垂直平分线;(2)点D是射线AH上一动点,请你直接写出∠ADC与∠ECA之间的数量关系.13.(2023秋·山西运城·九年级统考期末)综合与实践问题情境:课堂上老师展示了一张直角三角形纸片.请同学们进行折纸活动,已知在Rt△ABC中.∠ACB=90°,点D、F分别是BC、AB上的一点.连接DF.(1)如图1.小红将△BDF 沿直线DF 折叠,点B 恰好落在BC 上点E 处,若S △BDF S 四边形ACEF=17,则DEDC的值______.(2)如图2,小明将△BDF 沿直线DF 折叠,点B 落在AC 上点E 处,若FE ⊥AC ,求证:四边形BDEF 是菱形; (3)如图3.小亮将△BDF 沿直线DF 折叠,点B 落在AC 延长线上点E 处,且EF 平分∠AED ,若AC =3,BC =4,求CE 的长.14.(2023秋·江苏南京·八年级统考期末)(1)如图1,在△ABC 中,∠A =30°,∠C =90°.求证BC =12AB .①补全证明过程.证明:如图2,取AB 中点D ,连接CD . ∴BD =AD =12AB .在△ABC 中,∠C =90°, ∴______; ∴CD =BD . 又∠A =30°,∴∠B =90°−∠A =60°. ∴△BCD 为______三角形. ∴BC =BD =12AB .②请用文字概括①所证明的命题:____________.(2)如图3,某市三个城镇中心D,E,F恰好分别位于一个等边三角形的三个顶点处,在三个城镇中心之间铺设通信光缆,以城镇D为出发点设计了三种连接方案:方案1:DE+EF;方案2:DG+EF(G为EF的中点);方案3:OD+OE+OF(O为△DEF三边的垂直平分线的交点).①设DE=6,通过计算,比较三种连接方案中铺设的光缆长度的长短;②不计算,比较三种连接方案中铺设的光缆长度的长短,并说明理由.15.(2023秋·河南洛阳·八年级统考期末)我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图1,直线MN是线段AB的垂直平分线,P是MN上任一点,连接PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等.解答下列问题:(1)请你结合图形把已知和求证补充完整,并写出证明过程.已知:如图1,MN⊥AB,垂足为点C,______,点P是直线MN上的任意一点.求证:______.(2)证明:如图2,CD是线段AB垂直平分线,则∠CAD与∠CBD有何关系?请说明理由.考点5:全等三角形的综合问题例9.(2023秋·河南南阳·八年级统考期末)如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB交CE于点F,DF的延长线交AC于点G.(1)求证:DF∥BC;(2)若AE=6,CE=8,求线段GF的长.例10.(2022秋·湖北黄冈·八年级统考期末)已知OM是∠AOB的平分线,点P是射线OM上一定点,点C、D分别在射线OA、OB上,连接PC、PD.(1)如图①,当PC⊥OA,PD⊥OB时,则PC与PD的数量关系是___________;(2)如图②,点C、D在射线OA、OB上滑动,且∠AOB=90∘,当PC⊥PD时,PC与PD在(1)中的数量关系还成立吗?请说明理由.(3)在问题(2)中,若OC+OD=6,则四边形ODPC的面积S是否为定值?若是,请求出该定值,若不是,请说明理由.知识点训练1.(2022秋·河南商丘·八年级统考期中)如图,在△ABC中,∠ABC=90°,D,E分别为边AC,BC上一点,连接BD,DE.已知AB=BE,AD=DE.(1)求证:BD平分∠ABC;(2)若∠A=55°,求证:∠CDE=14∠ADB.2.(2023秋·湖北荆州·八年级统考期末)如图,在△ABC中,BC=2AB,D是AC上一点,∠ABD=20°,E 是BD上一点,EA⊥AB,EB=EC.(1)求证:BD平分∠ABC;(2)求∠DEC的度数.3.(2023秋·重庆长寿·九年级统考期末)在图(1)至图(2)中,直线MN与线段AB相交于点O,∠1=∠2=45°.(1)如图(1),若AO=OB,请写出AO与BD的数量关系和位置关系;(2)将图(1)中的MN绕点O顺时针旋转得到图(2),其中AO=OB.求证:AC=BD,AC⊥BD.4.(2023秋·重庆万州·八年级统考期末)小明在物理课上学习了发声物体的振动实验后,对其作了进一步的探究:在一个支架的横杆点O处用一根细绳悬挂一个小球A,小球A可以自由摆动,如图,OA表示小球静止时的位置.当小明用发声物体靠进小球时,小球从OA摆到OB位置,此时过点B作BD⊥OA于点D,当小球摆到OC位置时,OB与OC恰好垂直(图中的A、B、O、C在同一平面上),过点C作CE⊥OA于点E,测得CE=15cm,AD=2cm.(1)试说明OE=BD;(2)求DE的长.5.(2022秋·海南海口·八年级校联考期末)如图1,在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D,∠MDN=90°,将∠MDN绕点D顺时针旋转,它的两边分别交AB、AC于点E、F.(1)求证:△BDE≌△ADF;(2)如图2,若DM=DN,连接BM、NA,求证:BM=AN.6.(2023秋·江苏宿迁·八年级统考期末)如图,已知AC平分∠BAF,CE⊥AB于点E,CF⊥AF于点F,且BC= DC.(1)求证:BE=DF;(2)若AB=21,AD=9,求DF的长.7.(2023秋·广西南宁·九年级统考期末)如图,将矩形ABCD绕点B旋转得到矩形BEFG,点E在AD上,延长DA交GF于点H.(1)求证:△ABE≅△FEH;(2)连接BH,若∠EBC=30°,求∠ABH的度数.8.(2023秋·山东威海·七年级统考期末)在四边形ABDE中,点C是BD边的中点.(1)如图①,AC平分∠BAE,∠ACE=90°,写出线段AE,AB,DE间的数量关系及理由;(2)如图②,AC平分∠BAE,EC平分∠AED,∠ACE=120°,写出线段AB,BD,DE,AE间的数量关系及理由.9.(2022秋·广西柳州·八年级统考期末)在平面直角坐标系中,点O为坐标原点,A(a,0),B(0,b),且a,b满足(a−3)2+|b−3|=0,连接AB.(1)求点A,B点的坐标;(2)如图1,动点C从点O出发,以1个单位/秒的速度沿y轴正半轴运动,运动时间为t秒(0<t<3),连接AC,过点C作CD⊥AC,且CD=CA,点D在第一象限,请用含有t的式子表示点D的坐标;(3)在(2)的条件下,如图2,连接并延长DB交x轴于点E,连接AD和AB,过点B作线段BF交x轴于点F,使得∠OBF=∠DCB,已知此时点F的坐标为(−1,0),求△ADE的面积.10.(2023秋·福建福州·八年级统考期末)在平面直角坐标系xOy中,点A(0,a),B(b,0),C(c,0),点D在第四象限,其中a>0,b<0,c>0,∠BAC+∠BDC=180°,AC⊥CD.(1)如图1,求证:∠BAO=∠CBD;(2)若|a−c|+b2+6b+9=0,且AB=BD.①如图1,求四边形ACDB的面积;(用含a的式子表示)②如图2,BD交y轴于点E,连接AD,当E关于AD的对称点K落在x轴上时,求CK的长.。
2021年中考数学复习考点专项训练——全等三角形
2021中考数学复习考点专项训练——全等三角形一、选择题1. 如图所示,在∠AOB的两边上截取AO=BO,OC=OD,连接AD、BC交于点P,连接OP,则下列结论正确的是()①△APC≅△BPD②△ADO≅△BCO③△AOP≅△BOP④△OCP≅△ODPA.②③④B.①②③C.①②③④D.①③④2.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C.DB=DC D.AB=AC3. 如图,已知在△ABC和△DEF中,∠A=∠D=90∘,则下列条件中不能判定△ABC和△DEF全等的是()A.AB=DE,AC=DFB.∠C=∠F,∠B=∠EC.AB=DE,BC=EFD.∠C=∠F,BC=EF4.下列条件不可以判定两个直角三角形全等的是()A.两条直角边对应相等B.两个锐角对应相等C.一条直角边和它所对的锐角对应相等D.一个锐角和锐角所对的直角边对应相等5.如图,已知△ABC≌△ADE若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为( )A.40°B.35°C.30°D.25°6. 如图,∠ABC=∠ABD,还应补充一个条件,才能推出△ABC≅△ABD,补充下列其中一个条件后,不一定能推出△ABC≅△ABD的是( )A.AC=ADB.BC=BDC.∠CAB=∠DABD.∠ACB=∠ADB7. 请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,要说明∠D′O′C′=∠DOC,需要证明△D′O′C′≅△DOC,则这两个三角形全等的依据是()A.边边边B.边角边C.角边角D.角角边8.已知△ABC和△DEF,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E其中能使△ABC≌△DEF的共有( )A.1组B.2组C.3组D.4组9.在△ABC和△A′B′C′中,已知∠A=∠A′,AB=A′B′,在下面判断中错误的是()A、若添加条件AC=A′C′,则△ABC≌△A′B′C′B、若添加条件BC=B′C′,则△ABC≌△A′B′C′C、若添加条件∠B=∠B′,则△ABC≌△A′B′C′D、若添加条件∠C=∠C′,则△ABC≌△A′B′C′10.如图,已知△ABC≌△ADC,∠B=30°,∠BAC=23°,则∠ACD的度数为()A.120°B.125°C.127°D.104°11. 如图①,已知∠ABC,用尺规作它的角平分线.如图②,步骤如下:第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP,射线BP即为所求.下列叙述不正确的是( )A.a>0B.作图的原理是构造SSS三角形全等C.由第二步可知,DP=EPDE的长D.b<1212.如图△ABC中,∠C=90°,AB=2BC,D为AB中点过点D作DE⊥AB交AC于点E,下列结论:①CE=DE;②AE=BC;③∠B=2∠A;④∠A=30°中正确个数为()A、1个B、2个C、3个D、4个13. 如图,已知AD是△ABC的BC边上的高,下列能使△ABD≅△ACD的条件是( )A.AB=ACB.∠BAC=90∘C.BD=ACD.∠B=45∘14.工人师傅常用角尺平分一个任意角,做法是:如图在∠AOB的边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,得到∠AOB的平分线OP,做法中用到三角形全等的判定方法是()A、SSSB、SASC、ASAD、HL15. 如图,AD是△ABC的角平分线,且AB:AC=√3:√2,则△ABD与△ACD的面积之比为()A.3:2B.√3:√2C.2:3D.√2:√3二.填空题16. 如图,△ABC中,AB=AC,D、E是BC边上两点,AD=AE,BE=6,DE=4,则EC=________.17. 如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是________.18.如图,D为Rt△ABC斜边BC上的一点,且BD=BA,过点D作BC的垂线,交AC于点E。
2021备战中考数学基础必练-全等三角形(含解析)
2021 备战中考数学基础必练-全等三角形(含解析)一、单选题1.已知△ABC≌△A´B´C´,且△ABC 的周长为20,AB=8,BC=5,则A´C´等于()A. 5B. 6C. 7D. 82.不能判断两个直角三角形全等的条件是()A.两锐角对应相等的两个直角三角形B.一锐角和斜边对应相等的两个直角三角形C.两条直角边对应相等的两个直角三角形D.一条直角边和斜边对应相等的两个直角三角形3.下列条件中,能作出唯一的三角形的条件是()A. 已知三边作三角形B. 已知两边及一角作三角形C. 已知两角及一边作三角形D. 已知直角三角形中两锐角4.已知两角及夹边作三角形,所用的基本作图方法是()A. 作已知角的平分线B. 作已知线段的垂直平分线C. 过一点作已知直线的高D. 作一个角等于已知角和作一条线段等于已知线段5.如图所示,DE⊥AB,DF⊥AC,AE=AF,则下列结论成立的是()A. BD=CDB. DE=DFC. ∠B=∠CD. AB=AC6.测量河两岸相对的两点A,B 的距离,先在AB 的垂线BF 上取两点C,D,使CD=BC,再定出BF 的垂线DE,使A,C,E 在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED 的长就是AB 的长,判定△EDC≌△ABC 最恰当的理由是()A. 边角边B. 角边角C. 边边角D. 角角边7.如图,ABCD 为正方形,O 为AC、BD 的交点,△DCE 为Rt△,∠CED=90°,∠DCE=30°,若OE= ,则正方形的面积为()A. 5B. 4C. 3D. 28.小聪用直尺和圆规作角平分线,方法如下:①利用三角板上的刻度,在OA 和OB 上分别截取OM、ON,使OM=ON;②分别过M、N 作OM、ON 的垂线,交于点P;③作射线OP,则OP 为∠AOB 的平分线,小聪用尺规作角平分线时,用到的三角形全等的判定方法是()A. SSSB. SASC. ASAD. HL9.在Rt△ABC 与Rt△A'B'C'中,∠C=∠C'=90°,∠A=∠B',AB=A'B',则下面结论正确的是()A. AB=A'C'B. BC=B'C'C. AC=B'C'D. ∠A=∠A'10.如图,在△ABC 中,已知∠C=90°,AC=BC=4,D 是AB 的中点,点E、F 分别在AC、BC 边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①四边形CEDF 有可能成为正方形;②△DFE 是等腰直角三角形;③四边形CEDF 的面积是定值;④点C 到线段EF 的最大距离.其中正确的结论是()A. ①④B. ②③C. ①②④D. ①②③④二、填空题11.如图,在△ABC,∠C=90°,∠ABC=40°,按以下步骤作图:①以点A 为圆心,小于AC 的长为半径.画弧,分别交AB、AC 于点E、F;②分别以点E、F 为圆心,大于EF 的长为半径画弧,两弧相交于点G;③作射线AG,交BC 边于点D,则∠ADC 的度数为12.如图,已,,要≌,可补充的条件是(写出一个即可).13.如图,OP 平分∠MON,PE⊥OM 于E,PF⊥ON 于F,OA=OB,则图中有对全等三角形.14.如图,在△ABC 中,D,E 分别是AB,AC 的中点,延长DE 至F,使EF = DE,若AB = 10,BC = 8,则四边形BCFD 的周长为15.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE 的值为16.从同一张底片上冲出来的两张五寸照片全等图形,从同一张底片上冲出来的一张一寸照片和一张两寸照片全等图形(填“是”或“不是”).17.如图,在3×3 的正方形ABCD 中,由A 向各交叉点引连线,构成∠1,2,…∠9,则这9 个角的和为度.18.如图,BE,CD 是△ABC 的高,且BD=EC,判定△BCD≌△CBE 的依据是19.如图,A、C、B、D 在同一条直线上,MB=ND,MB∥ND,要使△ABM≌△CDN,还需要添加一个条件为20.如图,已知∠AOD=30°,点C 是射线OD 上的一个动点.在点C 的运动过程中,△AOC 恰好是直角三角形,则此时∠A 所有可能的度数为三、计算题21.如图,AB∥CD,AB=CD,CE=BF.请写出DF 与AE 的数量关系,并证明你的结论.22.如图,∠C=∠D=90°,DA=CB,∠CBA=28°,求∠DAC.四、解答题23.如图所示,已知∠ACB和∠ADB都是直角,且AC=AD,P是AB上任意一点.求证:CP=DP.五、综合题24.如图,已知AB=AD,∠BAD=60°,∠BCD=120°,延长BC,使CE=CD,连接DE,求证:BC+DC=AC.思路点拨:(1)由已知条件AB=AD,∠BAD=60°,可知:△ABD 是三角形;(2)同理由已知条件∠BCD=120°得到∠DCE= ,且CE=CD,可知;(3)要证BC+DC=AC,可将问题转化为两条线段相等,即= ;请你先完成思路点拨,再进行证明.25.阅读(1)阅读理解:如图①,在△ABC 中,若AB=10,AC=6,求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E 使DE=AD,再连接BE(或将△ACD 绕着点D 逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD 的取值范围是;(2)问题解决:如图②,在△ABC 中,D 是BC 边上的中点,DE⊥DF 于点D,DE 交AB 于点E,DF 交AC 于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD 中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C 为顶点作一个70°角,角的两边分别交AB,AD 于E,F 两点,连接EF,探索线段BE,DF,EF 之间的数量关系,并加以证明.26.如图,四边形ABCD 中,点F 是BC 中点,连接AF 并延长,交于DC 的延长线于点E,且∠1=∠2.(1)求证:△ABF≌△ECF;(2)若AD∥BC,∠B=125°,求∠D 的度数.答案解析部分一、单选题1.【答案】C【考点】全等三角形的性质【解析】【分析】运用全等三角形的对应边相等求解即可.【解答】△ABC≌△A′B′C′,且△ABC 的周长为20,∴A′C′=AC=20-AB-BC=20-8-5=7.故选C.【点评】本题考查了全等三角形的性质,属于基础题型.2.【答案】A【考点】直角三角形全等的判定【解析】【解答】解:A、两锐角对应相等的两个直角三角形,是AAA,不能判定全等.B、一锐角和斜边对应相等的两个直角三角形,符合AAS,能判定全等.C、两条直角边对应相等的两个直角三角形,符合SAS,能判定全等.D、一条直角边和斜边对应相等的两个直角三角形,符合HL,能判定全等.故选A.【分析】根据三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.逐条排除.3.【答案】A【考点】三角形全等的判定【解析】【解答】解:A、符合全等三角形的判定SSS,能作出唯一三角形,故正确;B、若是两边和夹角,符合全等三角形的判断SAS,能作出唯一三角形,若是两边和其中一边的对角,则不能作出唯一三角形,故错误;C、已知两角及一边作三角形有两种情况,是角角边(AAS)或角边角(SAS)可以作出两个,故错误;D、已知两角只能确定相似三角形,两三角形大小不一定相等,故错误;故选A.【分析】把尺规作图的唯一性转化成全等三角形的判定,根据全等三角形的判定方法逐项判定即可.4.【答案】D【考点】作图—基本作图【解析】【解答】解:两角及夹边作三角形,所用的基本作图方法是作一个角等于已知角和作一条线段等于已知线段.故选:D.【分析】根据题意可得作图过程中需要作一条线段等于已知线段,然后再作两个角等于已知角.5.【答案】B【考点】直角三角形全等的判定【解析】【分析】本题考查的是全等三角形的判定和性质,先根据“HL”证得Rt△ADE≌△Rt△ADF,即可得到结果。
中考数学备考专题复习 全等三角形(含解析)-人教版初中九年级全册数学试题
全等三角形一、单选题(共12题;共24分)1、下图中,全等的图形有()A、2组B、3组C、4组D、5组2、使两个直角三角形全等的条件是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条直角边对应相等3、下列说法错误的是()A、等腰三角形两腰上的中线相等B、等腰三角形两腰上的高线相等C、等腰三角形的中线与高重合D、等腰三角形底边的中线上任一点到两腰的距离相等4、如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带()去配.A、①B、②C、③D、①和②5、长为1的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x 的取值X围为()A、B、C、D、6、已知等腰三角形一腰上的高线等于腰长的一半,那么这个等腰三角形的一个底角等于()A、15°或75°B、15°C、75°D、150°和30°7、如图,x的值可能为()A、10B、9C、7D、68、如图,△A BC中,AB=AC , EB=EC ,则由“SSS”可以判定()A、△ABD≌△ACDB、△ABE≌△ACEC、△BDE≌△CDED、以上答案都不对9、如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A、4cmB、2cmC、4cm或2cmD、小于或等于4cm,且大于或等于2cm10、(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A、50°B、51°C、51.5°D、52.5°11、(2016•某某)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A、AC=BDB、∠CAB=∠DBAC、∠C=∠DD、BC=AD12、如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A、24°B、25°C、30°D、36°二、填空题(共5题;共6分)13、若△ABC≌△EFG,且∠B=60°,∠FGE-∠E=56°,,则∠A=________度.14、如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“________”.15、如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=________°.16、如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI________全等,如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△A BC 和△GHI________全等.(填“一定”或“不一定”或“一定不”)17、(2016•某某)如图,在边长为4的正方形ABCD 中,P 是BC 边上一动点(不含B 、C 两点),将△ABP 沿直线AP 翻折,点B 落在点E 处;在CD 上有一点M ,使得将△CMP 沿直线MP 翻折后,点C 落在直线PE 上的点F 处,直线PE 交CD 于点N ,连接MA ,NA .则以下结论中正确的有________(写出所有正确结论的序号) ①△CMP∽△BPA;②四边形AMCB 的面积最大值为10;③当P 为BC 中点时,AE 为线段NP 的中垂线; ④线段AM 的最小值为2;⑤当△ABP≌△ADN 时,BP=4﹣4.三、综合题(共6题;共66分)18、如图,分别以Rt△ABC 的直角边AC 及斜边AB 向外作等边△ACD 及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F ,连接DF .(1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.19、已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG ,连接BG 并延长交DE 于F .(1)求证:△BCG≌△DCE;(2)将△DC E 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形,并说明理由。
中考数学专题训练:全等三角形(含答案)
中考数学专题训练:全等三角形一、选择题(本大题共10道小题)1. 如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加一个条件是()A.∠A=∠C B.∠D=∠BC.AD∥BC D.DF∥BE2. 如图,在△ABC中,D,E分别是边AC,BC上的点.若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°3. 如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC ≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D4. 如图,在正方形ABCD中,连接BD,点O是BD的中点.若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A. 2对B. 3对C. 4对D. 5对5. 如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()图12-1-10A.2B.3C.5D.2.56. 如图所示,△ABD≌△CDB,下列四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,AD=BC7. 如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =a,BF=b,EF=c,则AD的长为()A.a+c B.b+cC.a-b+c D.a+b-c8. 如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()9. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3等于() A.90°B.120 C.135°D.150°10. 如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A. 1个B. 2个C. 3个D. 3个以上二、填空题(本大题共10道小题)11. 如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=________.12. 如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件:______________,使得△ABD≌△CDB.(只需写出一个)13. 如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).14. 如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,请你添加一个适当条件:________,使△AEH≌△CEB.15. 如图,已知AC=EC,∠ACB=∠ECD,要直接利用“AAS”判定△ABC≌△EDC,应添加的条件是__________.16. 如图,AC与BD相交于点O,且AB=CD,请添加一个条件:________,使得△ABO≌△CDO.17. △ABC的周长为8,面积为10,若其内部一点O到三边的距离相等,则点O 到AB的距离为________.18. 如图,P A⊥ON于点A,PB⊥OM于点B,且P A=PB.若∠MON=50°,∠OPC =30°,则∠PCA的大小为________.19. 如图,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q是线段AC与射线AX上的两个动点,且AB=PQ,当AP=________时,△ABC与△APQ全等.20. 如图,P是△ABC外的一点,PD⊥AB交BA的延长线于点D,PE⊥AC于点E,PF⊥BC交BC的延长线于点F,连接PB,PC.若PD=PE=PF,∠BAC=64°,则∠BPC的度数为________.三、解答题(本大题共6道小题)21. 如图,∠A=∠D=90°,AB=DE,BF=EC.求证:Rt△ABC≌Rt△DEF.22. 如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上.若AD=16,BC=10,求AB的长.23. 观察与类比(1)如图①,在△ABC中,∠ACB=90°.点D在△ABC外,连接AD,作DE⊥AB于点E,交BC于点F,AD=AB,AE=AC,连接AF.求证:DF=BC +CF;(2)如图②,AB=AD,AC=AE,∠ACB=∠AED=90°,延长BC交DE于点F,写出DF,BC,CF之间的数量关系,并证明你的结论.24. 如图所示,已知在△ABC中,AB=AC=10 cm,BC=8 cm,D为AB的中点,点P在线段BC上以3 cm/s的速度由点B向点C运动,同时,点Q在线段CA 上由点C向点A以a cm/s的速度运动,设运动的时间为t s(t>0).(1)求CP的长(用含t的式子表示);(2)若以C,P,Q为顶点的三角形和以B,D,P为顶点的三角形全等,且∠B和∠C是对应角,求a的值.25. △ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF 的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,①求证:△BPE∽△CEQ;②当BP=2,CQ=9时,求BC的长.26. 已知:在等边△ABC中,D、E分别是AC、BC上的点,且∠BAE=∠CBD<60°,DH⊥AB,垂足为点H.(1)如图①,当点D、E分别在边AC、BC上时,求证:△ABE≌△BCD;(2)如图②,当点D、E分别在AC、CB延长线上时,探究线段AC、AH、BE的数量关系;(3)在(2)的条件下,如图③,作EK∥BD交射线AC于点K,连接HK,交BC于点G,交BD于点P,当AC=6,BE=2时,求线段BP的长.2021中考数学一轮专题训练:全等三角形-答案一、选择题(本大题共10道小题)1. 【答案】B[解析] 在△ADF和△CBE中,由AD=BC,∠D=∠B,DF=BE,根据两边和它们的夹角分别相等的两个三角形全等,可以得到△ADF≌△CBE.故选B.2. 【答案】D[解析] 由条件可知∠ADB=∠EDB=∠EDC=60°,且∠DEB=∠DEC=90°,∴∠C=30°.3. 【答案】C4. 【答案】C【解析】由题意可知,△ABD≌△CBD,△MON≌△M′ON′,△DON ≌△BON′,△DOM≌△BOM′共4对.5. 【答案】B[解析] ∵△ABE≌△ACF,AB=5,∴AC=AB=5.∵AE=2,∴EC=AC-AE=5-2=3.6. 【答案】C[解析] A.∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项不符合题意;B.∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项不符合题意;C.∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB.∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项符合题意;D.∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD.∴AD∥BC,故本选项不符合题意.故选C.7. 【答案】D[解析] ∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠CED=∠AFB=90°,∠A=∠C.又∵AB=CD,∴△CED≌△AFB.∴AF=CE=a,DE=BF=b,DF =DE-EF=b-c.∴AD=AF+DF=a+b-c.故选D.8. 【答案】C[解析] 选项A中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项B中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项C中,如图①,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE.∴∠FEC=∠BDE.这两个角所对的边是BE和CF,而已知条件给的是BD=CF=3,故不能判定两个小三角形全等.选项D中,如图②,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE.∴∠FEC=∠BDE.又∵BD=CE=2,∠B=∠C,∴△BDE≌△CEF.故能判定两个小三角形全等.9. 【答案】C[解析] 在图中容易发现全等三角形,将∠3转化为与其相等的对应角后可以看出∠3与∠1互余.故∠1+∠3=90°.易得∠2=45°,故∠1+∠2+∠3=135°.10. 【答案】D【解析】如解图,①当OM1=2时,点N1与点O重合,△PMN 是等边三角形;②当ON2=2时,点M2与点O重合,△PMN是等边三角形;③当点M3,N3分别是OM1,ON2的中点时,△PMN是等边三角形;④当取∠M1PM4=∠OPN4时,易证△M1PM4≌△OPN4(SAS),∴PM4=PN4,又∵∠M4PN4=60°,∴△PMN是等边三角形,此时点M,N有无数个,综上所述,故选D.二、填空题(本大题共10道小题)11. 【答案】120°【解析】由于△ABC≌△A′B′C′,∴∠C=∠C′=24°,在△ABC 中,∠B=180°-24°-36°=120°.12. 【答案】答案不唯一,如AB=CD[解析] 由已知AB∥CD可以得到一对角相等,还有BD=DB,根据全等三角形的判定,可添加夹这个角的另一边相等,或添加另一个角相等均可.13. 【答案】AB=DE或∠A=∠D或∠ACB=∠DFE或AC∥DF[解析]已知条件已经具有一边一角对应相等,需要添加的条件要么是夹已知角的边,构造SAS全等,要么添加另外的任一组角构造ASA或AAS,或者间接添加可以证明这些结论的条件即可.14. 【答案】AH=CB(符合要求即可)【解析】∵AD⊥BC,CE⊥AB,垂足分别为点D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°-∠AHE,在Rt△HDC中,∠ECB=90°-∠DHC,∵∠AHE=∠DHC,∴∠EAH=∠ECB,∴根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故答案为:AH=CB或EH=EB或AE=CE均可.15. 【答案】∠B=∠D16. 【答案】∠A =∠C 或∠B =∠D 或AB ∥CD(答案不唯一)[解析] 由题意可知∠AOB =∠COD ,AB =CD.∵AB 是∠AOB 的对边,CD 是∠COD 的对边,∴只能添加角相等,故可添加∠A =∠C 或∠B =∠D 或AB ∥CD.17. 【答案】2.5 [解析] 设点O 到AB ,BC ,AC 的距离均为h ,∴S △ABC =12×8·h =10,解得h =2.5,即点O 到AB 的距离为2.5.18. 【答案】55° [解析] ∵PA ⊥ON ,PB ⊥OM ,∴∠PAO =∠PBO =90°.在Rt △AOP 和Rt △BOP 中,⎩⎪⎨⎪⎧PA =PB ,OP =OP ,∴Rt △AOP ≌Rt △BOP(HL).∴∠AOP =∠BOP =12∠MON =25°.∴∠PCA =∠AOP +∠OPC =25°+30°=55°.19. 【答案】5或10 [解析] ∵AX ⊥AC ,∴∠PAQ =90°.∴∠C =∠PAQ =90°. 分两种情况:①当AP =BC =5时,在Rt △ABC 和Rt △QPA 中,⎩⎪⎨⎪⎧AB =QP ,BC =PA ,∴Rt △ABC ≌Rt △QPA(HL);②当AP =CA =10时,在Rt △ABC 和Rt △PQA 中,⎩⎪⎨⎪⎧AB =PQ ,AC =PA ,∴Rt △ABC ≌Rt △PQA(HL).综上所述,当AP =5或10时,△ABC 与△APQ 全等.20. 【答案】32° [解析] ∵PD =PE =PF ,PD ⊥AB 交BA 的延长线于点D ,PE ⊥AC 于点E ,PF ⊥BC 交BC 的延长线于点F ,∴CP 平分∠ACF ,BP 平分∠ABC.∴∠PCF =12∠ACF ,∠PBF =12∠ABC.∴∠BPC =∠PCF -∠PBF =12(∠ACF -∠ABC)=12∠BAC =32°.三、解答题(本大题共6道小题)21. 【答案】证明:∵BF =EC ,∴BF +FC =FC +EC ,即BC =EF.∵∠A =∠D =90°,∴△ABC 和△DEF 都是直角三角形.在Rt △ABC 和Rt △DEF 中,⎩⎪⎨⎪⎧AB =DE ,BC =EF , ∴Rt △ABC ≌Rt △DEF(HL).22. 【答案】解:∵△ACF ≌△DBE ,∴AC=DB.∴AC-BC=DB-BC ,即AB=CD.∵AD=16,BC=10,∴AB=CD=(AD-BC )=3.23. 【答案】解:(1)证明:∵DE ⊥AB ,∠ACB =90°,∴∠AED =∠AEF =∠ACB =90°.在Rt △ACF 和Rt △AEF 中,⎩⎪⎨⎪⎧AC =AE ,AF =AF , ∴Rt △ACF ≌Rt △AEF(HL).∴CF =EF.在Rt △ADE 和Rt △ABC 中,⎩⎪⎨⎪⎧AD =AB ,AE =AC ,∴Rt △ADE ≌Rt △ABC(HL). ∴DE =BC.∵DF =DE +EF ,∴DF =BC +CF.(2)BC =CF +DF.证明:如图,连接AF.在Rt △ABC 和Rt △ADE 中,⎩⎪⎨⎪⎧AB =AD ,AC =AE , ∴Rt △ABC ≌Rt △ADE(HL).∴BC =DE.∵∠ACB =90°,∴∠ACF =90°=∠AED.在Rt △ACF 和 Rt △AEF 中,⎩⎪⎨⎪⎧AC =AE ,AF =AF ,∴Rt △ACF ≌△AEF(HL).∴CF=EF.∵DE=EF+DF,∴BC=CF+DF.24. 【答案】解:(1)依题意得BP=3t cm,BC=8 cm,∴CP=(8-3t)cm.(2)∵∠B和∠C是对应角,∴分两种情况讨论:①若△BDP≌△CPQ,则BD=CP,BP=CQ.∵AB=10 cm,D为AB的中点,∴BD=5 cm.∴5=8-3t,解得t=1.∴CQ=BP=3 cm.∴a==3.②若△BDP≌△CQP,则BD=CQ,BP=CP.∵BP=3t cm,CP=(8-3t)cm,∴3t=8-3t,解得t=.∵BD=CQ,∴5=a,解得a=.综上所述,a的值为3或.25. 【答案】(1)证明:∵△ABC是等腰直角三角形,∴AB=AC,∠B=∠C=45°,又∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=EC.∴在△BPE与△CQE中,∠∠BP CQ B C BE CE =⎧⎪=⎨⎪=⎩,∴△BPE ≌△CQE (SAS);(2)①证明:∵∠BEF =∠C +∠CQE ,∠BEF =∠BEP +∠DEF , ∠C =∠DEF =45°,∴∠CQE =∠BEP ,∵∠B =∠C ,∴△BPE ∽△CEQ ;②解:由①知△BPE ∽△CEQ , ∴BE BP CQ CE=, ∴BE ·CE =BP ·CQ ,又∵BE =EC ,∴BE 2=BP ·CQ ,∵BP =2,CQ =9,∴BE 2=2×9=18,∴BE =32,∴BC =2BE =6 2.26. 【答案】(1)证明:∵△ABC 为等边三角形,∴∠ABC =∠C =∠CAB =60°,AB =BC ,在△ABE 和△BCD 中,⎩⎪⎨⎪⎧∠BAE =∠CBD AB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA);(2)解:∵△ABC 为等边三角形,∴∠ABC =∠CAB =60°,AB =BC ,∴∠ABE =∠BCD =180°-60°=120°.∴在△ABE 和△BCD 中,⎩⎪⎨⎪⎧∠BAE =∠CBD AB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA),∴BE =CD .∵DH ⊥AB ,∴∠DHA =90°,∵∠CAB =60°,∴∠ADH =30°,∴AD =2AH ,∴AC =AD -CD =2AH -BE ;(3)解:如解图,作DS ⊥BC 延长线于点S ,作HM ∥AC 交BC 于点M ,解图∵AC =6,BE =2,∴由(2)得AH =4,BH =2,与(1)同理可得BE =CD =2,CE =8,∵∠SCD =∠ACB =60°,∴∠CDS =30°,∴CS =1,SD =3,BS =7,∵BD 2=BS 2+SD 2=72+(3)2,∴BD =213,∵EK ∥BD ,∴△CBD ∽△CEK ,∴CB CE =CD CK =BD EK ,∴CK =CD ·CE CB =2×86=83,EK =CE ·BD CB =8×2136=8133. ∵HM ∥AC ,∴∠HMB =∠ACB =60°,∴△HMB 为等边三角形,BM =BH =HM =2, CM =CB -BM =4,又∵HM ∥AC ,∴△HMG ∽△KCG , ∴HM KC =MG CG ,即382=MG 4-MG,∴MG =127,BG =267,EG =407, ∵EK ∥BD ,∴△GBP ∽△GEK , ∴BP EK =GB GE ,∴BP =261315.。
中考数学一轮复习《全等三角形》练习题(含答案)
中考数学一轮复习《全等三角形》练习题(含答案)(建议答题时间:60分钟)基础过关1. 如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=()A. ∠BB. ∠AC. ∠EMFD. ∠AFB第1题图第2题图2. (人教八上第44页11题改编)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A. AB=DEB. AC=DFC. ∠A=∠DD. BF=EC3. 如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A. 1对B. 2对C. 3对D. 4对第3题图第4题图第5题图4. 注重开放探究(2017怀化)如图,AC=DC,BC=EC,请你添加一个适当的条件:____________________________,使得△ABC≌△DEC.5. 如图,AB∥CF,E为DF的中点,AB=10,CF=6,则BD=________.6. 如图,在△ABC中,分别以AC、BC为边作等边三角形ACD和等边三角形BCE,连接AE、BD交于点O,则∠AOB的度数为________.第6题图7. (2017福建)如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF,求证:∠A=∠D.第7题图8. (2017武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.第8题图9. (2017南充)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.第9题图10. (2017重庆巴南区期中检测)如图,在四边形ABCD中,点E在对角线AC上,AB∥DE,∠ACB=∠ADE,AB=EA,求证:AC=ED.第10题图11. (人教八上第44页4题改编)如图所示,已知∠1=∠2,请你添加一个条件,证明:AB=AC.(1)你添加的条件是________________;(2)请写出证明过程.第11题图12. (2017重庆一中期中考试)如图,AF∥DE,点B、C在线段AD上,且∠E=∠F,连接FC、EB,延长EB交AF于点G.(1)求证:BE∥CF;(2)若CF=BE,求证:AB=CD.第12题图13. (2017苏州)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.第13题图14. (2017哈尔滨)已知,△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE =90°,连接AE、BD交于点O.AE与DC交于点M,BD与AC交于点N.(1)如图①,求证:AE=BD;(2)如图②,若AC=DC,在不添加任何辅助线的情况下,请直接写出图②中四对全等的直角三角形.第14题图满分冲关1. (2017滨州)如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A. 4B. 3C. 2D. 1第1题图第2题图2. (2018原创) 如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC 交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A. 4个B. 3个C. 2个D. 1个3. (2017新疆建设兵团)如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD互相平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=12AC·BD,正确的是________.(填写所有正确结论的序号)第3题图4. (2017温州)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC =AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.第4题图5. (2017荆门)如图,在Rt△ACB中,∠ACB=90°,点D是AB的中点,点E是CD的中点,过点C作CF∥AB交AE的延长线于点F.(1)求证:△ADE≌△FCE;(2)若∠DCF=120°,DE=2,求BC的长.第5题图6. (2017齐齐哈尔)如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.第6题图7. (2017德阳)如图,在平行四边形ABCD中,E、F分别是AB、BC的中点,CE ⊥AB,垂足为E,AF⊥BC,垂足为F,AF与CE相交于点G.(1)证明:△CFG≌△AEG;(2)若AB=4,求四边形AGCD的对角线GD的长.第7题图8. (2017北京)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B,C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠P AC=α,求∠AMQ的大小(用含α的式子表示);(2)用等式表示线段MB与PQ之间的数量关系,并证明.第8题图9. (2018原创)已知△ABC和△ADE都是等边三角形,点B,D,E在同一条直线上.(1)如图①,当AC⊥DE,且AD=2时,求线段BC的长度;(2)如图②,当CD⊥BE时,取线段BC的中点F,线段DC的中点G,连接DF,EG,求证:DF=EG.第9题图答案基础过关 1. A 2. C3. D 【解析】∵AB =AC ,D 为BC 中点,∴CD =BD ,∠BDO =∠CDO =90°,在△ABD 和△ACD 中,⎩⎨⎧AB =AC AD =AD BD =CD ,∴△ABD ≌△ACD (SSS ),∵EF 垂直平分AC ,∴OA =OC ,AE =CE ,在△AOE 和△COE 中,⎩⎨⎧OA =OCOE =OE AE =CE ,∴△AOE ≌△COE (SSS ); 在△BOD 和△COD 中,⎩⎨⎧BD =CD∠BDO =∠CDO OD =OD ,∴△BOD ≌△COD (SAS );在△AOC和△AOB 中,⎩⎨⎧AC =ABOA =OA OC =OB,∴△AOC ≌△AOB (SSS ).4. AB =DE (答案不唯一)5. 4 【解析】∵AB ∥CF ,∴∠ADE =∠CFE ,∵E 是DF 的中点,∴DE =EF ,在△ADE 与△CFE 中,⎩⎨⎧∠ADE =∠CFEDE =FE∠AED =∠CEF,∴△ADE ≌△CFE (ASA ),∴AD =CF ,∵AB =10,CF =6,∴BD =AB -AD =10-6=4.6. 120° 【解析】∵△ACD 和△BCE 均为等边三角形,∴∠DCA =∠BCE =60°,AC =DC ,BC =EC ,∴∠DCB =∠DCA +∠ACB =∠BCE +∠ACB =∠ACE ,∴△DCB ≌△ACE (SAS ),∴∠CDB =∠CAE ,∴∠AOB =∠DAO +∠ADO =∠DAC +∠CAE +∠ADC -∠CDB =∠ADC +∠DAC =120°.7. 证明:∵BE =CF , ∴BC =EF ,在△ABC 和△DEF 中,⎩⎨⎧AB =DE AC =DF BC =EF,∴△ABC ≌△DEF (SSS ), ∴∠A =∠D .8. 解:CD ∥AB ,CD =AB . 证明: ∵CE =BF , ∴CF =BE ,又∵∠CFD =∠BEA ,DF =AE , ∴△CFD ≌△BEA (SAS ), ∴CD =AB ,∠C =∠B , ∴CD ∥AB .9. 证明:∵DE ⊥AB ,CF ⊥AB , ∴∠BED =∠AFC =90°, 又∵AE =BF , ∴AE +EF =BF +EF , ∴AF =BE .在△ACF 和△BDE 中,⎩⎨⎧AF =BE∠AFC =∠BED CF =DE,∴△ACF ≌△BDE (SAS ), ∴∠A =∠B , ∴AC ∥BD .10. 证明:∵AB ∥DE , ∴∠BAC =∠AED ,在△ABC 和△EAD 中,⎩⎨⎧∠ACB =∠ADE∠BAC =∠AED AB =EA,∴△ABC ≌△EAD (AAS ), ∴AC =ED .11. (1)解:∠B =∠C 或∠ADB =∠ADC 等;(2)证明:若添加的条件为∠B =∠C ,在△ABD 和△ACD 中,⎩⎨⎧∠B =∠C∠1=∠2AD =AD,∴△ABD ≌△ACD (AAS ), ∴AB =AC ;若添加的条件为∠ADB =∠ADC ,在△ABD 和△ACD 中,⎩⎨⎧∠1=∠2AD =AD ∠ADB =∠ADC,∴△ABD ≌△ACD (ASA ), ∴AB =AC .12. 证明:(1)∵AF ∥DE , ∴∠E =∠AGE , ∵∠E =∠F , ∴∠F =∠AGE , ∴BE ∥CF ; (2)∵AF ∥DE ∴∠A =∠D ,在△ACF 和△DBE 中,⎩⎨⎧∠A =∠D∠F =∠E CF =BE,∴△ACF ≌△DBE (AAS ), ∴AC =DB , ∴AB =CD .13. (1)证明:∵AE 和BD 相交于点O , ∴∠AOD =∠BOE ,在△AOD 和△BOE 中,∠A =∠B , ∴∠BEO =∠2, 又∵∠1=∠2, ∴∠1=∠BEO , ∴∠AEC =∠BED ,在△AEC 和△BED 中,⎩⎨⎧∠A =∠BAE =BE ∠AEC =∠BED,∴△AEC ≌△BED (ASA ); 解:(2)∵△AEC ≌△BED , ∴EC =ED ,∠C =∠BDE ,在△EDC 中 ,∵EC =ED ,∠1=42°, ∴∠C =∠EDC =69°, ∴∠BDE =∠C =69°.14. (1)证明:∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°, ∴AC =BC ,DC =EC ,∠ACB +∠ACD =∠DCE +∠ACD , ∴∠BCD =∠ACE , ∴△ACE ≌△BCD (SAS ), ∴AE =BD ;(2)解:△ACB ≌△DCE ,△AON ≌△DOM ,△AOB ≌△DOE ,△NCB ≌△MCE . 满分冲关1. B 【解析】如解图,过点P 分别作OA 、OB 的垂线PC 、PD ,根据角平分线的性质可得PC =PD ,∵OP 一定,∴OC =OD .∵∠AOB 是定角,∠MPN 与∠AOB 互补,∴∠MPN 也为定角.∵∠CPD 与∠AOB 也互补,∴∠MPN =∠CPD ,∴∠MPC =∠NPD ,∴△MPC ≌△NPD (ASA ),∴CM =DN ,MP =NP .故(1)正确;∵OM +ON =OC +CM +OD -DN ,∴OM +ON =OC +OD ,∵OC =OD 为定长,∴OM +ON 为定长.故(2)正确;∵△MPC ≌△NPD ,∴S四边形MONP=S △CMP +S四边形CONP=S △NPD +S 四边形CONP =S 四边形CODP .∴四边形MONP 面积为定值.故(3)正确;∵Rt △MPC 中,MP 为斜边,CP 为直角边,∴可设MP =kCP ,∴PN =kDP ,∵∠MPN =∠CPD ,∴△MPN ∽△CPD ,其相似比为k ,∴MN =kCD ,当点M 与点C 重合,点N 和点D 重合时,MN =CD ,当点M 与点C 不重合,点N 与点D 不重合时,MN ≠CD ,∴MN 的长度在发生变化.故(4)错误.第1题解图2. A 【解析】∵BF ∥AC ,∴∠C =∠CBF ,∵BC 平分∠ABF ,∴∠ABC =∠CBF ,∴∠C =∠ABC ,∴AB =AC ,∵AD 是△ABC 的角平分线,∴BD =CD ,AD ⊥BC ,故②③正确,在△CDE 与△BDF 中,⎩⎨⎧∠C =∠CBF CD =BD ∠EDC =∠BDF,∴△CDE ≌△BDF (ASA ),∴DE =DF ,CE =BF ,故①正确;∵AE =2BF ,∴AC =3BF ,故④正确.故选A .3. ①④【解析】在△ABC 与△ADC 中,⎩⎨⎧AB =ADBC =DC AC =AC,∴△ABC ≌△ADC (SSS ),∴∠ABC =∠ADC ,故①正确;∵△ABC ≌△ADC ,∴∠BAC =∠DAC ,∠BCA =∠DCA ,∴AC 平分∠BAD 、∠BCD ,故③错误;又∵AB =AD ,∠BAC =∠DAC ,∴OB =OD ,∴AC ,BD 互相垂直,但不平分,故②错误;∵AC ,BD 互相垂重,∴四边形ABCD 的面积S =12AC ·BO +12AC ·OD =12AC ·BD .故④正确,综上所述,正确的结论是①④. 4. (1)证明:∵AC =AD , ∴∠ACD =∠ADC ,∴∠BCD -∠ACD =∠EDC -∠ADC 即∠BCA =∠EDA ,在△ABC 与△AED 中,BC =ED ,∠BCA =∠EDA ,AC =AD , ∴△ABC ≌△AED (SAS ); (2)解:∵△ABC ≌△AED , ∴∠E =∠B =140°,∵五边形ABCDE 内角和为(5-2)×180°=540°,∴∠BAE =540°-2×90°-2×140°=80°. 5. (1)证明:∵点E 是CD 的中点, ∴DE =CE , ∵AB ∥CF , ∴∠BAF =∠AFC ,在△ADE 与△FCE 中,⎩⎨⎧∠DAE =∠CFE ∠AED =∠FEC DE =CE,∴△ADE ≌△FCE (AAS ); (2)解:由(1)知CD =2DE , ∵DE =2, ∴CD =4,在Rt △ABC 中,点D 为AB 的中点, ∴AB =2CD =8,AD =CD =12AB . ∵AB ∥CF ,∴∠BDC =180°-∠DCF =180°-120°=60°, ∴∠DAC =∠ACD =12∠BDC =12×60°=30°, ∴在Rt △ABC 中,BC =12AB =12×8=4. 6. (1)证明:∵AD ⊥BC , ∴∠ADB =∠ADC =90°,在△BDG 和△ADC 中,⎩⎨⎧BD =AD∠BDG =∠ADC DG =DC,∴△BDG ≌△ADC (SAS ), ∴BG =AC ,∠BGD =∠C ,∵∠ADB =∠ADC =90°,E ,F 分别是BG ,AC 的中点, ∴DE =12BG =EG ,DF =12AC =AF ,∴DE =DF ,∠EDG =∠EGD ,∠FDA =∠F AD , ∴∠EDG +∠FDA =90°,∴DE ⊥DF ; (2)解:∵AC =10, ∴DE =DF =5,由勾股定理得,EF =DE 2+DF 2=5 2. 7. (1)证明:∵E 是AB 的中点,且CE ⊥AB , ∴CA =CB .∵F 是BC 的中点,且AF ⊥BC , ∴AB =AC , ∴AB =AC =BC ,∴12AB =12BC ,∴AE =CF ,在△CFG 和△AEG 中,⎩⎨⎧∠CGF =∠AGE∠CFG =∠AEG CF =AE,∴△CFG ≌△AEG (AAS ); (2)解:如解图,连接GD ,第7题解图∵AB =AC =BC ,∴△ABC 为等边三角形,从而△CAD 也为等边三角形, ∵AF ⊥BC ,∴∠GAC =∠EAF =30°, 又∵AE =12AB =2, ∴在Rt △AEG 中,AG =23AE =433, ∵∠GAD =∠GAC +∠CAD =90°,∴在Rt △ADG 中,根据勾股定理得:GD 2=AG 2+AD 2,即GD 2=(433)2+42,∴GD 2=643, ∴GD =833.8. 解:(1) ∵∠ACP =90°,∴在Rt △ACP 中,∠CAP +∠APC =90°, ∵HQ ⊥AP ,∴在Rt △HPQ 中,∠Q +∠HPQ =90°, 又∵∠APC =∠HPQ ,∠CAP =α, ∴∠Q =α,又∵在等腰Rt △ABC 中,∠B =∠BAC =45°, ∴∠AMQ =∠B +∠Q =45°+α; (2)PQ =2BM .证明:如解图,连接AQ ,过点M 作MN ⊥BQ 于点N .第8题解图∵∠ACP =90°,CQ =CP ,∠CAP =α, ∴∠CAQ =∠CAP =α,AP =AQ ,PQ =2CP , 又∵∠BAC =45°,∴∠MAQ =∠BAC +∠CAQ =45°+α=∠AMQ , ∴AQ =MQ , ∴AP =MQ , 又∵MN ⊥BQ , ∴∠ACP =∠QNM =90°.在Rt △APC 和Rt △QMN 中,⎩⎨⎧∠CAP =∠NQM∠ACP =∠QNM =90°AP =MQ,∴Rt △APC ≌Rt △QMN (AAS ), ∴CP =MN ,∴PQ =2MN , 又∵在Rt △BMN 中,∠B =45°, ∴BM =2MN ,∴PQ =2BM .9. (1)解:∵△ABC 和△ADE 都是等边三角形,AC ⊥DE ,AD =2, ∴BC =AC ,DE =AD =2,DF =12DE =1,AF =CF , ∴AF =AD 2-DF 2=3, ∴AC =2AF =23,∴BC =23; (2)证明:连接CE ,FG ,如解图所示:第9题解图∵△ABC 和△ADE 都是等边三角形,点B ,D ,E 同一在一条直线上. ∴AB =AC ,AD =AE ,∠BAC =∠DAE =∠AED =60°, ∴∠ADB =120°,∠BAD =∠CAE ,在△ABD 和△ACE 中,⎩⎨⎧AB =AC∠BAD =∠CAE AD =AE,∴△ABD ≌△ACE (SAS ),∴BD =CE ,∠AEC =∠ADB =120°, ∴∠CED =∠AEC -∠AED =60°, ∵CD ⊥BE , ∴∠DCE =30°, ∴DE =12CE ,∵线段BC的中点为F,线段DC的中点为G,∴FG∥BD,FG=12BD,∴FG∥DE,FG=DE,∴四边形DFGE是平行四边形,∴DF=EG.。
中考数学复习专项之三角形全等 (含答案)
30°ABOCl D 第1题图C A P B D三角形全等一、选择题1、(2022年安徽省模拟六)在△ABC 与△A ′B ′C ′中,已知AB = A ′B ′,∠A =∠A ′,要使△ABC ≌△A ′B ′C ′,还需要增加一个条件,这个条件不正确的是…………【 】 A .AC = A ′C ′ B.BC = B ′C ′ C.∠B =∠B ′ D.∠C =∠C ′.答案:B2、(2022年江苏南京一模)如图,直线上有三个正方形a b c ,,,若a c ,的面积分别为3和4,则b 的面积为( ) A .3 B .4 C .5 D .7 答案:D3.(2022郑州外国语预测卷)如图,两个等圆⊙A 、⊙B 分别与直线l 相切于点C 、D ,连接AB 与直线l 相交于点O ,∠AOB =30°,连接AC 、BD ,若AB =4,则这两个等圆的半径为( ) A .21B .1C .3D .2 答案:B4、(2022河南沁阳市九年级第一次质量检测) 如图,把△ABC 绕着点C 顺时针旋转30°,得到△A ′B ′C ,A ′B ′交AC 于点D ,若∠A ′DC =90°,则∠A 的度数是【 】A.30°B.50°C.60°D.80°C5、(2022年湖北省武汉市中考全真模拟)如图,等腰△ABC 中,AB=AC ,P 为其底角平分线的交点,将△BCP 沿CP 折叠,使B 点恰好落在AC 边上的点D 处,若DA=DP ,则∠A 的度数为( ).A.20°B.30°C.32°D.36°D6、 (2022年湖北宜昌调研)如图,AC ,BD 交于点E ,AE=CE ,添加以下四个条件中的一个,其中不能使△ABE ≌△CDE 的条件是( ) (A )BE=DE (B )AB ∥CD (C )∠A=∠C (D )AB=CDabclEABCD答案:D7、(2022年唐山市二模)在锐角△ABC 中,∠BAC =60°,BN 、CM 为高,P 为BC 的中点,连接MN 、MP 、NP ,则结论:①NP =MP ②当∠ABC =60°时,MN ∥BC ③ BN =2AN ④AN︰AB =AM ︰AC ,一定正确的有 ( )A 、1个B 、2个C 、3个D 、4个答案:C8.(2022年上海闵行区二摸)在△ABC 与△A ′B ′C ′中,已知AB = A ′B ′,∠A =∠A ′,要使△ABC ≌△A ′B ′C ′,还需要增加一个条件,这个条件不正确的是 (A )AC = A ′C ′; (B )BC = B ′C ′; (C )∠B =∠B ′; (D )∠C =∠C ′.答案:B二、填空题1、(2022云南勐捧中学二模)如图,AB CD ,相交于点O ,AO=CO ,试添加一个条件使得AOD COB △≌△,你添加的条件是 (只需写一个). 【答案】∠A= ∠C 、∠D= ∠B 、OD=OB (答案不唯一)2.(2022年安徽初中毕业考试模拟卷一)如图,ABC ∆为等边三角形,AQ =PQ ,PR =PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,则四个结论正确的是 .(把所有正确答案的序号都填写在横线上)①AP 平分∠BAC ;②AS =AR ;③QP ∥AR ;④BRP ∆≌△QSP . 答案:①②③④三、解答题1、(2022年湖北荆州模拟5)(本题满分8分)将两块斜边长度相等的等腰直角三角纸板如图(1)摆放,若把图(1)中的△BCN 逆时针旋转90°,得到图(2),图(2)中除△ABC ≌△CED 、△BCN ≌△ACF 外,你还能找到一对全等的三角形吗?写出你的结论并说明理由.AC BDO第1题答案:解:△FCM ≌△NCM ,理由如下: ∵把图中的△BCN 逆时针旋转90°, ∴∠FCN=90°,CN=CF , ∵∠MCN=45°, ∴∠FCM=90°-45°=45°, 在△FCM 和△NCM 中∵CM=CM ,∠FCM=∠NCM , FC=CN∴△FCM ≌△NCM (SAS ).2、(2022年湖北荆州模拟6)(本题满分8分)如图,正方形ABCD 和BEFG 在直线AB 的同侧,连接AG 、EC ,易证AG=EC ,现在将正方形BEFG 顺时针旋转30°,那么AG=EC 还成立吗?请作出旋转后的图形,并证明你的结论. 答案:解:成立. 理由如下:在ΔABG 与ΔCBE 中,0120AB CB ABG CBE BG BE =⎧⎪∠=∠=⎨⎪=⎩∴ ΔABG ≌ΔCBE ∴ AG=CE3、(2022年江苏南京一模)(7分)如图, AB =AC ,CD ⊥AB 于D ,BE ⊥AC 于E ,BE 与CD 相交于点O . (1) 求证:AD =AE ;(2) 连接BC ,DE ,试判断BC 与DE 的位置关系并说明理由. 答案:(1)证明:在△ACD 与△ABE 中, ∵∠A =∠A ,∠ADC =∠AEB =90°,AB =AC , ∴ △ACD ≌△ABE .…………………… 2分 ∴ AD=AE . ……………………3分 (2) 互相平行 ……………………4分 在△ADE 与△ABC 中, ∵AD=AE ,AB=AC ,∴ ∠ADE=∠AED ,∠ABC=∠ACB ……………6分 且 ∠ADE =180-∠A =∠ABC.∴ DE ∥BC . ……………7分第1题图第2题图第2题解答CACBB第2题图14.(2022年北京房山区一模)如图,点C、B、E在同一条直线上,AB∥DE,∠ACB=∠CDE,AC=CD.求证:AB=CD .答案:证明:∵AB∥DE∴∠ABC=∠E ------------------------------1分∵∠ACB=∠CDE,AC=CD --------------------- --------3分∴△ABC≌△CED -------------------------4分∴AB=CD--------------------------5分5.(2022年北京房山区一模)(1)如图1,△ABC和△CDE都是等边三角形,且B、C、D三点共线,联结AD、BE相交于点P,求证:BE = AD.(2)如图2,在△BCD中,∠BCD<120°,分别以BC、CD和BD为边在△BCD外部作等边三角形ABC、等边三角形CDE和等边三角形BDF,联结AD、BE和CF交于点P,下列结论中正确的是(只填序号即可)①AD=BE=CF;②∠BEC=∠ADC;③∠DPE=∠EPC=∠CPA=60°;(3)如图2,在(2)的条件下,求证:PB+PC+PD=BE.答案:(1)证明:∵△ABC和△CDE都是等边三角形∴BC=AC,CE=CD,∠ACB=∠DCE=60°∴∠BCE=∠ACD∴△BCE≌△ACD(SAS)∴BE=AD--------------1分(2)①②③都正确--------------4分(3)证明:在PE上截取PM=PC,联结CM由(1)可知,△BCE≌△ACD(SAS)EDC BA第1题图ADAB∴∠1=∠2设CD 与BE 交于点G ,,在△CGE 和△PGD 中 ∵∠1=∠2,∠CGE =∠PGD∴∠DPG =∠ECG =60°同理∠CPE =60° ∴△CPM 是等边三角形--------------5分 ∴CP =CM ,∠PMC =60° ∴∠CPD =∠CME =120°∵∠1=∠2,∴△CPD ≌△CME (AAS )---6分 ∴PD =ME∴BE =PB +PM +ME =PB +PC +PD . -------7分即PB+PC+PD=BE .6.(2022年北京龙文教育一模)已知:如图,AB ∥CD ,AB =CD ,点E 、F 在线段AD 上,且AF=DE .求证:BE =CF . 答案:证明: AF=DE , ∴ AF-EF=DE –EF . 即 AE=DF .………………1分AB ∥CD ,∴∠A =∠D .……2分在△ABE 和△DCF 中 , AB =CD , ∠A =∠D , AE=DF .∴△ABE ≌△DCF .……….4分 ∴ BE =CF .…………….5分7. (2022年北京龙文教育一模)阅读下面材料:问题:如图①,在△ABC 中, D 是BC 边上的一点,若∠BAD =∠C =2∠DAC =45°,DC =2.求BD 的长.小明同学的解题思路是:利用轴对称,把△ADC 进行翻折,再经过推理、计算使问题得到解决.(1)请你回答:图中BD 的长为 ;(2)参考小明的思路,探究并解答问题:如图②,在△ABC 中,D 是BC 边上的一点,若∠BAD =∠C =2∠DAC =30°,DC =2,求BD 和AB 的长.FE ACDB第3题图答案:解:(1)22=BD . ……………………………… ………………………1分(2)把△ADC 沿AC 翻折,得△AEC ,连接DE , ∴△ADC ≌△AEC .∴∠DAC =∠EAC ,∠DCA =∠ECA , DC =EC . ∵∠BAD =∠BCA =2∠DAC =30°, ∴∠BAD =∠DAE =30°,∠DCE =60°.∴△CDE 为等边三角形. ……………………2分 ∴DC =DE .在AE 上截取AF =AB ,连接DF , ∴△ABD ≌△AFD . ∴BD =DF .在△ABD 中,∠ADB =∠DAC +∠DCA =45°, ∴∠ADE =∠AED =75°,∠ABD =105°. ∴∠AFD =105°. ∴∠DFE =75°. ∴∠DFE =∠DEF . ∴DF =DE .∴BD =DC =2. …………………………………………………………………3分 作BG ⊥AD 于点G , ∴在Rt △BDG 中, 2=BG . ……………………………………………4分∴在Rt △ABG 中,22=AB . ……………………………………………5分 8.(2022年北京平谷区一模)已知:如图,AB ∥CD ,AB =EC ,BC =CD . 求证:AC =ED .答案:证明:∵ AB //CD ,∴B DCE ∠=∠.………………… ………………………1分在△ABC 和△ECD 中,= =B DCE AB EC BC CD ∠∠⎧⎪=⎨⎪⎩,,, ∴ △ABC ≌△ECD . …………………… ………………4分∴ AC =ED .………………………… ……………………5分9.(2022年北京顺义区一模)已知:如图,CA 平分BCD ∠, 点E 在AC 上,BC EC =,AC DC =.求证:A D ∠=∠.答案:证明:∵CA 平分BCD∠∴ ACB DCE ∠=∠ ……………1分在ABC ∆和DEC ∆中∵BC EC ACB DCE AC DC =⎧⎪∠=∠⎨⎪=⎩……………3分 ∴ABC ∆≌DEC ∆ …………………………………………… 4分 ∴A D ∠=∠ ……………………………………………5分10.(2022年北京平谷区一模)(1)如图(1),△ABC 是等边三角形,D 、E 分别是 AB 、BC 上的点,且BD CE =,连接AE 、CD 相交于点P . 请你补全图形,并直接写出∠APD 的度数;= (2)如图(2),Rt △ABC 中,∠B =90°,M 、N 分别是 AB 、BC 上的点,且,AM BC =BM CN =,连接AN 、CM 相交于点P . 请你猜想∠APM = °,并写出你的推理过程.答案:解:(1)60° (2)45° ………………………………..2分 证明:作AE ⊥AB 且AE CN BM ==. 可证EAM MBC ∆≅∆. ……………………………..3分 ∴ ,.ME MC AME BCM =∠=∠∵ 90,CMB MCB ∠+∠=︒∴ 90.CMB AME ∠+∠=︒∴ 90.EMC ∠=︒∴ EMC ∆是等腰直角三角形,45.MCE ∠=︒ ……………….5分又△AEC ≌△CAN (s , a , s )∴ .ECA NAC ∠=∠ ∴ EC ∥AN.∴ 45.APM ECM ∠=∠=︒…………………………………………………………………..7分EDCBA第6题图第7题图11.(2022浙江东阳吴宇模拟题)(本题12分) 如图,平面直角坐标系中,点A (0,4),B (3,0),D 、E 在x 轴上,F 为平面上一点,且EF ⊥x 轴,直线DF 与直线AB 互相垂直,垂足为H ,△AOB ≌△DEF ,设BD =h 。
2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)
2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)知识回顾1.三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
三角形的三边一旦确定,这三角形就固定了,这是三角形具有稳定性。
2.三角形的内角和定理:三角形的三个内角之和等于180°。
3.三角形的外角定理:三角形的一个外角等于它不相邻的两个内角之和。
大于它不相邻的任意一个内角。
4.全等三角形的性质:若两个三角形全等,则他们的对应边相等;对应角相等;对应边上的中线相等,高线相等,角平分线也相等;且这两个三角形的周长和面积均相等。
5.全等三角形的判定:①边边边(SSS):三条边分别对应性相等的两个三角形全等。
②边角边(SAS):两边及其这两边的夹角对应相等的两个三角形全等。
③角边角(ASA):两角及其这两角的夹边对应相等的两个三角形全等。
④角角边(AAS):两角及其其中一角的对边对应相等的两个三角形全等。
⑤直角三角形判定(HL):直角三角形中斜边与其中任意一直角边分别对应相等的两个直角三角形全等。
全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件。
在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形。
专项练习题(含答案解析)1.已知:如图,∠1=∠2,∠3=∠4.求证:AB=AD.【分析】根据邻补角的定义得出∠ACB=∠ACD,利用ASA证明△ACB≌△ACD,根据全等三角形的性质即可得解.【解答】证明:∵∠3=∠4,∴∠ACB=∠ACD,在△ACB和△ACD中,,∴△ACB≌△ACD(ASA),∴AB=AD.2.如图,△ABC是等腰三角形,点D,E分别在腰AC,AB上,且BE=CD,连接BD,CE.求证:BD=CE.【分析】根据等腰三角形的性质得出∠EBC=∠DCB,进而利用SAS证明△EBC与△DCB全等,再利用全等三角形的性质解答即可.【解答】证明:∵△ABC∴∠EBC=∠DCB,在△EBC与△DCB中,,∴△EBC≌△DCB(SAS),∴BD=CE.3.如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.【分析】由∠BAD=∠EAC可得∠BAC=∠EAD,根据SAS可证△BAC≌△EAD,再根据全等三角形的性质即可求解.【解答】解:∵∠BAD=∠EAC,∴∠BAD+∠CAD=∠EAC+∠CAD,即∠BAC=∠EAD,在△BAC与△EAD中,,∴△BAC≌△EAD(SAS),∴∠D=∠C=50°.4.如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形的面积.【分析】(1)由AC平分∠BAD,得∠BAC=∠DAC,根据CB⊥AB,CD⊥AD,得∠B=90°=∠D,用AAS 可得△ABC≌△ADC;(2)由(1)△ABC≌△ADC,得BC=CD=3,S△ABC=S△ADC,求出S△ABC=AB•BC=6,即可得四边形ABCD的面积是12.【解答】(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∵CB⊥AB,CD⊥AD,∴∠B=90°=∠D,在△ABC和△ADC中,,∴△ABC≌△ADC(AAS);(2)解:由(1)知:△ABC≌△ADC,∴BC=CD=3,S△ABC=S△ADC,∴S△ABC=AB•BC=×4×3=6,∴S△ADC=6,∴S四边形ABCD=S△ABC+S△ADC=12,答:四边形ABCD的面积是12.5.如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.【分析】利用平行线的性质得∠EDC=∠B,再利用ASA证明△CDE≌△ABC,可得结论.【解答】证明:∵DE∥AB,∴∠EDC=∠B,在△CDE和△ABC中,,∴△CDE≌△ABC(ASA),∴DE=BC.6.如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).【分析】(1)过点M作MQ∥BC,交AC于点Q,根据等边三角形的性质以及平行线的性质可得∠AMQ=∠AQM=∠A=60°,可得△AMQ是等边三角形,易证△QMP≌△CNP(AAS),即可得证;(2)根据等边三角形的性质可知AH=HQ,根据全等三角形的性质可知QP=PC,即可表示出HP的长.【解答】(1)证明:过点M作MQ∥BC,交AC于点Q,如图所示:在等边△ABC中,∠A=∠B=∠ACB=60°,∵MQ∥BC,∴∠AMQ=∠B=60°,∠AQM=∠ACB=60°,∠QMP=∠N,∴△AMQ是等边三角形,∴AM=QM,∵AM=CN,∴QM=CN,在△QMP和△CNP中,,∴△QMP≌△CNP(AAS),∴MP=NP;(2)解:∵△AMQ是等边三角形,且MH⊥AC,∴AH=HQ,∵△QMP≌△CNP,∴QP=CP,∴PH=HQ+QP=AC,∵AB=a,AB=AC,∴PH=a.7.如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠ABC =∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.【分析】(1)根据SSS ABC≌△DEF,即可解决问题;(2)根据全等三角形的性质可得∠A=∠EDF,再根据平行线的判定即可解决问题.【解答】(1)解:在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴在上述三个条件中选取一个条件,使得△ABC≌△DEF,选取的条件为①,判定△ABC≌△DEF的依据是SSS.故答案为:①,SSS;(答案不唯一).(2)证明:∵△ABC≌△DEF.∴∠A=∠EDF,∴AB∥DE.8.在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【分析】(1)证明△BCD≌△FCE(SAS),由全等三角形的性质得出∠DBC=∠EFC,证出BD∥EF,则可得出结论;(2)由题意画出图形,延长BC到F,使CF=BC,连接AF,EF,由(1)可知BD∥EF,BD=EF,证出∠AEF=90°,得出∠DHE=90°,由直角三角形的性质可得出结论.【解答】(1)证明:在△BCD和△FCE中,,∴△BCD≌△FCE(SAS),∴∠DBC=∠EFC,∴BD∥EF,∵AF⊥EF,∴BD⊥AF;(2)解:由题意补全图形如下:CD=CH.证明:延长BC到F,使CF=BC,连接AF,EF,∵AC⊥BF,BC=CF,∴AB=AF,由(1)可知BD∥EF,BD=EF,∵AB2=AE2+BD2,∴AF2=AE2+EF2,∴∠AEF=90°,∴AE⊥EF,∴BD⊥AE,∴∠DHE=90°,又∵CD=CE,∴CH=CD=CE.9.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,且点D在线段BC上,连CE.(1)求证:△ABD≌△ACE;(2)若∠EAC=60°,求∠CED的度数.【分析】(1)可利用SAS证明结论;(2)由全等三角形的性质可得∠ACE=∠ABD,利用等腰直角三角形的性质可求得∠ACE=∠ABD=∠AED =45°,再根据三角形的内角和定理可求解∠AEC的度数,进而可求可求解【解答】(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE,∴∠ACE=∠ABD,∵△ABC和△ADE都是等腰直角三角形,∴∠ACE=∠ABD=∠AED=45°,∵∠EAC=60°,∴∠AEC=180°﹣∠ACE﹣∠EAC=180°﹣45°﹣60°=75°,∴∠CED=∠AEC﹣∠AED=75°﹣45°=30°.10.如图,在△ABC中(AB<BC),过点C作CD∥AB,在CD上截取CD=CB,CB上截取CE=AB,连接DE、DB.(1)求证:△ABC≌△ECD;(2)若∠A=90°,AB=3,BD=2,求△BCD的面积.【分析】(1)由CD∥AB得∠ABC=∠ECD,而CD=CB,CE=AB,即可根据全等三角形的判定定理“SAS”证明△ABC≌△ECD;(2))由∠A=90°,根据全等三角形的对应角相等证明∠BED=∠CED=∠A=90°,设BE=x,由BD2﹣BE2=CD2﹣EC2=DE2,列方程(2)2﹣x2=(3+x)2﹣32,解方程求得符合题意的x的值为2,则BC =5,再根据勾股定理求出DE的长,即可求出△BCD的面积.【解答】(1)证明:∵CD∥AB,CD=CB,CE=AB,∴∠ABC=∠ECD,在△ABC和△ECD中,,∴△ABC≌△ECD(SAS).(2)解:∵∠A=90°,∴∠CED=∠A=90°,∴∠BED=180°﹣∠CED=90°,设BE=x,∵EC=AB=3,BD=2,∴CD=BC=3+x,∵BD2﹣BE2=CD2﹣EC2=DE2,∴(2)2﹣x2=(3+x)2﹣32,整理得x2+3x﹣10=0,解得x1=2,x2=﹣5(不符合题意,舍去),∴BE=2,BC=3+2=5,∴DE===4,∴S△BCD=BC•DE=×5×4=10,∴△BCD的面积为10.11.如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt △ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.【分析】(1)由“SAS”可证△ACE;(2)由等腰三角形三角形的性质可得BC的长,由角度关系可求∠ADC=67.5°=∠CAD,可得AC=CD =1,即可求解.【解答】(1)证明:∵∠BAC=90°=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵∠BAC=90°,AB=AC=1,∴BC=,∠B=∠ACB=45°,∵∠BAD=22.5°,∴∠ADC=67.5°=∠CAD,∴AC=CD=1,∴BD=﹣1.12.如图,已知矩形ABCD中,AB=8,BC=x(0<x<8),将△ACB沿AC对折到△ACE的位置,AE和CD交于点F.(1)求证:△CEF≌△ADF;(2)求tan∠DAF的值(用含x的式子表示).【分析】(1)根据矩形的性质得到∠B=∠D=90°,BC=AD,根据折叠的性质得到BC=CE,∠E=∠B =90°,等量代换得到∠E=∠D=90°,AD=CE,根据AAS证明三角形全等即可;(2)设DF=a,则CF=8﹣a,根据矩形的性质和折叠的性质证明AF=CF=8﹣a,在Rt△ADF中,根据勾股定理表示出DF的长,根据正切的定义即可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,BC=AD,根据折叠的性质得:BC=CE,∠E=∠B=90°,∴∠E=∠D=90°,AD=CE,在△CEF与△ADF中,,∴△CEF≌△ADF(AAS);(2)解:设DF=a,则CF=8﹣a,∵四边形ABCD是矩形,∴AB∥CD,AD=BC=x,∴∠DCA=∠BAC,根据折叠的性质得:∠EAC=∠BAC,∴∠DCA=∠EAC,∴AF=CF=8﹣a,在Rt△ADF中,∵AD2+DF2=AF2,∴x2+a2=(8﹣a)2,∴a=,∴tan∠DAF==.13.如图,△ABC和△DEF,点E,F在直线BC上,AB=DF,∠A=∠D,∠B=∠F.如图①,易证:BC+BE =BF.请解答下列问题:(1)如图②,如图③,请猜想BC,BE,BF之间的数量关系,并直接写出猜想结论;(2)请选择(1)中任意一种结论进行证明;(3)若AB=6,CE=2,∠F=60°,S△ABC=123,则BC=,BF=.【分析】(1)根据图形分别得出答案;(2)利用AAS证明△ABC≌△DFE,得BC=EF,再根据图形可得结论;(3)首先利用含30°角的直角三角形的性质求出BH和AH的长,从而得出BC,再对点E的位置进行分类即可.【解答】解:(1)图②:BC+BE=BF,图③:BE﹣BC=BF;(2)图②:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BC+CE,∴BC+BE=EF+BC+CE=BF;图③:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BF+EF,∴BE﹣BC=BF+EF﹣BC=BF+BC﹣BC=BF;(3)当点E在BC上时,如图,作AH⊥BC于H,∵∠B=∠F=60°,∴∠BAH=30°,∴BH=3,∴AH=3,∵S△ABC=12,∴=12,∴BC=8,∵CE=2,∴BF=BE+EF=8﹣2+8=14;同理,当点E在BC延长线上时,如图②,BF=BC+BE=8+10=18,故答案为:8,14或18.14.△ABC和△ADE都是等边三角形.(1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有P A+PB =PC(或P A+PC=PB)成立(不需证明);(2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?并加以证明;(3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【分析】(2)证明△ABD≌△ACE(SAS)和△BAF≌△CAP(SAS),得AF=AP,∠BAF=∠CAP,再证明△AFP是等边三角形,最后由线段的和可得结论;(3)如图③,在PC上截取CM=PB,连接AM,同理可得结论.【解答】解:(2)PB=P A+PC,理由如下:如图②,在BP上截取BF=PC,连接AF,∵△ABC、△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠CAD+∠DAE,即∠DAB=∠EAC,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,BF=CP,∴△BAF≌△CAP(SAS),∴AF=AP,∠BAF=∠CAP,∴∠BAC=∠P AF=60°,∴△AFP是等边三角形,∴PF=P A,∴PB=BF+PF=PC+P A;(3)PC=P A+PB,理由如下:如图③,在PC上截取CM=PB,连接AM,同理得:△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,PB=CM,∴△AMC≌△APB(SAS),∴AM=AP,∠BAP=∠CAM,∴∠BAC=∠P AM=60°,∴△AMP是等边三角形,∴PM=P A,∴PC=PM+CM=P A+PB.15.【情境再现】甲、乙两个含45°角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处.将甲绕点O 顺时针旋转一个锐角到图②位置.按图②作出示意图,并连接AG,BH,如图③所示,AB交HO于E,AC 交OG于F,通过证明△OBE≌△OAF,可得OE=OF.请你证明:AG=BH.【迁移应用】延长GA分别交HO,HB所在直线于点P,D,如图④,猜想并证明DG与BH的位置关系.【拓展延伸】小亮将图②中的甲、乙换成含30°角的直角三角尺如图⑤,按图⑤作出示意图,并连接HB,AG,如图⑥所示,其他条件不变,请你猜想并证明AG与BH的数量关系.【分析】【情境再现】由△OBE≌△OAF,得BE=AF,OE=OF,∠BEO=∠AFO,可证明△BHE≌△AGF (SAS),得BH=AG;【迁移应用】由△BHE≌△AGF,得∠BHE=∠AGF,可得∠AGF+∠GPO=90°,从而∠BHE+∠HPD=90°,∠HDP=90°,故DG⊥BH;【拓展延伸】设AB交OH于T,OG交AC于K,根据△ABC,△HOG是含30°角的直角三角形,AO⊥BC,可得OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,即得△BOT∽△AOK,有===,∠BTO=∠AKO,又OH=GO,可得==,故△BTH∽△AKG,即得==,BH=AG.【解答】【情境再现】证明:由阅读材料知△OBE≌△OAF,∴BE=AF,OE=OF,∠BEO=∠AFO,∴∠BEH=∠AFG,∵OH=OG,∴OH﹣OE=OG﹣OF,即EH=GF,在△BHE和△AGF中,,∴△BHE≌△AGF(SAS),∴BH=AG;【迁移应用】解:猜想:DG⊥BH;证明如下:由【情境再现】知:△BHE≌△AGF,∴∠BHE=∠AGF,∵∠HOG=90°,∴∠AGF+∠GPO=90°,∴∠BHE+∠GPO=90°,∵∠GPO=∠HPD,∴∠BHE+∠HPD=90°,∴∠HDP=90°,∴DG⊥BH;【拓展延伸】解:猜想:BH=AG,证明如下:设AB交OH于T,OG交AC于K,如图:由已知得:△ABC,△HOG是含30°角的直角三角形,AO⊥BC,∴∠AOB=90°,∴OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,∴△BOT∽△AOK,∴===,∠BTO=∠AKO,∴OT=OK,BT=AK,∠BTH=∠AKG,∵OH=GO,∴HT=OH﹣OT=GO﹣OK=(GO﹣OK)=KG,∴==,∴△BTH∽△AKG,∴==,∴BH=AG19。
中考数学专题练习:全等三角形(含答案)
中考数学专题练习:全等三角形(含答案)1.(·成都)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是( )A.∠A=∠D B.∠ACB=∠DBCC.AC=DB D.AB=DC2.(·黔南州)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A.甲和乙B.乙和丙C.甲和丙D.只有丙3.(·南京)如图,AB⊥CD,且AB=CD,E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF =c,则AD的长为( )A.a+c B.b+c C.a-b+c D.a+b-c4.(·原创) 如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,当BC∥OA时,下列结论正确的是( )A.∠OAD=2∠ABOB.∠OAD=∠ABOC.∠OAD+2∠ABO=180°D.∠OAD+∠ABO=90°5.(·临沂)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D,E.AD=3,BE=1,则DE的长是( )A.32B.2 C.2 2 D.106.(·济宁)在△ABC中,点E、F分别是边AB、AC的中点,点D在BC边上,连接DE、DF、EF,请你添加一个条件____________________________,使△BED与△FED全等.7.(·原创)如图,已知△ABC≌△ADE,若AB=6,C为AD的中点,则AC的长为______.8.(·包河区二模)如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,垂足分别为D,E,若BD=3,CE=2,则DE=______.9.(·宜宾)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.10.(·菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.11.(·泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.12.(·陕西)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交于点G、H,若AB=CD,求证:AG=DH.13.(·镇江)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=________°.14.(·温州) 如图,在四边形 ABCD 中,E 是 AB 的中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC;(2)当 AB=6 时,求 CD 的长.15.(·恩施)如图,点 B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交 BE于点O.求证:AD与BE互相平分.16.(·广东)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E 处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.1.(·阜阳模拟)如图,过等边△ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是( )A.PD=DQB.DE=12 ACC.AE=12CQD.PQ⊥AB2.(·原创)如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是( )A.76° B.62°C.42° D.76°、62°或42°都可以3.(·原创)如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是( )A.75° B.70° C.65° D.60°4.(·德阳)如图,点E、F分别是矩形ABCD的边AD、AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连接AH,已知ED=2,求AH的值.5.(·合肥45中一模) 如图1,已知正方形ABCD,E是线段BC上一点,N是线段BC延长线上一点,以AE为边在直线BC的上方作正方形AEFG.(1)连接GD,求证:DG=BE;(2)连接FC,求∠FCN的度数;(3)如图2,将图1中正方形ABCD改为矩形ABCD,AB=m,BC=n(m、n为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线BC的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由点B向点C运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含m、n的代数式表示tan∠FCN的值,若∠FCN的大小发生改变,请画图说明.参考答案【基础训练】1.C 2.B 3.D 4.A 5.B 6.BD =EF(答案不唯一) 7.3 8.5 9.证明:∵∠1=∠2,∴180°-∠1=180°-∠2,即∠ACB=∠ACD.在△CDA 和△CBA 中,⎩⎨⎧∠B=∠D,∠ACB=∠ACD,AC =AC ,∴△CDA≌△CBA(AAS).∴CB=CD.10.解:DF =AE.证明:∵AB∥CD ,∴∠C=∠B. ∵CE=BF,∴CE-EF =BF -FE,∴CF=BE. 又∵CD=AB,∴△DCF≌△ABE(SAS), ∴DF=AE.11.证明:方法一:∵∠A=∠D=90°,AC =DB,BC =CB, ∴Rt△ABC≌Rt△DCB(HL), ∴∠OBC=∠OCB ,∴BO=CO.方法二:∵∠A=∠D=90°,AC =DB,BC =CB, ∴Rt△ABC≌Rt△DCB(HL), ∴AB=DC,又∵∠AOB=∠DOC , ∴△ABO≌△DCO(AAS ),∴BO =CO. 12.证明:∵AB∥CD ,∴∠A=∠D.又∵CE∥BF ,∴∠AHB=∠DGC.在△ABH 和△DCG 中,⎩⎨⎧∠A=∠D∠AHB=∠DGC AB =CD,∴△ABH≌△DCG(AAS), ∴AH=DG.又∵AH=AG +GH,DG =DH +GH,∴AG=DH. 13.(1)证明:∵AB=AC,∴∠B=∠ACF.在△ABE 和△ACF 中,⎩⎨⎧AB =AC ,∠B=∠ACF,BE =CF ,∴△ABE≌△ACF(SAS). (2)解:75.14.(1)证明:由AD∥EC 可知∠A =∠CEB, 又因为E 是 AB 的中点,所以AE =EB, 且∠AED=∠B ,所以△AED≌△EBC(ASA). (2)解:由(1)△AED≌△EBC 可知AD =EC, 又因为AD∥EC ,所以四边形AECD 为平行四边形, 又因为AB =6,则CD =AE =3. 15.证明:如解图,连接 BD ,AE . ∵AB∥ED ,∴∠ABC=∠DEF. ∵AC∥FD ,∴∠ACB=∠DFE. ∵ FB=CE, ∴BC=EF. 在△ACB 和 △DFE 中,⎩⎨⎧∠ABC=∠DEF,BC =EF ,∠ACB=∠DFE.∴△ACB ≌ △DFE(ASA). ∴ AB=DE.∵AB∥ED ,∴四边形ABDE 是平行四边形.∴AD 与BE 互相平分.16.证明:(1)∵四边形ABCD 是矩形, ∴AD=BC, AB =DC.∵△AEC 是由△ABC 折叠而成的, ∴AD=BC =EC,AB =DC = AE.在△ADE 和△CED 中,⎩⎨⎧AD =CEDE =ED AE =CD,∴△ADE≌△CED(SSS);(2)由(1)△ADE≌△CED 可得∠AED=∠CDE , ∴FD=EF,∴△DEF 是等腰三角形. 【拔高训练】 1.D 2.B 3.C 4.(1)证明:∵EF⊥EC ,∴∠CEF=90°, ∴∠AEF+∠DEC=90°, ∵四边形ABCD 是矩形,∴∠AEF+∠AFE=90°, ∠DEC+∠DCE=90°, ∴∠AEF=∠DCE ,∠AFE=∠DEC , ∵AE=DC,∴△AEF≌△DCE(AAS), ∴DE=AF,∵AE=DC =AB =2DE,∴AB=2AF, ∴F 为AB 的中点.(2)解:由(1)知AF =FB,且AE∥BH , ∴∠FBH=∠FAE=90°, ∠AEF=∠FHB , ∴△AEF≌△BHF(AAS),∴AE=HB, ∵DE=2, 且AE =2DE, ∴AE=4,∴HB=AB =AE =4,∴AH 2=AB 2+BH 2=16+16=32,∴AH=4 2.5.(1)证明:∵四边形ABCD 和四边形AEFG 是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS).∴DG=BE;(2)解:如解图1,过点F作FH⊥BN于点H.∵∠AEF=∠ABE=90°,∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°, ∴∠FEH=∠BAE,又∵AE=EF,∠EHF=∠EBA=90°,∴△EFH≌△AEB(AA S),∴FH=BE,EH=AB=BC,∴CH=BE=FH,∴∠FCN=∠CFH=12(180°-∠FHC).∵∠FHC=90°, ∴∠FCN=45°.(3)解:当点E由点B向点C运动时,∠FCN的大小总保持不变,理由如下:如解图2,过点F 作FH⊥BN于点H,由已知可得∠EAG=∠BAD=∠AEF=90°, 结合(1)(2)得∠FEH=∠BAE=∠DAG,又∵G在射线CD上,∠GDA=∠EHF=∠EBA=90°,∴△EFH≌△AGD(AAS),△EFH∽△AEB,∴EH=AD=BC=n, ∴CH=BE,∴EHAB=FHBE=FHCH;在Rt△FCH中,tan∠FCN=FHCH=EHAB=nm.∴当点E由点B向点C运动时,∠FCN的大小总保持不变,且tan∠FCN=n m .。
中考数学专题《全等三角形》
专题01 全等三角形一、单选题1.(2021·全国)在ABC V 中,B C ∠=∠,与ABC V 全等的三角形有一个角是100︒,那么在ABC V 中与这100︒角对应相等的角是( )A .A ∠B .BÐC .C ∠D .B Ð或C ∠2.(2021·山西襄汾县·七年级期末)如图,Rt △ABC 沿直角边BC 所在直线向右平移到Rt △DEF ,则下列结论中,错误的是( )A .BE EC =B .BC EF =C .AC DF =D .ABC DEF △≌△3.(2021·山西七年级期末)下列说法:①两个形状相同的图形称为全等图形;②边、角分别对应相等的两个多边形全等;③全等图形的形状、大小都相同;④面积相等的两个三角形全等.其中正确的是()A .①②③B .①②④C .①③D .②③4.(2021·哈尔滨市第四十七中学)如图,ABD BAC ∆∆≌,若AD BC =,则BAD ∠的对应角( )A .ADB ∠B .BCD ∠C .ABC ∠D .CDA ∠5.(2021·全国八年级课时练习)如图,,40,30ABD CDB ABD CBD ∠=︒∠=︒V V ≌,则C ∠等于( )A .20︒B .100︒C .110︒D .115︒6.(2021·重庆巴南区·)已知△ABC 的三边的长分别为3,5,7,△DEF 的三边的长分别为3,7,2x ﹣1,若这两个三角形全等,则x 的值是( )A .3B .5C .﹣3D .﹣57.(2021·大连市第三十四中学八年级月考)如图,ABC A B C '''≅V V ,其中36A ∠=︒,24C '∠=︒,则B ∠=( )A .150︒B .120︒C .90︒D .60︒8.(2021·全国七年级课时练习)如图,在ABC V 中,D ,E 分别是边AC ,BC 上的点,若ADB EDB EDC V V V ≌≌,则C ∠的度数为( )A .15︒B .20︒C .25︒D .30°9.(2021·甘肃榆中县·七年级期末)如图,90A B ∠=∠=︒,6AB =,E 、F 分别为线段AB 和射线BD 上的一点,若点E 从点B 出发向点A 运动,同时点F 从点B 出发向点D 运动,二者速度之比为1:2,运动到某时刻同时停止,在射线AC 上取一点G ,使AEG △与BEF V 全等,则AG 的长为( )A .2B .3C .2或3D .2或610.(2021·全国)如图,锐角△ABC 中,D 、E 分别是AB 、AC 边上的点,△ADC ≌△ADC ′,△AEB ≌△AEB ′,且C ′D //EB ′//BC ,BE 、CD 交于点F ,若∠BAC =α,∠BFC =β,则( )A .2α+β=180°B .2β﹣α=180°C .α+β=150°D .β﹣α=60°11.(2021·全国八年级课时练习)如图,AOB ADC △≌△,点B 和点C 是对应顶点,90O D ∠=∠=︒,记,,OAD ABO ABC ACB αβ∠=∠=∠=∠,当//BC OA 时,α与β之间的数量关系为( )A .αβ=B .2αβ=C .90αβ+=︒D .2180αβ+=︒12.(2021·河南川汇区·八年级期末)如图,点D ,E ,F 分别在ABC V 的边AB ,BC ,CA 上(不与顶点重合),设BAC α∠=,FED θ∠=.若BED CFE ≌△△,则α,θ满足的关系是( )A .90αθ+=︒B .2180αθ+=︒C .90αθ-=︒D .2180αθ+=︒第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.(2021·吉林铁西区·八年级期中)如图所示,ABC ECD ≌△△,48A ∠=︒,62D ∠=︒,则图中B Ð的度数是______度.14.(2021·全国八年级课时练习)如图,ABE ACD △≌△,且D ∠与E ∠是对应角,顶点C 与顶点B 对应,若10cm BE =,则CD =__________.15.(2021·全国)如图,长方形ABCD 沿AM 折叠,使D 点落在BC 上的N 点处,AD =7cm ,DM =5cm ,∠DAM =39°,则△ANM ≌△ADM ,AN =_____cm ,NM =_____cm ,∠NAB =_______.17.(2021·浙江东阳市·七年级期末)如图,把一张长方形纸板裁去两个边长为3cm的小正方形和两个全等的小长方形,再把剩余部分(阴影部分)四周折起,恰好做成一个有底有盖的长方体纸盒,纸盒底面长方形的长为3k cm,宽为2k cm,则(1)裁去的每个小长方形面积为___cm2;(用k的代数式表示)(2)若长方体纸盒的表面积是底面积的正整数倍,则正整数k的值为___.18.(2021·山东莱州市·七年级期末)三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数等于_______.19.(2021·辽宁本溪市·七年级期末)如图,∠A=∠B=90°,AB=80,点E和点F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,点E和点F运动速度之比为2:3,运动到某时刻点E和点F同时停止运动,在射线AC 上取一点G,使△AEG与△BEF全等,则AG的长为________.20.(2021·全国)如图,在△ABC中,AB=AC=24厘米,∠B=∠C,BC=16厘米,点D为AB的中点,点P 在线段BC 上以4厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.当点Q 的运动速度为________厘米/秒时,能够在某一时刻使△BPD 与△CQP 全等.三、解答题21.(2021·全国八年级课时练习)已知:如图,,8cm,5cm ABC DEF BC EC ==V V ≌,求线段CF 的长.22.(2020·铜陵市第二中学八年级月考)如图,ABF V ≌CDE △,已知30B ∠=︒,25DCF ∠=︒,求EFC ∠的度数.23.(2021·河南邓州市·七年级期末)我们已经认识了图形的轴对称、平移和旋转,这是图形的三种基本变换,图形经过这样的变换,虽然位置发生了改变,但图形的形状与大小都不发生变化,反映了图形之间的全等关系.这种运用动态变换研究图形之间的关系的方法,是一种重要而且有效的方法.同学们学完了这些知识后,王老师在黑板上给大家出示了这样的一道题目:(1)如图,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .试说明AD =BE ;聪明的小亮很快就找到了解决该问题的方法:请你帮小亮把说理过程补充完整.解:∵△ACB 和△DCE 均为等边三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =60°,(等边三角形的性质)∴∠ACD = (等式的性质)∴△ACD 绕点C 按逆时针方向旋转 度,能够与 重合∴△ACD ≌ (旋转变换的性质)∴AD =BE ( );(2)当同学们把这道题领会感悟后,王老师又在上题基础上追加了一问:试求∠AEB 的度数.聪明的同学们你会解决吗?请写出你的求解过程.(此题不用写推理依据即可). 24.(2021·全国八年级课时练习)如图,,ABF CDE B ∠V V ≌和D ∠是对应角,AF 和CE 是对应边.(1)写出ABF V 和CDE △的其他对应角和对应边;(2)若30,40B DCF ∠=︒∠=︒,求EFC ∠的度数;(3)若10,2BD EF ==,求BF 的长.25.(2021·河南伊川县·七年级期末)如图,点A、B、C、D在同一直线上,△ACE≌△DBF,AD =8,BC=2.(1)求AC的长;(2)求证:CE∥BF,AE∥DF.⊥于点B,26.(2021·辽宁铁西区·)如图,点B,C,E,F在同一直线上,AB BCCE=.BC=,3DEF ABCV V≌,且6(1)求CF的长;(2)判断DE与EF的位置关系,并说明理由.27.(2021·浙江浙江省·八年级期末)如图,已知正方形ABCD 边长为4cm ,动点M 从点C 出发,沿着射线CD 的方向运动,动点P 从点B 出发,沿着射线BC 的方向运动,连结,BM DP ,(1)若动点M 和P 都以每秒2cm 的速度运动,问t 为何值时DPC △和BCM V 全等?(2)若动点P 的速度是每秒3cm ,动点M 的速度是每秒1.5cm 问t 为何值时DPC △和BCM V 全等?28.(2020·浙江浙江省·)在56⨯的方格纸中,每格的边长为1,请按下列要求画图.(1)在图1中画一个格点ADE V ,使ADE V 与ABC V 全等,且所画格点三角形的顶点均不与点B ,C 重合.(2)在图2中画一个面积为7的格点四边形ABCD ,且BAD ∠为锐角.29.(2021·云南盘龙区·七年级期末)如图,在平面直角坐标系中,O 为坐标原点,ABC V 的边BC 在x 轴上,A 、C 两点的坐标分别为()0,A m ,(),0C n ,()5,0B -,且()231230m n -+-=点P 从B 出发,以每秒1个单位的速度沿射线BO 匀速运动,设点P 运动时间为t .(1)点A 的坐标为 ;点C 的坐标为 ;(2)连接PA ,当POA V 的面积等于ABC V 的面积的一半时,求t 的值;(3)当P 在线段BO 上运动时,在y 轴上是否存在点Q ,使POQ △与AOC △全等?若存在,请直接写出Q 点坐标;若不存在,请说明理由.30.(2021·江苏姑苏区·苏州草桥中学七年级期末)如图,将一副三角板按如图所示的方式放置,其中ABC V 中,90ACB ∠=︒,45BAC ∠=︒,ADE V 中,90ADE ∠=︒,30DAE ∠=︒,AB AD =,点C 在线段AE 上.射线AB '从AB 出发,绕点A 以5︒/秒的速度顺时针旋转;同时,射线DA '从DA 出发,绕点D 顺时针旋转.设射线AB '运动的时间为t 秒(09t <≤),AB '与BC 交于点M ,DA '与AB '交于点N .(1)若射线DA '旋转的速度为5︒/秒,则AND ∠=________︒;(2)设射线DA '旋转的速度为x ︒/秒,当射线AB '与DA '旋转到某处时,ABM V 与AND △全等,求相应的t 、x 的值.。
初中数学中考复习:30全等三角形(含答案)
中考总复习:全等三角形—巩固练习【巩固练习】一、选择题1.如图,△ABC是不等边三角形,DE=BC,以D、E为两个顶点画位置不同的三角形,使所画的三角形与△ABC全等,这样的三角形最多可画出( ) .A.2个B.4个C.6个D.8个2.如图,Rt△ABC中,∠BAC=90°,AB=AC,D为AC的中点,AE⊥BD交BC于E,若∠BDE=,∠ADB的大小是().A. B. C. D.3.如图,△ABC中,∠C为钝角,CF为AB上的中线,BE为AC上的高,若CF=BE,则∠ACF的大小是().A.45° B.60° C.30° D.不确定4.如图,△ABC中,∠BAC=90° AD⊥BC,AE平分∠BAC,∠B=2∠C,∠DAE的度数是( ) . A. 45°B. 20°C. 30°D. 15°5.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是(). A.△ABD和△CDB的面积相等 B.△ABD和△CDB的周长相等 C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC6. 如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则(). A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC;二、填空题7.如图,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的。
若∠1:∠2:∠3=28:5:3,则的度数为______.8.如图,把△ABC绕C点顺时针旋转35°,得到,交于点,若,则∠A=______.9.如图,已知的周长是20,分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3, △ABC的面积是___________..如图,直线AE∥BD,点则……峰1峰2已知:如图,过△ABC的边BC的中点求证:14.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE,AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.15.如图,已知中,厘米,厘米,点为的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C 点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与 全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?16. 如图,在中,,,,. (1)求证:,. (2)如图,若是的中点.求证:. (3)如图,若于点,延长交于点.求证:.【答案与解析】一、选择题1.【答案】B.2.【答案】C.【解析】作关于BC的对称图形,作的中点,连接,则容易证明,说明和AE在同一条直线上的线段,根据对称性交于E点,所以与DE在同一条直线上,容易证明.所以.所以.3.【答案】C.【解析】延长CF到D,使CD=2CF,容易证明 △AFC≌△,所以∠D=∠FCA,所以AC∥BD,因为 CF=BE,所以CD=2BE,即AC与BD之间的距离等于CD的一半, 所以∠D=30°.所以内错角∠ACF=30°.4.【答案】D.5.【答案】C.【解析】提示:∵△ABD≌△CDB, ∴AB=CD,BD=DB,AD=CB,∠ADB=∠CBD, ∴△ABD和△CDB的周长和面积都分别相等. ∵∠ADB=∠CBD, ∴AD∥BC.6.【答案】D.二、填空题7.【答案】80°.【解析】由三角形内角和是180°知∠1=140°,∠2=25°,∠3=15°, 由翻折知:∠ABE=∠2,∠ACD=∠3,∴.8.【答案】55°.【解析】由旋转知:,, ∵,∴55, ∴55°.9.【答案】30 .【解析】提示:面积法.10.【答案】8.11.【答案】相等或互补.12.【答案】-29 , B .三、解答题13.【答案与解析】证明:延长FM到G,使,连接 ∵M为BC的中点, ∴△BMG≌△CMF ∴∠G=∠2,CF=BG, 又∵平分,ME∥AD, ∴∠3=∠4,∠3=∠E,∠1=∠4, ∴∠1=∠E,即AE=AF, ∵∠1=∠2,∠G=∠2,∠1=∠E, ∴∠G=∠E,即BE=BG=CF, ∴AB+AC=AB+AF+CF=AB+AE+CF=BE+CF=2CF,即14.【答案与解析】猜测AE=BD,AE⊥BD. 证明如下: ∵∠ACD=∠BCE=90°, ∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB. ∵△ACD和△BCE都是等腰直角三角形, ∴AC=CD,CE=CB. ∴△ACE≌△DCB(SAS) ∴AE=BD,∠CAE=∠CDB. ∵∠AFC=∠DFH, ∴∠DHF=∠ACD=90°, ∴AE⊥BD.15.【答案与解析】(1)①∵秒, ∴, ∵,点为的中点, ∴. 又∵, ∴, ∴. 又∵, ∴, ∴. ②∵,∴, 又∵,,则, ∴点,点运动的时间秒, ∴. (2)设经过秒后点与点第一次相遇, 由题意,得, 解得. ∴点共运动了. ∵, ∴点、点在边上相遇, ∴经过秒点与点第一次在边上相遇.16.【答案与解析】(1)提示:证明≌(SAS).(2)提示:延长至,使得,连结,先证≌(SAS), 再证≌(SAS).(3)提示:作于,的延长线于,先证≌(AAS), 同理证明≌,再证≌(AAS).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形
【复习要点】
1、全等三角形的概念:能够完全 的两个三角形叫做全等三角形。
2、全等三角形的性质:全等三角形的对应边 ,对应角 , 全等三角形的对应中线 ,对应高 , 全等三角形的对应角平分线 。
全等三角形的面积 ,周长 。
(二)实例点拨
例1 (2010淮安) 已知:如图,点C 是线段AB 的中点,CE=CD ,∠ACD=∠BCE 。
求证:AE=BD 。
解析:此题可先证三角形全等,由三角形全等得出对应边相等即结论成立。
证明如下: 证明:∵点C 是线段AB 的中点 ∴AC=BC
∵∠ACD=∠BCE
∴∠ACD+∠DCE=∠BCE+∠DCE 即∠ACE=∠BCD
在△ACE 和△BCD 中, AC=BC
∠ACE=∠BCD CE=CD
∴△ACE ≌△BCD (SAS ) ∴AE=BD 反思:证明两边相等是常见证明题之一,一般是通过发现或构造三角形全等来得到对应边即要证边相等,或者若要证边在同一个三角形中,也常先证角相等,再用“等角对等边”来证明边相等。
例2 已知:AB=AC ,EB=EC ,AE 的延长线交BC 于D ,试证明:BD=CD
E B
C A D
解析:此题若直接证BD 、CD 所在的三角形全等,条件不够,所以先证另一对三角形全等得到有用的角、边相等的结论用来证明BD 、CD 所在的三角形全等。
证明如下: 证明:在△ABE 和△ACE 中 AB=AC , EB=EC , AE=AE
∴ △ABE ≌△ACE (SSS) ∴∠BAE =∠CAE 在△ABD 和△ACD 中 AB=AC
∠BAE= ∠CAE AD=AD
∴ △ABD ≌ △ACD (SAS ) ∴ BD = CD 反思:通过证明几次三角形全等才得到边、角相等的思路也是中考中等难度题型的常考思路。
此种题型需要学生先针对条件分析、演绎推理,逐步找出解题的思路,再书写规范过程。
【实弹射击】
1、 如图,AB=AC ,AE=AD ,BD=CE ,求证:△AEB ≌ △ ADC 。
2、如图:AC 与BD 相交于O ,AC =BD ,AB =CD ,求证:∠C =∠B
3、如图,已知AB=CD ,AD=CB ,E 、F 分别是AB ,CD 的中点, 且DE=BF ,说出下列判断成立的理由 .①△ADE ≌△CBF ②∠A=∠C
C A
B
D E 第1题图 O
A
C
D
B
第2题图
A
D
B
C
F
E 第3题图
4、已知:BECF 在同一直线上, AB ∥DE ,AC ∥DF ,并且BE=CF 。
求证:△ ABC ≌ △ DEF
5、(09湛江)如图,AB 是O ⊙的切线,切点为B AO ,交O ⊙于点C , 过点C 作DC OA ⊥,
交AB 于点D . (1)求证:CDO BDO ∠=∠; (2)若30A O ∠=°,⊙的半径为4, 求阴影部分的面积.(结果保留π)
6、(09梅州)已知:如图,直径为OA 的M ⊙与x 轴交于点O A 、,
点B C 、把OA 分为三等份,连接MC 并延长交y 轴于点(03)D ,.
(1)求证:OMD BAO △≌△;
(第6题图)
B D 第5题图 F
E D
C
B
A
第4题图。