钢化玻璃爆裂问题
钢化玻璃门为什么会突然爆裂
钢化玻璃门为什么会突然爆裂
1、玻璃损伤因素:玻璃表面、边部由于搬运、安装、维护不小心,造成炸口、表面腐蚀、崩边等均易于破坏钢化玻璃的应力引发钢化玻璃的自爆。
2、安装因素:在安装过程中,如果安装间隙较小或玻璃直接与框架接触,在阳光的照射下,玻璃与框架的膨胀系数不一样,容易使玻璃的边部或角部产生挤压力,诱发钢化玻璃爆裂。
3、玻璃加工因素:钻孔或切角的钢化玻璃容易爆裂。
4、自然因素:强台风等风灾导致抗风压设计失效,可造成钢化玻璃的爆裂。
钢化玻璃自爆的主要原因及解决方案
钢化玻璃自爆的主要原因及解决方案在广义上,钢化玻璃自爆一般定义为钢化玻璃在无直接外力作用下发生自动炸裂的现象。
实际上,钢化加工过程中的自动爆裂与储存、运输、使用过程中的自爆是两个完全不同的概念,二者不可混淆。
钢化玻璃生产过程中的自爆钢化玻璃在生产过程中的自爆一般由玻璃中的砂粒、气泡等夹杂物及冷加工时造成的缺口、刮伤、爆边和钢化不合理等工艺缺陷引起的。
对于玻璃在加工过程中炸裂,应采取以下措施:选用优质的玻璃原片:玻璃原片对于钢化玻璃成品质量的玻璃在炉内炸裂是至关重要的。
若玻璃内含有气泡、结石、冷裂纹以及表面划伤过重都会使用在热处理过程中产生应力集中,从而容易破裂。
但是,浮法玻璃生产线不稳定时也可能出现上述缺陷,应该认真做好每片原片玻璃的质检工作。
注意预处理方式:切割玻璃时应选用正确角度的刀轮和施加压力,使玻璃切面的上部裂纹带很窄,而下部的镜面较宽,从而获得良好切口,减少边部裂纹。
玻璃切割后边部都会存在微裂纹,钢化前尽量使用抛光边或精磨边,减少玻璃微裂纹的存在和对后期使用的影响。
角部尽量选用圆形角,减少钢化过程中的应力集中。
一般厚度≥8mm的玻璃要求进行精磨边,厚度≤6mm的玻璃可以用湿砂带磨边机磨边。
合理设置炉温:从玻璃受热及内应力变化分析来看,温度的剧烈变化是引起玻璃炉内炸裂是主要的外部因素。
温度越高,玻璃厚度方向上温度梯度越大,内应力越大,玻璃炸裂概率越高。
12mm、15mm、19mm厚的玻璃危险性更大。
因此,在钢化温度范围内不宜采用过高的温度。
合理设置输送速度:当玻璃从上片台输入钢化炉时,玻璃前端先进入炉内受热膨胀,而处于炉外的玻璃后端较冷。
在冷热交界处平面方向上产生的温度差,使冷端产生张应力,热端产生压应力。
输送速度越快,这种温差越小。
但是,如果加快输送速度,玻璃迅速处于高温之中,受热冲击增大,即在厚度方向上的温度梯度相对增大,玻璃炉内炸裂概率随之增大。
因此,在实际生产中就要权衡利弊,然后选择合理输送速度。
钢化玻璃破损分析
钢化玻璃破损分析摘要钢化玻璃就是传统的平板玻璃经过热处理,通过淬冷或其他方法使其表面形成应压力层,从而使玻璃的那热性和抗压力性大大的提高,这些玻璃因为其具有较高的压力抗拒效果,耐热性都高于普通玻璃,因此具有较广的应用背景,同时,钢化玻璃破损后,不是像普通玻璃那样四分五裂,而是形成粒状的碎片,因此破损所带来的伤害也远远低于普通玻璃。
尽管如此,钢化玻璃还是具有破损的可能,钢化玻璃的破损与普通玻璃在机理上是不一样的,本文从钢化玻璃的品种和性能入手,介绍了钢化玻璃的使用领域,接下来重点分析了钢化玻璃的破损原因,同时结合破损原因分析了应对钢化玻璃破损的办法。
关键字钢化玻璃破损原因应对措施一.钢化玻璃的品种及性能1.全钢化玻璃玻璃加热到钢化温度后,用相同的冷却强度对整片玻璃进行均匀的冷却。
由此制得的钢化玻璃,其表面应力分布均匀。
当其破碎时,整片玻璃碎成不规则的网状小块。
这种产品称为全钢化玻璃,通常简称为钢化玻璃。
有关研究证明,要使钢化玻璃具有稳定的强度,在表面以下大约1/6厚度内产生压缩应力最为适宜,比如美国玻璃热处理学会规定压应力层应为厚度的15%。
钢化玻璃不能切割,因为当玻璃表面受到损伤,而且损伤深度贯穿压缩应力层达到张应力层的一瞬间,它就会立即全部破碎。
钢化玻璃的表面硬度与非钢化制品并无差别。
钢化玻璃的边部抗冲击强度极弱,在运输、存放和使用中要尤其注意。
2.区域钢化玻璃汽车前风挡玻璃如果采用全钢化玻璃,当其破损时存在着不能确保视野的危险,所以上世纪70年代出现了一种使驾驶人员视野部分的玻璃破碎时碎片较为粗大的区域钢化玻璃。
区域钢化玻璃出现后,在美国和日本等发达国家得到广泛推广,并形成法律。
区域钢化玻璃的生产就是将一片玻璃划分为周边和主视区,并使用专门的、冷却强度分布不一的风栅进行冷却处理,专门的风栅会使玻璃周边区的冷却强度大,主视区冷却强度小。
经这种冷却方法冷却后,玻璃呈现不同的应力分布,即周边的应力小而密,主视区应力大而稀。
大楼钢化玻璃碎裂更换情况说明
大楼钢化玻璃碎裂更换情况说明大楼钢化玻璃碎裂更换情况说明背景•大楼外墙通常采用钢化玻璃作为建筑材料之一,具有高强度、高透明度等优点。
•由于各种原因,钢化玻璃在使用过程中可能会发生碎裂,需要及时更换。
碎裂原因•外力冲击:例如风力、震动等外部因素对玻璃的冲击。
•温度变化:由于温度变化引起的热胀冷缩,可能导致玻璃碎裂。
•维修保养不当:错误的清洁方式或不适当的维护可能导致玻璃受损。
•制造缺陷:在制造过程中出现的瑕疵可能导致玻璃碎裂。
更换流程1.确定碎裂范围:首先对碎裂的玻璃进行检查,确定需要更换的范围和数量。
2.清理工作:在更换之前,需要将碎裂的玻璃清理干净,确保周围环境的卫生。
3.订购新玻璃:根据更换范围和尺寸,联系供应商订购适合的钢化玻璃。
4.替换工作:等待新玻璃到货后,由专业人员进行安装和更换工作。
5.检验和验收:确保新玻璃安装完好,并检查其牢固性和质量。
注意事项•安全第一:在进行更换工作时,要确保工作区域安全,并采取必要的防护措施,避免意外发生。
•资质认证:选择具备信誉和资质的供应商和安装团队,以确保更换工作的质量和安全性。
•定期检查:定期检查建筑外墙的钢化玻璃,发现裂痕或其他问题应及时处理,以防止更严重的事故发生。
以上是针对大楼钢化玻璃碎裂更换情况的相关说明。
在进行更换工作时,务必遵循相应的流程和注意事项,确保建筑的安全和正常使用。
故障排查•确定碎裂原因:通过观察和分析,确定钢化玻璃碎裂的具体原因,以避免类似问题再次发生。
•检查周边结构:对碎裂玻璃所在位置的周边结构进行仔细检查,确保没有其他损坏或安全隐患。
更换材料选择•强化安全性:考虑采用更耐冲击、更安全的材料替换钢化玻璃,如夹层玻璃或抗风压玻璃,以增加大楼的整体安全性。
•保持外观统一性:在选择替换材料时,注意与原有建筑外墙材料的协调,保持整体外观统一。
维护管理措施•定期检查:建立定期检查制度,对大楼外墙进行维护和检查,以及时发现问题并采取措施解决。
幕墙钢化玻璃自爆原因分析及预防措施
■建筑环境与设备福建建设科技2017. No.469幕墙钢化玻璃自爆原因分析及预防措施丁志龙(福建省建筑科学研究院福建省绿色建筑技术重点实验室福建福州350025)[摘要]本文通过对幕墙钢化玻璃自爆的原因进行深入的分析,探讨减少和预防钢化玻璃自爆的措施。
[关键词]钢化玻璃;破裂;预防;自爆Causes analysis and prevention measures of spontaneous detonation of Curtain wall toughened glass Abstract :Through the deeply analysis of the causes of spontaneous detonation of the curtain wall toughened glass,the measures to reduce and prevent spontaneous detonation of the tempered glass were exploded.Key words:Toughened glass,Burst,Prevention,spontaneous detonation〇引言钢化玻璃属于安全玻璃,钢化玻璃其实是一种预应力玻璃,为提高玻璃的强度,通常使用化学或物理的方法,在玻璃表面形成压应力,玻璃承受外力时首先抵消表层应力,从而提高了承载能力,增强玻璃自身抗风压性、寒暑性、冲击性等。
自爆是钢化玻璃的特性之一,无法避免,没有预兆,这是行业人士的共识,千分之一的自爆率已是极限[1]。
至今为止,钢化玻璃的自爆仍是行业内无法解决的大难题,堪称幕墙玻璃的“癌症”。
1钢化玻璃自爆原因分析近年来,钢化玻璃的自爆一直困扰着厂家和用户,钢化玻璃自爆事故的报道也一直见诸于报端。
澳大利亚研究人员曾 对8幢建筑幕墙进彳了长达12年的跟研究,8幢建筑幕墙共计11760块钢化玻璃,共发生306块自爆,自爆率为1.72%。
钢化玻璃自爆原因及解决办法
钢化玻璃自爆原因以及解决方法1、自爆的定义及其分类:钢化玻璃自爆可以定义为:钢化玻璃在无外部作用力直接作用与玻璃的情况下而玻璃本身自动发生裂纹、破碎的的自然现象。
表现为玻璃在钢化加工、贮存、运输、搬运、安装、使用等过程中均可发生钢化玻璃自爆。
自爆按起因不同主要可分为两种:一是:由玻璃中产生可见缺陷所引起的自爆现象,例如砂粒、结石、气泡、渗杂物、爆边、缺口、裂纹纹理、划伤等各种原因;二是:由玻璃中内部硫化镍(NiS)杂质相变体积膨胀引起的自爆。
玻璃的这是两种不同类型的自爆现象,人们应明确分类,区别对待,采用相对应的方法来应对和处理,减少玻璃引自爆而产生的损失。
前者一般可见现象,在检测检验时注意观察即可相对容易发现,因此在生产的过程之中可以控制好玻璃的质量;后者主要表现由玻璃中存在着很多微小的硫化镍颗粒体积发生膨胀而引发的自爆现象,与前者不同,其是在检验检测时无法目测到,所以该现象无法控制。
在实际运作和处理上,前者一般可以在安装前剔除,后者因无法检验而继续存在,成为使用中的钢化玻璃自爆的主要因素。
由于硫化镍类引起的自爆后更换难度大,处理费用高,同时会伴随较大的质量投诉及经济损失等问题,造成业主的不满意甚至出现危机生命财产等更为严重的其他后果,所以硫化镍引发的自爆是我们讨论的重点。
二、钢化玻璃发生自爆现象机理钢化玻璃内部的硫化镍膨胀是造成钢化玻璃自爆的主要原因。
由于玻璃经过钢化处理后,玻璃表面层会形成压应力。
内部板芯层则形成张应力,同时压应力和张应力共同构成一个平衡体。
但是玻璃这种材料脆性很高,耐压型很强,但受拉性却很弱,因此玻璃破碎大多数是张应力的变化而引发的。
当钢化玻璃中硫化镍晶体(处在玻璃板芯张应力层)在发生相变时,其体积发生膨胀使钢化玻璃内部产生更大的张应力,张应力就会大于压应力,当张应力超过玻璃自身所能承受的极限时,压应力和张应力这对平衡体就会发生破坏,就会导致钢化玻璃自爆。
多年来国内外研究证明:制造玻璃主要原料石英砂或者砂岩带入镍,在生产过程之中燃料及辅料会带入硫,在1400℃~1500℃高温熔窑中燃烧发生化学反应形成硫化镍。
分析钢化玻璃产生自爆的原因及降低钢化玻璃自爆的方法
分析钢化玻璃产生自爆的原因及降低钢化玻璃自爆的方法钢化玻璃与平板玻璃相比有许多优点,如钢化玻璃的强度高,韧性好,抗热冲击性能优越,因此被广泛地应用于玻璃幕墙和门窗工程实践中。
但是钢化玻璃也有缺点,如自爆。
钢化玻璃在无荷载作用下发生的自发性炸裂称为钢化玻璃的自爆。
自爆是钢化玻璃固有的特性之一,产生自爆的原因很多,简单地归纳为以下几种:1.玻璃中有结石、气泡和杂质:玻璃是典型的脆性材料,其力学行为服从断裂力学。
玻璃中的结石、气泡和杂质在玻璃中将会形成裂纹,是钢化玻璃的薄弱点,特别是裂纹尖端是应力集中处。
如果结石、气泡或杂质处在钢化玻璃的张应力区,或在荷载作用下使其处于张应力,都可能导致钢化玻璃炸裂。
2.玻璃中含有硫化镍结晶物:硫化镍夹杂物一般以结晶体存在,室温下存在着相向相转变的倾向,并伴有一定量的体积膨胀。
如果这些杂物在钢化玻璃受张应力的部位,或在荷载作用下使其处于张应力区,则体积膨胀会引起自发炸裂。
由硫化镍粒子造成的钢化玻璃自爆其爆裂点裂纹形状往往与蝴蝶相似,被称为蝴蝶形裂纹,有些在爆裂点中部有一个有色颗粒,被认为是硫化镍粒子,这两个特性往往被用来作为钢化玻璃是否是自爆的判据。
硫化镍粒子在钢化玻璃自爆前后的体积是不同的,爆裂前体积小,不易被看见;自爆后其体积增大,地点确定,很容易被看见,这也是钢化玻璃自爆不易预见的原因之一。
3.玻璃表面和边部在加工、运输、贮存和施工过程,可能造成有划痕、炸口和爆边等缺陷,易造成应力集中而导致钢化玻璃自爆。
玻璃表面本来就存在大量的微裂纹,这也是玻璃力学行为服从断裂力学的根本原因。
这些微裂纹在一定的条件下会扩展,如水蒸气的作用、荷载的作用等,都可能加速微裂纹的扩展。
通常情况下微裂纹的扩展速度是极其缓慢的,表现为玻璃的强度是一恒定值。
但是玻璃表面的微裂纹有一临界值,当微裂纹尺寸接近或达到临界值时,裂纹快速扩张,导致玻璃破裂。
如果玻璃表面存在接近临界尺寸的微裂纹,如玻璃表面和边部在加工、运输、贮存和施工过程造成的划痕、炸口、爆边等缺陷尺寸就较大,玻璃可能在极小的荷载作用下就导致玻璃表面微裂纹快速扩张,最终导致玻璃破裂。
玻璃自爆原因及表面现象
玻璃自爆原因及表面现象集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-钢化玻璃在无直接机械外力作用下发生的自动性炸裂叫做钢化玻璃的自爆。
自爆是钢化玻璃固有的特性之一。
产生自爆的原因很多,简单地归纳以下几种:①玻璃质量缺陷的影响A.玻璃中有结石、杂质:玻璃中有杂质是钢化玻璃的薄弱点,也是应力集中处。
特别是结石若处在钢化玻璃的张应力区是导致炸裂的重要因素。
结石存在于玻璃中,与玻璃体有着不同的膨胀系数。
玻璃钢化后结石周围裂纹区域的应力集中成倍地增加。
当结石膨胀系数小于玻璃,结石周围的切向应力处于受拉状态。
伴随结石而存在的裂纹扩展极易发生。
B.玻璃中含有硫化镍结晶物硫化镍夹杂物一般以结晶的小球体存在,直径在0.1—2㎜。
外表呈金属状,这些杂夹物是NI3S2,NI7S6和NI—XS,其中X=0—0.07。
只有N I1—X S相是造成钢化玻璃自发炸碎的主要原因。
已知理论上的NIS在379。
C时有一相变过程,从高温状态的a—NIS 六方晶系转变为低温状态B—NI三方晶系过程中,伴随出现2.38%的体积膨胀。
这一结构在室温时保存下来。
如果以后玻璃受热就可能迅速出现a—B态转变。
如果这些杂物在钢化玻璃受张应力的内部,则体积膨胀会引起自发炸裂。
如果室温时存在a—NIS,经过数年、数月也会慢慢转变到B态,在这一相变过程中体积缓慢增大未必造成内部破裂。
C.玻璃表面因加工过程或操作不当造成有划痕、炸口、深爆边等缺陷,易造成应力集中或导致钢化玻璃自爆。
②钢化玻璃中应力分布不均匀、偏移玻璃在加热或冷却时沿玻璃厚度方向产生的温度梯度不均匀、不对称。
使钢化制品有自爆的趋向,有的在激冷时就产生“风爆”。
如果张应力区偏移到制品的某一边或者偏移到表面则钢化玻璃形成自爆。
③钢化程度的影响,实验证明,当钢化程度提高到1级/㎝时自爆数达20—25%。
由此可见应力越大钢化程度越高,自爆量也越大。
钢化玻璃自爆原因及预防措施
钢化玻璃自爆原因及预防措施摘要:钢化玻璃在无荷载、无直接外力作用下发生的自发性炸裂称为自爆,这是钢化玻璃固有的特性之一。
通过对玻璃自爆残片的电镜观察和成分分析,发现引起钢化玻璃自爆的来源主要是硫化镍微粒,采用有限元对自爆源微粒引起自爆的力学机理进行了分析。
结果表明玻璃中的裂纹萌发和扩展主要是由于在异质颗粒附近处的径向残余拉应力所导致的。
在相变膨胀过程所产生的应力。
玻璃凭借其特有的采光、通透性能及自重轻、标准化和工业化程度高等特点,同时有一定的刚度和承载力,逐渐取代其他材料被广泛应用到建筑、家具、交通工具等多个领域。
可以说在日常生活中,玻璃无处不在,正因如此,玻璃爆裂的危害也时刻潜藏在我们身边,蓦然发生让人防不胜防,近些年幕墙、家具、淋浴房、汽车等玻璃爆裂伤人的事件频频见报,更是加深了人们对“玻璃会自爆”的印象与担忧。
关键词:钢化玻璃;自爆原因;预防措施1自爆的介绍“自爆”是指钢化玻璃存在非玻璃体杂质而造成应力集中,当应力超过玻璃的承受极限时玻璃就会破裂。
自爆特征独特而明显:⑴以起爆点为中心,碎片裂纹呈放射状态,起爆点由两块较大的碎片颗粒组成,形似蝴蝶的翅膀,俗称“蝴蝶斑”,如图所示;⑵蝴蝶斑的表面平整,横断处无凹坑和粉末碎屑;⑶横断截面中间位置可以看到一个点状小颗粒,通常称之为自爆源,颜色可能是黑色、褐色、白色或半透明状。
2自爆机理大量研究表面,玻璃原片中的硫化镍结石、异质相颗粒是钢化玻璃的自爆源,其自爆机理也因自爆源的不同而分为两大类,简单介绍如下:2.1硫化镍相变引发自爆自爆源以硫化镍为代表。
硫化镍是一种晶体,存在高温相和低温相,相变问题为379℃。
玻璃在钢化炉内加热时,因为加热温度达到610~630℃,高于硫化镍相变温度,硫化镍全部转化为高温相。
在随后的快速淬冷过程中,高温相来不及转变为低温相,从而冻结在钢化玻璃中。
在室温环境下,高温相有逐渐转变为低温相的趋势。
这种转变伴随着2%~4%的体积膨胀,使玻璃承受巨大的相变张应力,当相变张应力与钢化玻璃本身的内部张应力之和超出玻璃自身能够承受的范围时,就会发生自爆。
厨具用钢化玻璃自爆原因及解决方法
厨具用钢化玻璃自爆原因及解决方法钢化玻璃自爆一直困扰着钢化玻璃生产厂家及选用钢化玻璃的厨具(灶具、吸油烟机等)生产厂家。
据不完全统计,目前我国大部分钢化玻璃生产厂家生产的钢化玻璃自爆率为0.3%~0.5%,个别厂家生产的钢化玻璃自爆率还要高。
1钢化玻璃特性及生产工艺①特性钢化玻璃具有抗弯强度高、抗冲击强度高、热稳定性好以及光洁、透明等特点。
钢化玻璃的抗弯强度是普通玻璃的3~5倍,抗冲击强度是普通玻璃的5~10倍。
钢化玻璃在遇超强冲击破坏时,碎片成分散细小颗粒状,无尖锐棱角,因此又称安全玻璃。
钢化玻璃耐骤冷骤热性能比普通玻璃高2~3倍,一般可承受l50℃以上的温差变化,有优异的防热炸裂性能。
②生产工艺钢化玻璃采用普通平板玻璃或浮法玻璃(称为玻璃原片)加工处理而成,普通平板玻璃要求选用特选品或一等品,浮法玻璃要求选用优等品或一级品。
目前,生产钢化玻璃的工艺有物理钢化法、化学钢化法。
物理钢化法是将玻璃在钢化炉内加热到低于软化温度,然后迅速送入冷却装置,用一定压力的常温气流进行淬冷。
玻璃外层首先收缩硬化,由于玻璃的热导率小,此时玻璃内部仍处于高温状态,待玻璃内部开始硬化时,已经硬化的外层将阻止内层的收缩,从而使得先硬化的外层产生压应力,后硬化的内层产生张应力。
正是由于玻璃表面的这种压应力的存在,当外力作用于该表面时,必须先抵消这部分压应力,这就大大提高了玻璃的机械强度。
常见的建筑幕墙玻璃及厨具上的钢化玻璃一般采用物理钢化法生产。
化学钢化法是将普通平板玻璃或浮法玻璃通过离子交换方法,将玻璃表面成分改变,使玻璃表面形成一层压应力层。
2钢化玻璃自曝原因及解决方法钢化玻璃自爆主要由自身应力导致,采用物理钢化工艺生产的钢化玻璃表层存在压应力,内层存在张应力,使玻璃得以强化,任何打破应力平衡的因素均将导致钢化玻璃发生自爆。
导致钢化玻璃自爆的主要原因有:玻璃原片因素、加工因素、钢化玻璃面板结构设计不合理。
2.1玻璃原片因素由玻璃原片因素引起的钢化玻璃自爆可分为两种:一种是由玻璃原片中可见缺陷引起的自爆,例如砂粒等夹杂物、气泡、缺口、崩边、暗裂等;另一种是由玻璃原片中硫化镍(NiS)杂质膨胀引起的自爆。
钢化玻璃自爆原因分析及预防处理措施
钢化玻璃自爆原因分析及预防处理措施发布时间:2021-08-02T03:29:40.758Z 来源:《电力设备》2021年第4期作者:周伊[导读] 往往没有任何预兆,截至目前,钢化玻璃自爆问题依旧是行业内无法有效解决的问题。
(索奥斯(广东)玻璃技术股份有限公司)摘要:随着建筑行业的不断发展,人们对建筑物的质量提出了更高的要求,钢化玻璃在建筑物中的使用是十分广泛的。
但是,需要注意的是,钢化玻璃往往会因为各种各样的原因出现自爆的情况,本文主要阐述了钢化玻璃自爆的原因,进一步提出钢化玻璃破裂的预防措施,以期为我国的建筑安全作出一定的贡献。
关键词钢化玻璃;自爆原因;预防措施;处理前言钢化玻璃是一种比普通玻璃更加安全的玻璃,为了提升钢化玻璃的强度,一般是使用物理或者是化学的方法,增强玻璃表面的压应力,这样可以保证钢化玻璃的抗风性能、冲击性能。
对于钢化玻璃来说,自爆是非常严重的事故,往往没有任何预兆,截至目前,钢化玻璃自爆问题依旧是行业内无法有效解决的问题。
一、钢化玻璃自爆原因分析最近这些年来,钢化玻璃自爆一直都是非常严重的事故,严重困扰着钢化玻璃的使用用户。
美国的研究人员曾经对10栋建筑的钢化玻璃进行了长达10年的跟踪研究,在这10栋建筑中总共有12000块钢化玻璃,一共发生了342块自爆,钢化玻璃的自爆率在2.8%,这就从侧面说明钢化玻璃的自爆还是有一定概率的,这就需要结合实际情况采用合理的措施避免钢化玻璃自爆的发生,下文将对钢化玻璃的自爆原因进行详细分析[1]。
(一)钢化玻璃中含有硫化镍杂质引起的自爆在钢化玻璃中,含有这样一种化学物质,那就是硫化镍,这一物质是不能完全将其从钢化玻璃中剔除出去的,硫化镍具备热胀冷缩的特点,在发生相变时,会使得钢化玻璃内部出现膨胀,造成玻璃内部出现更大的张应力,一旦张应力超过了极限,就会导致钢化玻璃出现自爆现象。
在钢化玻璃原片生产的过程中硫化镍会混入其中,这也是生产钢化玻璃中不可避免的。
建筑用钢化玻璃爆裂原因分析研究
建筑用钢化玻璃爆裂原因分析研究0引言随着社会不断发展、人们生活水平的提高,对居住及公共建筑的要求越来越高,建筑用钢化玻璃作为一种安全玻璃被广泛应用。
通常所说的钢化玻璃是一种预应力玻璃,经过热处理工艺后,在玻璃表面形成压应力,机械强度和耐热冲击强度得到提高,破坏时具有特殊碎片状态。
我国钢化玻璃质量安全事故频发且呈逐年增长的趋势,事故暴露出钢化玻璃生产标准、产品质量、流通销售、安装应用、安全管理等方面存在突出问题。
通常钢化玻璃爆裂都认为是钢化玻璃自爆。
其实并不是所有的爆裂都为自爆,爆裂分为自爆、外力破坏两种。
如何识别爆裂种类和预防爆裂,对建筑用钢化玻璃爆裂问题进行系统全面的分析研究是非常重要和必要的。
1建筑用钢化玻璃爆裂原因分析(1)建筑用钢化玻璃爆裂内因分析①硫化镍(NiS)等杂质引起自爆。
普通平板玻璃生产过程中,玻璃原材料、辅料及燃料带入镍和硫等杂质(图1)。
图1钢化玻璃硫化镍杂质经过1400~1600 ℃高温熔化,反应生成硫化镍存在于玻璃液中,经过退火窑冷却,在冷却过程中,硫化镍经过α相(六方晶体)到β相(三方晶系)的相变,高温时(约800 ℃)是α相、低温时是β相。
而钢化玻璃钢化的过程是将普通平板玻璃加热到650 ℃,这时硫化镍处于α相,玻璃开始软化,然后玻璃进入风栅快速冷却,由于钢化冷却时间很短,硫化镍α相来不及转变成β相,以α相存在钢化玻璃中。
在使用过程中,随着温度的变化,硫化镍α相缓慢地向β相转变,体积不断膨胀,硫化镍周围的玻璃出现微裂纹,导致硫化镍周围的张应力变大,大于钢化玻璃表面的压应力,平衡被破坏,钢化玻璃自爆。
②表面应力过大引起自爆。
表面应力与硫化镍杂质尺寸对钢化玻璃自爆有很大的影响。
表面应力越大,引起自爆的硫化镍杂质的临界直径越小,很小的硫化镍杂质就可能引起钢化玻璃自爆。
③玻璃边部加工质量低下引起的自爆。
玻璃边部加工时,可能造成有爆边、划伤、裂纹和缺角等缺陷,易造成应力集中而导致钢化玻璃自爆。
钢化玻璃自爆原因分析及检测方法研究
钢化玻璃自爆原因分析及检测方法研究摘要:钢化玻璃在人们的日常生活中随处可见,无论是建筑玻璃还是汽车玻璃都会由于化学性质不稳定而导致自爆的问题发生,而后果也会威胁居民的生命安全和财产安全,因此如何减少钢化玻璃自爆事件的发生就显得尤为重要。
基于此,本文着重分析了钢化玻璃的自爆原因,并提出相应的检测方法,以便更好地控制此类事件的发生。
关键词:钢化玻璃;自爆;检测方法一、钢化玻璃自爆原因分析(一)钢化玻璃自爆类型1.玻璃中含有硫化镍结晶物:通常以结晶形式出现的含硫镍夹杂,且常伴随着一定的容积膨胀。
当这种杂质发生在钢化玻璃的张应力区域时,或由于负载而导致其在张应力区时,发生体的膨胀将导致自然爆震。
由于硫化镍微粒所致的钢化玻璃爆炸,其爆裂处的裂缝常常与蝴蝶一样,也就是所谓的蝶形裂缝,而在爆炸中心处,则会出现一种彩色的微粒,这种微粒被视为一种具有一定的腐蚀性的物质。
在爆炸之前,由于爆炸的缘故,硫化镍颗粒的大小并不相同,爆炸之前很难被发现,爆炸之后,它的大小会变得更大,而且位置也更固定,所以很难被发现。
2.在加工、运输、贮存、施工时,玻璃的表层和边缘容易出现划痕、炸口、裂口等问题,容易引起应力的聚集,从而引起钢化玻璃的自爆。
由于玻璃钢本身具有较多的微观裂缝,因此,其力学性能符合破裂机理。
在某些情况下,这种微观裂缝的扩张速度会加快,比如蒸汽作用、荷载作用等。
一般来讲,微观裂缝的扩张速率非常慢,以一个固定的数值表示。
然而,在玻璃的微观裂纹中存在着一个门槛,在微观裂缝大小接近或到达一定程度后,会迅速膨胀,最终造成玻璃破碎。
当玻璃的表面出现细小的裂缝时,例如在加工、运输、贮存和施工中产生的划痕、炸口、爆边等,在很少的载荷下,玻璃的表层会出现细小的裂缝,从而使其开裂。
3.在使用钢化玻璃时,由于受温度和温度影响,由于玻璃在温度和温度上的不均匀性以及沿着厚度的不均匀性,会使其在薄板上产生不均匀的应力和沿着薄壁的不均匀性,从而使其发生爆炸。
建筑玻璃爆裂原因浅析
建筑玻璃爆裂原因浅析一、建筑钢化玻璃简介随着现代科学技术和玻璃技术的发展及人民生活水平的提高,建筑玻璃的功能不再仅仅是满足采光要求,而是要具有能调节光线、保温隔热、安全、艺术装饰等特性。
这其中,尤其是钢化玻璃在建筑幕墙中应用的最为普遍。
钢化玻璃属于安全玻璃,是一种预应力玻璃,为提高玻璃的强度,通常使用化学或物理的方法,在玻璃表面形成压应力,玻璃承受外力时首先抵消表层应力,从而提高了承载能力,增强玻璃自身抗风压性,寒暑性,冲击性等。
(一)钢化玻璃的优点强度较之普通玻璃提高数倍,抗弯,同等厚度的钢化玻璃抗冲击强度是普通玻璃的3~5倍,抗弯强度是普通玻璃的3~5倍。
钢化玻璃具有良好的热稳定性,能承受的温差是普通玻璃的3倍,可承受300℃的温差变化。
(二)钢化玻璃的缺点钢化玻璃强度虽然比普通玻璃强,但是钢化玻璃有自爆(自己破裂)的可能性,而普通玻璃不存在自爆的可能性。
钢化玻璃的表面会存在凹凸不平现象,有轻微的厚度变薄。
变薄的原因是因为玻璃在热熔软化后,在经过强风力使其快速冷却,使其玻璃内部晶体间隙变小,压力变大,所以玻璃在钢化后要比在钢化前要薄。
通过物理钢化后的建筑用的平板玻璃,一般都会有变形,变形程度由设备与技术人员工艺决定。
二、建筑用钢化玻璃爆裂的原因分析(一)玻璃内部具有杂质玻璃是脆性材料,其力学行为服从断裂力学。
玻璃中的结石、气泡和杂质在玻璃中将会形成裂纹,是钢化玻璃的薄弱点,特别是裂纹尖端是应力集中处。
如果结石、气泡或杂质处在钢化玻璃的张应力区,或在荷载作用下使其处于张应力,特别是结石若处在钢化玻璃的张应力区是导致炸裂的重要因素。
结石存在于玻璃中,与玻璃体有着不同的膨胀系数。
玻璃钢化后结石周围裂纹区域的应力集中成倍地增加。
当结石膨胀系数小于玻璃,结石周围的切向应力处于受拉状态。
伴随结石而存在的裂纹扩展极易发生。
(二)玻璃中含有硫化镍结晶物硫化镍夹杂物一般以结晶体存在,室温下存在着相向相转变的倾向,并伴有一定量的体积膨胀。
钢化玻璃碎裂规律
钢化玻璃碎裂规律
一、钢化玻璃的制作过程
钢化玻璃是一种强化玻璃,其主要原料为普通玻璃,经过高温加热和急速冷却处理而成。
在加热过程中,普通玻璃会受到较高的温度和压力,其分子结构得到改变,使得钢化玻璃具有了更高的强度和抗冲击性能。
二、钢化玻璃碎裂的过程
尽管钢化玻璃具有较高的强度,但受到外力撞击时,仍然会发生碎裂。
钢化玻璃的碎裂过程可以分为如下阶段:
1. 外力作用阶段
当外力作用在钢化玻璃上时,其表面开始出现微裂纹,但并不会影响整个玻璃的强度。
2. 锤击开始阶段
当外力不断增加时,微裂纹逐渐扩大,最终出现初步的断裂点。
此时,碎裂的位置可能只是在钢化玻璃的表层,玻璃的整体强度尚未降低。
3. 碎裂扩散阶段
当外力继续作用时,断裂点开始向四周扩散,形成较大的碎片。
同时,钢化玻璃的强度也随着碎裂的扩散而逐渐降低。
4. 彻底破裂阶段
当外力达到一定程度后,钢化玻璃将会彻底破裂,分裂成许多碎片。
此时,碎片已经不再具有强度和安全性能。
钢化玻璃自爆分析
钢化玻璃自爆分析及其建议目前公司施工已经完工的项目普遍发应存在玻璃自爆现象,给我司的施工和后期维修造成了一定的损失,对以后的安全造成了一定的隐患,针对此问题也多次与相关玻璃厂家协调解决此问题.但是从目前情况来看,难以从根本上彻底解决以上问题,针对玻璃自爆问题搜集相关资料,只能尽可能的降低玻璃自爆率.自爆及其分类钢化玻璃自爆可以表述为钢化玻璃在无外部直接作用的情况下而自动发生破碎的现象。
在钢化加工、贮存、运输、安装、使用等过程中均可发生钢化玻璃自爆。
自爆按起因不同可分为两种:一是由玻璃中可见缺陷引起的自爆,例如结石、砂粒、气泡、夹杂物、缺口、划伤、爆边等;二是由玻璃中硫化镍(NiS)杂质膨胀引起的自爆。
这是两种不同类型的自爆,应明确分类,区别对待,采用不同方法来应对和处理。
前者一般目视可见,检测相对容易,故生产中可控。
后者则主要由玻璃中微小的硫化镍颗粒体积膨胀引发,无法目测检验,故不可控。
在实际运作和处理上,前者一般可以在安装前剔除,后者因无法检验而继续存在,成为使用中的钢化玻璃自爆的主要因素。
硫化镍类自爆后更换难度大,处理费用高,同时会伴随较大的质量投诉及经济损失,造成业主的不满甚至更为严重的其他后果。
所以,硫化镍引发的自爆是主要问题所在。
钢化玻璃自爆机理钢化玻璃内部的硫化镍膨胀是导致钢化玻璃自爆的主要原因。
玻璃经钢化处理后,表面层形成压应力。
内部板芯层呈张应力,压应力和张应力共同构成一个平衡体。
玻璃本身是一种脆性材料,耐压但不耐拉,所以玻璃的大部分破碎是张应力引发的。
钢化玻璃中硫化镍晶体发生相变时,其体积膨胀,处于玻璃板芯张应力层的硫化镍膨胀使钢化玻璃内部产生更大的张应力,当张应力超过玻璃自身所能承受的极限时,就会导致钢化玻璃自爆。
国外研究证明:玻璃主料石英砂或砂岩带入镍,燃料及辅料带入硫,在1400℃~1500℃高温熔窑燃烧熔化形成硫化镍。
当温度超过1000℃时,硫化镍以液滴形式随机分布于熔融玻璃液中。
钢化玻璃自爆缺陷
钢化玻璃自爆的原因
钢化玻璃为何会爆裂
专家表示,钢化玻璃在没有外力作用下也会自爆,国家允许的自爆率在2‰到3‰。自爆是钢化玻璃固有的特性之一,产生自爆的原因很多,简单地归纳为以下两种:
(一)玻璃存在质量缺陷。
1、玻璃中有结石、杂质:玻璃中有杂质是钢化玻璃的薄弱点,也是应力集中处。特别是结石若处在钢化玻璃的张应力区是导致炸裂的重要因素。
当玻璃钢化加热时,玻璃内部板芯温度约620℃,所有的硫化镍都处于高温态的α-NiS相。随后,玻璃进入风栅急冷,玻璃中的硫化镍在379℃发生相变。与浮法退火窑不同的是,钢化急冷时间很短,来不及转变成低温态β-NiS而以高温态硫化镍α相被“冻结”在玻璃中。快速急冷使玻璃得以钢化,形成外压内张的应力统一平衡体。在已经钢化了的玻璃中硫化镍相变低速持续地进行着,体积不断膨胀扩张,对其周围玻璃的作用力随之增大。钢化玻璃板芯本身就是张应力层,位于张应力层内的硫化镍发生相变时体积膨胀也形成张应力,这两种张应力叠加在一起,足以引发钢化玻璃的破裂即自爆。
2、玻璃中含有硫化镍结晶物。硫化镍夹杂物一般以结晶的小球体存在,外表呈金属状,如果这些杂物在钢化玻璃受张应力的内部,则体积膨胀可能会引起自爆。
3、玻璃表面因加工过程或操作不当造成有划痕、炸口、深爆边等缺陷,易造成应力集中或导致钢化玻璃自爆。
(二)钢化玻璃中应力分布不均匀、偏移。玻璃在加热或冷却时沿玻璃厚度方向产生的温度梯度不均匀、不对称,使钢化玻璃制品有自爆的趋向,有的在激冷时就产生“风爆”。如果张应力区偏移到制品的某一边或者偏移到表面则钢化玻璃形成自爆。
关于钢化玻璃自爆的现状说明
关于钢化玻璃自爆的现状说明根据我司的统计数据,以及国际惯例。
钢化玻璃的自暴一般为3~5%,经均质(热浸)处理后,自爆一般为1~3%。
要完全避免自爆时不可能的。
钢化玻璃自爆时不可避免的,所以其在安装使用时产生的问题应是用户在产品选型过程中就考虑到的,绝非生产厂家的责任。
行业内的自爆补片原则为3%以内收费补片,3%以外免费补片,应该遵循着这一原则。
现对钢化玻璃自爆原因做如下分析:一、钢化玻璃自爆现象玻璃经加热并急速冷却后即形成钢化玻璃,钢化玻璃表面呈现向内的压应力,其内部呈现向外的张应力,通俗的说:其外表面就象往内收紧的弹簧,中间层则象往外膨胀的弹簧。
钢化玻璃就是由压应力和张应力构成的力学平衡体。
一旦因某种原因导致平衡破坏,使内部的张应力大于表面的压应力时,钢化玻璃就会解体——即发生“自爆”。
自爆会在钢化玻璃加工、搬运、包装、保存以及用户使用的任何过程中发生,而且无法预知。
二、导致钢化玻璃自爆的原因导致钢化玻璃自爆的原因是多方面的,主要归结为以下两大类:1、施工安装的原因(两片爆点在玻璃与驳接件连接处的自爆玻璃应该属于这一原因):安装时支撑玻璃的垫块上不允许由任何坚硬物,即使是一颗小沙粒都会造成钢化玻璃在安装时或以后某一时间爆裂;搬运、安装不当造成玻璃边部爆边或蹦口,会使应力在该处集中而导致钢化玻璃在安装时或以后某一时间“自爆”;此外,安装不当造成的扭曲会使玻璃受力不均,从而导致钢化玻璃在安装时或以后某一时间“自爆”。
2、玻璃本身的原因:在制造玻璃的过程中形成了杂志硫化镍,玻璃钢化后,硫化镍晶体大都以α型晶体(体立方结构)存在于玻璃中,随着时间的推移,硫化镍α型晶体会转变成β型(面立方结构),转变过程中硫化镍晶体体积会发生膨胀,这种膨胀对普通玻璃无任何影响,但它足以破坏钢化玻璃内部的应力平衡,导致钢化玻璃自爆,一般来说在玻璃安装完成以后一年到两年左右的时间里发生的几率相对较大,以后随着时间的推移,自爆发生的几率逐渐减小。