《高等数学一》第二章极限与连续历年试题模拟试题课后习题(汇总)(含答案解析)
考研数学一(函数、极限、连续)模拟试卷10(题后含答案及解析)
考研数学一(函数、极限、连续)模拟试卷10(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.以下3个命题,①若数列{un}收敛于A,则其任意子数列{uni}必定收敛于A;②若单调数列{xn}的某一子数列{xni}收敛于A,则该数列必定收敛于A;③若数列{x2n}与{x2n+1}都收敛于A,则数列{xn}必定收敛于A.正确的个数为( )A.0B.1C.2D.3正确答案:D解析:对于命题①,由数列收敛的定义可知,若数列{un}收敛于A,则对任意给定的ε>0,存在自然数N,当n>N时,恒有|un一A|<ε.可知当ni >N时,恒有|uni一A|<ε.因此数列{uni}也收敛于A,可知命题正确.对于命题②,不妨设数列{xn}为单调增加的,即x1≤x2≤…≤xn≤…,其中某一给定子数列{xni}收敛于A,则对任意给定的ε>0,存在自然数N,当ni>N时,恒有|xni—A|<ε.由于数列{xn}为单调增加的数列,对于任意的n>N,必定存在ni≤n≤ni+1,有一ε,由极限的定义可知,对于任意给定的ε>0,必定存在自然数N1,N2:当2n>N1时,恒有|x2n一A|<ε;当2n+1>N2时,恒有|x2n+1一A|<ε.取N=max{N1,N2},则当n>N时,总有|xn一A|<ε.因此.可知命题正确.故答案选择D.知识模块:函数、极限、连续2.设f(x)是偶函数,φ(x)是奇函数,则下列函数(假设都有意义)中,是奇函数的是( )A.f(φ(x))B.f(f(x))C.φ(f(x))D.φ(φ(x))正确答案:D解析:令g(x)=φ(φ(x)),注意φ(x)是奇函数,有g(一x)=φ(φ(一x))=φ(一φ(x))=一φ(φ(x))=一g(x).知识模块:函数、极限、连续3.设f(x)=sin(cosx),φ(x)=cos(sinx),则在区间内( )A.f(x)是增函数,φ(x)是减函数B.f(x),φ(x)都是减函数C.f(x)是减函数,φ(x)是增函数D.f(x),φ(x)都是增函数正确答案:B解析:注意在内,sinx是增函数,cosx是减函数.任取x1,x2∈,且x1sin(cosx2),即f(x)是减函数;由于sinx1cos(sinx2),即φ(x)是减函数.知识模块:函数、极限、连续4.设则当n>1时,fn(x)= ( )A.B.C.D.正确答案:C解析:知识模块:函数、极限、连续5.设则f(一x)等于( )A.B.C.D.正确答案:D解析:知识模块:函数、极限、连续6.设f(x)=u(x)+v(x),g(x)=u(x)一v(x),并设都不存在,下列论断正确的是( )A.若不存在,则必存在B.若不存在,则必不存在C.若存在,则*]必不存在D.若存在,则必存在正确答案:C解析:令,当x→0时可排除A;令当x→0时可排除B;令当x→0时可排除D.知识模块:函数、极限、连续7.两个无穷小比较的结果是( )A.同阶B.高阶C.低阶D.不确定正确答案:D解析:如当x→0时,都是无穷小.但不存在,故α(x)和β(x)无法比较阶的高低.知识模块:函数、极限、连续8.函数f(x)=xsinx ( )A.在(一∞,+∞)内无界B.在(一∞,+∞)内有界C.当x→∞时为无穷大D.当x→∞时极限存在正确答案:A解析:对于任意给定的正数M,总存在着点故f(x)在(一∞,+∞)内无界.C 错,对于任意给定的正数M,无论x取多么大的正数,总有xn=|2nπ|>x(只要),使f(xn)=xnsinxn=0的充要条件是( )A.α>1B.α≠1C.α>0D.与α无关正确答案:B解析:令知识模块:函数、极限、连续10.设当x→x0时,f(x)不是无穷大,则下述结论正确的是( )A.设当x+x0时,g(x)是无穷小,则f(x)g(x)必是无穷小B.设当x→x0时,g(c)不是无穷小,则f(x)g(x)必不是无穷小C.设在x=x0的某邻域g(x)无界,则当x→x0时,f(x)g(x)必是无穷大D.设在x=x0的某邻域g(x)有界,则当x→x0时,f(x)g(x)必不是无穷大正确答案:D解析:设当x→0时为无界变量,不是无穷大,令g(x)=x,当x→0时为无穷小,可排除A.设x→0时,令f(x)=x2,可排除B,C.知识模块:函数、极限、连续填空题11.设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又x(1)=a,a为常数,n为整数,则f(n)=__________.正确答案:m解析:令x=一1,则f(1)=f(-1)+f(2),因f(x)是奇函数,得到f(2)=f(1)一f(-1)=2f(1)一2a.再令x=1,则f(3)=f(1)+f(2)=3f(1)=3a,现用数学归纳法证明f(n)=na.当n=1,2,3时,已知或者已证.假设n≤k时,有f(k)=ka.当n=k+1时,f(k+1)=f(k 一1)+f(2)=(k一1)a+2a=(k+1)a,故对一切正整数n,有f(n)=na,令x=0,则f(2)=f(0)+f(2),即f(0)=0=0.a,又f(x)是奇函数,故对一切负整数n有f(n)=一f(-n)=一(一m)=na.所以对一切整数n,均有f(n)=na.知识模块:函数、极限、连续12.对充分大的一切x,以下5个函数:100x,log10x100,e10x,,最大的是__________.正确答案:解析:当x充分大时,有重要关系:eαx》xβ》lnγx,其中α,β,γ>0,故本题填.知识模块:函数、极限、连续13.正确答案:0解析:知识模块:函数、极限、连续14.极限正确答案:2解析:知识模块:函数、极限、连续15.设则α,β的值为_________.正确答案:解析:知识模块:函数、极限、连续解答题解答应写出文字说明、证明过程或演算步骤。
《高等数学一》第二章 极限与连续 历年试题模拟试题课后习题(汇总)(含答案解析)
第二章极限与连续[单选题]1、若x0时,函数f(x)为x2的高阶无穷小量,则=()A、0B、C、1D、∞【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】本题考察高阶无穷小.根据高阶无穷小的定义,有.[单选题]2、与都存在是函数在点处有极限的().A、必要条件B、充分条件C、充要条件D、无关条件【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】时,极限存在的充分必要条件为左、右极限都存在并且相等,所以若函数在点处有极限,则必有与都存在.但二者都存在,不一定相等,所以不一定有极限.[单选题]3、().A、B、1C、D、0【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】[单选题]4、如果则().A、0B、1C、2【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】根据重要极限,[单选题]5、().A、0B、∞C、2D、-2【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】分子分母同除以,即[单选题]().A、0B、∞C、2D、-2【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】[单选题]7、设,则(). A、B、2C、D、0【从题库收藏夹删除】【正确答案】B【您的答案】您未答题【答案解析】[单选题]8、当时,与等价的无穷小量是(). A、C、D、【从题库收藏夹删除】【正确答案】B【您的答案】您未答题【答案解析】由于故与等价,推广,当时,[单选题]9、时,与等价的无穷小量是(). A、B、C、D、【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】由于,故与等价,推广,当时,[单选题]函数的间断点是().A、x=6、x=-1B、x=0、x=6C、x=0、x=6、x=-1D、x=-1、x=0【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】由于,所以的间断点是x=0,x=6,x=-1. [单选题]11、设,则是的().A、可去间断点B、跳跃间断点C、无穷间断点D、连续点【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】,即的左右极限存在且相等,但极限值不等于函数值,故为可去型间断点.[单选题]12、计算().A、B、C、D、【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】[单选题]13、计算().B、C、D、1【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】[单选题]14、().A、1B、﹣1C、2D、﹣2【从题库收藏夹删除】【正确答案】B【您的答案】您未答题析】[单选题]15、下列各式中正确的是().A、B、C、D、【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】A,当时,极限为,错误;B,,错误;C,,错误,D正确. [单选题]16、函数的间断点个数为().A、0B、1C、2D、3【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】在x=0和x=1处,无定义,故间断点为2个.[单选题]17、下列变量在的变化过程中为无穷小量的是()A、B、C、D、arctanx【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】,.[单选题]18、()A、0B、1C、不存在,但不是∞D、∞【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】[单选题]19、函数,则x=0是f(x)的( )A、可去间断点B、跳跃间断点C、无穷间断点D、连续点【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】故为可去间断点.[单选题]20、().A、-1B、2C、1D、0【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】为有界函数,故原式=. [单选题]21、().A、B、C、D、【从题库收藏夹删除】【正确答案】B【您的答案】您未答题【答案解析】[单选题]22、下列极限存在的是().A、B、C、D、【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】当x趋近于0时,为有界函数,故极限存在. [单选题]23、下列变量在的变化过程中为无穷小量的是().A、B、C、D、【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】,,,不存在,[单选题]极限=( )A、0B、2/3C、3/2D、9/2【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】[单选题]25、函数f(x)=的所有间断点是( )A、x=0B、x=1C、x=0,x=-1D、x=0,x=1【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】x=1时,分母为0,无意义。
考研数学一(函数、极限、连续)模拟试卷8(题后含答案及解析)
考研数学一(函数、极限、连续)模拟试卷8(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设η1,η2,η3均为线性方程组AX=B的解向量,若ξ1=2η1-aη2+3b η3,ξ2=2aη1-bη2+η3,ξ3=3bη1-3aη2+4η3也是AX=B的解,则a,b 应满足( ).A.a=0,b=-1.B.a=1,b=0.C.a=0,b=1.D.a=1,b=1.正确答案:B 涉及知识点:函数、极限、连续2.设A是n(n≥3)阶矩阵,满足A3=0,则下列方程组中有惟一零解的是( ).A.(A2+A+E)X=0.B.(A2-A)X=0.C.(A2+A)X=0.D.A2X=0.正确答案:A 涉及知识点:函数、极限、连续3.设A,B为满足AB=0.的任意两个非零矩阵,则( ).A.A的列向量组线性相关,B的行向量组线性相关.B.A的行向量组线性相关,B的行向量组线性相关.C.A的列向量组线性相关,B的列向量组线性相关.D.A的行向量组线性相关,B的列向量组线性相关.正确答案:A 涉及知识点:函数、极限、连续4.设A是n阶矩阵,α是非齐次线性方程组AX=B的解,β1,β2,…,βr,是齐次线性方程组AX=0的一个基础解系,则( ).A.r(A)<r.B.r(α,β1,β2,…,βr)=r.C.r(α,β1,β2,…,βr)=r+1.D.r(A)≥r.正确答案:C 涉及知识点:函数、极限、连续5.若矩阵A3×3的特征值为1,2,3,则下列矩阵中必定可逆的是( ).A.E3+A.B.2E3-A.C.A-2E3.D.E3-A.正确答案:A 涉及知识点:函数、极限、连续6.设随机变量X服从正态分布N(μ1,δ12),随机变量Y服从正态分布N(μ2,δ22),且P{|X-μ1|P{|Y-μ2|<1},则必有( ).A.μ1>μ2 .B.δ1<δ2.C.μ1<μ2 .D.δ1>δ2 .正确答案:B 涉及知识点:函数、极限、连续7.若矩阵A与B相似,则( ).A.对任意常数λ,λE-A与λE-B相似.B.A与B有相同的逆矩阵.C.A与B有相同的特征值和特征向量.D.A与B都相似于同一个对角矩阵.正确答案:A 涉及知识点:函数、极限、连续填空题8.设随机变量X服从参数为1的泊松分布,则P{X=EX2}=________.正确答案:(1/2)e-1解析:由于X服从参数为1的泊松分布,故EX=1,DX=1,而EX2=DX+(EX)2=2,P{X=2}=(1/2!)e-1=(1/2)e-1,故答案为专(1/2)e-1. 知识模块:函数、极限、连续9.若n阶矩阵A满足r(A+E)+r(A-E)=n,且A≠E,则A必有一个特征值________.正确答案:-1 涉及知识点:函数、极限、连续10.设随机变量X服从均匀分布U[0,1],求方程t2+t+X=0有实根的概率为________.正确答案:1/4 涉及知识点:函数、极限、连续11.据统计在一年内健康人的死亡率为2‰,保险公司开展生命保险业务,参加者每年支付1 200元保险费,若一年中死亡,保险公司赔偿A元(A>1 200),要使保险公司获益,赔偿额A∈________.正确答案:(1 200,600 000) 涉及知识点:函数、极限、连续12.设3阶矩阵A满足|A-E|=|A+2E|=|2A+3E|=0,则|2A*-3E|=________.正确答案:126. 涉及知识点:函数、极限、连续13.设n阶实对称矩阵A的属于特征值λ的特征向量为α,P为n阶可逆矩阵,则矩阵(P-1AP)T的属于特征值λ的特征向量为________.正确答案:PTα. 涉及知识点:函数、极限、连续解答题解答应写出文字说明、证明过程或演算步骤。
极限与连续复习题答案
极限与连续复习题答案1. 极限的定义是什么?答:极限是数学分析中的一个基本概念,它描述了一个函数在某一点附近的行为。
如果函数f(x)在点x=a的极限存在,那么当x趋近于a 时,f(x)的值会无限接近某个确定的数值L。
用数学符号表示为:lim(x→a) f(x) = L。
2. 连续函数的定义是什么?答:连续函数是指在定义域内,函数值与自变量之间没有跳跃的函数。
如果函数f(x)在点x=a处连续,那么当x趋近于a时,f(x)的极限值等于函数在该点的函数值,即lim(x→a) f(x) = f(a)。
3. 极限存在的必要条件是什么?答:极限存在的必要条件是函数在该点的左极限和右极限都存在且相等。
即lim(x→a-) f(x) = lim(x→a+) f(x)。
4. 连续函数与极限的关系是什么?答:连续函数与极限的关系是,如果函数在某点连续,那么该点的函数极限值等于函数值。
反之,如果函数在某点的极限存在且等于函数值,那么该函数在该点连续。
5. 极限的运算法则有哪些?答:极限的运算法则包括:- 和差法则:lim(x→a) [f(x) ± g(x)] = lim(x→a) f(x) ±li m(x→a) g(x);- 乘法法则:lim(x→a) [f(x) * g(x)] = lim(x→a) f(x) *lim(x→a) g(x);- 商法则:如果lim(x→a) g(x) ≠ 0,则lim(x→a) [f(x) / g(x)]= lim(x→a) f(x) / lim(x→a) g(x);- 幂法则:lim(x→a) [f(x)]^n = [lim(x→a) f(x)]^n;- 指数法则:lim(x→a) e^[f(x)] = e^lim(x→a) f(x);- 对数法则:如果f(x) > 0,则lim(x→a) log[f(x)] = loglim(x→a) f(x)。
6. 无穷小量和无穷大量在极限中的作用是什么?答:无穷小量是指当x趋近于某个值时,函数值趋近于0的量。
考研数学一(函数、极限与连续)历年真题试卷汇编1(题后含答案及解析)
考研数学一(函数、极限与连续)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(2003年)设{an},{bn},{cn}均为非负数列,且则必有( )A.an<bn对任意n成立B.bn<cn对任意n成立C.极限不存在D.极限不存在正确答案:D解析:由于则由极限的保号性可知,存在N>0,使得当n>N时,an<bn,但不是对任意的n都成立。
例如bn=1,n=1,2时不满足an<bn,所以选项A错误。
类似地,选项B也是错误的。
例如bn=1,n=1,2时不满足bn<cn。
由于因此是0·∞型的未定式,有可能收敛也有可能发散,所以选项C是错误的。
例如极限证明发散,可采用反证法。
假设是收敛的,由于可知也是收敛的,与已知条件矛盾,假设不成立,也即是发散的。
由此唯一正确的选项是D。
知识模块:函数、极限与连续2.(2007年)设函数f(x)在(0,+∞)上具有二阶导数,且f”(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是( )A.若u1>u2,则(un}必收敛B.若u1>u2,则{un}必发散C.若u1<u2,则{un}必收敛D.若u1<u2,则{un}必发散正确答案:D解析:方法一:设f(x)=x2,则f(x)在(0,+∞)上具有二阶导数,且f”(x)>0,u1<u2,但{un}={n2}发散,排除C;设则f(x)在(0,+∞)上具有二阶导数,且f”(x)>0,u1>u2,但收敛.排除B;设f(x)=一lnx,则f(x)在(0,+∞)上具有二阶导数,且f”(x)>0,u1>u2,但{un}={一lnn}发散,排除A。
故应选D。
方法二:由拉格朗日中值定理,有un+1一un=f(n+1)一f(n)=f′(ξn)(n+1—n)=f′(ξn),其中n<ξn<n+1(n=1,2,…)。
由f”(x)>0知,f′(x)单调增加,故f′(ξ1)<f′(ξ2)<…<f′(ξn)<…,所以于是当u2一u1>0时,有故选D。
高等数学作业集第2章极限与连续及答案
x+ x �
(4) 1 + x − 1 − x � x , 1 阶,等价 x = x1/8 ,1/8 阶,
12.求下列极限 (1) lim
x →+∞
x sin x 2x + 3
x sin x 2x + 3 1 sin x lim = � 0 (无穷小与有界量的乘积) x →+∞ x (2 + 3 / x)
(1/ 2) n 4 4n +1 + 2n 4 + (1/ 2) n 4 + nlim →+∞ 解: = lim lim = = n →+∞ 3 ⋅ 4 n − 3n n →+∞ 3 − (3 / 4) n 3 − lim(3 / 4) n 3
n →∞
(3) lim ( n + 1 − n − n )
2 1/2
− 1 (3) cos( x 2 ) − 1 ,(4) tan( x3 )
x�
3 3 (4) tan( x ) � x [3 阶]; (3) x [1/2 阶]; (2) (1 + x 2 )1/2 − 1 � x 2 / 2 [2 阶];
cos( x 2 ) − 1 � − x 4 / 2 [4 阶]
2 3 − x x2 2 3 − =1 + 0 − 0 =1 x x2
(5) lim
4 x3 + 3x 2 x →∞ 5 x 4 + 2 x
4 x3 + 3x 2 1 4 + 3(1/ x) 1 4 + 3(1/ x) 4 解: lim =lim =lim �lim =0 × =0 x →∞ 5 x 4 + 2 x x →∞ x 5 + 2(1/ x 3 ) x →∞ x x →∞ 5 + 2(1/ x 3 ) 5
高等数学习题详解-第2章 极限与连续(精品范文).doc
【最新整理,下载后即可编辑】习题2-11. 观察下列数列的变化趋势,写出其极限: (1) 1n n x n =+ ; (2)2(1)n n x =--;(3)13(1)nn x n=+-; (4)211n x n=-. 解:(1) 此数列为12341234,,,,,,23451n n x x x x x n =====+ 所以lim 1n n x →∞=。
(2) 12343,1,3,1,,2(1),n n x x x x x =====-- 所以原数列极限不存在。
(3)1234111131,3,3,3,,3(1),234n n x x x x x n=-=+=-=+=+-所以lim 3n n x →∞=。
(4)12342111111,1,1,1,,1,4916n x x x x x n =-=-=-=-=- 所以lim 1n n x →∞=-2.下列说法是否正确:(1)收敛数列一定有界 ; (2)有界数列一定收敛; (3)无界数列一定发散;(4)极限大于0的数列的通项也一定大于0. 解:(1) 正确。
(2) 错误 例如数列{}(-1)n 有界,但它不收敛。
(3) 正确。
(4) 错误 例如数列21(1)nn x n ⎧⎫=+-⎨⎬⎩⎭极限为1,极限大于零,但是11x =-小于零。
*3.用数列极限的精确定义证明下列极限:(1) 1(1)lim1n n n n-→∞+-=;(2) 222lim 11n n n n →∞-=++; (3)323125lim -=-+∞→n n n证:(1) 对于任给的正数ε,要使1(1)111n n n x n n ε-+--=-=<,只要1n ε>即可,所以可取正整数1N ε≥.因此,0ε∀>,1N ε⎡⎤∃=⎢⎥⎣⎦,当n N >时,总有1(1)1n n n ε-+--<,所以1(1)lim 1n n n n-→∞+-=. (2) 对于任给的正数ε,当3n >时,要使222222332211111n n n n n x n n n n n n n n nε---+-=-==<<<+++++++,只要2n ε>即可,所以可取正整数2max ,3N ε⎧⎫=⎨⎬⎩⎭.因此,0ε∀>,2max ,3N ε⎧⎫∃=⎨⎬⎩⎭,当n N >时,总有22211n n n ε--<++,所以222lim 11n n n n →∞-=++. (3)对于任给的正数ε,要使25221762()()131333(31)313n n x n n n n ε+--=--=<=<----,只要123n ε->即可,所以可取正整数213N ε≥+.因此,0ε∀>,213N ε⎡⎤∃=+⎢⎥⎣⎦,当n N >时,总有522()133n n ε+--<-,所以323125lim-=-+∞→n n n . 习题2-21. 利用函数图像,观察变化趋势,写出下列极限: (1)21lim x x →∞ ; (2) -lim x x e →∞; (3) +lim x x e -→∞; (4) +lim cot x arc x →∞; (5) lim2x →∞;(6) 2-2lim(1)x x →+; (7) 1lim(ln 1)x x →+; (8) lim(cos 1)x x π→- 解:(1)21lim 0x x →∞= ;(2) -lim0x x e →∞=;(3) +lim 0x x e -→∞=; (4) +lim cot 0x arc x →∞=; (5) lim 22x →∞= ;(6) 2-2lim(1)5x x →+=; (7) 1lim(ln 1)1x x →+=; (8) lim(cos 1)2x x π→-=- 2. 函数()f x 在点x 0处有定义,是当0x x →时()f x 有极限的( D )(A ) 必要条件 (B ) 充分条件 (C ) 充要条件 (D ) 无关条件解:由函数极限的定义可知,研究()f x 当0x x →的极限时,我们关心的是x 无限趋近x 0时()f x 的变化趋势,而不关心()f x 在0x x =处有无定义,大小如何。
(完整版)高等数学函数的极限与连续习题精选及答案
1、函数()12++=x x x f 与函数()113--=x x x g 相同.错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。
∴()12++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与()x g 是不同的函数。
2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。
3、如果数列有界,则极限存在.错误 如:数列()nn x 1-=是有界数列,但极限不存在4、a a n n =∞→lim ,a a n n =∞→lim .错误 如:数列()nn a 1-=,1)1(lim =-∞→nn ,但n n )1(lim -∞→不存在。
5、如果()A x f x =∞→lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。
6、如果α~β,则()α=β-αo .正确 ∵1lim=αβ,是 ∴01lim lim =⎪⎭⎫⎝⎛-=-αβαβα,即βα-是α的高阶无穷小量。
7、当0→x 时,x cos 1-与2x 是同阶无穷小.正确 ∵2122sin 412lim 2sin 2lim cos 1lim2022020=⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅==-→→→x x x x x x x x x 8、 01sin lim lim 1sin lim 000=⋅=→→→xx x x x x x .错误 ∵xx 1sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。
9、 e x xx =⎪⎭⎫⎝⎛+→11lim 0.错误 ∵e x xx =⎪⎭⎫⎝⎛+∞→11lim10、点0=x 是函数xxy =的无穷间断点.错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim1lim 00=+→xx x ∴点0=x 是函数xxy =的第一类间断点.11、函数()x f x1=必在闭区间[]b a ,内取得最大值、最小值.错误 ∵根据连续函数在闭区间上的性质,()x f x1=在0=x 处不连续 ∴函数()x f x1=在闭区间[]b a ,内不一定取得最大值、最小值 二、填空题:1、设()x f y =的定义域是()1,0,则 (1)()xef 的定义域是( (,0)-∞ );(2)()x f 2sin 1-的定义域是( ,()2x x k x k k Z πππ⎧⎫≠≠+∈⎨⎬⎩⎭);(3)()x f lg 的定义域是( (1,10) ). 答案:(1)∵10<<xe (2)∵1sin 102<-<x (3)∵1lg 0<<x2、函数()⎪⎩⎪⎨⎧≤<-=<<-+=403000222x x x x x x f 的定义域是( (]4,2- ).3、设()2sin x x f =,()12+=ϕx x ,则()[]=ϕx f ( ()221sin +x ).4、nxn n sinlim ∞→=( x ).∵x x n x n x n n x n x n n n n =⋅==∞→∞→∞→sinlim 1sin limsin lim 5、设()11cos 11211xx x f x x x x π-<-⎧⎪⎪=-≤≤⎨⎪->⎪⎩,则()10lim x f x →--=( 2 ),()=+→x f x 01lim ( 0 ). ∵()1010lim lim (1)2x x f x x →--→--=-=,()()01lim lim 0101=-=+→+→x x f x x6、设()⎪⎩⎪⎨⎧=≠-=00cos 12x ax x x x f ,如果()x f 在0=x 处连续,则=a ( 21 ).∵21cos 1lim 20=-→x x x ,如果()x f 在0=x 处连续,则()a f xx x ===-→021cos 1lim 20 7、设0x 是初等函数()x f 定义区间内的点,则()=→x f x x 0lim ( ()0x f ).∵初等函数()x f 在定义区间内连续,∴()=→x f x x 0lim ()0x f8、函数()211-=x y 当x →( 1 )时为无穷大,当x →( ∞ )时为无穷小.∵()∞=-→2111limx x ,()011lim2=-∞→x x9、若()01lim2=--+-+∞→b ax x x x ,则=a ( 1 ),=b ( 21-). ∵()()b ax x x b ax x x x +++-+-+-=+∞→11lim 222()()()b ax x x b x ab x a x +++--++--=+∞→11211lim 2222欲使上式成立,令012=-a ,∴1a =±,上式化简为()()()2211212112lim lim lim1x x x bab ab x b ab a →+∞→+∞→+∞--++-++--+==+∴1a =,021=+ab ,12b =-10、函数()x x f 111+=的间断点是( 1,0-==x x ). 11、()34222+--+=x x x x x f 的连续区间是( ()()()+∞∞-,3,3,1,1, ).12、若2sin 2lim =+∞→xxax x ,则=a ( 2 ). ()200lim sin 2lim sin 2lim =+=+=⎪⎭⎫ ⎝⎛+=+∞→∞→∞→a a x x a x x ax x x x ∴2=a 13、=∞→x x x sin lim( 0 ),=∞→xx x 1sin lim ( 1 ), ()=-→xx x 11lim ( 1-e ),=⎪⎭⎫ ⎝⎛+∞→kxx x 11lim ( ke ). ∵0sin 1lim sin lim=⋅=∞→∞→x x xx x x 111sin lim1sin lim ==∞→∞→xx x x x x()[]1)1(110)(1lim 1lim --⋅-→→=-+=-e x x xx x x k kx x kxx e x x =⎥⎦⎤⎢⎣⎡+=⎪⎭⎫ ⎝⎛+∞→∞→)11(lim 11lim14、limsin(arctan )x x →∞=( 不存在 ),lim sin(arccot )x x →+∞=( 0 )三、选择填空:1、如果a x n n =∞→lim ,则数列n x 是( b )a.单调递增数列 b .有界数列 c .发散数列2、函数()()1log 2++=x x x f a 是( a )a .奇函数b .偶函数c .非奇非偶函数 ∵()()11log 1)(log 22++=+-+-=-x x x x x f aa()()x f x x a -=++-=1log 23、当0→x 时,1-xe 是x 的( c )a .高阶无穷小b .低阶无穷小c .等价无穷小4、如果函数()x f 在0x 点的某个邻域内恒有()M x f ≤(M 是正数),则函数()x f 在该邻域内( c )a .极限存在b .连续c .有界5、函数()x f x-=11在( c )条件下趋于∞+. a .1→x b .01+→x c .01-→x6、设函数()x f xxsin =,则()=→x f x 0lim ( c )a .1b .-1c .不存在 ∵1sin lim sin limsin lim000000-=-=-=-→-→-→xx x x x xx x x1sin lim sin lim 0000==-→+→xx x x x x 根据极限存在定理知:()x f x 0lim →不存在。
专升本高等数学一(函数、极限与连续)模拟试卷1(题后含答案及解析)
专升本高等数学一(函数、极限与连续)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.函数y=的定义域是( )A.[一2,3]B.[一3,3]C.(一2,一1)∪(一1,3]D.(一3,3)正确答案:C解析:因为对于函数y应满足这三个不等式解的交集为一2<x<-1与一1<x≤3.所以函数的定义域为(-2,-1)∪(-1,3].知识模块:函数、极限与连续2.下列函数中是奇函数的为( )A.y=cos3xB.y=x2+sinxC.y=ln(x2+x4)D.y=正确答案:D解析:A、C为偶函数,B为非奇非偶函数,D中y(一x)==一y(x),为奇函数,故选D.知识模块:函数、极限与连续3.函数f(x)=|xsinx|ecosx,在(一∞,+∞)上是( )A.有界函数B.偶函数C.单调函数D.周期函数正确答案:B解析:定义域(一∞,+∞)关于原点对称,且f(一x)=|(一x)sin(一x)|ecos(-x)=|xsinx|ecosx=f(x),故函数f(x)在(一∞,+∞)上为偶函数.知识模块:函数、极限与连续4.极限等于( )A.2B.1C.D.0正确答案:D解析:因x→∞时,→0,而sin2x是有界函数;所以由无穷小的性质知,=0.知识模块:函数、极限与连续5.设=3,则a= ( )A.B.C.2D.不确定正确答案:A解析:.知识模块:函数、极限与连续6.= ( )A.0B.1C.∞D.不存在但不是∞正确答案:D解析:不存在,故选D.知识模块:函数、极限与连续7.若=5,则( )A.a=一9,b=14B.a=1,b=一6C.a=一2,b=0D.a=一2,b=一5正确答案:B解析:若(x2+ax+b)=0,因此4+2a+b=0,2a+b=一4,即b=一4-2a,故所以a=1,而b=一6.知识模块:函数、极限与连续8.设函数f(x)=则f(x)在( )A.x=0,x=1处都间断B.x=0,x=1处都连续C.x=0处间断,x=1处连续D.x=0处连续,x=1处间断正确答案:C解析:因为在x=0处,,因此f(x)在x=0处间断.在x=1处,=f(1),因此,在x=1处连续,故选C.知识模块:函数、极限与连续9.函数f(x)=的间断点为( )A.x=一1B.x=0C.x=1D.不能确定正确答案:B解析:x=0处为分段点,≠f(0),所以f(x)的间断点为x=0,故选B.知识模块:函数、极限与连续填空题10.设函数f(x)的定义域为[0,1],g(x)=lnx一1,则复合函数f[g(x)]的定义域是_________.正确答案:[e,e2]解析:由函数f(x)的定义域为[0,1]知在f[g(x)]中g(x)∈[0,1],即0≤lnx 一1≤11≤lnx≤2e≤x≤e2.知识模块:函数、极限与连续11.设f(x)=则f{f[f(一3)]}=_________.正确答案:4解析:f(一3)=0,f[f(一3)]=f(0)=2,f{f[f(一3)]}=f(2)=x2|x=2=4.知识模块:函数、极限与连续12.若x→0时,(1一ax2)一1与xsinx是等价无穷小,则a=________.正确答案:一4解析:=1,故a=一4.知识模块:函数、极限与连续13.极限=________.正确答案:e-2解析:=e-2.知识模块:函数、极限与连续14.极限=________.正确答案:e-1解析:=e-1.知识模块:函数、极限与连续15.设f(x)=若f(x)在x=1处连续,则a=_______.正确答案:2kπ+,k=0,±1,±2,…解析:由=1.且f(1)=1,所以f(x)在x=1连续,应有1=sina,所以a=2kπ+,k=0,±1,±2,….知识模块:函数、极限与连续16.设f(x)=,则补充定义f(0)=________时,函数f(x)就在点x=0处连续.正确答案:1解析:若f(x)在x=0处连续,则f(0)==1.知识模块:函数、极限与连续解答题17.设f(x)=+|x-5|,求.正确答案:.涉及知识点:函数、极限与连续18.求极限.正确答案:.涉及知识点:函数、极限与连续19.计算.正确答案:=一1.涉及知识点:函数、极限与连续20.求极限.正确答案:.涉及知识点:函数、极限与连续21.求极限.正确答案:=2.涉及知识点:函数、极限与连续22.求极限.正确答案:.涉及知识点:函数、极限与连续23.求极限(sinx)x.正确答案:此极限为0°型,所以涉及知识点:函数、极限与连续24.设f(x)=,当a,b取何值时,f(x)在(一∞,+∞)上连续.正确答案:f(x)=因为f(x)在(一∞,+∞)上连续,所以f(x)在x=1及x=一1处连续,综上所述,解得a=0,b=1.涉及知识点:函数、极限与连续25.问a、b为何值时,函数f(x)=在点x=2和x=4处均连续.正确答案:由题意知涉及知识点:函数、极限与连续。
第二章 极限与连续 习题及答案
第二章 极限与连续一、填空 1、⎪⎭⎫⎝⎛+→x x x x x sin 11sinlim 0= 。
2、)arcsin(lim 2x x x x -++∞→= 。
3、nn n n 1sin)1()12(531lim3+-+++∞→ = 。
4、[]xx x 20)1ln(1lim ++→= 。
5、设()x f x 1lim →存在,且()()x f x x x f x 12lim 2→+=,则()x f x 1lim →= 。
6、设xx x k x 2)(lim -∞←-=xx x 2sin lim ∞→ ,则k= .7、设3)1sin(lim 221=-++→x bax x x ,则a = ,b = .8、当0→x 时,x x sin 1tan 1--+∽kx 41,则k = 。
9、如果函数()⎪⎩⎪⎨⎧=<<+-=010)11(1x ax xx x f x在其定义域上连续,则a = 。
10、函数23122+--=x x x y 的间断点为 ,其中可去间断点为 ,补充定义 使其连续。
二、选择1、下列命题正确的是( )A 、无限多个无穷小之和仍是无穷小。
B 、两个无穷大的和仍是无穷大C 、无穷大与有界变量(但不是无穷小)的乘积一定是无穷大。
D 、两个无穷大的积仍是无穷大。
2、已知xe xf 1)(=,则x =0是函数的( )A 、无穷型间断点B 、跳跃间断点C 、可去间断点D 、其它类型间断点3、x x ln arctan sin lim 0+→=( ) A 、1 B 、-1 C 、0 D 、不存在4、对于函数21x y -= )1,1(-∈x ,下列结论中不正确的是( ) A 、是连续函数 B 、是有界函数C 、是有最大值和最小值D 、有最大值无最小值5、设)(x f 在(-+∞∞,)内有定义,且⎪⎩⎪⎨⎧=≠==∞→00)1()(,)(lim x x x f x g a x f x则( )A 、0=x 必是)(x g 的第一类间断点B 、0=x 必是)(x g 的第二类间断点C 、0=x 必是)(x g 的连续点D 、)(x g 在点0=x 处的连续性与a 的取值有关6、函数)(x f 在0x x =点有定义是它在该点有极限的( ) A 、充分条件 B 、必要条件 C 、充要条件 D 、无关条件7、函数()()1121)(3++--=x x x x x f 在( )过程中为无穷大量A 、1→xB 、2→xC 、1-→xD 、∞→x8、若21)(lim0=→x ax f x ,则=→x bx f x )(lim 0( )A 、a b 2B 、ab21 C 、2ab D 、b a 29、若)0(0+x f 与)0(0-x f 均存在,则( ) A 、)(lim 0x f x x →存在且等于)(0x fB 、)(lim 0x f x x →存在但不一定等于)(0x fC 、)(lim 0x f x x →不一定存在D 、)(lim 0x f x x →必不存在10、函数)1ln()(x x f +=在下列( )区间上有界 A 、(-1,0) B 、),0(+∞ C 、]0,1(- D 、(2,3) 三、计算1、nnnnnnn 1)54321(lim ++++∞→2、xx x x sin 1sinlim20→3、422lim 22----+→x x x x4、xxx x sin 3sin 5arcsin lim0-→5、设xxx f )31()2(-=-,)(lim x f x ∞→6、讨论函数()⎪⎪⎪⎩⎪⎪⎪⎨⎧=>+<≤---+=00021ln 10111)(222x x x x x x x x x f 在分断点的连续性7、xx e e xx x sin lim sin 0--→8、[]{}n n n n ln )2ln(lim -+∞→四、证明题1、试证明曲线12--=x xe y x 在0=x 与1=x 至少与x 轴有一个交点2、设函数)(x f 在区间[]b a ,上连续,且b b f a a f ><)(,)(,证明:存在),(b a ∈ξ使得ξξ=)(f应用实例银行复利的计算一个人为了积累养老金,他每个月按时到银行存100元,银行的年利率为4%,且可以任意分段按复利计算,试问此人在5年后共积累了多少养老金?如果存款和复利按日计算,则他又有多少养老金?如果复利和存款连续计算呢?解 按月存款和计算时,每月的利息为30011004121=⨯,记k x 为第k 月末时的养老金数,则由题意得1001=x ⎪⎭⎫ ⎝⎛++=300111001002x233001110030011100100⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=x13001110030011100100-⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++=n n x5年末养老金为⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-⨯=1)30011(30000300111300111100606060x (元) 当复利和存款按日计算时,记k y 为第k 天的养老金数,则每天的存款额为3651200=a ,每天的利率为365004=r 。
考研数学一(函数、极限、连续)模拟试卷9(题后含答案及解析)
考研数学一(函数、极限、连续)模拟试卷9(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设F1(x)与F2(x)分别为任意两个随机变量的分布函数,令F(x)=aF1(x)+bF2(x),则下列各组数中能使F(x)为某随机变量的分布函数的有( ).A.a=3/5,b=2/5B.a=1/2,b=3/2C.a=2/3,b=2/3D.a=3/2,b=1/2正确答案:A 涉及知识点:函数、极限、连续2.设A为m×n矩阵,则有( ).A.若A有n阶子式不为零,则方程组AX=0仅有零解B.若A有n阶子式不为零,则方程组AX=B有惟一解C.当m<n时,方程组AX=0有非零解,且基础解系含有n-m个线性无关的解向量D.当m<n时,方程组AX=B有无穷多解正确答案:A 涉及知识点:函数、极限、连续3.设A是m×n矩阵,B是n×m矩阵,则齐次线性方程组ABX=0( ).A.当m>n时必有非零解B.当n>m时仅有零解C.当n>m时必有非零解D.当m>n时仅有零解正确答案:A 涉及知识点:函数、极限、连续4.设λ1,λ2是矩阵A的两个特征值,对应的特征向量分别为α1,α2,则( ).A.当λ1≠λ2时,α1与α2不成比例B.当λ1=λ2时,α1与α2成比例C.当λ1=λ2时,α1与α2不成比例D.当λ1≠λ2时,α1与α2成比例正确答案:A 涉及知识点:函数、极限、连续5.设函数f(x)在(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是A.若{xn}收敛,则{fxn}收敛.B.若{xn}单调,则{fxn}收敛.C.若{fxn}收敛,则{xn}收敛.D.若{fxn}单调,则{xn}收敛.正确答案:B 涉及知识点:函数、极限、连续6.二次型f(x1,x2,x3)=2x12+x22-4x32-4x1x2-2x2x3的标准形是( ).A.2y12-y22-3y32B.-2y12-y22-3y32C.2y12+y22D.2y12+y22+3y32正确答案:A 涉及知识点:函数、极限、连续7.设向量组α1,α2,α3线性无关,则下列向量组线性相关的是( ).A.α1+α2,α2+α3,α3+α1B.α1,α1+α2,α1+α2+α3C.α1-α2,α2-α3,α3-α1D.α1+α2,2α2+α3,3α3+α1正确答案:C 涉及知识点:函数、极限、连续8.某人向同一目标独立重复射击,每次射击命中目标的概率为p(0<p<1),则此人第4次射击恰好第2次命中目标的概率为( ).A.3p(1-p)B.6p(1-p)2C.3p2(1-p)2D.6p2(1-p)2正确答案:C解析:第4次射击恰好第2次命中目标意味着第4次一定命中目标且前三次中恰好有一次命中目标,故该事件的概率为C32(1-p)2×p=3p2(1-p)2,显然只有(C)是正确的.知识模块:函数、极限、连续填空题9.当x→0+时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则a=_______,b=________.正确答案:1,-1/6. 涉及知识点:函数、极限、连续10.二次型f(x1,x2,x3)=(x1+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定的充分必要条件为________.正确答案:a≠1 涉及知识点:函数、极限、连续11.已知向量组α1=(1,2,3,4),α2=(2,3,4,5),α3=(3,4,5,6),α4=(4,5,6,t),且r(α1,α2,α3,α4)=2,则t=________.正确答案:7 涉及知识点:函数、极限、连续12.若n个人站成一行,其中有A、B两人,问夹在A、B之间恰有r个人的概率是多少?如果n个人围成一个圆圈,求从A到B的顺时针方向,A、B 之间恰有r个人的概率.正确答案:n个人随意排序共有n!种排法,即样本空间的样本点总数为n!,A、B两人中间恰有r个人,这两人中间相隔r个位置,组成一组共有(n-r-1)种排法,A、B两人的位置有2!种排法;其他的人在剩下的n-2个人随意排序,有(n-2)!种排法;于是“夹在A、B之间恰有r个人”的排法有(n-r-1).2!.(n-2)!,故P(夹在A、B之间恰有r个人)=(n-r-1).2!(n-2)!/n!=2(n-r-1)/n(n-1);如果围成一个圆圈,则n个人的相对位置有(n-1)!种排法,从A到B的顺时针方向有r个人的排法有(n-2)!,故P(A、B顺时针排,中间有r个人)=(n-2)!/(n-1)!=1/(n-1).涉及知识点:函数、极限、连续解答题解答应写出文字说明、证明过程或演算步骤。
(完整版)《高等数学一》极限与连续历年试题模拟试题课后习题(汇总)(含答案解析)
s in th ei r be i n g ar eg oo d f o r 第二章 极限与连续[单选题]1、若x 0时,函数f (x )为x 2的高阶无穷小量,则=( )A 、0B 、C 、1D 、∞【从题库收藏夹删除】【正确答案】 A【您的答案】 您未答题【答案解析】本题考察高阶无穷小.根据高阶无穷小的定义,有.[单选题]2、与都存在是函数在点处有极限的( ).A 、必要条件B 、充分条件C 、充要条件D 、无关条件【从题库收藏夹删除】【正确答案】 A【您的答案】 您未答题【答案解析】时,极限存在的充分必要条件为左、右极限都存在并且相等,所以若函数在点处有极限,则必有与都存在.但二者都存在,不一定相等,所以不一定有极限.[单选题]3、( ).i n g s i n t h e i r b e i n g a r e g o o d f o r s A 、B 、1C 、D 、0【从题库收藏夹删除】【正确答案】 A【您的答案】 您未答题【答案解析】[单选题]4、如果则( ).A 、0B 、1C 、2D 、5【从题库收藏夹删除】【正确答案】 D【您的答案】 您未答题【答案解析】根据重要极限,[单选题]5、e a n d A l l t h i n g s i n t h e i r b e i n g a r e g o o df or s ( ).A 、0B 、∞C 、2D 、-2【从题库收藏夹删除】【正确答案】 C【您的答案】 您未答题【答案解析】分子分母同除以,即[单选题]6、( ).A 、0 B 、∞ C 、2 D 、-2【从题库收藏夹删除】【正确答案】 C【您的答案】 您未答题【答案解析】[单选题]7、设,则( ).Allthingsintheirbeingaregoodfors A、B、2C、D、0【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]8、当时,与等价的无穷小量是().A、B、C、D、【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】由于故与等价,推广,当时,[单选题]9、时,与等价的无穷小量是().A、B、Al l th i n gs in t h e i r b e i n g a r e g o o d f o r s oC 、D 、【从题库收藏夹删除】【正确答案】 A【您的答案】 您未答题【答案解析】由于,故与等价,推广,当时,[单选题]10、函数的间断点是( ).A 、x=6、x=-1B 、x=0、x=6C 、x=0、x=6、x=-1D 、x=-1、x=0【从题库收藏夹删除】【正确答案】 C【您的答案】 您未答题【答案解析】由于,所以的间断点是x=0,x=6,x=-1.[单选题]11、设,则是的( ).thingsintheirbeingaregoodforso.A、可去间断点B、跳跃间断点C、无穷间断点D、连续点【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】,即的左右极限存在且相等,但极限值不等于函数值,故为可去型间断点.[单选题]12、计算().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】[单选题]a n d A l l t h i n g s i n t h ei r b e i n g a r e g o o d f o r s o .13、计算( ).A 、B 、C 、D 、1【从题库收藏夹删除】【正确答案】 A【您的答案】 您未答题【答案解析】[单选题]14、( ).A 、1B 、﹣1C 、2D 、﹣2【从题库收藏夹删除】【正确答案】 B【您的答案】 您未答题【答案解析】[单选题]15、下列各式中正确的是( ).a n d Al l t h i n gs i n th e i r b e i n g a r e g o o d f o r s o .A 、B 、C 、D 、【从题库收藏夹删除】【正确答案】 D【您的答案】 您未答题【答案解析】A ,当时,极限为,错误;B ,,错误;C ,,错误,D 正确.[单选题]16、函数的间断点个数为( ).A 、0B 、1C 、2D 、3【从题库收藏夹删除】【正确答案】 Cl l t i it i r b e i n g a r e g o o d f o r s o .【您的答案】 您未答题【答案解析】在x =0和x =1处,无定义,故间断点为2个.[单选题]17、下列变量在的变化过程中为无穷小量的是( )A 、B 、C 、D 、arctan x【从题库收藏夹删除】【正确答案】 C【您的答案】 您未答题【答案解析】,.[单选题]18、( )A 、0B 、1C 、不存在,但不是∞D 、∞【从题库收藏夹删除】【正确答案】 C【您的答案】 您未答题【答案解析】[单选题]19、函数,则x=0是f(x)的( )n d Al l t h i n gs i n th e i r b e i n g a r e g o o d f o r s o .A 、可去间断点B 、跳跃间断点C 、无穷间断点D 、连续点【从题库收藏夹删除】【正确答案】 A【您的答案】 您未答题【答案解析】故为可去间断点.[单选题]20、( ).A 、-1B 、2C 、1D 、0【从题库收藏夹删除】【正确答案】 D【您的答案】 您未答题【答案解析】为有界函数,故原式=.[单选题]21、( ).A 、B 、C 、D 、dA l l t h i n g s in t h e i r be i ng a r e g o o df o r s o .【从题库收藏夹删除】【正确答案】 B【您的答案】 您未答题【答案解析】[单选题]22、下列极限存在的是( ).A 、B 、C 、D 、【从题库收藏夹删除】【正确答案】 D【您的答案】 您未答题【答案解析】当x 趋近于0时,为有界函数,故极限存在.[单选题]23、下列变量在的变化过程中为无穷小量的是( ).A 、B 、C 、D 、【从题库收藏夹删除】【正确答案】 Ce a n dAl l th i n g s i n t h e i r b e i n g a r e g o o d f o r s o .【您的答案】 您未答题【答案解析】,,,不存在,[单选题]24、极限=( )A 、0B 、2/3C 、3/2D 、9/2【从题库收藏夹删除】【正确答案】 C【您的答案】 您未答题【答案解析】[单选题]25、函数f(x)=的所有间断点是( )A 、x=0B 、x=1C 、x=0,x=-1D 、x=0,x=1【从题库收藏夹删除】【正确答案】 D【您的答案】 您未答题【答案解析】 x=1时,分母为0,无意义。
考研数学一(函数、极限、连续)模拟试卷16(题后含答案及解析)
考研数学一(函数、极限、连续)模拟试卷16(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.函数f(x)=xsinx ( )A.在(-∞,+∞)内无界B.在(-∞,+∞)内有界C.当x→∞时为无穷大D.当x→∞时极限存在正确答案:A解析:对于任意给定的正数M,总存在点,使|f(xn)|=|2nπ+|>M,故f(x)在(-∞,+∞)内无界.(C)错,对于任意给定的正数M,无论x取多么大的正数,总有xn=|2nπ|>x(只要|n|>),使f(xn)=xnsinxn=0<M,故当x→∞时f(x)不是无穷大.千万不要将无穷大与无界混为一谈.知识模块:函数、极限、连续2.极限的充要条件是( )A.a>1B.a≠1C.a>0D.与a无关正确答案:B解析:令知识模块:函数、极限、连续3.设当x→x0时,f(x)不是无穷大,则下述结论正确的是( )A.设当x→x0时,g(x)是无穷小,则f(x)g(x)必是无穷小B.设当x→x0时,g(x)不是无穷小,则f(x)g(x)必不是无穷小C.设在x=x0的某邻域g(x)无界,则当x→x0时,f(x)g(x)必是无穷大D.设在x=x0的某邻域g(x)有界,则当x→x0时,f(x)g(x)必不是无穷大正确答案:D解析:设f(x)=,当x→0时为无界变量,不是无穷大.令g(x)=x,当x→0时为无穷小,可排除(A).设x→0时,令f(x)=x2,g(x)=可排除(B),(C).知识模块:函数、极限、连续4.设函数f(x)在点x0的某邻域内有定义,且f(x)在点x0处间断,则在点x0处必定间断的函数为( )A.f(x)sinxB.f(x)+sinxC.f2(x)D.|f(x)|正确答案:B解析:方法一若f(x)+sinx在点x0处连续,则f(x)=[f(x)+sinx]-sinx在点x0处也连续,与已知矛盾.方法二排除法.设f(x)=则f(x)在点x=0处间断,f(x)sinx≡0在x=0处连续.若设f(x)=f(x)在点x=0处间断,但f2(x)=1,|f(x)|=1在x=0处都连续.故可排除(A),(C),(D).知识模块:函数、极限、连续5.设当x→x0时,α(x),β(x)(β(x)≠0)都是无穷小,则当x→x0时,下列表达式中不一定为无穷小的是( )A.B.C.D.正确答案:A解析:有限个无穷小的和、差、积、绝对值还是无穷小量.知识模块:函数、极限、连续6.设当x→0时,etanx-ex与xn是同阶无穷小,则n为( )A.1B.2C.3D.4正确答案:C解析:知识模块:函数、极限、连续7.若f(x)=在(-∞,+∞)上连续,且,则( )A.λ<0,k<0B.λ<0,k>0C.λ≥0,k<0D.λ≤0,k>0正确答案:D解析:分母不为零,故λ≤0;又f(x)=0,故k>0.知识模块:函数、极限、连续8.设f(x)=,则( )A.x=0,x=1都是f(x)的第一类间断点B.x=0,x=1都是f(x)的第二类间断点C.x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点D.x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点正确答案:D解析:由f(x)的表达式可知x=0,x=1为其间断点.故x=1是第一类间断点,x=0是第二类间断点,选(D).知识模块:函数、极限、连续9.设f(x)=,则f(x)有( )A.1个可去间断点,1个跳跃间断点B.1个跳跃间断点,1个无穷间断点C.2个可去间断点D.2个无穷间断点正确答案:A解析:x=0和x=1为f(x)的间断点,其余点连续.因x→1时,Inx=ln(1+x-1)~x-1,则x=1为跳跃间断点.答案选择(A).知识模块:函数、极限、连续10.若f(x)在(a,b)内单调有界,则f(x)在(a,b)内间断点的类型只能是( )A.第一类间断点B.第二类间断点C.既有第一类间断点也有第二类间断点D.结论不确定正确答案:A解析:不妨设f(x)单调增加,且|f(x)|≤M,对任一点x0∈(a,b),当x→x0-时,f(x)随着x增加而增加且有上界,故存在;当x→x0+时,f(x)随着x减小而减小且有下界,故存在,故x0只能是第一类间断点.知识模块:函数、极限、连续填空题11.若当x→0时,有,则a=______正确答案:-3解析:当x→0时,知识模块:函数、极限、连续12.当x→0时,若有则A=_______,k=________正确答案:解析:知识模块:函数、极限、连续13.当x→π时,若有,则A=______,k=_______正确答案:解析:当x→π时,知识模块:函数、极限、连续14.若f(x)=是(-∞,+∞)上的连续函数,则a=______正确答案:1解析:知识模块:函数、极限、连续15.已知数列Fn==_______正确答案:解析:因为知识模块:函数、极限、连续解答题解答应写出文字说明、证明过程或演算步骤。
专升本高等数学二(函数、极限与连续)模拟试卷2(题后含答案及解析)
专升本高等数学二(函数、极限与连续)模拟试卷2(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.函数f(x)=与g(x)=x相同时,x的取值范围是( )A.一∞<x<+∞B.x>0C.x≥0D.x<0正确答案:C解析:x≥0时,f(x)=x=g(x),x<0时,f(x)=一x≠g(x),故选C.知识模块:函数、极限与连续2.下列函数中为偶函数的是( )A.x+sinxB.xcos3xC.2x+2-xD.2x一2-x正确答案:C解析:易知A,B,D均为奇函数,对于选项C,f(x)=2x+2-x ,f(一x)=2-x+2x=f(x),所以函数f(x)为偶函数,故选C.知识模块:函数、极限与连续3.函数f(x)在点x0处有定义是存在的( )A.充分条件B.必要条件C.充要条件D.以上都不对正确答案:D解析:极限是否存在与函数在该点有无定义无关.知识模块:函数、极限与连续4.如果,则n= ( )A.1B.2C.3D.0正确答案:B解析:根据“抓大头”的思想,即可知分子最高次数为3次,分母最高次数为n+1次,则有3=n+1,可得n=2.知识模块:函数、极限与连续5.下列等式成立的是( )A.B.C.D.正确答案:C解析:由=0.故选C.知识模块:函数、极限与连续6.设f(x)=∫0sinxsint2dt,g(x)=x3+x4,当x→0时( )A.f(x)与g(x)是等价无穷小B.f(x)是比g(x)高阶无穷小C.f(x)是比g(x)低阶无穷小D.f(x)与g(x)是同阶但非等价无穷小正确答案:D解析:故f(x)与g(x)是同阶但非等价无穷小.知识模块:函数、极限与连续7.设当x→0时,(1一cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn 是比ex2—1高阶的无穷小,则正整数n等于( )A.1B.2C.3D.4正确答案:B解析:当x→0时,(1-cosx)ln(1+x2)~x2.x2=x4,xsinn~xn+1,ex2一1~x2,又由题中条件可知,n=2.知识模块:函数、极限与连续8.设函数f(x)=在x=0处连续,则k等于( ) A.e2B.e-2C.1D.0正确答案:A解析:由=e2,又因f(0)=k,f(x)在x=0处连续,故k=e2.知识模块:函数、极限与连续9.函数f(x)=在点x=1处为( )A.第一类可去间断点B.第一类跳跃间断点C.第二类间断点D.不能确定正确答案:A解析:f(x)==-2,所以f(x)在x=1处为第一类可去间断点,故选A.知识模块:函数、极限与连续填空题10.设函数y=f(x2)的定义域为[0,2],则f(x)的定义域是_________.正确答案:[0,4]解析:由题意得0≤x2≤4,令t=x2,则0≤t≤4,则f(t)也即是f(x)的定义域为[0,4].知识模块:函数、极限与连续11.已知f(x+1)=x2+2x,则f(x)= _________.正确答案:x2一1解析:方法一:变量代换令μ=x+1,则x=μ一1,f(μ)=(μ一1)2+2(μ-1)=μ2一1,所以f(x)=x2一1.方法二:还原法f(x+1)=x2+2x=(x2+2x+1)一1=(x+1)2一1,所以f(x)=x2一1.知识模块:函数、极限与连续12.=________.正确答案:解析:这是∞一∞型,应先通分合并成一个整体,再求极限..知识模块:函数、极限与连续13.=8,则a=________.正确答案:ln2解析:=e3a=8,所以a=ln2.知识模块:函数、极限与连续14.设f(x)=问当k=________时,函数f(x)在其定义域内连续.正确答案:1解析:由=1。
专升本高等数学一(函数、极限与连续)模拟试卷2(题后含答案及解析)
专升本高等数学一(函数、极限与连续)模拟试卷2(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.函数y=的定义域是( )A.x≥3B.x≤一2C.[一3,4]D.{x|一3≤x≤一2}∪{x|3≤x≤4}正确答案:D解析:由题意知x2一x一6≥0,解得x≤一2或x≥3,一1≤≤1,解得一3≤x≤4,取两者交集得{x|一3≤x≤一2}∪{x|3≤x≤4},故选D.知识模块:函数、极限与连续2.函数y=f(x)的图像关于原点对称,则下列关系式成立的是( ) A.f(x)+f(一x)=0B.f(x)一f(一x)=0C.f(x)+f-1(x)=0D.f(x)一f-1(x)=0正确答案:A解析:因为y=f(x)的图像关于原点对称,所以f(一x)=一f(x),即f(x)+f(一x)=0,故选A.知识模块:函数、极限与连续3.设函数f(x)=1+3x的反函数为g(x),则g(10)= ( )A.一2B.一1C.2D.3正确答案:C解析:f(x)=1+3x 的反函数为g(x),从而g(x)的定义域即为f(x)的值域,所以由1+3x=10=x=2,g(10)=2.知识模块:函数、极限与连续4.设函数f(x)在(一1,0)∪(0,1)内有定义,如果极限存在,则下列结论中正确的是( )A.存在正数δ,f(x)在(一δ,δ)内有界B.存在正数δ,f(x)在(一δ,0)∪(0,δ)内有界C.f(x)在(一1,1)内有界D.f(x)在(一1,0)∪(0,1)内有界正确答案:B解析:由函数的定义域为(一1,0)∪(0,1),从而函数的有界性只能在定义域(-1,0)∪(0,1)内考虑,由于极限存在,由函数极限局部有界性可知存在正数δ,使f(x)在(一δ,0)∪(0,δ)内有界.知识模块:函数、极限与连续5.下列极限中正确的是( )A.B.C.D.正确答案:C解析:因为第一重要极限的结构形式为=1,式中“□”可以是自变量x,也可以是x的函数,而□→0,表示当x→x0(x→∞)时,必有□→0,即□是当x→x0(x→∞)时的无穷小量,所以A、B、D不正确,故选C.知识模块:函数、极限与连续6.= ( )A.eB.1C.e-1D.一e正确答案:C解析:=e-1.知识模块:函数、极限与连续7.当x→0时,与x等价的无穷小量是( )A.B.ln(1+x)C.D.x2(x+1)正确答案:B解析:对于选项A,是比x低阶的无穷小;对于选项B,=1,故x→0时ln(1+x)是与x等价的无穷小;对于选项C,=是与x同阶但非等价的无穷小;对于选项D,=0,故x→0时x2(x+1)是比x高阶的无穷小.知识模块:函数、极限与连续8.下列极限存在的是( )A.B.C.D.正确答案:B解析:对于选项A,当x→0-时,震荡无极限,当x→0+时,也震荡无极限;对于选项C,当x→1时2x一2→0,→∞极限不存在;对于选项D,当n→∞时n(n+1)→∞极限不存在;而=1,故选B.知识模块:函数、极限与连续9.设f(x)=为连续函数,则a= ( )A.0B.1C.2D.任意值正确答案:B解析:f(x)为连续函数,则f(x)在x=2处连续,故有=1=a.知识模块:函数、极限与连续10.函数f(x)=xcos在点x=0处为( )A.跳跃间断点B.第二类间断点C.可去间断点D.无穷间断点正确答案:C解析:=0,所以f(x)在x=0处为可去间断点,故选C.知识模块:函数、极限与连续填空题11.函数y=的反函数是_________.正确答案:y=解析:x≤0时,y=x2+1,值域为[1,+∞),其反函数为y=一,x∈[1,+∞),x>0时,y=,值域为(一2,1),其反函数为y=,x∈(一2,1),所以原函数的反函数为y=知识模块:函数、极限与连续12.设f(x)=则f[f(x)= _________.正确答案:x解析:f(x)=[*],将x=f(x)代入得:f[f(x)]=[*]=x.知识模块:函数、极限与连续13.=________.正确答案:0解析:x→∞时,sin→0,|1-cosx|≤2,所以=0.知识模块:函数、极限与连续14.=________.正确答案:x解析:=x.知识模块:函数、极限与连续15.当x→0+时,是x_________阶的无穷小.正确答案:低解析:是x的低阶无穷小.知识模块:函数、极限与连续16.设f(x)=,则f(x)的间断点为x=_________.正确答案:0解析:f(x)=,可知f(x)在x=0处无意义,故其间断点为x=0.知识模块:函数、极限与连续17.函数y=的间断点是x=________,其为第________类间断点.正确答案:0,二解析:=+∞,故x=0为函数的第二类间断点.知识模块:函数、极限与连续解答题18.求极限.正确答案:.涉及知识点:函数、极限与连续19.计算.正确答案:型,使用洛必达法则..涉及知识点:函数、极限与连续20.求极限x[ln(x+1)一lnx].正确答案:=lne=1.涉及知识点:函数、极限与连续21.求极限.正确答案:=e.涉及知识点:函数、极限与连续22.求极限.正确答案:由于x→0时,xcotx=→1,故原极限为型,所以涉及知识点:函数、极限与连续23.求极限.正确答案:=1+0=1.涉及知识点:函数、极限与连续24.设f(x)=在x=0连续,试确定A,B.正确答案:欲使f(x)在x=0处连续,应有2A=4=B+1,所以A=2,B=3.涉及知识点:函数、极限与连续25.证明方程x5+3x3一3=0在(0,1)内至少有一个根.正确答案:令f(x)=x5+3x3一3,f(0)=一3<0,f(1)=1>0,由连续函数的零点定理可知至少存在一点c∈(0,1)使得f(c)=0,即方程x5+3x3一3=0在(0,1)内至少有一个根.涉及知识点:函数、极限与连续。
考研数学一(函数、极限、连续)模拟试卷6(题后含答案及解析)
考研数学一(函数、极限、连续)模拟试卷6(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.若f(x-1)=x2(x-1),则f(x)=_______.A.x(x+1)2B.x2(x+1)C.x2(x-1)D.x(x-1)2正确答案:A 涉及知识点:函数、极限、连续2.不等式(丨x-1丨-1)/丨x-3丨>0的解集(用区间表示)为______.A.(-∞,0)∪(2,3)∪(3,+∞)B.(-∞,3)∪(3,+∞)C.(-∞,0)D.(2,3)∪(3,+∞)正确答案:A 涉及知识点:函数、极限、连续3.设集合A={1,2,a,b},B={2,4,c,d},已知A ∪B={1,2,3,4,5,6},A ∩B={2,4),A-B={1,3},那么a,b,c,d可以是_______.A.a=3,b=4,C=5,d=6.B.a=4,b=5,C=3,d=6.C.a=5,b=6,C=3,d=5.D.a=3,b=5,C=1,d=5.正确答案:A 涉及知识点:函数、极限、连续填空题4.设集合A={(x,y)|x+y-1=0},集合B={(x,y)|x—y+1=0},求A ∩B.正确答案:A ∩B={(x,y)|x+y-1=0且x—y+1—0}={(0,1)}解析:本题求解主要依据交集的定义,两集合公共元素组成的集合,即两直线的交点. 知识模块:函数、极限、连续解答题解答应写出文字说明、证明过程或演算步骤。
5.设f(x),g(x)在[a,b]上连续,(a,b)内可导,证明存在ε∈(a,b),使得[f(b)-f(a)]gˊ(ε)=[g(b)-g(a)]fˊ(ε)正确答案:设F(x)=[f(b)-f(a)]g(x)-[g(b)-g(a)]f(x),显然F(x)在[a,b]上连续,(a,b)内可导,且F(a)=f(b)g(a)-g(b)f(a)=F(b)由罗尔定理知,必存在ε∈(a,b),使Fˊ(ε)=0,即Fˊ(ε)=[f(b)-f(a)]gˊ(ε)-[g(b)-g(a)]fˊ(ε)=0 所以结论成立涉及知识点:函数、极限、连续6.设f(x),ψ(x),ψ(x)是(-∞,+∞)内的单调增函数,证明:若ψ(x)≤f(x)≤ψ(x),则ψ(ψ(x))≤f(f(x))≤ψ(ψ(x)).正确答案:证设x0为(-∞,+∞)内的任一点,由题设,有ψ(x0)≤J(x0)≤ψ(x0).由ψ(x)≤f(x)≤ψ(x)及函数的单调增加性,得f(ψ(x0)≤f’(f(x0)) ψ(ψ(x0))≤f(ψ(x0))从而ψ(ψ(x0))≤f(f(x0))同理可证f(f(x0))≤ψ(ψ(x0)).由x0的任意,可知在(-∞,+∞)内,有ψ(ψ(x))≤f(f(x))≤ψ(ψ(x)). 涉及知识点:函数、极限、连续设y=ex,求dy和d2y:7.x为自变量;正确答案:x为自变量y=exdy=yˊdy=exdxd2y=d(dy)=dx`d(ex)=dxexdx =ex(dx)2=exdx2 涉及知识点:函数、极限、连续8.x=x(t),t为自变量,x(t)二阶可导.正确答案:x=x(t) t为自变量,x(t)二阶可导y=ex(t) dy=(ex(t))ˊdt=ex(t)x ˊ(t)dtd2y=d(dy)=d(ex(t)xˊ(t)dt)=dtd(ex(t)xˊ(t))=dt(ex(t)(xˊ(t))2+ex(t)x〞(t))dt=ex(t)[(xˊ(t))2+x〞(t)]dt2 涉及知识点:函数、极限、连续9.如果A={A,B,C,D},B={A,B,C},求A×B.正确答案:A×B={(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b),(c,c),(d,a),(d,b),(d,c)}解析:A×B是集合A与集合B的笛卡尔乘积的形式.计算结果应该是所有的二元有序数组构成的集合的形式.在求解时,依次取出集合A中的每一个元素,将其与集合B中的所有元素逐个组成二元有序数组,如(a,b),(a,b),(a,c),(b,a),(b,b)…笛卡尔乘积的计算结果也是一个集合,且集合中的元素为二元有序数组,通常,这种集合的表示方法依赖于已给出的两个集合的表示方法.例如,本题中的集合A和集合B都是采用列举法进行描述的,所以笛卡尔乘积也应该用列举法来进行描述,列举集合元素时,要避免重复和遗漏.知识模块:函数、极限、连续10.商店销售某商品的价格为p(x)=e-x (x为销售量),求收入最大时的价格.正确答案:设价格为p(x),x为销售量,收入为R(x).R(x)=p(x)x Rˊ(x)=pˊ(x)x+p(x)=-e-xx+e-x=e-x(1-x).令Rˊ(x)=0,得唯一驻点x=1.因为收入最大时的价格确实存在所以当x=1时,即p(1)=e-1=1/e时,收入最大. 涉及知识点:函数、极限、连续11.设f(x)是[0,+∞)上的单调减少函数,证明:对任何满足λ+μ=1的正数λ,μ及x∈[0,+∞)有下列不等式成立:f(x)≤λf(λx)+μf(μx);正确答案:Vx∈[0,+∞),λ+μ=1.λ=1f(x)在[0,+∞]上单调减少,且x≥λx,x≥μx则有f(x)≤f(λx) ①f(f)≤f(μx) ②λ①+μ②λf(x)+μf(x)≤λf(λx)+μf(μx)(λ+μ)f(x)≤λf(λx)+μf(μz)f(x)≤λf(λx)+μf(μx) 涉及知识点:函数、极限、连续12.设f(x)=xe-2x,求使得f〞(x)=0的点x.正确答案:fˊ(x)=e-2x-2xe-2x.f〞(x)=-2e-2x-2(e-2x+e-2xx(-2))=-2e-2x-2e-2e+4xe-2x=-4e-2x+4xe-2x=0.即4e-2x(x-1)=0.所以x=1. 涉及知识点:函数、极限、连续13.求y=|x|+|x-1|-|4-2x|的最大值与最小值.正确答案:当x<0时,y=-x+1-x-(4-2x)=1-2x-4+2x=-3.当0≤x<l时,y=x+1-x-(4-2x)=1-4+2x=2x-3.当1≤x<2时,y=x+x-1-(4-2x)=2x-1-4+2x=4x-5.当x≥2时,y=x+x-1-(2x一4)-2x-l-2x+4=3.最大值y=3,最小值y=-3. 涉及知识点:函数、极限、连续设A={1,2,3},B={1,3,5},C={2,4,6},求:14.A∪B.正确答案:A∪B={1,2,3,5}解析:注意:列举法表示集合时,集合中的元素不应重复或遗漏.知识模块:函数、极限、连续15.A∩B.正确答案:A∩B={1,3}. 涉及知识点:函数、极限、连续16.A∪B∪C.正确答案:A∪B∪C={l,2,3,4,5,6}. 涉及知识点:函数、极限、连续17.A∩B∩C.正确答案:A∩B∩C=φ. 涉及知识点:函数、极限、连续18.A-B.正确答案:A-B={2}.解析:这道题的求解主要依据集合交、并、差运算的定义.交运算的结果应该是由两个集合的所有公共元素组成的集合;并运算的结果是由两个集合的所有元素构成的集合;差运算的结果是属于第一个集合而不属于第二个集合的所有元素组成的集合.知识模块:函数、极限、连续19.写出A={0,1,2}的一切子集.正确答案:φ中不含任何元素,因此它是所有集合的子集,即φ∈A;仅由一个元素组成的集合且为A的子集的集合有:{0},{1},{2},由两个元素组成的集合且为A的子集的集合有:{0,1},{1,2},{0,2},由三个元素组成的集合且为A的子集的集合有:{0,1,2}.所以A={0,1,2}的一切子集为:φ,{0},{1},{2},{0,1},{1,2},{0,2},{0,1,2}.涉及知识点:函数、极限、连续。
高等数学-极限与连续(习题)Word版
第二章 极限与连续习题2-11、观察下列数列的变化趋势,判别哪些数列有极限,如有极限,写出它们的极限. (1)nn a x 1= )1(>a ; 有. 0lim =∞→n n x .(2) nx n n 1)1(1--=; 有. 0lim =∞→n n x .(3) n x n n 1)1(--=; 无.(4) 2sin πn x n =; 无. (5) 11+-=n n x n ; 有. 1lim =∞→n n x . (6) nn x )1(2-=; 无.(7) nx n 1cos =; 有. 1lim =∞→n n x .(8) nx n1ln =. 无.2、设9.01=u ,99.02=u ,个n n u 999.0,=,问 (1) ?lim =∞→n n u(2) n 应为何值时,才能使n u 与其极限之差的绝对值小于0001.0? 解:(1) 显然,n n u 1011-=,可见1lim =∞→n n u ;(2) 欲使41010001.0101|1|=<=-n n u ,只需5≥n 即可.3、对于数列⎭⎬⎫⎩⎨⎧+=1}{n n x n ,),2,1( =n ,给定(1)1.0=ε;(2)01.0=ε;(3)001.0=ε时,分别取怎样的N ,才能使当N n >时,不等式ε<-|1|n x 成立,并利用极限定义证明此数列的极限为1.解:欲使ε=<+=-+=-k n n n n x 1011111|1|,只需110->k n .(1)若给定1.0=ε,此时1=k ,取91101=-=N 即可;(2)若给定01.0=ε,此时2=k ,取991102=-=N 即可; (3)若给定001.0=ε,此时3=k ,取9991103=-=N 即可; 下面证明1lim =∞→n n x . 欲使ε<<+=-n n x n 111|1|,只需ε1>n .0>∀ε,取+∈+=N 1]1[εN ,当ε1≥>N n 时,恒有ε<-|1|n x ,所以 1lim 1lim==+∞→∞→n n n x n n.4、用极限定义考查下列结论是否正确,为什么?(1)设数列}{n x ,当n 越来越大时,||a x n -越来越小,则a x n n =∞→lim .解:结论错误.例如取nx n 11+=,0=a ,显然n a x n 11||+=-越来越小,但a x n n =≠=∞→01lim .(2)设数列}{n x ,当n 越来越大时,||a x n -越来越接近于0,则a x n n =∞→lim .解:结论错误.例如取nx n 11+=,0=a ,显然n a x n 11||+=-越来越接近于0,但a x n n =≠=∞→01lim .(3)设数列}{n x ,0>∀ε,N ∃,当N n >时,有无穷多个n x 满足ε<-||a x n ,则a x n n =∞→lim .解:结论错误.例如取nn x )1(-=,1=a ,显然0||2=-a x k ,),2,1( =k ,那么0>∀ε,1=∃N ,当N n >时,有无穷多个n x ,满足ε<-||a x n , 但显然n n x ∞→lim 不存在.(4)设数列}{n x ,若对0>∀ε,}{n x 中仅有有限个n x 不满足ε<-||a x n ,则a x n n =∞→lim .解:结论正确.0>∀ε,假设仅有k n n n x x x ,,,21 不满足ε<-||a x n ,于是取+∈=N },,,max {21k n n n N ,那么当N n >时,ε<-||a x n ,所以a x n n =∞→lim .5、用极限性质判别下列结论是否正确,为什么? (1)若}{n x 收敛,则k n n n n x x +∞→∞→=lim lim (k 为正整数);解:结论正确.显然}{k n x +是}{n x 的子数列,故n n k n n x x ∞→+∞→=lim lim .(2)有界数列}{n x 必收敛;解:结论错误.例如取nn x )1(-=,虽然}{n x 有界,但显然}{n x 发散.(3)无界数列}{n x 必发散;解:结论正确. 因收敛数列必有界,那么无界数列必发散.(4)发散数列}{n x 必无界.解:结论错误.例如取nn x )1(-=,虽然}{n x 发散,但显然}{n x 有界.6、利用数列的“N -ε”分析定义证明下列极限: (1) 01lim2=∞→n n ;分析:0>∀ε,欲使ε<≤=-nn x n 11|0|2,只需ε1>n 或1]1[+>εn 即可.证明:0>∀ε,取+∈+=N 1]1[εN ,当ε1≥>N n 时,恒有ε<≤=-nn x n 11|0|2,所以 0lim 1lim 2==∞→∞→n n n x n .(2) 321312lim=++∞→n n n ;分析:0>∀ε,欲使ε<<+=-++=-n n n n x n 1)13(3132131232, 只需ε1>n 或1]1[+>εn 即可.证明:0>∀ε,取+∈+=N 1]1[εN ,当ε1≥>N n 时,恒有 ε<<+=-n n x n 1)13(3132,所以 32lim 1312lim ==++∞→∞→n n n x n n .(3) 1)311(lim =-∞→nn ;分析:0>∀ε,欲使ε<≤=-nn x n 131|1|,只需ε1>n 或1]1[+>εn 即可.证明:0>∀ε,取+∈+=N 1]1[εN ,当ε1≥>N n 时,恒有ε<≤=-n n x n 131|1|,所以 1lim )311(lim ==-∞→∞→n n n x n .(4) 0sin lim=∞→nnn .分析:0>∀ε,欲使ε<≤=-n n n x n 1sin |0|,只需ε1>n 或1]1[+>εn 即可. 证明:0>∀ε,取+∈+=N 1]1[εN ,当ε1≥>N n 时,恒有ε<≤=-n n n x n 1sin |0|,所以 0lim sin lim ==∞→∞→n n n x nn.7、若0lim =∞→n n u ,证明0||lim =∞→n n u ,并举例说明,如果数列|}{|n u 有极限,但数列}{n u 未必有极限.证明:因0lim =∞→n n u ,有0>∀ε,+∈∃N N ..t s N n >时,ε<-|0|n u ,于是 ε<-=-|0|0||n n u u , 所以0||lim =∞→n n u .而若取nn u )1(-=,显然1||lim =∞→n n u ,但显然}{n u 没有极限.8、对于数列}{n x ,若a x k →-12,)(∞→k ,a x k →2,)(∞→k ,证明a x n →,)(∞→n .证明:因0lim 12=-∞→k k x ,有0>∀ε,+∈∃N1N ..t s 1N k >时,ε<--||12a x k ,又因0lim 2=∞→k k x ,对0>ε,+∈∃N 2N ..t s 2N k >时,ε<-||2a x k ,取+∈=N }2,2m ax {21N N N ,当N n >时,若12-=k n ,有1122221N N N n k =≥>+=,ε<-=--||||12a x a x k n , 若k n 2=,有222222N N N n k =≥>=,ε<-=-||||2a x a x k n ,总之,当N n >时,ε<-||a x n ,所以a x n →,)(∞→n .习题2-21、用极限定义证明: (1) 12)25(lim 2=+→x x ;分析:0>∀ε,欲使ε<-=-|2|5|12)(|x x f ,只需5|2|ε<-x 即可.证明:0>∀ε,取05>=εδ,当δ<-<|2|0x 时,恒有ε<-=-|2|5|12)(|x x f , 所以 12)(lim )25(lim 22==+→→x f x x x .(2) 424lim22-=+--→x x x ; 分析:0>∀ε,欲使ε<+=--|2||)4()(|x x f ,只需ε<+<|2|0x 即可. 证明:0>∀ε,取0>=εδ,当δ<--<|)2(|0x 时,恒有ε<+=+-=--+-=--|2||4)2(|)4(24|)4()(|2x x x x x f ,所以 4)(lim 24lim222-==+--→-→x f x x x x .(3) 8)13(lim 3=-→x x .分析:0>∀ε,欲使ε<-=-|3|3|8)(|x x f ,只需3|3|ε<-x 即可.证明:0>∀ε,取03>=εδ,当δ<-<|3|0x 时,恒有ε<-=-|3|3|12)(|x x f , 所以 8)(lim )13(lim 33==-→→x f x x x .2、用极限定义证明: (1) 656lim=+∞→xx x ;分析:0>∀ε,欲使ε<=-x x f 5|6)(|,只需ε5||>x 即可. 证明:0>∀ε,取05>=εK ,当ε5||>x 时,恒有ε<=-x x f 5|6)(|,所以 6)(lim 56lim ==+∞→∞→x f xx x x .(2) 0sin lim=+∞→xxx .分析:0>∀ε,欲使ε<≤=-xx x x f 1sin |0)(|,只需21ε>x 即可.证明:0>∀ε,取012>=εK ,当K x >时,恒有ε<≤-x x f 1|0)(|,所以 0)(lim sin lim ==∞→+∞→x f xxx x .3、当2→x 时,42→=x y ,问δ等于多少,则当δ<-<|2|0x 时,001.0|4|<-y ?(提示:因为2→x ,所以不妨设31<<x ).解:欲使|2||4)2(||2||2||4||4|2-⋅+-=-⋅+=-=-x x x x x y3101001.0|2|5|2|)4|2(|=<-≤-+-≤x x x ,只需0002.01051|2|3=⋅<-x 即可.因此,取0002.0=δ,当δ<-<|2|0x 时,有001.0|4|<-y .4、设⎩⎨⎧≥-<=.3 ,13,3,)(x x x x x f 作)(x f 的图形,并讨论3→x 时, )(x f 的左右极限(利用第1题(3)的结果).解:(1) )(x f 的图形.(2) 令x x g =)(,13)(-=x x h ,已知3lim )(lim 33==→→x x g x x ,8)13(lim )(lim 33=-=→→x x h x x ,于是3)(lim 3=-→x g x ,8)(lim 3=+→x h x .显然,当3<x 时,)()(x g x f =,于是3)(lim )(lim 33==--→→x g x f x x ;当3>x 时,)()(x h x f =,于是8)(lim )(lim 33==++→→x h x f x x .5、证明||)(x x f =,当0→x 时的极限为零. 证明:0>∀ε,取0>=εδ,当δ<<||0x 时,恒有ε<=-=-||0|||0)(|x x x f , 所以 0)(lim ||lim 0==→→x f x x x .6、函数xx x f ||)(=,回答下列问题: (1)函数)(x f 在0=x 处的左右极限是否存在? 答:)(x f 在0=x 处的左右极限是均存在.这是因为:1)1(lim lim )(lim 000-=-=-=---→→→x x x xxx f ;11lim lim )(lim 000===+++→→→x x x x xx f .(2)函数)(x f 在0=x 处是否有极限? 答:)(x f 在0=x 处是没有极限.这是因为:)(lim 11)(lim 0x f x f x x +-→→=≠-=.(3)函数)(x f 在1=x 处是否有极限? 答:)(x f 在1=x 处有极限.这是因为:11lim lim )(lim 111===---→→→x x x x xx f ;11lim lim )(lim 111===+++→→→x x x x xx f . 由于1)(lim )(lim 11==+-→→x f x f x x ,故1)(lim 1=→x f x .7、证明A x f x x =→)(lim 0的充要条件是A x f x f x x x x ==-+→→)(lim )(lim 0.证明:“必要性”A x f x x =→)(lim 0⇒0>∀ε,0>∃δ..t s δ<-<||00x x 时,ε<-|)(|A x f ,从而,当 δ<-<00x x 时, ε<-|)(|A x f ; 也有,当 δ<-<x x 00时, ε<-|)(|A x f , 所以 A x f x f x x x x ==-+→→)(lim )(lim 0.“充分性” A x f x f x x x x ==-+→→)(lim )(lim 0⇒ 0>∀ε,0,21>∃δδ ..t s当 100δ<-<x x 时, ε<-|)(|A x f ; 当 200δ<-<x x 时, ε<-|)(|A x f ,取0},m in{21>=δδδ,当δ<-<||00x x 时,有ε<-|)(|A x f , 所以 A x f x x =→)(lim 0.8、设)0()(lim ≠=+∞→A A x f x ,证明当x 充分大时2|||)(|A x f >. 证明:因)0()(lim ≠=+∞→A A x f x ,对于02||0>=A ε,0>∃K , 当K x >时, 2|||)(|0A A x f =<-ε. 所以2||2|||||)(||||))((||)(|A A A A x f A A x f A x f =->--≥-+=.习题2-31、根据定义证明:(1) 1-=x y 为当1→x 时的无穷小;证明:0>∀ε,取0>=εδ,当δ<-<|1|0x 时,恒有ε<-=|1|||x y ,所以1-=x y 为当1→x 时的无穷小.(2) xx y 1cos =为当0→x 时的无穷小. 证明:0>∀ε,取0>=εδ,当δ<-<|0|0x 时,恒有ε<≤||||x y ,所以xx y 1cos =为当0→x 时的无穷小.2、根据定义证明:函数xxy 21+=为当0→x 时的无穷大,问x 应满足什么条件,能使410||>y ?(1)分析:0>∀K ,欲使K x x x y >-≥+=2||121||,只需21||0+<<K x 即可. 证明:0>∀K ,取021>+=K δ,当δ<<||0x 时,恒有 K x x x x y >-≥+=+=2||12121||,所以 ∞==+→→y xxx x 00lim 21lim .(2) 欲使K y =>410||,取10002121014=+=δ,则x 满足100021||0<<x 即可.3、利用有界量乘无穷小依然是无穷小求下列极限: (1) xx x 1sinlim 20→. 解:因0lim 0=→x x ,11sin≤x)0(≠x ,有)1(o x =(无穷小),)1(1sin O x=(有界), )0(→x ,则)1()1()1()1(1sin 2o O o o x x ==,)0(→x , 所以01sin lim 20=→xx x .(2) xxx arctan lim∞→.解:因01lim =∞→x x ,2arctan π≤,有)1(1o x=(无穷小),)1(arctan O x =(有界), )(∞→x ,则)1()1()1(arctan o O o x x ==,)(∞→x , 所以0arctan lim =∞→xxx .4、函数x x y sin =在区间),0(+∞内是否有界?又当+∞→x 时,这个函数是否为无穷大?为什么?解:(1)取22ππ+=k x ,则22)22sin()22(ππππππ+=++=k k k y , ,2,1=k ,可见, 函数x x y sin =在区间),0(+∞内无界.(2)取πk x =,则0)sin(==ππk k y , ,2,1=k ,可见,当+∞→x 时,函数x x y sin =不是无穷大.4’、函数xx y 1sin =在区间),0(+∞内是否有界?又当+∞→x 时,这个函数是否为无穷大?为什么?解:(1)当0>x 时,11||1sin ||1sin=≤≤x x x x x x , 可见, 函数x x y 1sin =在区间),0(+∞内有界.(2)因函数xx y 1sin =在区间),0(+∞内有界,可见,当+∞→x 时,函数x x y sin =不是无穷大.习题2-41、填空题:(1)已知b a ,为常数,3122lim2=-++∞→n bn an n ,则=a 0 ,=b 6 ;解:由于2122lim 1221lim 30022a n n nb a n bn an n n n =-++=-++=⨯=∞→∞→,有0=a . 而2122lim 122lim 122lim 32b nn b n bn n bn an n n n =-+=-+=-++=∞→∞→∞→,有6=b .(2)已知b a ,为常数,1)1(lim 2=--+∞→b ax x x x ,则=a 1 ,=b -1 ; 解:由于a xba xb ax x x x x x x x -=--+=--+==∞→∞→∞→1)11(lim )1(1lim 1lim 022, 有1=a .而b b x b x x x b ax x x x x x -=-=--+=--+=∞→∞→∞→)1(lim )1(lim )1(lim 12 有1-=b .(3)已知b a ,为常数,21lim 1=-+→x bax x ,则=a 2 ,=b -2 .解:由于0201)1(lim )(lim 11=⋅=-+-=+=+→→x bax x b ax b a x x ,有a b -=.而21lim 1lim 11=-+=--=→→x bax x a ax a x x ,有2-=b2、求下列极限:(1) 4304031413lim 143lim 222=++=++=++∞→∞→nn n n n n n .(2) 510)2(501)52)(2(5)52(1lim )2(5)2(5lim 11=⨯-++=--+-+=-+-+∞→++∞→n nn n n nnn . (3) 340131121101311311211211lim 31313112121211lim1122=--⋅--=--⋅--=++++++++++∞→∞→n n n n n n . (4) )1221(1lim )1231(lim 222nn n n n n n n n n n -+++=-+++∞→∞→1)221(lim )121(211lim =⨯=-+⋅⋅=∞→∞→n n n n n n n . (5) ))1(1321211(lim +++⋅+⋅∞→n n n1)111(lim )]111()3121()2111[(lim =+-=+-++-+-=∞→∞→n n n n n .(6)2110111111lim1lim)1(lim =++=++=++=-+∞→∞→∞→nn n nn n n n n n . 3、求下列极限:(1) 443lim 222---→x x x x .解:由于0423242434lim 22222=-⨯--=---→x x x x ,所以∞=---→443lim 222x x x x .(2) )33(lim 33lim )(lim2203220330h xh x h h xh h x h h h x h h h ++=++=-+→→→ 22230033x x x =+⋅+=.(3) 3001003431153lim 43153lim 2222=++++=++++=++++∞→∞→xx x x x x x x x x . (4)503020503020503020532)15()23()32(lim )15()23()32(lim =++-=++-∞→∞→xx x x x x x x (5) 221)12)(11(lim 2=⋅=-+∞→xx x .(6) 0004000724132lim724132lim 5454253=++++=++++=++++∞→∞→xx x x x x x x x x x . (7) )13)(1)(1()1()3(lim 113lim121x x x x x x x x x x x ++-+-+--=-+--→→ 42)1113)(11(2)13)(1(2lim1-=++-+-=++-+-=→x x x x .(8) 22121311211lim )131(11lim )1311(lim x x x x x x x x x x x x x ++-+⋅-=++--=---→→→ 1111)21(1)2(lim 221-=+++-=+++-=→x x x x .(9) 11lim )1/()1()1/()1(lim 11lim 2121111++++++=----=------→→→ n n m m x n m x n m x x x x x x x x x x xnm n n m m =++++++=----1111112121 .(n m ,是自然数).(10) )1)(1)(1()1)(1)(1(lim11lim3323323131+++-+++-=--→→x x x x x x x x x x x x 321111111lim)1)(1()1)(1(lim33233213322331=+++=+++=++-+-=→→x x x x x x x x x x .(11) x x x x x x x x x x 1)651)(1(lim 1)31)(21)(1(lim 200-+++=-+++→→6060116)6116(lim 220=⨯+⨯+=++=→x x x .(12) xx x x x x x x x x x +-+--+=--++∞→+∞→)1)(2()1)(2(lim ))1)(2((lim 21)11)(21(21lim )1)(2(2lim +-+-=+-+-=+∞→+∞→xx x x x x x x x211)01)(01(01=+-+-=.4、求下列极限:(1) 223)3(3lim -+→x xx x ;解:由于0333)33(3)3(lim 22223=⨯+-=+-=→x x x x ,所以∞=-+→223)3(3lim x x x x .(2)432lim 3++∞→x x x ;解:由于001002143lim 243lim 243lim 33233=++=++=++=++∞→∞→∞→xx xx x x x x x x , 所以∞=++∞→432lim3x x x .(3))325(lim 2+-∞→x x x ;解:由于000503251lim 3251lim 222=+-=+-=+-∞→∞→xx x x x x x ,所以∞=+-∞→)325(lim 2x x x .5、设A x f x x =→)(lim 0,)(lim 0x g x x →不存在,证明)]()([lim 0x g x f x x +→不存在.证明:反证.假设B x g x f x x =+→)]()([lim 0,则)(lim )]()([lim )]()()([lim )(lim 0x f x g x f x f x g x f x g x x x x x x x x →→→→-+=-+=A B -=,可见)(lim 0x g x x →存在,这与条件)(lim 0x g x x →不存在冲突,所以)]()([lim 0x g x f x x +→不存在.习题2-51、求下列极限:(1)52151255sin 522sin 2lim 5sin 2sin lim 00=⋅⋅=⋅⋅=→→xx x xx x x x .(2)2112122sin 22cos lim2cot lim 00=⨯=⋅=→→xx x x x x x .(3)212)sin 2(lim sin sin 2lim sin 2cos 1lim0200=⨯=⋅=⋅=-→→→xxx x x x x x x x x .(4)x x txtxx x n t n nn n=⋅===∞→=∞→1)sin (lim 2sin2lim 21,(x 为不等于零的常数).(5)01111sin 1sin 1lim sin sin lim 00=+-=+-=+-→→xx x xx x x x x x . (6)xx xx xx x x x x x x x x cos 2sin 2sin limcos )cos 1(sin lim sin tan lim3203030⋅=-=-→→→2112111122sin 21cos 1sin lim 220=⨯⨯⨯=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫⎝⎛⋅⋅=→x x x x x x .(7)tta t t a t a a x a x t t ax t a x 22cos2sin 2lim sin )(sin lim sin sin lim 00+=-+====--→→-=→ a t a t t t t cos )2cos(lim 22sinlim 00=+=→→.(8))3cos(21sin limcos 21)3sin(lim 033ππππ+-====--→-=→t t x x t x t x t t tt t t t t sin 3cos 1sin lim)3sin sin 3cos (cos 21sin lim 00+-=--=→→ππ 3313101sin 3)2(2sin 2sin lim sin 3cos 1sin lim 2200=⨯+⨯=+⋅=+-=→→tt t t t t tt t t t t .(9))22tan(lim 2)1(tanlim 2tan)1(lim 0011tt t t xx t t xt x ππππ-=-====-→→-=→πππππ2sin cos 2limcot 2lim2cotlim 002=⋅======→→=→uu u u u tt u u tu t .2、求下列极限:(1)ee t t t xtt tt x t xx 1)01(1)1()1(lim 1)1(lim )21(lim 10110212=+=++=+===-→--→-=-∞→.(2)et t xtt t t xt xx 1)1(lim 1)1(lim )22(lim 1010220=+=+===-→-→-=→.(3)211)11()11(lim )11(lim e e e xx x x x xx x x ==+-=+-∞→∞→.(4)11])11()11[(lim )11(lim )11(lim 2=⋅=+-=-===-+∞→+∞→=+∞→e et t t xt t t t t xt xx .(5)111])11()11[(lim 1)11(1lim )1(lim 222=⋅=+-=-=-∞→∞→∞→eex x x x x x x x x x x x .(6)33103tan 3cot 2])1(lim [)1(lim )tan 31(lim 22e t t x t t t t xt xx =+=+=====+→→=→.(7)3213ln 233sin lim3)21ln(lim 233sin 3)21ln(2lim3sin )21ln(lim 02102100=⨯=+=⋅+=+→→→→e xx x xx x x x x x x xx xx x .(8)2ln 2)21ln(2lim )21ln(lim ]ln )2[ln(lim 2==+=+=-+∞→∞→∞→e nn n n n n nn n n .3、利用极限存在准则证明:(1) 1)1211(lim 222=++++++∞→πππn n n n n . 证明:由于πππππ+≤++++++≤+2222222)1211(n n n n n n n n n n ,而111lim lim 22=+=+∞→∞→n n n n n n ππ, 111lim lim 222=+=+∞→∞→nn n n n ππ, 所以1)1211(lim 222=++++++∞→πππn n n n n .(2)设},,,m ax {21m a a a A =,),,2,1,0(m i a i =>,则有 A a a a n nm n n n =+++∞→ 21lim.证明:由于n n n n n m n n nn m A mA a a a A A =≤+++≤=21,而A A m A m A n n n n =⋅==∞→∞→1lim lim , 所以A a a a n n m n n n =+++∞→ 21lim .(3)设21=x ,12-+=n n x x , ,3,2=n ,证明数列}{n x 存在极限并求之.证明:①显然221<=x ,假设21<-n x ,有22221=+<+=-n n x x , 因此,20<<n x , ,3,2,1=n ;②由于11222x x x =>+=,假设1->n n x x ,有n n n n x x x x =+>+=-+1122因此,}{n x 为单调递增数列;③由①②知, 数列}{n x 必存在极限. ④假设a x n n =∞→lim ,显然有20≤≤a ,且a x x a n n n n +=+==-∞→∞→22lim lim 1,即022=--a a ,得2=a (1-=a 舍去), 所以2lim =∞→n n x .(4)数列21=x ,)1(211nn n x x x +=+的极限存在. 证明:①显然121≥=x ,而11221)1(211=⋅⋅⋅≥+=+nn n n n x x x x x , ②由于0121121221)1(21221=⋅-≤-=-=-+=-+n n n n n n n n n x x x x x x x x x , 即n n x x ≤+1,因此,}{n x 为单调递减数列;③由①②知,21≤≤n x , ,3,2,1=n ,因此数列}{n x 的极限必存在.4、某企业计划发行公司债券,规定以年利率6.5%的连续复利计算利息,10年后每份债券一次偿还本息1000元,问发行时每份债券的价格应定为多少元? 解:设0A 为发行时每份债券的价格,年利率为%5.6=r ,10=k 年后每份债券一次偿还本息1000=k A 元,若以连续复利计算利息,则krk e A A 0=,即065.01001000⨯=eA ,得05.5521000065.0100==⨯-eA (元).习题2-61、当0→x 时,下列各函数都是无穷小,试确定哪些是x 观的高阶无穷小?同阶无穷小?等价无穷小? (1) x x +2;解:因为1)1(lim lim020=+=+→→x x xx x x , 所以x x x ~2+,)0(→x .(等价无穷小)(2) x x sin +; 解:因为211)sin 1(lim sin lim00=+=+=+→→x xx x x x x ,所以)(2x O x x =+,)0(→x . (同阶无穷小)(3) x x sin -; 解:因为011)sin 1(lim sin lim00=-=-=-→→x xx x x x x ,所以)(2x o x x =+,)0(→x . (高阶无穷小)(4) x 2cos 1-;解:因为0102)sin sin 2(lim sin 2lim 2cos 1lim0200=⋅⋅===-→→→x xx x x x x x x x , 所以)(2x o x x =+,)0(→x . (高阶无穷小)(5) x tan ; 解:因为111)cos 1sin (lim tan lim00=⋅=⋅=→→xx x x x x x ,所以x x ~tan ,)0(→x .(等价无穷小)(6) x 2tan . 解:因为221)2cos 222sin (lim 2tan lim00=⋅=⋅=→→xx x x x x x ,所以)(2tan x O x =,)0(→x . (同阶无穷小)2、证明当0→x 时,有: (1) x x ~arctan ;证明:因为111sin cos lim tan lim arctan lim 00arctan 0========→→=→tt t t t x x t t x t x ,所以x x ~arctan ,)0(→x .(2) 221~1sec x x -; 证明:因为1)2(2sin lim 2sin 22limcos )cos 1(2lim 211sec lim2202202020==⋅=-=-→→→→xxx x x x x xx x x x x ,所以221~1sec x x -,)0(→x .(3) 221~1sin 1x x x -+; 证明:因为1101121sin 1sin 2lim 211sin 1lim 020=++⋅=++⋅=-+→→x x x xxx x x x , 所以221~1sin 1x x x -+,)0(→x .(4) 222~11x x x --+.证明:因为101012112lim 11lim2202220=-++=-++=--+→→xx x x x x x , 所以222~11x x x --+,)0(→x .3、利用等价无穷小的性质,求下列极限:(1) 11lim 2121lim cos 11sin 1lim 02200===--+→→→x x x xxx x x . 其中:221~1sin 1x x x -+,221~cos 1x x -,)0(→x .(2) 22lim 2lim tan )1(2sin lim 02020==⋅=-⋅→→→x x x x x x x x e x . 其中:x x 2~2sin ,x e x ~1-,22~tan x x )0(→x .(3) 52)52(lim 52lim 5sin )21ln(lim000-=-=-=-→→→x x x x x x x .其中:x x 2~)21ln(--,x x 5~5sin ,)0(→x .(4) 21cos 21lim cos 21lim cos sin cos 1lim sin sin tan lim 02202030===-=-→→→→x x x xx x x x x x x x x x . 其中:221~cos 1x x -,x x ~sin )0(→x .(5) 2121lim 21lim sin cos 1lim )tan 1sin 1(1lim 022000===-=-→→→→x x x x x xx x x x x x . 其中:221~cos 1x x -,x x ~sin )0(→x .(6) 22lim )(21lim cos 1lim 22022020m m x mx x mx x x x ===-→→→. 其中:0≠m 时,2)(21~cos 1mx mx -,)0(→x ,而0=m 时,0)(21cos 12==-mx mx .4、证明无穷小的等价关系具有下列性质: (1) αα~(自反性); 证明:因11lim lim==αα,所以αα~.(2) 若βα~,则αβ~(对称性); 证明:已知βα~,因1111lim lim===βααβ,所以αβ~.(3) 若βα~,γβ~,则γα~(传递性). 证明:已知βα~,γβ~,因111lim lim )lim(lim=⋅=⋅=⋅=γββαγββαγα, 所以γα~习题2-71、研究下列函数的连续性,并画出函数图形:(1) ⎪⎩⎪⎨⎧>≤≤--<-=.1 ,1,11 ,,1 ,1)(2x x x x x f 解:显然,函数)(x f 在)1,(--∞,)1,1(-以及),1(+∞连续.由于)(lim 11lim )(lim 1211x f x x f x x x -++-→-→-→=-≠==,则)(x f 在1-=x 间断;由于)(lim 1)1(lim )(lim 1211x f f x x f x x x +--→→→====,则)(x f 在1=x 连续.总之,函数)(x f 在)1,(--∞,),1(+∞-连续,在1-=x 间断.(2) ⎩⎨⎧≤<-≤≤=.21,2,10 , )(2x x x x x f 解:显然,函数)(x f 在)1,0[,]2,1(连续. 由于1lim )(lim 211==--→→x x f x x ,有)(lim )1(112)2(lim )(lim 111x f f x x f x x x -++→→→===-=-=,则)(x f 在1=x 连续.总之,函数)(x f 在]2,0[连续.2、确定常数b a ,使下列函数连续:(1) ⎩⎨⎧>+≤=.0 ,,0 , )(x a x x e x f x解:显然,函数)(x f 在)0,(-∞,),0(+∞连续.由于1lim )(lim 00===--→→e e x f x x x ,a a a x x f x x =+=+=++→→0)(lim )(lim 00,欲使)(x f 在0=x 连续,只需)0(1)(lim )(lim 0f x f x f x x ===-+→→,即1=a . 因此,仅当1=a 时,函数)(x f 在),(+∞-∞连续.(2) ⎪⎪⎩⎪⎪⎨⎧>=<-=.0 ,sin ,0 ,2 ,0 ,)31ln()(x xax x x bxx x f 解:显然,函数)(x f 在)0,(-∞,),0(+∞连续.由于bb bx x bx x x f x x x x 33lim 3lim )31ln(lim )(lim 0000-=-=-=-=----→→→→,)0(≠b ,⎪⎩⎪⎨⎧==≠=⋅==+++→→→.0 ,0,0 ,)sin (lim sin lim )(lim 000a a a a axax a x ax x f x x x , 欲使)(x f 在0=x 连续,只需)0(2)(lim )(lim 0f x f x f x x ===+-→→,有 23==-a b , 即2=a , 23-=b . 因此,仅当2=a ,23-=b 时,函数)(x f 在),(+∞-∞连续.3、下列函数在指出的点处间断,说明这些间断点属于哪一类型,如果是可去间断点,则补充或改变函数的定义使它连续.(1) 65422+--=x x x y , 2=x ,3=x ;解:32)3)(2()2)(2()(-+=--+-==x x x x x x x f y , 2≠x .①由于4322232lim )(lim 22-=-+=-+=--→→x x x f x x ,)(lim 4322232lim )(lim 222x f x x x f x x x -++→→→=-=-+=-+=, 可见, 2=x 是函数)(x f y =的可去间断点,属第一类间断点. 欲使)(x f 在2=x 连续,只需定义4)2(-=f 即可.②由于∞=-+=→→32lim )(lim 33x x x f x x ,可见, 3=x 是函数)(x f y =的无穷间断点,属第二类间断点.(2) xxy sin =, πk x =,),2,1,0( ±±=k ; 解:xxx f y sin )(==, πk x ≠,),2,1,0( ±±=k .①由于1sin lim )(lim 00==--→→xxx f x x ,)(lim 1sin lim )(lim 000x f x xx f x x x -++→→→===, 可见, 0=x 是函数)(x f y =的可去间断点,属第一类间断点. 欲使)(x f 在0=x 连续,只需定义1)0(=f 即可.②由于∞==-→→xxx f k x k x sin lim )(lim ππ,),2,1( ±±=k可见,πk x =,),2,1( ±±=k 是函数)(x f y =的无穷间断点,属第二类间断点.(3) xy 1cos3=, 0=x ; 解:xx f y 1cos )(3==, 0≠x .显然函数)(x f y =有界, 由于xx f x x 1cos lim )(lim 300→→=不存在,可见, 0=x 是函数)(x f y =的振荡间断点,属第二类间断点.(4) ⎩⎨⎧>-≤-=.1 ,54,1 ,12x x x x y 1=x .解:⎩⎨⎧>-≤-==.1 ,54,1 ,12)(x x x x x f y由于1)12(lim )(lim 01=-=--→→x x f x x , )(lim 13)52(lim )(lim 111x f x x f x x x -++→→→=≠-=-=,可见,1=x 是函数)(x f y =的跳跃间断点,属第一类间断点.4、求函数633)(223-+--+=x x x x x x f 的连续区间,并求极限)(lim 0x f x →, )(lim 3x f x -→及)(lim 2x f x →.解:21)3)(2()3)(1(633)(22223--=+-+-=-+--+=x x x x x x x x x x x x f ,3-≠x .显然,函数)(x f 在)3,(--∞,)2,3(-以及),2(+∞连续.5821lim )(lim 233-=--=-→-→x x x f x x ,∞=--=→→21lim )(lim 222x x x f x x , 2121lim )(lim 200=--=→→x x x f x x .5、求下列极限: (1) 33020)32(lim 32lim22020=+⋅-=+-=+-→→x x x x x x . (2) 00)2(cos )]42[cos()2cos lim ()2(cos lim 3333434===⋅==→→ππππx x x x . (3) 2)1(2211111lim e e t e t t -=--=--⨯---→. (4) ππππ222sin sin lim 2==→x x x .6、求下列极限: (1) 1lim lim 0011=====→=∞→e e e t t xt x x . (2) )]21cos[ln(lim )]121cos[ln(lim 2012t t x x t x t x -+===-+→=∞→ 10cos )]0021cos[ln()]}21(lim cos{ln[220==-⨯+=-+=→t t t .(3) )1ln(lim 1lim )1(lim lim 010020t t xe x e e x e e t e t x x x x x x x x x +-====-=-=-→-=→→→ 1ln 1)1ln(1lim 10-=-=+-=→e t tt .(4) 202022)1(cos 4lim )]1(cos 1ln[4lim cos ln 4040lim )(cos lim x x x x x x x x x x x e e e x --+→→→→=== 2)2(lim 24lim 0220--⋅-===→→e e e x x x x .7、讨论函数x nx n n e ex x x f ++=∞→1lim )(2的连续性,若有间断点,判别其类型.解:①当0<x 时,x x x e ex x x f x nxnn =+⋅+=++=∞→0101lim )(22; 当0>x 时,2221001lim )(x x x ex xe x f x nxnn =++⋅=++=--∞→, 所以⎩⎨⎧>>=.0 ,,0 ,)(2x x x x x f ②显然,函数)(x f 在)0,(-∞,),0(+∞连续,在0=x 点间断点.③由于0lim )(lim 00==--→→x x f x x , )(lim 0lim )(lim 0200x f x x f x x x -++→→→===, 可见,0=x 是函数)(x f y =的可去间断点,属第一类间断点.习题2-81、试证下列方程在指定区间内至少有一个实根:(1) 0135=--x x ,在区间)2,1(;证明:显然]2,1[13)(5C x x x f ∈--=,由于03)0(<-=f ,025)2(>=f ,由零点定理知,)2,1(∈ξ..t s 0)(=ξf ,即01325=--ξξ,所以方程 0135=--x x 在)2,1(内至少有一个根ξ.图形> plot(x^5-3*x^2-1,x=1..2);(2) 2-=x e x ,在区间)2,0(.证明:显然]2,0[2)(C x e x f x∈--=,由于01)0(<-=f ,03)2(2>-=e f , 由零点定理知,)2,0(∈ξ..t s 0)(=ξf ,即02=--ξξe ,所以方程 2-=x e x 在)2,0(内至少有一个根ξ.图形> plot(exp(x)-x-2,x=0..2);2、设)(x f 在],[b a 上连续,且b d c a <<<,证明在],[b a 内必存在一点ξ使)()()()(ξf n m d nf c mf +=+,其中n m ,为自然数.证明:若n m ,全为零,则结论显然成立;若n m ,不全为零,因],[)(b a C x f ∈,知)(x f 在],[b a 上存在最小值和最大值βα,, 令)()(d f nm n c f n m m +++=λ,由于 ββαα=++≤+++≤++=nm m m d f n m n c f n m m n m m m )()( 即βλα≤≤,又因],[)(b a C x f ∈,则必],[b a ∈∃ξ..t s λξ=)(f ,即)()()()(ξf n m d nf c mf +=+.3、设函数)(x f 在]2,0[a 上连续,且)2()0(a f f =,证明在],0[a 内至少存在一点ξ,使)()(a f f +=ξξ.证明:若)()0(a f f =,则结论显然成立;若)()0(a f f ≠,已知]2,0[)(a C x f ∈,显然],0[)()()(a C a x f x f x F ∈+-=,由于)]2()()][()0([)()0(a f a f a f f a F F --=0)]()0([)]0()()][()0([2<--=--=a f f f a f a f f ,由零点定理知,),0(a ∈ξ..t s 0)(=ξF ,即)()(a f f +=ξξ.4、一个登山运动员从早晨7:00开始攀登某座山峰,在下午7:00到达山顶,第二天早晨7:00再从山顶沿着原路下山,下午7:00到达山脚,试利用介值定理说明,这个运动员必在这两天的某一相同时刻经过登山路线的同一地点.证明:用)(x f 和)(x g 表示第一天和第二天运动员在时刻x )197(≤≤x 时距山脚的距离,显然]19,7[)(),(C x g x f ∈,假设山顶距山脚的距离为0>s ,那么,有0)19()7(==g f ,而s g f ==)0()19(,显然]19,7[)()()(C x g x f x F ∈-=,由于0)]19()19()][7()7([)19()7(2<-=--=s g f g f F F ,由零点定理知,)19,7(∈ξ..t s 0)(=ξF ,即)()(ξξg f =,说明运动员必在这两天的相同时刻ξ经过登山路线的同一地点,此时距山脚的距离为)(ξf .友情提示:范文可能无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用,感谢您的下载!。
成人高考《高等数学一》章节练习题答案及解析
成人高考《高等数学一》章节练习题答案及解析- 1 -2021 年专升本数学一习题第一章极限、连续1.已知f(x) = � 3x + 2,x ≥0x 2 −1,x < 0。
求f(0)=2. limx→∞sinxx=3. limx→2 (x −2)sin1x−2=4. limx→0xln(3x+1)=5. limx→0sin4xx=6. limx→∞�1 +5x �x =7. limx→0tan2x2x=8. limx→0 (1 −x)1x =9. limx→0 (1 + x)−1x =10. limx→∞�1 +1x �x+2 =11. limx→0x ⋅tanx= 12. limx→0sinxsin2x =13. limx→0ln (2x+1)sin3x14. limx→1x−1x 2 −1=15. limx→4x−4√x+5−3=- 2 -- 2 -16. limx→∞2x 3 +3x 2 +5 7x 3 +4x 2 −1 = 17.设f(x) = �x −1,x < 0 0,x = 0x + 1,x > 0,求limx→0f(x)18. limx→2x 2 +x−6x 2 −4=19. limx→0x−sinxx 2 +x=20.设函数f(x) = �√x3,x < 0,x 2 + 1,x ≥0, 则在点x=0 处是否连续。
21.函数f(x) =x 2 +1x−3的间断点是()。
22.设函数f(x) = �e x,x < 0x + a,x ≥0 在x=0 处连续,则a=()第二章一元函数微分学1.已知f ′(2) = 2,求limΔx→0f(2−3Δx)−f(2)Δx=2.已知f ′(4) = 1,求limΔx→0f(4+2Δx)−f(4)Δx=3x + lnx在点(1,0)处切线斜率K。
4lnx在点(1,0)处的切线方程和法线方程。
5x 2 上的一点,使该点处的切线与直线y = 2x + 2平行。
考研数学一(函数、极限、连续)模拟试卷14(题后含答案及解析)
考研数学一(函数、极限、连续)模拟试卷14(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.当x→1时,函数的极限( )A.等于2.B.等于0.C.为∞.D.不存在,但不为∞.正确答案:D解析:因为故当x→1时,函数极限不存在,也不是∞,应选D.知识模块:函数、极限、连续2.函数f(x)=xsinx( )A.当x→∞时为无穷大.B.在(一∞,+∞)内有界.C.在(一∞,+∞)内无界.D.当x→∞时有有限极限.正确答案:C解析:由于当x→∞时,f(x)中含有“∞”因子x,而无确定的零因子,因而f(x)无界,故选C.知识模块:函数、极限、连续3.设数列极限函数f(x)=,则f(x)的定义域I和f(x)的连续区间J分别是( ) A.I=(一∞,+∞),J=(一∞,+∞).B.I=(一1,+∞),J=(一1,1)∪(1,+∞).C.I=(一1,+∞),J=(一1,+∞).D.I=(一1,1),J=(一1,1).正确答案:B解析:f(x)的连续区间是J=(一1,1)∪(1,+∞).知识模块:函数、极限、连续4.设f(x)可导,f(x)=0,f’(0)=2,F(x)=∫0xt2f(x3一t3)dt,g(x)=,则当x →0时,F(x)是g(x)的( )A.低阶无穷小.B.高阶无穷小.C.等价无穷小.D.同阶但非等价无穷小.正确答案:D解析:先改写知识模块:函数、极限、连续5.设f(x)在点x0的某邻域内有定义,且f(x)在x0间断,则在点x0处必定间断的函数是( )A.f(x)sinx.B.f(x)+sinx.C.f2(x).D.|f(x)|.正确答案:B解析:若f(x)+sinx在x=x0连续,则f(x)=(f(x)+sinx)一sinx在x=x0连续,与已知矛盾.因此f(x)+sinx在x0必间断.故选B.知识模块:函数、极限、连续6.设当x→0时,(1一cosx)ln(1+x2)是比xsinxn高阶的无穷小,xsinxn是比(一1)高阶的无穷小,则正整数n等于( )A.1.B.2.C.3.D.4.正确答案:B解析:因当x→0时,而由(1一cosx)ln(1+x2)是比xsinxn高阶的无穷小,知4>n+1,即n<3;由xsinxn是比(一1)高阶的无穷小,知n+1>2,即n>1.因此取正整数n=2,故选B.知识模块:函数、极限、连续7.设f(x)在x0点连续,且在x0一空心邻域中有f(x)>0,则( )A.f(x0)>0.B.f(x0)≥0.C.f(x0)<0.D.f(x0)=0.正确答案:B解析:由f(x)在x0连续,有=f(x0),又因在x0的一空心邻域中有f(x)>0,由极限的保号性有f(x0)≥0,故选B.知识模块:函数、极限、连续8.把x→0+时的无穷小量α=排列起来,使排在后面的是前面一个的高阶无穷小,则正确的排列次序是( )A.α,β,γ.B.α,γ,β.C.β,α,γ.D.β,γ,α.正确答案:B解析:因为所以当x→0+时,α是x的一阶无穷小,β是x的三阶无穷小,γ是x的二阶无穷小,故选B.知识模块:函数、极限、连续9.函数f(x)=的间断点及类型是( )A.x=1为第一类间断点,x=一1为第二类间断点.B.x=±1均为第一类间断点.C.x=1为第二类间断点,x=一1为第一类间断点.D.x=±1均为第二类间断点.正确答案:B解析:分别就|x|=1,|x|<1,|x|>1时求极限,得出f(x)的分段表达式:所以,x=±1为f(x)的第一类间断点,故选B.知识模块:函数、极限、连续10.设f(x)=则( )A.B.C.D.正确答案:D解析:用推演法.将题设条件f(x)中的所有自变量x都用(一x)替换,得故选D.知识模块:函数、极限、连续11.设f(x)在R上连续,且f(x)≠0,φ(x)在R上有定义,且有间断点,则下列陈述中正确的个数是( ) ①φ[x)]必有间断点.②[φ(x)]2必有间断点.③[φ(x)]没有间断点.A.0.B.1.C.2.D.3.正确答案:B解析:①错误.举例:设φ(x)=,f(x)=ex,则φ[f(x)]=1在R上处处连续。
考研数学一(函数、极限、连续)模拟试卷5(题后含答案及解析)
考研数学一(函数、极限、连续)模拟试卷5(题后含答案及解析) 题型有:1. 选择题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.函数f(x)=(ex-e-x)/2的反函数f-1(x)是A.既非奇函数,也非偶函数.B.既是奇函数,又是偶函数.C.奇函数.D.偶函数.正确答案:C 涉及知识点:函数、极限、连续2.函数f(x)=ccosx(c≈2.71828)不是_________.A.偶函数.B.有界函数.C.周期函数.D.单调函数.正确答案:D 涉及知识点:函数、极限、连续3.下列给定区间中是函数f(x)=|x2|的单调有界区间的是A.[-2,0].B.[-1,1].C.(1,+∞).D.[-2,-1].正确答案:D 涉及知识点:函数、极限、连续4.设f(x)是(-∞,+∞)内的偶函数,并且当X∈(-∞,0)时,有f(x)=x+2,则当x∈(0,+∞)时,f(x)的表达式是A.x+2B.-x+2C.x-2D.-x-2正确答案:B 涉及知识点:函数、极限、连续解答题解答应写出文字说明、证明过程或演算步骤。
设f(x)在(-∞,+∞)上可导.5.若f(x)为奇函数,证明fˊ(x)为偶函数;正确答案:f(-x)=-f(x) f(x)=-f(-x)所以fˊ(x)=-fˊ(-x)(-1)=fˊ(-x)fˊ(x)为偶函数. 涉及知识点:函数、极限、连续6.若f(x)为偶函数,证明fˊ(x)为奇函数;正确答案:f(-x)=f(x) fˊ(x)=-fˊ(-x)所以fˊ(x)为奇函数. 涉及知识点:函数、极限、连续7.若f(x)为周期函数,证明fˊ(x)为周期函数.正确答案:f(x+T)=F(x) fˊ(X)=fˊ(x+T) 所以fˊ(x+T)为周期函数. 涉及知识点:函数、极限、连续8.设F(x)=f(-x),且f(x)有n阶导数,求F(n)(x);正确答案:Fˊ(x)=-fˊ(-x) F〞(x)=(-1)2f〞(-x),…,F(k)(x)=(-1)kfk(-x).F(k+1)(x)=(F(k)(x))ˊ=((-1)kf(k)(-x))ˊ=(-1)k+1fk+1(-x).由数学归纳法证明成立,即F(n)(x)=(-1)nfn(-x). 涉及知识点:函数、极限、连续9.设f(x)=xe-x,求fn(x).正确答案:fˊ(x)=e-x+e-x(-1)x =(1-x)e-x =-(x-1)e-xf〞(x)=-e-x+xe-x-e-x =(-1)2(x-2)e-xf’’’(x)=(-1)3(x-3)e-xf(k)(x)=(-1)k(x-k)e-xf(k+1)(x)=((-1)k(x-k)e-x)ˊ=(-1)k[e-x+(x-k)(-e-x)]=(-1)k+1(x-(k+1))e-x由数学归纳法知f(n)(x)=(-1)n(x-n)e-x 涉及知识点:函数、极限、连续10.f(x)在[a,b]上有二阶连续导数,且满足方程f〞(x)+x2fˊ(x)-2f(x)=0,证明:若f(a)=f(b)=0,则f(x)在[a,b]上恒为0.正确答案:若最大值M>0,设f(xM)=M,xM∈(a,b).则由费马定理得f ˊ(xM)=0,又f(xM)为极大值.则f〞(xM)<0,另由题设得f〞(xM)=-x2Mf-(xM)+2f(xM)=2f(xM)=2M>0.(与f〞(xM)<0矛盾)故最大值M≤0.同理可证最小值也必为0,所以f(x)在[a,b]上的最大值M和最小值m都必为零.因为f(a)=f(b)=0,则f(x)在[a,b]上恒为零. 涉及知识点:函数、极限、连续11.求y=ee-x的导数.正确答案:y’=dee-x/de-xde-x/de(-x)=ee-xe-x(-1)=-e-xee-x 涉及知识点:函数、极限、连续12.用区间表示满足下列不等式的所有x的集合:(1)|x|≤3 (2)|x-2|≤1(3)|x-a|<ε(a为常数,ε>0)(4)|x|≥5 (5)|x+1|>2正确答案:利用绝对值的性质先将不等式化简,然后根据区间的定义将不等式转化为与之对应的各种区间的形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章极限与连续[单选题]1、若x0时,函数f(x)为x2的高阶无穷小量,则=()A、0B、C、1D、∞【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】本题考察高阶无穷小.根据高阶无穷小的定义,有.[单选题]2、与都存在是函数在点处有极限的().A、必要条件B、充分条件C、充要条件D、无关条件【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】时,极限存在的充分必要条件为左、右极限都存在并且相等,所以若函数在点处有极限,则必有与都存在.但二者都存在,不一定相等,所以不一定有极限.[单选题]3、().A、B、1C、D、0【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]4、如果则().A、0B、1C、2D、5【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】根据重要极限,[单选题]5、().A、0B、∞C、2D、-2【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】分子分母同除以,即[单选题]6、().A、0B、∞C、2D、-2【从题库收藏夹删除】【您的答案】您未答题【答案解析】[单选题]7、设,则().A、B、2C、D、0【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]8、当时,与等价的无穷小量是().A、B、C、D、【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题由于故与等价,推广,当时,[单选题]9、时,与等价的无穷小量是(). A、B、C、D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】由于,故与等价,推广,当时,[单选题]10、函数的间断点是().A、x=6、x=-1B、x=0、x=6C、x=0、x=6、x=-1D、x=-1、x=0【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】由于,所以的间断点是x=0,x=6,x=-1.[单选题]11、设,则是的().A、可去间断点B、跳跃间断点C、无穷间断点D、连续点【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】,即的左右极限存在且相等,但极限值不等于函数值,故为可去型间断点.[单选题]12、计算(). A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】[单选题]13、计算(). A、B、C、D、1【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]14、().A、1B、﹣1C、2D、﹣2【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]15、下列各式中正确的是().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】A,当时,极限为,错误;B,,错误;C,,错误,D正确. [单选题]16、函数的间断点个数为().A、0B、1C、2D、3【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】在x=0和x=1处,无定义,故间断点为2个. [单选题]17、下列变量在的变化过程中为无穷小量的是()A、B、C、D、arctan x【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】,.[单选题]18、()A、0B、1C、不存在,但不是∞D、∞【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]19、函数,则x=0是f(x)的( )A、可去间断点B、跳跃间断点C、无穷间断点D、连续点【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】故为可去间断点.[单选题]20、().A、-1B、2C、1D、0【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】为有界函数,故原式=. [单选题]21、().A、B、C、D、【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]22、下列极限存在的是().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】当x趋近于0时,为有界函数,故极限存在. [单选题]23、下列变量在的变化过程中为无穷小量的是().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】,,,不存在,[单选题]24、极限=( )A、0B、2/3C、3/2D、9/2【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]25、函数f(x)=的所有间断点是( )A、x=0B、x=1C、x=0,x=-1D、x=0,x=1【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】 x=1时,分母为0,无意义。
x=0时,分子的指数分母为0,无意义。
[单选题]26、极限().A、-∞B、0C、1D、+∞【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】参见教材P48~50.(2015年4月真题)[单选题]27、函数的所有间断点为().A、x=0,x=1B、x=0,x=2C、x=1,x=2D、x=0,x=1,x=2【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】本题考查间断点,由定义可知答案为D。
参见教材P64.(2015年4月真题)[单选题]28、设函数f(x)=2x2,g(x)=sin x,则当x→0时().A、f(x)是比g(x)高阶的无穷小量B、f(x)是比g(x)低阶的无穷小量C、f(x)与g(x)是同阶但非等价的无穷小量D、f(x)与g(x)是等价无穷小量【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】当x→0时,sin x和x是等价无穷小量,2x2是x的高阶无穷小量.所以选择A.参见教材P59~61。
(2014年4月真题)[单选题]29、设函数在x=2处连续,则().A、a=1,b=4B、a=0,b=4C、a=1,b=5D、a=0,b=5【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】在x=2点连续,那么在这一点左右极限相等,且等于该点函数值.所以有3x2-4+a=b=x+2,解得a=0,b=4,选B.参见教材P63~64。
(2014年4月真题)[单选题]30、若函数在x=0处连续,则常数k=().A、1B、2C、3D、4【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】在x=0点连续,因此因此选择D.参见教材P63~64。
(2014年10月真题)[单选题]31、函数的间断点的个数为().A、1B、2C、3D、4【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】解得x=±1.因此选择B.参见教材P64。
(2014年10月真题)[单选题]32、设函数,则为()。
A、不存在B、0C、1D、2【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】。
参见教材P48。
[单选题]33、当时,下列变量为无穷小量的是()。
A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】当时,,,,。
参见教材P59。
[单选题]34、极限=().A、-2B、0C、2D、﹢∞【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】参见教材P48。
[单选题]35、函数的所有间断点是().A、0B、-1C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】根据间断点的定义可知,均是函数的间断点。
参见教材P64。
[单选题]36、极限=().A、0B、1C、2D、3【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】等于最高次项的系数之比。
故选B。
[单选题]37、极限的所有间断点为().A、x=-1B、x=2C、x=2D、x=2,x=3【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】当x=2,x=3时,f(x)没有意义,所以极限的所有间断点为2,3。
故选D。
[单选题]38、极限().A、0B、C、D、∞【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】等于最高次项的系数之比。
故选C。
参见教材P52。
[单选题]39、函数的全部间断点为().A、x=-1及x=4B、x=-1及x=-4C、x=1及x=-4D、x=1及x=4【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】当x=1,x=-4时,f(x)没有意义,所以函数的全部间断点为x=1,x=-4。
故选C。
参见教材P64。
[解答题]40、极限=_________.【从题库收藏夹删除】【正确答案】【您的答案】您未答题【答案解析】[解答题]41、极限_________.【从题库收藏夹删除】【正确答案】 1【您的答案】您未答题【答案解析】。
[解答题]42、讨论函数在x=0处的连续性.【从题库收藏夹删除】【正确答案】,,所以在x=0处连续。
【您的答案】您未答题[解答题]43、设求.【从题库收藏夹删除】【正确答案】故【您的答案】您未答题[解答题]44、计算【从题库收藏夹删除】【正确答案】【您的答案】您未答题[解答题]45、证明方程在区间(0,1)内必有根.【从题库收藏夹删除】【正确答案】设则在[0,1]上连续,当时,当时,即根据零点定理:存在,使得即在区间(0,1)内必有根.【您的答案】您未答题[解答题]46、设,在内连续,求的值.【从题库收藏夹删除】【正确答案】要使在内连续,则保证在和点连续,在处,所以,在处,所以.【您的答案】您未答题[解答题]47、计算极限【从题库收藏夹删除】【正确答案】【您的答案】您未答题[解答题]48、计算【从题库收藏夹删除】【正确答案】此题是0/0型,所以用洛必达法则上下求导得到此题还可以用等价替换来做【您的答案】您未答题[解答题]49、求a的值,使得函数f(x)=在x=0处连续.【从题库收藏夹删除】【正确答案】,所以当时函数f(x) 在x=0处连续.【您的答案】您未答题[解答题]50、求极限.【从题库收藏夹删除】【正确答案】e6【您的答案】您未答题【答案解析】参见教材P55~58.(2015年4月真题)[解答题]51、求常数a的值,使函数在x=0处连续.【从题库收藏夹删除】【正确答案】a=1【您的答案】您未答题【答案解析】当x≠0时,当x=0时,f(x)=a.由于函数在x=0处连续,所以a=1.参见教材P63~64.(2015年4月真题)[解答题]52、求极限.【从题库收藏夹删除】【正确答案】-3【您的答案】您未答题【答案解析】参见教材P59~61.(2015年4月真题)[解答题]53、求极限.【从题库收藏夹删除】【正确答案】【您的答案】您未答题【答案解析】参见教材P48~50。