圆中的计算问题ppt课件
合集下载
圆的标准方程完整ppt课件
解决与圆有关的切线问题
圆的方程可以用来求解与圆有关的切线问题,如切线方程、切点坐 标等。
圆的方程在物理问题中的应用
描述圆形运动轨迹
在物理学中,圆的方程可以用来描述物体做圆周运动时的轨迹。
计算圆形运动的物理量
利用圆的方程,可以计算物体做圆周运动时的线速度、角速度、向 心加速度等物理量。
解决与圆有关的物理问题
切线与半径垂直
切线垂直于经过切点的 半径。
切线长定理
从圆外一点引圆的两条 切线,它们的切线长相
等。
04
圆的方程在实际问题中的应用
圆的方程在几何问题中的应用
确定圆的位置和大小
通过圆的方程,可以准确地确定圆心的坐标和半径的长度,从而 确定圆的位置和大小。
判断点与圆的位置关系
利用圆的方程,可以判断一个点是否在圆上、圆内或圆外,从而解 决相关的几何问题。
3
解决与圆有关的经济问题
圆的方程还可以用来解决一些与圆有关的经济问 题,如圆形区域的经济发展、圆形市场的竞争等 。
05
圆的方程与其他知识点的联系
圆的方程与直线方程的关系
直线与圆的位置关系
通过比较圆心到直线的距离与半径的大小关系,可以确定直线与 圆是相切、相交还是相离。
切线方程
当直线与圆相切时,切线的斜率与圆心和切点的连线垂直,由此 可以求出切线的方程。
根据两点间距离公式,有 $OP = sqrt{(x - a)^{2} + (y
- b)^{2}}$。
将 $OP = r$ 代入上式,得到 $(x - a)^{2} + (y - b)^{2} =
r^{2}$。
方程中参数的意义
$a, b$
01
圆心坐标,表示圆心的位置。
圆的方程可以用来求解与圆有关的切线问题,如切线方程、切点坐 标等。
圆的方程在物理问题中的应用
描述圆形运动轨迹
在物理学中,圆的方程可以用来描述物体做圆周运动时的轨迹。
计算圆形运动的物理量
利用圆的方程,可以计算物体做圆周运动时的线速度、角速度、向 心加速度等物理量。
解决与圆有关的物理问题
切线与半径垂直
切线垂直于经过切点的 半径。
切线长定理
从圆外一点引圆的两条 切线,它们的切线长相
等。
04
圆的方程在实际问题中的应用
圆的方程在几何问题中的应用
确定圆的位置和大小
通过圆的方程,可以准确地确定圆心的坐标和半径的长度,从而 确定圆的位置和大小。
判断点与圆的位置关系
利用圆的方程,可以判断一个点是否在圆上、圆内或圆外,从而解 决相关的几何问题。
3
解决与圆有关的经济问题
圆的方程还可以用来解决一些与圆有关的经济问 题,如圆形区域的经济发展、圆形市场的竞争等 。
05
圆的方程与其他知识点的联系
圆的方程与直线方程的关系
直线与圆的位置关系
通过比较圆心到直线的距离与半径的大小关系,可以确定直线与 圆是相切、相交还是相离。
切线方程
当直线与圆相切时,切线的斜率与圆心和切点的连线垂直,由此 可以求出切线的方程。
根据两点间距离公式,有 $OP = sqrt{(x - a)^{2} + (y
- b)^{2}}$。
将 $OP = r$ 代入上式,得到 $(x - a)^{2} + (y - b)^{2} =
r^{2}$。
方程中参数的意义
$a, b$
01
圆心坐标,表示圆心的位置。
28.3.3圆中的计算问题 课件 华师大版数学九年级下册
圆心角占整个周角的 所对扇形面积是
1800
180 360
180 2 r 360 90 2 r 360
45 2 r 360
900
90 360
45 360 n 360
450
n0
n 2 r 360
结论:
如果扇形面积为s,圆心角度数为n,圆半 径是r,那么 ,扇形面积计算公式为
Q
28.3圆中的计算问题
28.3.1弧长和扇形的面积
知识回顾
圆的周长公式 o
r
p
C=2πr
圆的面积公式
2 S=πr
问题情景:
如图28.3.1是圆弧形状的铁轨示意图,其中 铁轨的半径为100米,圆心角为90°.你能求出 这段铁轨的长度吗?
zxxk
解:∵圆心角900
1 图 28.3.1 ∴铁轨长度是圆周长的 4 1 则铁轨长是 2 100 50米
4
问题探究
上面求的是圆心角为900所对的弧长,若圆 心角为n0,如何计算它所对的弧长呢?
思考:
请同学们计算半径为 r,圆心角分别为1800、 900、450、n0所对的弧长.
图 28.3.2
圆心角占整个周角的
1800
所对弧长是
180 360 90 360 45 360 n 360
180 2r 360 90 2r 360 45 2r 360
c 2r l
l s n r 2 或s 1 lr 扇 形 面 积 S 360 2 n° r O
扇形周长计算公式为
z、xxk
c 2r l
一、弧长的计算公式
n nr l 2r 360 180
二、扇形面积计算公式
圆方程ppt课件ppt课件
03
圆的方程的应用
解析几何中的应用
确定点与圆的位置关系
通过圆的方程,可以判断一个点是否在圆上、 圆内或圆外。
求解圆的切线方程
利用圆的方程,可以求出过某一点的圆的切线 方程。
求解圆心和半径
根据圆的方程,可以求出圆心的坐标和半径的长度。
几何图形中的应用
判断两圆的位置关系
通过比较两个圆的方程,可以判断两圆是相交、相切还是相 离。
03
frac{E}{2})$ 和半径 $frac{sqrt{D^2 + E^2 - 4F}}{2}$。
圆的参数方程
圆的参数方程为 $x = a + rcostheta$,$y = b + rsintheta$,其中 $(a, b)$ 是圆 心坐标,$r$ 是半径,$theta$ 是 参数。
该方程通过参数 $theta$ 描述了 圆上任意一点的坐标。
$(x - h)^{2} + (y - k)^{2} = r^{2}$ ,其中$(h, k)$是圆心坐标,$r$是半 径。
不在同一直线上的三个点可以确定一 个圆,且该圆只经过这三个点。
圆的基本性质
1 2
圆的对称性
圆关于其直径对称,也关于经过其圆心的任何直 线对称。
圆的直径与半径的关系
直径是半径的两倍,半径是直径的一半。
该方程描述了一个以 $(h, k)$ 为圆心,$r$ 为
半径的圆。
当 $r = 0$ 时,方程描 述的是一个点 $(h, k)$。
圆的一般方程
01
圆的一般方程为 $x^2 + y^2 + Dx + Ey + F = 0$。
02
该方程可以表示任意一个圆,其中 $D, E, F$ 是常数。
《圆的面积计算公式的应用》PPT课件 西师大版六年级数学
=3.14×64 =200.96(平方米)
答:这个草坪的面积是200.96平方米。
返回
圆的面积计算公式的应用
课堂小结
这节课你们都学会了哪些知识?
运用圆的面积计算公式S=πr2解决生活中 的实际问题。 环形的面积等于外圆面积减去内圆面积。 用S表示环形的面积,环形的面积公式是 S=πR2-πr2或S=π(R2-r2)。
圆西的师面大积版计算数公学式的六应年用级 上册
2圆
圆的面积计算公式的应用
课前导入
探究新知
课堂练习
课堂小结
课后作业
返回
圆的面积计算公式的应用
课前导入
你还记得圆的面积的意义和计 算公式吗? 圆所占平面的大小或圆形物体表面 的大小就是圆的面积。 圆的面积计算公式:S=πr2。
返回
圆的面积计算公式的应用
探究新知
修建一个半径是30m的圆形鱼池,它的占地面积 例 3 是多少平方米?
S=πr2 3.14×302 =3.14×900 =2826(m2) 答:它的占地面积是2826m2。
返回
圆的面积计算公式的应用
量得一张圆桌的周长是3.14m。这张圆桌的面积 例 4 是多少平方米?
思路分析:
圆桌的 周长
C
提示:以正方形的边长为圆的直径。
返回Biblioteka 圆的面积计算公式的应用3.公园草地上的自动旋转喷水器的 射程是8m。它能喷洒的面积是多少 平方米? 半径的长度
3.14×82 =200.96(平方米)
答:它能喷洒的面积是200.96平方米。
返回
圆的面积计算公式的应用
4.一个圆形水缸口的外直径为1m。现在为这个水缸做 一个盖子,这个盖子的面积至少是多少平方米?
答:这个草坪的面积是200.96平方米。
返回
圆的面积计算公式的应用
课堂小结
这节课你们都学会了哪些知识?
运用圆的面积计算公式S=πr2解决生活中 的实际问题。 环形的面积等于外圆面积减去内圆面积。 用S表示环形的面积,环形的面积公式是 S=πR2-πr2或S=π(R2-r2)。
圆西的师面大积版计算数公学式的六应年用级 上册
2圆
圆的面积计算公式的应用
课前导入
探究新知
课堂练习
课堂小结
课后作业
返回
圆的面积计算公式的应用
课前导入
你还记得圆的面积的意义和计 算公式吗? 圆所占平面的大小或圆形物体表面 的大小就是圆的面积。 圆的面积计算公式:S=πr2。
返回
圆的面积计算公式的应用
探究新知
修建一个半径是30m的圆形鱼池,它的占地面积 例 3 是多少平方米?
S=πr2 3.14×302 =3.14×900 =2826(m2) 答:它的占地面积是2826m2。
返回
圆的面积计算公式的应用
量得一张圆桌的周长是3.14m。这张圆桌的面积 例 4 是多少平方米?
思路分析:
圆桌的 周长
C
提示:以正方形的边长为圆的直径。
返回Biblioteka 圆的面积计算公式的应用3.公园草地上的自动旋转喷水器的 射程是8m。它能喷洒的面积是多少 平方米? 半径的长度
3.14×82 =200.96(平方米)
答:它能喷洒的面积是200.96平方米。
返回
圆的面积计算公式的应用
4.一个圆形水缸口的外直径为1m。现在为这个水缸做 一个盖子,这个盖子的面积至少是多少平方米?
初中数学圆ppt课件
谢谢聆听
总结词
圆内接四边形定理是关于圆内接四边形的性质和定理。
详细描述
圆内接四边形定理指出,对于圆内接四边形,其对角之和为180°。具体来说, 如果一个四边形所有顶点都在同一个圆上,则其对角之和为180°。这个定理在 解决与圆有关的几何问题时非常有用。
弦定理和切线定理
要点一
总结词
弦定理和切线定理是关于圆的弦和切线的性质和定理。
圆的周长计算公式为C=2πr,其中r为 圆的半径,π是一个常数约等于 3.14159。这个公式用于计算圆的周 长,对于解决与圆相关的实际问题非 常重要。
圆面积和周长的应用
总结词
圆面积和周长的应用广泛,需结合实际问题理解
详细描述
圆面积和周长的应用非常广泛,例如在计算圆的面积时,可以解决与圆相关的几何问题 ,如计算圆的面积、周长、半径等;在计算圆的周长时,可以解决与圆相关的实际问题 ,如计算圆的周长、直径等。此外,圆面积和周长的应用还涉及到日常生活、工程、科
03 圆的面积和周长
圆的面积计算公式
总结词
掌握圆的面积计算公式是学习圆的基 础
详细描述
圆的面积计算公式为A=πr^2,其中r 为圆的半径,π是一个常数约等于 3.14159。这个公式是圆的面积计算 的基石,需要学生熟练掌握。
圆的周长计算公式
总结词
理解圆的周长计算公式有助于解决相 关问题
详细描述
同圆或等圆中,相等的 弦所对的弧相等。
直径的性质
同圆或等圆中,相等的 直径所对的圆周角相等 。
圆的分类
根据半径和直径的比 例划分:可分为等圆 、半圆、不同比例的 圆。
根据是否有中心划分 :可分为有中心圆的 和无中心圆的。
根据是否在同一平面 内划分:可分为共面 圆和异面圆。
第五章圆第6节解决问题课件(15张PPT)
(3)圆的半径越大,圆的面积就越大。
(√ )
巩固扩大
2.(教材P70页做一做)右图是一面我国唐代外圆内 方的铜镜。铜镜的直径是24cm。外面的圆与内部 的正方形之间的面积是多少?
3.14×(24÷2)2= 452.16(cm)2 (24÷2)2÷2×4=288(cm)2 452.16-288=164.16(cm)2
互动新授
3
中国建筑中经常能见到“外方内圆”和 “外圆内方”的设计。上图中的两个圆半径都 是1m,你能求出正方形和圆之间部分的面积吗?
互动新授
理解题意
图序 已知条件 图(1) 外方内圆
圆半径1m
图(2) 外圆内方 圆半径1m
问题 方圆之间的面积
方圆之间的面积
互动新授
解法探究
右图中正方形的边长就是圆的直径。 (1)列式计算 从图(1)可以看出:2×2=4(m2)
复习导入
1.根据已知条件求圆的面积。 (1)r =2dm (2) d =6cm (3)C=6.28m
3.14×22 =12.56(dm2) 3.14×(6÷2)2 =28.26(cm2) 3.14×(6.28÷3.14÷2)2 = 3.14(m2)
复习导入
2.求圆环的面积。(单位:cm) 6÷2=3(cm) 4÷2=2(cm) 3.14×(32-22)=15.7(cm2)
3.14×12=3.14(m2)4-3.14=0.86(m2)
互动新授
可是右图中正方形 的边长是多少呢?
从图(2)可以看出: (1 ×2×1)×2=2(m2)
2 3.14-2=1.14(m2)
可以把右图中的正方形 看成两个三角形,它的 底和高分别是……
互动新授
如果两个圆的半径都是 r,结果又是怎样的?
课题:27.3圆中的计算问题(第2课时圆锥的侧面积和全面积)
B O
A
学 以 致 用
2.将一块弧长为的半圆形铁皮围成一个圆锥(接头忽略不计), 则围成的圆锥的高为( B ) 5 3 A、 3 B、 C、 5 D、 2 2
学以致用
例 3 如图,用一张半径为24cm的扇形纸板制作一顶圆锥形帽子(接缝
忽略不计),如果圆锥形帽子的底面半径为10cm,那么这张扇形纸板的 面积是( A ) A、 B、 480cm 2 240cm 2
温故知新
温故知新
圆锥是由一个底面和一个侧面围成的几何体。底面是个圆, 侧面是个曲面。
探究发现
(Ⅰ)圆锥的母线: 把连结圆锥顶点和底面圆周上的任意一点的线段叫做圆锥的母线, 记作l.注意:圆锥的母线有无数条哟! (Ⅱ)圆锥的高: 连结顶点和底面圆心的线段叫做圆锥的高,记作h.
探究发现
问题:圆锥的底面半径、高线、母线长三者之间有何数量关系?
学以致用
例 2 若用一张直径为20cm的半圆形铁皮做一个圆锥的侧面,接缝忽略不
计,则所得圆锥的高为( A、 5 3cm A )
5 15 C、 cm 2
B、 5 5cm
D、 10cm
10
5 3
20
5 2r 10 r 5
数 学 活 动 室
1.如图,半径是10cm圆纸片,剪去一个圆心角是120°的扇形(图 中的阴影部分),用剩余部分围成一个圆锥,求圆锥的高和底面圆 的半径。
h
l 2 h2 r 2
r
如:已知一个圆锥的高为6cm,半径为8cm,则这个圆锥的母线长为 10cm
探究发现
问题:请将准备的圆锥模型沿着母线剪开,观察圆锥的侧面展开图。
通过刚才 的操作, 你有何收 获呢?
S
哇噻!是 一个扇形 哟!
A
学 以 致 用
2.将一块弧长为的半圆形铁皮围成一个圆锥(接头忽略不计), 则围成的圆锥的高为( B ) 5 3 A、 3 B、 C、 5 D、 2 2
学以致用
例 3 如图,用一张半径为24cm的扇形纸板制作一顶圆锥形帽子(接缝
忽略不计),如果圆锥形帽子的底面半径为10cm,那么这张扇形纸板的 面积是( A ) A、 B、 480cm 2 240cm 2
温故知新
温故知新
圆锥是由一个底面和一个侧面围成的几何体。底面是个圆, 侧面是个曲面。
探究发现
(Ⅰ)圆锥的母线: 把连结圆锥顶点和底面圆周上的任意一点的线段叫做圆锥的母线, 记作l.注意:圆锥的母线有无数条哟! (Ⅱ)圆锥的高: 连结顶点和底面圆心的线段叫做圆锥的高,记作h.
探究发现
问题:圆锥的底面半径、高线、母线长三者之间有何数量关系?
学以致用
例 2 若用一张直径为20cm的半圆形铁皮做一个圆锥的侧面,接缝忽略不
计,则所得圆锥的高为( A、 5 3cm A )
5 15 C、 cm 2
B、 5 5cm
D、 10cm
10
5 3
20
5 2r 10 r 5
数 学 活 动 室
1.如图,半径是10cm圆纸片,剪去一个圆心角是120°的扇形(图 中的阴影部分),用剩余部分围成一个圆锥,求圆锥的高和底面圆 的半径。
h
l 2 h2 r 2
r
如:已知一个圆锥的高为6cm,半径为8cm,则这个圆锥的母线长为 10cm
探究发现
问题:请将准备的圆锥模型沿着母线剪开,观察圆锥的侧面展开图。
通过刚才 的操作, 你有何收 获呢?
S
哇噻!是 一个扇形 哟!
《已知圆的直径求面积》圆的周长和面积PPT 图文
我幸,今生在最美的时光遇见了你。张 爱玲说 ,因为 爱了, 所以慈 悲。因 为懂得 ,所以 宽容。 总有那 么一个 人,即 便全世 界都不 爱你, 也会为 你低眉 ,为你 垂泪, 为你留 一盏温 暖的灯 ,默默 守护在 你身旁 ,在清 浅的时 光里, 陪你看 草长莺 飞,陪 你数散 落星辰 !
因为有缘,你我同住同修,同见同知, 相互依 靠,相 互取暖 。生死 契阔, 与子成 说;执子 之手, 与子携 老。爱 ,最长 情的告 白,不 是千万 句“我 爱你” ,也不 是春花 秋月前 的山盟 海誓, 天长地 久。而 是愿意 用其一 生的光 阴来陪 伴你, 来包容 你!即 便在寡 味的日 子里, 也会用 爱去 浇灌, 用心去 呵护, 为你种 出一朵 妖艳之 花,㶷 烂至极 。
=2826(cm²) =6358.5(cm²) 3.14 ×(110÷2)2
=9498.5(cm²)
4.餐厅圆桌的直径是1.6米,把它用一块 圆形桌布盖上(如下图)。这块桌布的 面积是多少?桌布周边的花边是多少?
5.在一张边长是1分米的正方形彩纸上剪 下一个最大的圆。这个圆形彩纸的面积 是多少平方厘米?
已知圆的直径求面积
教学目标
1、结合具体事例,经历灵活运用圆的面积公式 解决简单实际问题的过程。 2、掌握已知直径求面积的计算方法,能解决生 活中简单的实际问题。 3、感受数学与生活的密切联系,增强学生的应 用意识,提高运用知识解决实际问题的能力。
1.圆的周长和面积公式是什么?
2.计算。
(1)花坛的半径是10米,这个花坛的 面积是多少平方米?
(2)花坛的直径是20米,这个花坛的 面积是多少平方米?
某公司要在办公大楼前建一个圆形 草坪。
算一算:需要多少平方米草皮?(得 数保留整数)
第40讲 与圆有关的计算与证明题 课件(共74张ppt) 2024年中考数学总复习专题突破.ppt
复习讲义
(2)若 = 5 , cos ∠ =
4
,求 的长.
5
∘
解: ∵ ∠ = 90∘ , ∴ ∠ + ∠ = 90 .
由(1)知, = 2 = 10 , ∠ = 90∘ ,
∴ ∠ + ∠ = 90∘ .
图3
∴ ∠ = ∠.
4
.
5
∴ cos = cos ∠ =
复习讲义
(2)若 = 10 , = 12 , = 2 ,求 ⊙ 的半径.
思路点拨 由(1)知 ⊥ ,因此可在 Rt △
中利用勾股定理列方程求解.
解: ∵ = , ⊥ , ∴ = =
1
2
= 6.
图1
∴ = 2 − 2 = 102 − 62 = 8.
∴ = 6 .
目录导航
9
第40讲 与圆有关的计算与证明题
复习讲义
2.(2022·鄂尔多斯)如图3,以 为直径的
⊙ 与 △ 的边 相切于点 ,且与 边
交于点 ,点 为 的中点,连接 , ,
.
(1)求证: 是 ⊙ 的切线.
1.(2022·衡阳)如图2, 为 ⊙ 的直径,过圆上一
点 作 ⊙ 的切线 交 的延长线于点 ,过点
作 // 交 于点 ,连接 .
(1)直线 与 ⊙ 相切吗?请说明理由.
图2
目录导航
7
第40讲 与圆有关的计算与证明题
复习讲义
解:直线 与 ⊙ 相切.
, 的点,连接 , ,点 在 的延长线
上,且 ∠ = ∠ ,点 在 的延长线上,
与圆有关的定点定值问题(共70张PPT )
,
消去参数m,得2 x y 6 0,
圆心在定直线2 x y 6 0上.
Q 直线l经过点(1,1),对任意实数m, 定直线l被圆C (半径为3)截得的弦长为 定值,则圆心C到直线l的距离为定值. 直线l //圆心C所在直线. 设l方程为2 x y c 0, 将(1,1)代入, 得c 1,故直线l方程为2 x y 1 0.
问题转化为求点D到点O 距离的最大值.
AB 2 3, AC 2,结合垂径定理和勾股 定理可得CD 1.故动点D在 以C(3, 0)为圆心,1为半径的 圆( x 3)2 y2 1上运动. 则ODmax OC 1 4,
uuur uuur OA OB 的最大值为8.
变式:在平面直角坐标系xoy中,圆C的 方程为( x 1)2 y2 4, P为圆C上一点, 若存在一个定圆M,过P作圆M的两条 切线PA,PB,切点分别为A, B,当P 在圆C上运动时,使得APB恒为600, 则圆M的方程为_____________
联立解得
x y
0或 0
பைடு நூலகம்
x y
4 5, 2 5
怎样验证
故猜想定点为(0, 0),( 4 , 2),下面验证: 55
将点(0, 0),( 4 , 2)代入 55
x2 y2 2mx (m 2) y 2m 0都符合,
所以圆过两个定点(0, 0),( 4 , 2). 55
法2.将已知圆方程关于参数m整理 恒等式
右侧,圆M被y轴截得的弦长为 3r.若对 任意正常数r , 定直线l与圆M 相切,则定直 线l的方程为___________________
解析:设圆心M (a, b), 利用M 在线段AB的 垂直平分线上,从而 MA = MB ,结合M 在
《运用圆的周长公式解决实际问题》圆的周长和面积PPT课件
运用圆的周长公式解 决实际问题
教学目标
1、结合具体事例,经历灵活运用圆周长公式解 决实际问题的过程。 2、能灵活运用圆周长公式解决简单的实际问题 ,能表达解决问题的思路和方法。 3、了解现实生活中有许多与圆周长有关的问题 ,获得运用知识解决问题的成功体验。
1、圆的周长公式是什么?
2、圆周率π一般取值是多少?
87、活鱼会逆流而上,死鱼才会随波 逐流。 88、钕人总是把男人的谎言当作誓言 去信守 。
89、任何业绩的质变都来自于量变的 积累。 90、要战胜恐惧,而不是退缩。
91、推销产品要针对顾客的心,不要 针对顾 客的头 。 92、无论做什么,记得是为自己而做 ,那就 毫无怨 8、相信所有的汗水与眼泪,最后会化 成一篇 山花烂 漫。
3、计算圆的周长。 (1)d=3厘米 (2)r=8分米
一个圆形花坛的周长是17.27米。它的 直径是多少?
说一说,你都发现了哪些信息?
已知花坛的周长,怎样求它的直径?
方法一: 因为C= πd
所以直径=17.27÷3.14 =5.5(米)
答:花坛的直径是5.5米。
方法二:
解:设花坛的直径是 x 米。
53、勇士搏出惊涛骇流而不沉沦,懦 夫在风 平浪静 也会溺 水。 54、好好管教自己,不要管别人。
55、人的一生没有一帆风顺的坦途。 当你面 对失败 而优柔 寡断, 当动摇 自信而 怨天尤 人,当 你错失 机遇而 自暴自 弃的时 候你是 否会思 考:我 的自信 心呢? 其实, 自信心 就在我 们的心 中。 56、失去金钱的人损失甚少,失去健 康的人 损失极 多,失 去勇气 的人损 失一切 。 57、暗自伤心,不如立即行动。
83、一时的忍耐是为了更广阔的自由 ,一时 的纪律 约束是 为了更 大的成 功。 84、在你不害怕的时间去斗牛,这不 算什么 ;在你 害怕时 不去斗 牛,也 没有什 么了不 起;只 有在你 害怕时 还去斗 牛才是 真正了 不起。
教学目标
1、结合具体事例,经历灵活运用圆周长公式解 决实际问题的过程。 2、能灵活运用圆周长公式解决简单的实际问题 ,能表达解决问题的思路和方法。 3、了解现实生活中有许多与圆周长有关的问题 ,获得运用知识解决问题的成功体验。
1、圆的周长公式是什么?
2、圆周率π一般取值是多少?
87、活鱼会逆流而上,死鱼才会随波 逐流。 88、钕人总是把男人的谎言当作誓言 去信守 。
89、任何业绩的质变都来自于量变的 积累。 90、要战胜恐惧,而不是退缩。
91、推销产品要针对顾客的心,不要 针对顾 客的头 。 92、无论做什么,记得是为自己而做 ,那就 毫无怨 8、相信所有的汗水与眼泪,最后会化 成一篇 山花烂 漫。
3、计算圆的周长。 (1)d=3厘米 (2)r=8分米
一个圆形花坛的周长是17.27米。它的 直径是多少?
说一说,你都发现了哪些信息?
已知花坛的周长,怎样求它的直径?
方法一: 因为C= πd
所以直径=17.27÷3.14 =5.5(米)
答:花坛的直径是5.5米。
方法二:
解:设花坛的直径是 x 米。
53、勇士搏出惊涛骇流而不沉沦,懦 夫在风 平浪静 也会溺 水。 54、好好管教自己,不要管别人。
55、人的一生没有一帆风顺的坦途。 当你面 对失败 而优柔 寡断, 当动摇 自信而 怨天尤 人,当 你错失 机遇而 自暴自 弃的时 候你是 否会思 考:我 的自信 心呢? 其实, 自信心 就在我 们的心 中。 56、失去金钱的人损失甚少,失去健 康的人 损失极 多,失 去勇气 的人损 失一切 。 57、暗自伤心,不如立即行动。
83、一时的忍耐是为了更广阔的自由 ,一时 的纪律 约束是 为了更 大的成 功。 84、在你不害怕的时间去斗牛,这不 算什么 ;在你 害怕时 不去斗 牛,也 没有什 么了不 起;只 有在你 害怕时 还去斗 牛才是 真正了 不起。
《圆——圆的周长》数学教学PPT课件(4篇)
探究新知
探究三: 找3个大小不同的圆片,分别测量出周长和直径,做一 做,填一填。
观察上表,你能发现圆的周长与直径有什么关系吗? 圆的周长总是直径的3倍多一些。
探究新知
探究三: 找3个大小不同的圆片,分别测量出周长和直径,做一 做,填一填。
观察上表,你能发现圆的周长与直径有什么关系吗? 实际上,圆的周长除以直径的商是一个固定的数,我们把它叫 作圆周率,用字母π表示,计算时通常取3.14。
2 判断题。(打“√”)
1、通过圆心,并且两端都在圆上的线段叫做直
径。 ( √ ) 2、圆的直径等于半径的2倍。(×)
3、圆的所有半径都相等,所有的直径也相等。
(√ )
4、两端在圆上的线段,直径最长。( √ )
5、两个圆的周长相等,这两个圆的直径也一定
相等。 ( √ ) 6、大圆的圆周率大,小圆的圆周率小。( × )
六年级上册
圆的周长
情境导入 人们很早就发现,轮子越大,滚一圈就越远。
你有什么发现?
车轮滚动一圈的长度就是它的周长。
本节目标
1、在观察、操作、测量等活动中,经历探索圆周率以及总结圆周长公式 的过程。 2、认识圆周率,理解并掌握圆的周长公式,能运用周长公式正确进行计 算。 3、体验数学与日常生活的密切联系,了解圆周率的探索历史,激发民族 自豪感。
随堂检测
1、画一个直径为10cm的圆。 (1)想一想,怎样得到它的周长? (2)把圆剪下来,量一量。 (3)多量几次,算出测量结果的平均数。
随堂检测
2、看图思考下面的问题,然后填空。
正方形的周长是圆的直径的(4 )倍,所以一定小于( 4 )。
随堂检测
3、妙想要为半径是3cm的圆形小镜子围一圈丝带,她现在有18cm长的丝 带,估一估,够吗?
23.3.1-圆中的计算问题-弧长与扇形面积新
4
,
∴铁轨的长度l ≈ 2 3.14100 =157.0(米)
4
思考(一) 图23.3.2中各圆心角所对的弧长分别是
圆周长的几分之几?
图 23.3.2
探索(一)
1、圆心角是180°,占整个周角的1138600 ,因 此它所对的弧长是圆周长_____2_____;
2、圆 此心 它角所是对的90弧°长,是占圆整周个长周的角_的_14__39_6040_5,___因_; 345、 、 、圆 此 圆 此 圆心 它 心 它 心角所角所角是对是对是41的的n°5°弧弧°占,长 长,整占是 是占个整圆 圆整周个周 周个角周长 长周的角的 的角_的__的___81_____3_3_6n____610_____03____6,_n0___3__因__61,,__0__因因;;
此它所对的弧长是圆周长的_____3_6_0___;
思考(二)
如果弧长为 ,l圆心角度数
为n,圆的半径为r,你能用n,r
表示弧长 l吗?
弧长的计算公式: r
l=
n 360
·2
r
=
nr
180
图 23.3.2
注意
(1)在应用弧长公式l nR , 进行计算
时,要注意公式中n的意义1.80n表示1°圆心 角的倍数,它是不带单位的;
如图,水平放置的一个油管的横截 面半径为12cm,其中有油的部分油面 高6cm,求截面上有油部分的面积(结 果精确到0.1cm2).
O
A
B
如图,两个同心圆被两条半径截得的 AB的长为6,CD的长为10,AC=12, 求阴影(红色)部分ABDC的面积.
C
A
O
BD
例3
已知:圆环的外圆周长 C1 250 cm,内圆周长 C2 150 cm, 求圆环的宽度 d(精确到1mm)
,
∴铁轨的长度l ≈ 2 3.14100 =157.0(米)
4
思考(一) 图23.3.2中各圆心角所对的弧长分别是
圆周长的几分之几?
图 23.3.2
探索(一)
1、圆心角是180°,占整个周角的1138600 ,因 此它所对的弧长是圆周长_____2_____;
2、圆 此心 它角所是对的90弧°长,是占圆整周个长周的角_的_14__39_6040_5,___因_; 345、 、 、圆 此 圆 此 圆心 它 心 它 心角所角所角是对是对是41的的n°5°弧弧°占,长 长,整占是 是占个整圆 圆整周个周 周个角周长 长周的角的 的角_的__的___81_____3_3_6n____610_____03____6,_n0___3__因__61,,__0__因因;;
此它所对的弧长是圆周长的_____3_6_0___;
思考(二)
如果弧长为 ,l圆心角度数
为n,圆的半径为r,你能用n,r
表示弧长 l吗?
弧长的计算公式: r
l=
n 360
·2
r
=
nr
180
图 23.3.2
注意
(1)在应用弧长公式l nR , 进行计算
时,要注意公式中n的意义1.80n表示1°圆心 角的倍数,它是不带单位的;
如图,水平放置的一个油管的横截 面半径为12cm,其中有油的部分油面 高6cm,求截面上有油部分的面积(结 果精确到0.1cm2).
O
A
B
如图,两个同心圆被两条半径截得的 AB的长为6,CD的长为10,AC=12, 求阴影(红色)部分ABDC的面积.
C
A
O
BD
例3
已知:圆环的外圆周长 C1 250 cm,内圆周长 C2 150 cm, 求圆环的宽度 d(精确到1mm)
人教版六年级上册数学课件 圆 第6课时 解决实际问题 (共14张PPT)
人教版数学六年级上册 第五单元
解决实际问题
复习导入
探究新知
基础练习
拓展练习
课堂小结
数学阅读
复习导入
1. 一个圆的周长是12.56 cm,求它的半径。 12.56÷3.14÷2=2(cm)
2. 一个圆形茶几面的半径是3 dm ,它的面积是多少平方 分米? 3.14×3²=28.26(dm²)
3.右图是一个标准的半圆,它的直径是5 cm。你 能算出它的面积和周长吗?
上图中两个圆的半径都是 1m,怎样求正方形和圆之 间部分的面积呢?
左图求的是正方形比圆多的 面积,右图求的是……
探究新知
画成平面图形
r=1m
图(1)
从图(1)可以看出什么?
从图(1)可以看出:正方形的边长是圆的直径。
正方形的面积=2×2=4(m²) 圆的面积=3.14×1²=3.14(m²)
阴影部分的面积=4-3.14=0.86(m²)
探究新知
画成平面图形
r=1m
图中正方 形的边长 是多少呢?
直接用边长乘边长,看来 是行不通,那怎么才能求 出正方形的面积呢?
图(2)
可以把图中的正方形看成两个三 角形,它的底和高分别是……
1 ( 2 ×2×1)×2=2(m²)
三角形面积
正方形面积
3.14-2=1.14(m²)
探究新知
提醒:我们在用这两个公式时,必须先写出推导过程,再代入数字计 算才算正确。
方法一: 正方形面积:
圆的面积:
之间面积:
方法二: 正方形面积= 2r×2r=4 r²
圆的面积=πr²
正方形面积-圆的面积=4r²-πr²=(4- π ) r² =0.86 r² d=20 r=10
解决实际问题
复习导入
探究新知
基础练习
拓展练习
课堂小结
数学阅读
复习导入
1. 一个圆的周长是12.56 cm,求它的半径。 12.56÷3.14÷2=2(cm)
2. 一个圆形茶几面的半径是3 dm ,它的面积是多少平方 分米? 3.14×3²=28.26(dm²)
3.右图是一个标准的半圆,它的直径是5 cm。你 能算出它的面积和周长吗?
上图中两个圆的半径都是 1m,怎样求正方形和圆之 间部分的面积呢?
左图求的是正方形比圆多的 面积,右图求的是……
探究新知
画成平面图形
r=1m
图(1)
从图(1)可以看出什么?
从图(1)可以看出:正方形的边长是圆的直径。
正方形的面积=2×2=4(m²) 圆的面积=3.14×1²=3.14(m²)
阴影部分的面积=4-3.14=0.86(m²)
探究新知
画成平面图形
r=1m
图中正方 形的边长 是多少呢?
直接用边长乘边长,看来 是行不通,那怎么才能求 出正方形的面积呢?
图(2)
可以把图中的正方形看成两个三 角形,它的底和高分别是……
1 ( 2 ×2×1)×2=2(m²)
三角形面积
正方形面积
3.14-2=1.14(m²)
探究新知
提醒:我们在用这两个公式时,必须先写出推导过程,再代入数字计 算才算正确。
方法一: 正方形面积:
圆的面积:
之间面积:
方法二: 正方形面积= 2r×2r=4 r²
圆的面积=πr²
正方形面积-圆的面积=4r²-πr²=(4- π ) r² =0.86 r² d=20 r=10
圆的周长计算练习ppt课件
8、小东有一辆自行车,车轮的直径大约60厘米, 如果平均每分钟转100周,从家到学校的路程是 3768米,大约需要多少分钟?
9、
经过45分钟呢?
1、一辆压路机前轮直径 1.2米,每分钟滚动6周。 1小时能前进多少米?
2、一个运动场如下图,两端是半圆形,中间 是长方形。这个运动场的周长是多少米?
4、
3.768m,
5、用一根1.884米长的铁条弯成一径是15米,要用多 长的铁丝才能把牛栏围上3圈?(接头处 忽略不计)
如果每隔2米装一根木桩,大约要装多少根木桩?
7、一个圆形花坛的直径是20米,小明的 自行车车轮的直径是50厘米,绕花坛一 周车轮大约要转多少周?
100m
20m
运动场的周长=圆的周长+2条长
3、求下面半圆形的周长
d=8厘米
半圆形的周长=圆周长的一半+直径
4、 0
圆的直径=正方形的边长
5、看图计算 r=2cm
正方形的周长是多少厘米?
r=1.5cm 长方形的周长是多少厘米?
6、计算下面图形的周长 d=4dm 4dm 4dm
7、
这个图形的周长 = 大圆周长的一半 + 1个小圆周长
1、口答。
1π =3.14 4π =12.56 7π =21.98 10π =314
2π =6.28 3π 5π =15.7 6π 8π =25.12 9π
=9.42 =18.84 =28.26
2、求出下面各圆的周长。
2cm
4dm
3、一个挂钟秒针长10cm,秒 针转动一圈尖端走过的路程 是多少?
《圆的认识》圆PPT优秀教学课件
04
圆的综合应用举例
求解切线方程问题
切线定义及性质
典型例题解析
回顾切线定义,阐述切线与半径垂直 的性质。
选取具有代表性的切线方程问题,详 细解析求解过程。
切线方程求解方法
通过圆心坐标和切线斜率,利用点斜 式或斜截式求解切线方程。
求解切线长问题
切线长定义及性质
回顾切线长定义,阐述切线与半 径、切线长与弦长的关系。
圆心、半径和直径
01
02
03
圆心
圆的中心,用字母O表示。
半径
连接圆心和圆上任意一点 的线段,用字母r表示。
直径
通过圆心且两端点都在圆 上的线段,用字母d表示, 且d=2r。
圆的周长与面积
圆的周长
围绕圆形绘制的线的长度,计算公 式为C=2πr或C=πd。
圆的面积
圆形所占平面的大小,计算公式为 S=πr²。
半径
03
一般方程中,半径$r=frac{sqrt{D^{2}+E^{2}-4F}}{2}$。
圆的参数方程
01 02
定义
以点$O(a,b)$为圆心,$r$为半径的圆的参数方程为 $left{ begin{array}{l} x=a+rcostheta y=b+rsintheta end{array} right.$,其中$theta$为参数。
求解割线性质问题
割线性质概述
总结割线的性质,如割 线与半径的关系、割线 定理等。
割线性质应用
利用割线性质解决与圆 相关的角度、长度等问 题。
典型例题解析
选取具有代表性的割线 性质问题,详细解析求 解过程。
05
与圆相关的数学问题拓展
点到直线距离公式推导及应用
4.1.2运用圆的周长公式解决实际问题(课件ppt)
英国伦敦市的标志性建筑——大本钟,它的分针长 4.27米,大本钟的分针针尖1小时走了多少米?(保 留两位小数)
4.27×2×3.14≈26.82(米)
答:大本钟的分针针尖1小时走了约26.82米。
这个钟真 大呀!
拓展提高
如图,求黑色图形的周长。
图中,你知 道什么信息? 大圆和小圆什 么关系?
ห้องสมุดไป่ตู้
5cm
答:这列火车每小时前进67.824千米。
课堂练习 小明家走廊的形状和尺寸如下图所示。 (1)上面半圆的高度是多少厘米? 152÷2=76(厘米) 答:上面半圆的高度是38厘米。
152cm
240cm
课堂练习 (2)拱框是用金属条装饰的,一共用了多少米木条? (得数保留一位小数)
240×2=480(厘米) 3.14×152÷2=238.64(厘米) 480+238.64=718.64(厘米) 718.64厘米≈7.2米
运用圆的周长公式解决实际问题
数学冀教版 六年级上
旧知回顾
1、圆的周长是什么?
2、圆的周长公式是什么?
3、圆周率π一般取值是多少? 4、计算圆的周长。
(1)d=5厘米 (2)r=8分米
新知讲解 一个圆形花坛的周长是17.27米。它的直径是多少?
说一说,你都发现了哪些信息?
新知讲解
已知花坛的周长,怎样求它的直径?
先求什么?再求什么?
小半圆的 直径是 5cm
小圆的直 径是大圆 的半径
拓展提高
如图,求黑色图形的周长。
5cm
还有别的 方法吗?
小圆的周长: 5×3.14=15.7(cm) 大圆的一半的周长: 2×5×3.14÷2=15.7(cm)
黑色图形的周长: 15.7+15.7=31.4(cm)
华师版九年级数学下册作业课件 第27章 圆 圆中的计算问题 第2课时 圆锥的侧面积和全面积
解:(1)∵∠A=30°,∴∠BOD=120°,又 AC⊥BD,AB=4 3 ,∴BF=2 3 , ∴OB=4,∴S 阴影=12306π0×42 =136 π (2)设这个圆锥底面圆的半径为 r,由 πr·OB=136 π,得 4πr=136 π,∴r=43 , S 全=S 阴影+πr2=694 π
(1)求这种加工材料的顶角∠BAC的大小. (2)若圆锥底面圆的直径ED为5 cm,求加工材料剩余部分(图中阴影部分)的面 积.(结果保留π)
解:(1)设∠BAC=n°.由题意得 π·DE=nπ1·8A0D ,又∵AD=2DE,∴n=90,
∴∠BAC=90° (2)∵AD=2DE=10 cm,∴S 阴影=12 BC·AD-S 扇形 AEF=12 ×10×20-903π6·0102 =(100-25π)cm2
11.(教材P63例题2变式)若圆锥底面圆的周长是20π,侧面展开后所得扇形的圆 心角为120°.
(1)求圆锥的轴截三角形的面积; (2)求圆锥的全面积.
解:(1)200 2 (2)400π
12.(邵阳中考)某种冰激凌的外包装可以视为圆锥,它的底面圆直径ED与母线 AD长之比为1∶2.制作这种外包装需要用如图所示的等腰三角形材料,其中AB= AC,AD⊥BC.将扇形AEF围成圆锥时,AE,AF恰好重合.
则 CO=(R-8)
cm,由弧长公式得:n1π8R0
nπ(R-8) =6π, 180
=4π,解方程组
6×180=nR,
n=45,
得
4×180=nR-8n, R=24.
∴扇形 OAB 的圆心角是 45°
(2)由(1)知 R=24 cm,∴R-8=16 cm,∴S 扇形 OCD=12 ×4π×16=32π(cm2),S 扇
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长是圆柱的母线长;它的另一边长是圆柱的
底面圆周长。
2.圆柱的侧面积是母线与圆柱的底面圆周 长围成的矩形面积。
3.圆柱的全面积=侧面积+底面积
三、练习
S侧=2πrh
1.如果圆柱侧面积60πcm2,母线长为10cm, 则圆柱底面半径为_________r_=.3cm
设圆柱底面半径为r, 则有60π=2πr·10
心角的度数是_________°.
3
3、扇形的面积是S,它的半径是r,这个扇形的弧长是 _____________ ;
23
答案:
36
2s 240°, r
例题讲解
例1 如图,圆心角为60°的扇形的半径为10厘米,求这 个扇形的面积和周长(π≈3.14).
解:因为n=60°,r=10厘米,所以扇形面积为
圆柱的母线长 与高是相等的
S侧面积=2rl
四、练习
2、用一张面积为900平方厘米的正方形硬纸 片围成一个圆柱的侧面,则这个圆柱的底 面直径约为__9_._6_c_m__。(精确到0.1厘米)
圆
柱
的
圆柱底面的周长
高
生活中的圆锥
设置情境
如图,一只蚂蚁从底面圆周上一点B出发沿圆锥的 侧面爬行一周后回到点B,请你帮助它找到最短的 路线。
n
(5)圆心角是n°,占整个周角的____36_0 _____,因此它所对
的弧长_______.
n •2r n r
360 180
结论:
如果弧长为l,圆心角度数为n,圆的半径为r,那么,弧长 的计算公式为:
l n 2r nr
360
180
练一练:
已知圆弧的半径为50厘米,圆心角为60°,求此圆弧的
长度。
解:l n 2rnr
360 180
= 50 cm 3
答:此圆弧的长度为 50 cm
3
扇形:
定义:如图,由组成圆心角的两条半 径和圆心角所对的弧所围成的图形叫 做扇形.
提问:
1.将组成扇形的一条半径绕着圆心旋转,可以发现,扇 形的面积与组成扇形的弧所对的圆心角的大小有关.圆 心角越大,扇形的面积也越大.怎样计算圆心角为n° 的扇形面积呢? 2.我们知道,如果设圆的面积为S,圆的半径为r,那么 圆面积的计算公式为S=πr2,半径为r的扇形的面积与 半径为r的圆的面积有没有关系呢?圆心角为1°的扇形 面积以及圆心角为n°的扇形面积分别是圆面积的几分 之几?
B’
A
B.
B
C
圆锥的再认识
圆锥是由一个底面和一个侧面围成的,它 的底面是一个圆,侧面是一个曲面.
高
连结圆锥顶点与底面圆心的线 段叫做圆锥的高
连接圆锥顶点和底面圆周上任意一
ha
点的线段叫做圆锥的母线
母线 (母线有无数条,母线都是相等的 )
r
圆锥的底面半径、高、母线长三者
之间的关系:
探索
图23.3.4
(是11)80°如的图扇,形圆面心积角是是圆18面0°积,的占__整__个__周_角__的;138600 ,因此圆心角
(2) 圆心角是90°,占整个周角的________,因此圆心角是 90°的扇形面积是圆面积的________; (3) 圆心角是45°,占整个周角的________,因此圆心角是 45°的扇形面积是圆面积的________; (4) 圆心角是1°,占整个周角的________,因此圆心角是 1°的扇形面积是圆面积的_________; (5) 圆心角是n°,占整个周角的________,因此圆心角是 n°的扇形面积是圆面积的_________.
结论:
如果设圆心角是n°的扇形面积为S,圆的半径为r,那么
扇形的面积为: Snr2 nrr1lr
3601802 2
因此扇形面积的计算公式为
S nr 2
360
或
S
1 lr 2
小试牛刀:
1、如果扇形的圆心角是230°,那么这个扇形的面积
等于这个扇形所在圆的面积的____________;
2
2、扇形的面积是它所在圆的面积的 ,这个扇形的圆
另一边底是_底__面__圆__的__周__长____. 圆柱的侧面积应等于_底__面__圆__的__周__长__乘__以__圆__柱__的__高____.
圆柱的表面积是_上__下__两__底__面__圆_的__面__积__与__侧__面__面__积__之__和__.
回顾
圆柱侧面展开图
1.圆柱的侧面展பைடு நூலகம்图是一个矩形,它的一边
90•2r90•r1r
360 180 2
360
45
(3)圆心角是45°,占整个周角的___3_60_____,因此它所对
的弧长_______;
45•2r45r1r
360 180 4
1
(4)圆心角是1°,占整个周角的____3_60_____,因此它所对
的弧长_______;
1 •2r 1 r
360 180
Snr2 603.14102 =52.33(平方厘米);
360 360
扇形的周长为
图 2 3 .3 .5
l1 nr82 0r6 03 1.18 41 0 020 =30.47(厘米)。
27.3 圆中的计算问题
(第2课时)
回顾
l nR
180
R
nR2
图S23扇.3.形2 360 1 lR 2
圆 柱
思考:
请同学们计算半径为 r,圆心角分别为1800、900、450、 10、n0所对的弧长。
A
O
B
图23.3.2
探索:
(1)圆心角是180°,占整个周角的180 ,因此它所对的弧长
_______; 180•2r r
360
360
(2)圆心角是90°,占整个周角的 90 ,因此它所对的弧长
_______;
27.3 圆中的计算问题
(第1课时)
问题情景:
如图是圆弧形状的铁轨示意图,其中铁轨的半径为100 米,圆心角为90°.你能求出这段铁轨的长度吗?(π 取3.14 )
分析:我们容易看出这段铁轨是圆周
长的四分之一,所以铁轨的长度 ≈ 23100 =157.0(米).
4
图 2 3 .3 .1
问题探究
上面求的是的圆心角900所对的弧长,若圆心角为n0, 如何计算它所对的弧长呢?
一.圆柱的直观特征
圆柱是由两个底面和一个 侧面围成的.
底面是两个等圆;
侧面是一个曲面, 可以展开铺在平面上。
两个底之间的距离 是圆柱体的高.
二、圆柱的侧面展开图
侧面展开图是__矩__形__.
矩形的两边圆与柱圆柱体 有何S关侧系=?c·h=2πrh
矩形的S一表边=长S等侧+于_2圆_S_柱__的__高___(_即__圆__柱__的__母__线__长__)_;