最新受力分析专题(动态三角形)(含答案)教程文件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、受力分析专题(动态三角形)
单力变方法:1-受力分析-向量平移构成三角形-让其中一个力方向改变-看边长变化情况 双力变方法:1-受力分析-向量平移构成三角形-等边对等力-看边长变化情况
【注意:单力中跟重力两端连接的点不能动-看清两个力原来夹角-确定变化的力最终方向】 例1、如图1所示,一个重力G 的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板F 2和斜面对球的压力F 1大小如何变化?
【F 2先减小后增大,F 1随β增大而始终减小】
例2、所示,小球被轻质细绳系着,斜吊着放在光滑斜面上,小球质量为m ,斜面倾角为θ,向右缓慢推动斜面,直到细线与斜面平行,在这个过程中,绳上张力、斜面对小球的支持力的变化情况?
【绳上张力减小,斜面对小球的支持力增大】
例3.一轻杆BO ,其O 端用光滑铰链固定在竖直轻杆AO 上,B 端挂一重物,且系一细绳,细绳跨过杆顶A 处的光滑小滑轮,用力F 拉住,如图2-1所示。现将细绳缓慢往左拉,使杆BO 与杆A O 间的夹角θ逐渐减少,则在此过程中,拉力F 及杆BO 所受压力F N 的大小变化情况是( )
A .F N 先减小,后增大
B .F N 始终不变
C .F 先减小,后增大 D.F 始终不变
解析:取BO 杆的B 端为研究对象,受到绳子拉力(大小为F )、BO 杆的支持力F N 和悬挂重物的绳子的拉力(大小为G )的作用,将F N 与G 合成,其合力与F 等值反向,如图2-2所示,将三个力矢量构成封闭的三角形(如图中画斜线部分),力的三角形与几何三角形OBA 相似,利用相似三角形对应边成比例可得:(如图2-2所示,设AO 高为H ,BO 长为L ,绳长
l ,)
l
F L F H
G N ==,式中G 、
H 、L 均不变,l 逐渐变小,所以可知F N 不变,F 逐渐变小。正
图
1-1
图2-1
图2-2
图1-4
确答案为选项B
例4、如图2-3所示,光滑的半球形物体固定在水平地面上,球心正上方有一光
滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮,
后用力拉住,使小球静止.现缓慢地拉绳,在使小球沿球面由A 到半球的顶点B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化情况是
( D )。
(A)N 变大,T 变小 (B)N 变小,T 变大
(C)N 变小,T 先变小后变大 (D)N 不变,T 变小 例5、如图3-1所示,物体G 用两根绳子悬挂,开始时绳OA 水平,现将两绳同时顺时针转过90°,且保持两绳之间的夹角α不变)90(0
>α,物体保持静止状态,在旋转过程中,设绳OA 的拉力为F 1,绳OB 的拉力为F 2,则( )。
(A)F 1先减小后增大 (B)F 1先增大后减小 (C)F 2逐渐减小 (D)F 2最终变为零
解析:取绳子结点O 为研究对角,受到三根绳的拉力,如图3-2所示分别为F 1、F 2、F
3,
将三力构成矢量三角形(如图3-3所示的实线三角形CDE),需满足力F 3大小、方向不变,角∠ CDE 不变(因为角α不变),由于角∠
DCE 为直角,则三力的几何关系可以从以DE 边为直径的圆中找,则动态矢量三角形如图3-3中一画出的一系列虚线表示的三角形。由此可知,F 1先增大后减小,F 2随始终减小,且转过90°时,当好为零。 正确答案选项为B 、C 、D
例6、如图3-4所示,在做“验证力的平行四边形定则”的实验时,用M 、N 两个测力计通过细线拉橡皮条的结点,使其到达O 点,此时α+β= 90°.然后保持M 的读数不变,而使α角减小,为保持结点位置不变,可采用的办法是( A )。 (A)减小N 的读数同时减小β角
(B)减小N 的读数同时增大β角
(C)增大N 的读数同时增大β角
(D)增大N 的读数同时减小β角
例7.如图4-1所示,在水平天花板与竖直墙壁间,通过不计质量的柔软绳子和光滑的轻小滑轮悬挂重物G =40N ,绳长L =2.5m
,OA =1.5m ,求绳中张力的大小,并讨论:
(1)当B 点位置固定,A 端缓慢左移时,绳中张力如何变化? (2)当A 点位置固定,B 端缓慢下移时,绳中张力又如何变化?
图3-1
图3-2
图3-3 图4-1
图4-2
图4-3
′
图4-4
图2-3 图
解析:取绳子c 点为研究对角,受到三根绳的拉力,如图4-2所示分别为F 1、F 2、F 3,延长绳AO 交竖直墙于D 点,由于是同一根轻绳,可得:21F F =,BC 长度等于CD ,AD 长度等于绳长。设角∠OAD 为θ;根据三个力平衡可得:θ
sin 21G
F =
;在三角形AOD 中可知,
AD
OD
=
θsin 。如果A 端左移,AD 变为如图4-3中虚线A ′D ′所示,可知A ′D ′不变,OD ′减小,θsin 减小,F 1变大。如果B 端下移,BC 变为如图4-4虚线B ′C ′所示,可知AD 、OD 不变,θsin 不变,F 1不变。 例8、半径为R 的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面
B 的距离为h ,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉
住,使小球静止,如图1-1所示,现缓慢地拉绳,在使小球由A 到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化的情况是( D )
A 、N 变大,T 变小
B 、N 变小,T 变大
C 、N 变小,T 先变小后变大
D 、N 不变,T 变小
例9、如图2-1所示,竖直绝缘墙壁上的Q 处由一固定的质点A ,在Q 的正上方的P 点用细线悬挂一质点B ,A 、B 两点因为带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使A 、B 两质点的电量逐渐减小,在电荷漏空之前悬线对悬点P 的拉力T 大小( B )
A 、T 变小
B 、T 变大
C 、T 不变
D 、T 无法确定