宁波大学671数学分析11-19年真题

合集下载

2019宁波大学671数学分析考试大纲

2019宁波大学671数学分析考试大纲

2019年宁波大学硕士研究生招生考试初试科目考试大纲科目代码、名称: 671数学分析一、考试形式与试卷结构(一)试卷满分值及考试时间本试卷满分为150分,考试时间为180分钟。

(二)答题方式答题方式为闭卷、笔试。

试卷由试题和答题纸组成;答案必须写在答题纸(由考点提供)相应的位置上。

(三)试卷题型结构填空题,选择题,解答题,计算题,证明题,应用题。

二、考试科目简介《数学分析》是数学专业最重要的基础课之一,是数学专业的学生继续学习后继课程的基础,它的理论方法和内容既涉及到几百年来分析数学的严谨性和逻辑性,又与现代数学的各个领域有着密切的联系。

是从事数学理论及其应用工作的必备知识。

本大纲制定的的依据是①根据教育部颁发《数学分析》教学大纲的基本要求。

②根据我国一些国优教材所讲到基本内容和知识点。

要求考生比较系统地理解数学分析的基本概念基本理论,掌握研究分析领域的基本方法,基本上掌握数学分析的论证方法,具备较熟练的演算技能和初步的应用能力及逻辑推理能力。

三、考试内容及具体要求第1章实数集与函数(1)了解实数域及性质(2)掌握几种主要不等式及应用。

(3)熟练掌握领域,上确界,下确界,确界原理。

(4)牢固掌握函数复合、基本初等涵数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。

第2章数列极限(1)熟练掌握数列极限的定义。

(2)掌握收敛数列的若干性质(惟一性、保序性等)。

(3)掌握数列收敛的条件(单调有界原理、迫敛法则、柯西准则等)。

第3章函数极限(1)熟练掌握使用“ε-δ”语言,叙述各类型函数极限。

(2)掌握函数极限的若干性质。

(3)掌握函数极限存在的条件(归结原则,柯西准则,左、右极限、单调有界)。

(4)熟练应用两个特殊极限求函数的极限。

(5)牢固掌握无穷小(大)的定义、性质、阶的比较。

第4章函数连续性(1)熟练掌握在X0点连续的定义及其等价定义。

(2)掌握间断点定以及分类。

(3)了解在区间上连续的定义,能使用左右极限的方法求极限。

宁波大学2015年考研真题【007理学院】671数学分析A卷

宁波大学2015年考研真题【007理学院】671数学分析A卷
宁波大学 2015 年攻读硕士学位研究生
入 学 考 试 试 题(A 卷) (答案必须写在答题纸上)
考试科目: 适用专业:
数学分析 基础数学、 应用数学
科目代码: 671
一.填空题(每题 5 分,共 15 分)
1.
lim(cos
x
x2
1
) x2
=
;
x0
2
2.
cos xsin 1 cos2
3x dx
x
(2)当为何值时,级数条件收敛?证明之.
(3)证明该级数在(0,+)内闭一致收敛.
4(10分).设函数列{ fn (x)}n1在[a,b]上连续,且fn (x)在[a,b]上一致收敛于f (x), 若对任意的x [a,b], f (x) 0. 证明: 存在N, 0,使得对任意的x [a,b], n N,有fn (x) .
x y
4.求曲面积分 f (x, y, z)dS,其中 x y z1
1 x2 y2 z2 , x2 y2 z2 1
f (x, y, z)
0,
其它
5.求f
(
x)
arctan
2x 1 x2
在x
0处的幂级数展开式,并求
n0
(1)n 的值. 2n 1
四.证明题(共 50 分)
1(15分)设实数a是方程x2 x 1 0的正根,已知数列如下定义:
第2页共2页
第1页共2页
宁波大学 2015 年攻读硕士学位研究生
入 学 考 试 试 题(A 卷) (答案必须写在答题纸上)
考试科目: 适用专业:
数学分析 基础数学、 应用数学
科目代码: 671
3.设是可微函数,证明由(cx az, cy bz) 0所确定的隐函数 z f (x, y)满足方程 : a z b z c.

2016年宁波大学671数学分析(B卷)考研真题研究生入学考试试卷

2016年宁波大学671数学分析(B卷)考研真题研究生入学考试试卷
1 1

0
=
3. lim( n n 1) ln n
n
;
二. 判断讨论题,正确的给出证明,错误的举出反例(每小题 6 分,共 30 分)
1.设{u n }为一实数列, p为任意的正整数, 若 lim | u n p u n | 0, 则 lim u n 0.
n n
5.若f ( x, y )在点( x0 , y0 )处存在全微分,则f ( x, y )在( x0 , y0 )处沿任意方向的方向导数 均存在.
三.计算与证明题(每题 10 分,共 50 分)
1.计算二重积分 | x 2 y 2 1 |dxdy , 其中积分区域D={( x, y ) | 0 x 2, 0 y 2}.
3(15分)证明:若f ( x)在闭区间[a, b]上连续, 则f ( x) 在[a, b] 上一致连续. 4(15分).设f ( x)在闭区间[1,2]上连续,在开区间(1,2)内可导,且f ( x) 0. 若极限 lim
x 1
f (2 x 1) 存在, 证明: x 1 (1)在(1, 2)内, f ( x) 0. (2)在(1, 2)内存在点 ,使
宁波大学 2016 年攻读硕士学位研究生 入 学 考 试 试 题(B 卷) (答案必须写在答题纸上)
考试科目: 适用专业: 数学分析 基础数学、应用数学 科目代码: 671
一.填空题(每题 5 分,共 15 分) 1. 函数y ln(1 3x )在x 0处的n阶导数为 2. ; ;

1
xdx (4 x 2 ) 1 x 2
3.设函数z f ( xy , yg ( x )), 其中函数f 具有二阶连续偏导数, 函数g ( x )可导, 且在x 1处取得极值g (1) 1. 求 2 z |x 1 . xy y 1

宁波大学考研真题671数学分析2015年-2017年

宁波大学考研真题671数学分析2015年-2017年

入学考试试题(A卷)(答案必须写在答题纸上)考试科目: 数学分析科目代码:671 适用专业: 基础数学、应用数学入学考试试题(A卷)(答案必须写在答题纸上)考试科目: 数学分析科目代码:671 适用专业: 基础数学、应用数学入学考试试题(B卷)(答案必须写在答题纸上)考试科目:数学分析科目代码:671适用专业:基础数学、应用数学入学考试试题(B卷)(答案必须写在答题纸上)考试科目:数学分析科目代码:671适用专业:基础数学、应用数学科目代码:671科目名称:数学分析适用专业:基础数学应用数学一、单项选择题:本大题共5小题,每小题4分,共20分。

1.关于数列极限下列叙述正确的是()A.lim {}n n n a a a a →∞=的充要条件是在的任意小领域内有中的无限多个点;B.{}{}n n a a 若数列存在极限,则数列一定为一有界数列;C.{},{},{}lim {}n n n n n n n n n n a b c a b c c a b →∞≤≤若数列满足,且(-)=0,则数列一定收敛;D .1{}lim()0,{}n n n n n a a a a +→∞-=若数列满足则数列一定收敛.2.下列叙述正确的是()A.(),();f x f x I 若在区间I上连续则在上一定有界B.()[,],()[,];f x a b f x a b 若在闭区间上可积则在上一定有界C.()[,],()()[,],()();xa f x ab F x f t x a b x f x '=∈=⎰若在上可积令dt,则有F D.00(),()f x x x f x 若在处可导则一定存在的某领域,使得在该领域内连续.3.1,n n u ∞=∑设级数收敛则下列必收敛的级数为()A.1;1n n n u n ∞=+∑ B.21;nn u ∞=∑ C.1(1);nn n u n ∞=-∑ D.2121().n n n uu ∞-=-∑4.,0()111,11x x f x x n n n ≤⎧⎪=⎨<≤⎪++⎩已知函数,下列叙述正确的是()A.0();x f x =是的第一类间断点B.0();x f x =是的第二类间断点C.()0;f x x =在处连续但不可导D.()0f x x =在处可导.5.(0,0)下列函数在处存在重极限的是()A.22(,);xyf x y x y =+ B.2224()(,);x y f x y x y -=+C .222(,);x yf x y x y=+ D.2233(,).x y f x y x y=+科目代码:671科目名称:数学分析适用专业:基础数学应用数学科目代码:671科目名称:数学分析适用专业:基础数学应用数学。

宁波大学往年期末考试题

宁波大学往年期末考试题

宁波大学往年期末考试题2010--2011学年第二学期期末考试《线性代数》A 试卷题号一二三四五六七八九十总分得分评卷人注意事项:1:考试时间120分钟,总分100分。

2:答卷前将密封线内的考生项目填写清楚,不得缺项。

3:答卷用蓝、黑色钢笔或中性笔,圆珠笔,答在答题纸上。

4:答题纸上写清题号,按要求作答,字迹工整,卷面整洁。

5:严格遵守学校各项考试纪委诚信守纪,杜绝作弊现象。

一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

1.设行列式=m,=n,则行列式等于( )A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A= ,则A-1等于( )A. B.C. D.3.设矩阵A= ,则A 中位于(1,2)的元素是( )A. –2B. 1C. -1D. 44.设A,B均为n阶方阵,则必有( )A. det(A)det(B)= det(B)det(A)B.det(A+B)= det(A)+ det(B)C. AB=BAD.det(A)det(B)= det(A+B)5.已知3×4矩阵A的行向量组线性无关,则秩(AT)等于( )A. 1B. 2C. 3D. 46.设矩阵A= ,则A的秩为( )A. 1B. 2C. 3D. 07.设矩阵A的秩为r,则A中( )A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是( )A.η1+η2是Ax=0的一个解B. η1+ η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有( )A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是( )A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有( )A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是( )A.|A|2必为1B.|A|必为1C.A-1=ATD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=CTAC.则( )A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为( )A. B.C. D.15.n元齐次线性方程组Ax=0存在非零解的充要条件是( )A. A的列线性无关B. A的行线性无关C. A的列线性相关D. A的行线性相关二、判断题(每小题2分,共10分)1.若向量组U线性相关,那么U的任意一个部分组都线性相关。

宁波大学671数学分析2004,2005,2007--2020年考研真题

宁波大学671数学分析2004,2005,2007--2020年考研真题

1. 下列叙述正确的是(

(A)若数列
{an}无界,则必有
lim
n
an
.
(B)若f (x)在点x0连续,而g(x)在点x0不连续,则f (x)g(x)在点x0处不连续. (C)若f (x)在x0处可导,则一定存在x0的某个领域U(x0 ),使得f (x)在U(x0 )内的任意点处
都可导.
(D)若f (x)在点x0处连续,则在x0的某个领域内一定有界.
2. f (x)在[a,b]上可积,则f 2 (x)在[a,b]上也可积;f (x)的反常积分在[a, )上收敛,
则f 2 (x)的反常积分在[a, )上(
)
(A)收敛; (B)不收敛; (C)不一定收敛;
(D)以上三个答案都不正确
3.设 f (x) (x a)(x) ,其中(x) 在 x a 处连续但不可导,则 f ' (a) (
xn 的收敛域以及在收敛域内求这个级数的和。
n1 n(n 1)
五.(本题 15 分)请用 语言证明: lim 2 (sin x)n dx 0 。 n 0
六.(本题 15 分)
设 0 b a ,证明: a b ln a a b 。
a
bb
七.(本题 15 分)
设 f (x) 是定义在实数域上的可导正函数,并且 f '(x) 2020 f (x), f (0) 1,求 f (x) 。 八.(本题 15 分)
三、(本题 15 分) 计算二重积分
四、(本题 15 分)实轴上的连续函数 f 被称为凸的,若对任意

,满足
请证明:(1)对任意
及任意的
(2)对任意的[0,1]上的黎曼可积函数 , 成立
, , 成立

宁波大学671数学分析2019(B卷)年考研初试真题

宁波大学671数学分析2019(B卷)年考研初试真题

3. 如果
,则
一定发散。
4. 如果
收敛,则
收敛。



5. 设级数 an绝对收敛, bn条件收敛,则 (an | bn |) 收敛。Biblioteka n1n1n1
二、(本题 30 分, 每小题 15 分) 请叙述下面概念:
(1) 请用 语言叙述函数 f 在 x0 处的连续性。 (2) 请准确叙述“函数 f 在(1, )上的积分收敛”。
三、(本题 15 分) 计算二重积分
四、(本题 15 分)实轴上的连续函数 f 被称为凸的,若对任意

,满足
请证明:(1)对任意
及任意的
(2)对任意的[0,1]上的黎曼可积函数 , 成立
, , 成立
第1页共2页
宁波大学 2019 年硕士研究生招生考试初试试题(B 卷)
(答案必须写在考点提供的答题纸上)
,其中 n 从 1 到正无穷,并且{x}表示 x 的小数部分,
求证:任意[0,1]中的数都是 an 的某个子列的极限。
第2页共2页
宁波大学 2019 年硕士研究生招生考试初试试题(B 卷)
(答案必须写在考点提供的答题纸上)
科目代码: 671 总分值: 150 科目名称:
数学分析
一、判断题:认为正确的请指出原因,认为错误的请举出反例(本题 30 分,每小题
6 分)
1. 有界数列必为一定有极限。
2. 函数在(0, )连续,则该函数在(0, )上一致连续。
科目代码: 671 总分值: 150 科目名称:
数学分析
五、(本题 15 分)请用 语言证明:
如果
,则
.
六、(本题 15 分) 设 D=[0,1], 请用黎曼可积的定义证明
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档