以太网帧结构

合集下载

以太网的帧结构

以太网的帧结构

以太网的帧结构要讲帧结构,就要说一说OSI七层参考模型。

一个是访问服务点,每一层都对上层提供访问服务点(SAP),或者我们可以说,每一层的头里面都有一个字段来区分上层协议。

比如说传输层对应上层的访问服务点就是端口号,比如说23端口是telnet,80端口是http。

IP层的SAP是什么?其实就是protocol字段,17表示上层是UDP,6是TCP,89是OSPF,88是EGIRP,1是ICMP 等等。

以太网对应上层的SAP是什么呢?就是这个type或length。

比如 0800表示上层是IP,0806表示上层是ARP。

我第二个要了解的就是对等层通讯,对等层通讯比较好理解,发送端某一层的封装,接收端要同一层才能解封装。

我们再来看看帧结构,以太网发送方式是一个帧一个帧发送的,帧与帧之间需要间隙。

这个叫帧间隙IFG—InterFrame GapIFG长度是96bit。

当然还可能有Idle时间。

以太网的帧是从目的MAC地址到FCS,事实上以太网帧的前面还有preamble,我们把它叫做先导字段。

作用是用来同步的,当接受端收到 preamble,就知道以太网帧就要来了。

preamble 有8个字节前面7个字节是10101010也就是16进制的AA,最后一个字节是 10101011,也就是AB,当接受端接受到连续的两个高电平,就知道接着来的就是D_mac。

所以最后一个字节AB我们也叫他SFD(帧开始标示符)。

所以在以太网传输过程中,即使没有idle,也就是连续传输,也有20个字节的间隔。

对于大量64字节数据来说,效率也就显得不1s = 1,000ms=1,000,000us以太网帧最小为64byte(512bit)10M以太网的slot time =512×0.1 = 51.2us100M以太网的slot time = 512×0.01 = 5.12us以太网的理论帧速率:Packet/second=1second/(IFG+PreambleTime+FrameTime)10M以太网:IFG time=96x0.1=9.6us100M以太网:IFG time=96x0.01=0.96us以太网发送方式是一个帧一个帧发送的,帧与帧之间需要间隙。

以太网帧结构详解

以太网帧结构详解

以太网帧结构详解分类:计算机网络知识2011-10-25 20:28 3165人阅读评论(0) 收藏举报byte网络工作serviceaccess扩展1 以太网相关背景以太网这个术语通常是指由DEC,Intel和Xerox公司在1982年联合公布的一个标准,它是当今TCP/IP采用的主要的局域网技术,它采用一种称作CSMA/CD 的媒体接入方法。

几年后,IEEE802委员会公布了一个稍有不同的标准集,其中802.3针对整个CSMA/CD网络,802.4针对令牌总线网络,802.5针对令牌环网络;此三种帧的通用部分由802.2标准来定义,也就是我们熟悉的802网络共有的逻辑链路控制(LLC)。

由于目前CSMA/CD的媒体接入方式占主流,因此本文仅对以太网和IEEE 802.3的帧格式作详细的分析。

在TCP/IP世界中,以太网IP数据报文的封装在RFC 894中定义,IEEE802.3网络的IP数据报文封装在RFC 1042中定义。

标准规定:1)主机必须能发送和接收采用RFC 894(以太网)封装格式的分组;2)主机应该能接收RFC 1042(IEEE 802.3)封装格式的分组;3)主机可以发送采用RFC 1042(IEEE 802.3)封装格式的分组。

如果主机能同时发送两种类型的分组数据,那么发送的分组必须是可以设置的,而且默认条件下必须是RFC 894(以太网)。

最常使用的封装格式是RFC 894定义的格式,俗称Ethernet II或者Ethernet DIX。

下面,我们就以Ethernet II称呼RFC 894定义的以太帧,以IEEE802.3称呼RFC 1042定义的以太帧。

2 帧格式Ethernet II和IEEE802.3的帧格式分别如下。

Ethernet II帧格式:----------------------------------------------------------------------------------------------| 前序| 目的地址| 源地址| 类型| 数据 |FCS |---------------------------------------------------------------------------------------------- | 8 byte | 6 byte | 6 byte | 2 byte | 46~1500 byte | 4 byte|IEEE802.3一般帧格式--------------------------------------------------------------------------------------------------------------| 前序| 帧起始定界符| 目的地址| 源地址| 长度| 数据| FCS |------------------------------------------------------------------------------------------------------------| 7 byte | 1 byte | 2/6 byte | 2/6 byte | 2 byte | 46~1500 byte | 4 byte |Ethernet II和IEEE802.3的帧格式比较类似,主要的不同点在于前者定义的2字节的类型,而后者定义的是2字节的长度;所幸的是,后者定义的有效长度值与前者定义的有效类型值无一相同,这样就容易区分两种帧格式了。

以太网帧

以太网帧

分析以太网数据帧的构成2009-06-15 11:221.以太网的报文格式如下2.MAC地址的作用:不同物理主机(唯一的MAC标识)之间的通信地址,标识以太网上的每台主机,需要给每台主机上的网络适配器(网络接口卡)分配一个唯一的通信地址。

3.MAC广播地址的作用:48位全1的地址为MAC广播地址,其作用使主机发送一个ARP或其它广播协议包时同一网内的其它主机均能收到此包.4.LLC帧报文的格式如下;5.仿真编辑器和协议分析器的使用方法:用了很多次基本结构已了解.以太网数据帧的构成抓取一个原始IP包捕获一个数据包并分析数据链路层的帧结构No. Time Source Destination Protocol Info2350 703.174591 172.16.77.15 172.16.77.6 IP Fragmented IP protocol (proto=ICMP 0x01, off=1480) [Reassembled in #2393]Frame 2350 (1514 bytes on wire, 1514 bytes captured)Arrival Time: Jun 15, 2009 09:20:09.379091000[Time delta from previous captured frame: 0.000021000 seconds][Time delta from previous displayed frame: 0.000021000 seconds][Time since reference or first frame: 703.174591000 seconds]Frame Number: 2350Frame Length: 1514 bytesCapture Length: 1514 bytes[Frame is marked: False][Protocols in frame: eth:ip:data]分析数据链路层的帧结构Ethernet II, Src: AsustekC_97:2a:ee (厂家名_后3位16进制数为MAC)(00:13:d4:97:2a:ee)(源MAC,前6位16进制数代表网络硬件制造商的编号, 后3位16进制数代表该制造商所制造的某个网络产品(如网卡)的系列号), Dst: AsustekC_97:2b:17 (00:13:d4:97:2b:17)(目标MAC)Destination: AsustekC_97:2b:17 (00:13:d4:97:2b:17)目标MACAddress: AsustekC_97:2b:17 (00:13:d4:97:2b:17).... ...0 .... .... .... .... = IG bit: Individual address (unicast) 无效单播地址.... ..0. .... .... .... .... = LG bit: Globally unique address (factory default)全局唯一地址(厂家默认)Source: AsustekC_97:2a:ee (00:13:d4:97:2a:ee)源MACAddress: AsustekC_97:2a:ee (00:13:d4:97:2a:ee).... ...0 .... .... .... .... = IG bit: Individual address (unicast) 无效单播地址.... ..0. .... .... .... .... = LG bit: Globally unique address (factory default) 全局唯一地址(厂家默认)Type: IP (0x0800)类型IPInternet Protocol, Src: 172.16.77.15 (172.16.77.15), Dst: 172.16.77.6 (172.16.77.6) Version: 4Header length: 20 bytesDifferentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)0000 00.. = Differentiated Services Codepoint: Default (0x00).... ..0. = ECN-Capable Transport (ECT): 0.... ...0 = ECN-CE: 0Total Length: 1500Identification: 0x490d (18701)Flags: 0x02 (More Fragments)0... = Reserved bit: Not set.0.. = Don't fragment: Not set..1. = More fragments: SetFragment offset: 1480Ti me to live: 128Protocol: ICMP (0x01)Header checksum: 0xd924 [correct][Good: True][Bad : False]Source: 172.16.77.15 (172.16.77.15)Destination: 172.16.77.6 (172.16.77.6)Reassembled IP in frame: 2393以太网帧格式2009-06-15 11:06目前,有四种不同格式的以太网帧在使用,它们分别是:●Ethernet II即DIX 2.0:Xerox与DEC、Intel在1982年制定的以太网标准帧格式。

以太网(Ethernet)的帧结构

以太网(Ethernet)的帧结构
以太网( 以太网(Ethernet)的帧结构 )
以太网(Ethernet)的帧结构
1.Ethernet V2.0帧结构 2. IEEE802.3帧结构 3. Ethernet V2.0帧结构组成详解
Ethernet V2.0帧结构
帧前 帧校 前导 目的 源地 数据 定界 验字 类型 码 地址 址 字段 符 段 46~1 7B 1B 6B 6B 2B 4B 500B 注:Ethernet帧的最小长度为64B,最大长 度为1518B。(前导码与帧前定界符不计入 帧头长度中)
前导码与帧前定界符字段
前导码的组成: 前导码的组成:56位(7B)10101010…10 1010比特序列。 作用: 作用:提醒接收系统有帧的到来,以及使到来的 帧与计时器进行同步。 帧前定界符的组成: 帧前定界符的组成:8位(1B)10101011比特 序列。 作用: 作用:表示下面的字段是目的地址。
数据字段
数据字段的组成: 数据字段的组成:长度在46~1500B之间的比 特序列。 特点: 特点:如果数据的长度少于46B,需要加填充 字节,补充到46B。填充字节是任意的,不计 入长度字段中。
帧校验字段
帧校验字段的组成: 32位 4B)比特序列。 帧校验字段的组成: 32位(4B)比特序列。 特点: 特点:采用CRC校验。校验的范围包括目的地 址字段,源地址字段,类型字段,数据字段。 在接收端进行校验,如果发生错误,帧将被丢 弃。 32位CRC校验的生成多项式为: G(x) =x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4 +x2+x1+1
பைடு நூலகம்

以太网IEEE 802.3帧的结构

以太网IEEE 802.3帧的结构

以太网/IEEE 802.3帧的结构下图所示为以太网/IEEE 802.3帧的基本组成。

如图所示,以太网和IEEE 802.3帧的基本结构如下:前导码(Preamble):由0、1间隔代码组成,可以通知目标站作好接收准备。

IEEE 802.3帧的前导码占用7个字节,紧随其后的是长度为1个字节的帧首定界符(SOF)。

以太网帧把SOF包含在了前导码当中,因此,前导码的长度扩大为8个字节。

帧首定界符(SOF:Start-of-Frame Delimiter):IEEE 802.3帧中的定界字节,以两个连续的代码1结尾,表示一帧实际开始。

目标和源地址(DA、SA):表示发送和接收帧的工作站的地址,各占据6个字节。

其中,目标地址可以是单址,也可以是多点传送或广播地址。

类型(以太网):占用2个字节,指定接收数据的高层协议。

长度L(IEEE 802.3):表示紧随其后的以字节为单位的数据段的长度。

数据L(以太网):在经过物理层和逻辑链路层的处理之后,包含在帧中的数据将被传递给在类型段中指定的高层协议。

虽然以太网版本2中并没有明确作出补齐规定,但是以太网帧中数据段的长度最小应当不低于46个字节。

数据(IEEE 802.3:LLCPDU逻辑链路层协议数据单元):IEEE 802.3帧在数据段中对接收数据的上层协议进行规定。

如果数据段长度过小,使帧的总长度无法达到64个字节的最小值,那么相应软件将会自动填充数据段,以确保整个帧的长度不低于64个字节。

LLCPDU——它的范围处在46字节至1500字节之间。

最小LLCPDU长度46字节是一个限制,目的是要求局域网上所有的站点都能检测到该帧,即保证网络工作正常。

如果LLCPDU小于46个字节,则发送站的MAC子层会自动填充“0”代码补齐。

802.3一个帧的长度计算公式:DA+SA+L+LLCPDU+FCS=6+6+2+(46~1500)+4=64~1518即当LLCPDU为46个字节时,帧最小,帧长为64字节;当LLCPDU为1500字节时,帧最大,帧长为1518字节帧校验序列(FCS:Frame Check Sequence):该序列包含长度为4个字节的循环冗余校验值(CRC),由发送设备计算产生,在接收方被重新计算以确定帧在传送过程中是否被损坏。

以太数据帧结构

以太数据帧结构
G(2)二进制值
二进制 模二除法
二进制 余数
余数不够 高位 0 凑
Data
CRC
对方使用相同G(x) 一定能够整除
三、随堂练习
一、判断题
1、以太数据帧中,类型字段代表该数据帧是802.3帧还是Ethernet II帧 ( )
2、每个以太数据帧能够封装的最大网络层报文大小为1500字节
()
二、选择题
二、以太数据帧字段
前导码:用于接收方与发送方的同步,7个字节,每个字节的值固定为0xAA。 帧起始定界符:用于标识一个以太网帧的开始,值固定为0xAB。 目的地址:存放48bit的目标MAC地址,用于局域网中交换机寻址转发。 源地址:存放48bit的源MAC地址,用于局域网中交换机学习和目标主机回复。 类型 :用于指定报文头后所接的数据类型。包括:IPv4(0x0800), IPv6(0x86DD), ARP(0x0806),802.1q数据帧(0x8100) 。 数据:用于存放网络层封装的报文内容(比如:IPv4数据包、IPv6数据包、ARP报文)。 FCS(Frame Check Sequence):通过CRC(Cyclic Redundancy Check)算法计算出 来的序列号,用来确定接收到的帧比特是否正确。
1
0
1
1
1
1x25-1 +0x24-1+1x23-1+1x22-1+1x21-1
CRC校验码位数 = 二进制值位数 - 1 二进制值( 10111 )与数据流做模二除法,余数即为CRC校验码
二、模二除法
使用G(x)的二进制值10111对目标数据流1010110做模二除法,求余数值
1001001
10111 1 0 1 0 1 1 0 0 0 0 0

以太网(Ethernet)的帧结构

以太网(Ethernet)的帧结构
以太网( 以太网(Ethernet)的帧结构 )
以太网(Ethernet)的帧结构
1.Ethernet V2.0帧结构 2. IEEE802.3帧结构 3. Ethernet V2.0帧结构组成详解
Ethernet V2.0帧结构
帧前 帧校 前导 目的 源地 数据 定界 验字 类型 码 地址 址 字段 符 段 46~1 7B 1B 6B 6B 2B 4B 500B 注:Ethernet帧的最小长度为64B,最大长 度为1518B。(前导码与帧前定界符不计入 帧头长度中)
IEEE802.3帧结构
帧前 帧校 前导 目的 源地 数据 定界 验字 长度 码 地址 址 字段 符 段 46~1 7B 1B 6B 6B 2B 4B 500B
Ethernet V2.0帧结构组成详解
1)前导码与帧前定界符字段 ) 2)目的地址和源地址字段 ) 3)类型字段 ) 4)数据字段 5)帧校验字段
数据字段
数据字段的组成: 数据字段的组成:长度在46~1500B之间的比 特序列。 特点: 特点:如果数据的长度少于46B,需要加填充 字节,补充到46B。填充字节是任意的,不计 入长度字段中。
帧校验字段
帧校验字段的组成: 32位 4B)比特序列。 帧校验字段的组成: 32位(4B)比特序列。 特点: 特点:采用CRC校验。校验的范围包括目的地 址字段,源地址字段,类型字段,数据字段。 在接收端进行校验,如果发生错误,帧将被丢 弃。 32位CRC校验的生成多项式为: G(x) =x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4 +x2+x1+1

以太网帧结构详解

以太网帧结构详解

以太⽹帧结构详解⽹络通信协议⼀般地,关注于逻辑数据关系的协议通常被称为上层协议,⽽关注于物理数据流的协议通常被称为低层协议。

IEEE802就是⼀套⽤来管理物理数据流在局域⽹中传输的标准,包括在局域⽹中传输物理数据的802.3以太⽹标准。

还有⼀些⽤来管理物理数据流在使⽤串⾏介质的⼴域⽹中传输的标准,如帧中继FR(FrameRelay),⾼级数据链路控制HDLC(High-LevelDataLinkControl),异步传输模式ATM(AsynchronousTransferMode)。

分层模型0OSI国际标准化组织ISO于1984年提出了OSIRM(OpenSystemInterconnectionReferenceModel,开放系统互连参考模型)。

OSI参考模型很快成为了计算机⽹络通信的基础模型。

OSI参考模型具有以下优点:简化了相关的⽹络操作;提供了不同⼚商之间的兼容性;促进了标准化⼯作;结构上进⾏了分层;易于学习和操作。

OSI参考模型各个层次的基本功能如下:物理层:在设备之间传输⽐特流,规定了电平、速度和电缆针脚。

数据链路层:将⽐特组合成字节,再将字节组合成帧,使⽤链路层地址(以太⽹使⽤MAC地址)来访问介质,并进⾏差错检测。

⽹络层:提供逻辑地址,供路由器确定路径。

传输层:提供⾯向连接或⾮⾯向连接的数据传递以及进⾏重传前的差错检测。

会话层:负责建⽴、管理和终⽌表⽰层实体之间的通信会话。

该层的通信由不同设备中的应⽤程序之间的服务请求和响应组成。

表⽰层:提供各种⽤于应⽤层数据的编码和转换功能,确保⼀个系统的应⽤层发送的数据能被另⼀个系统的应⽤层识别。

应⽤层:OSI参考模型中最靠近⽤户的⼀层,为应⽤程序提供⽹络服务。

分层模型-TCP/IPTCP/IP模型同样采⽤了分层结构,层与层相对独⽴但是相互之间也具备⾮常密切的协作关系。

TCP/IP模型将⽹络分为四层。

TCP/IP模型不关注底层物理介质,主要关注终端之间的逻辑数据流转发。

常见以太网帧结构详解

常见以太网帧结构详解

常见以太网帧结构详解以太网是一个常用的局域网技术,其数据传输是以帧的形式进行的。

以太网帧是以太网数据传输的基本单位,通过帧头、帧数据和帧尾等部分来描述有效载荷的数据。

以太网帧的结构如下:1. 帧前同步码(Preamble):以太网帧的开始部分有7个字节的帧前同步码,其作用是为接收端提供定时的参考,帮助接收端进行帧同步。

2.帧起始界定符(SFD):帧前同步码之后的1字节帧起始界定符为0x55,标志着以太网帧的开始。

3. 目标MAC地址(Destination MAC Address):目标MAC地址占6个字节,表示帧的接收者的MAC地址。

4. 源MAC地址(Source MAC Address):源MAC地址占6个字节,表示帧的发送者的MAC地址。

5. 长度/类型字段(Length/Type Field):长度/类型字段占2个字节,当该字段的值小于等于1500时,表示以太网帧的长度;当该字段大于等于1536时,表示该字段定义了帧中的协议类型。

6. 帧数据(Data):帧数据部分是以太网帧的有效载荷,其长度为46到1500字节,不包括帧头和帧尾。

7. 帧校验序列(Frame Check Sequence,FCS):帧校验序列占4个字节,主要用于对帧进行错误检测,以保证数据的可靠性。

8. 帧尾(Frame Check Sequence,FCS):帧尾占4个字节,用于标识以太网帧的结束。

以太网帧的长度为64到1518字节,其中有效载荷部分数据长度为46到1500字节,不同帧的长度可以根据网络需求进行调整。

在发送以太网帧时,发送方会在帧尾的后面添加额外的字节以保证整个帧的长度达到最低限制。

这些额外的字节即填充字节(Padding),用于使帧长达到最小限制的要求。

以上是以太网帧的常见结构,它描述了以太网帧的各个部分的作用和位置。

了解以太网帧的结构对于理解以太网的工作原理和网络通信非常重要。

以太网帧结构-华为-HCIA

以太网帧结构-华为-HCIA

IEEE:电气与电子工程师协会ISO:国际标准化组织协议栈:OSI :ISO国际标准组织制定TCP/IP:美国国防部制定IPX/SPXSNA局域网: IEEE802 以太网广域网: PPP HDLC分层模型-OSI应用层 ------- 直接面向用户,为应用程序提供网络服务(APDU)表示层 ------- 对应用层产生的数据进行格式化,加密,解密之类的操作(PPDU)会话层 ------- 建立,维护,删除,管理会话连接(SPDU)传输层 ------- 建立一个面向连接(TCP)或非面向连接(UDP)的端到端的连接,该连接是逻辑存在的(数据段)网络层 -------- IP路由寻址,报文重组(数据包)数据链路层 ------- 控制网络层和物理层之间通讯。

打上帧头帧尾,将数据包封装成数据帧。

(数据通过链路层承载)物理层 ------- 比特流传输,将数据帧以比特流的形式在物理介质中进行传输分层模型-TCP/IP数据封装 (从上往下) 解封(从下往上)应用层 ----- 对应OSI七层模型上三层PDU(数据单元)传输层 ----- 对应OSI七层模型传输层Segmet(数据段)网络层 ----- 对应OSI七层模型网络层Packet(数据包)网络接口层 ----- 对应OSI七层模型数据链路层与物理层Frame(数据帧)bit(比特流)数据封装过程:数据是由应用层产生,经过表示层对数据进行格式化,加密等处理后形成PDU,交由会话层,会话层建立一个不同设备间应用程序的会话,再交给传输层,传输层打上传输层头部(源目端口号),建立一个端到端的连接,形成数据段,交给网络层处理,网络层打上IP头部,形成数据包,将数据包交给数据链路层打上帧头和帧尾,将数据包封装成数据帧,再将数据帧以比特流的形式在物理层中进行传输。

数据解封装过程:将比特流转化成字节形式的数据帧,先拆帧头查看数据帧的MAC地址,若不是自己就丢弃,若是则继续拆帧尾查看数据帧的完整性,不完整就丢弃,若完整则交由网络层,网络层拆IP头,查看目的IP是否为自己,若不是自己就进行路由寻址,将数据包进行重封装并转发,若是则交由传输层,传输层拆传输层头部,查看数据帧的目的端口号,将数据段交由对应的应用程序提供对应的服务。

以太网帧,PPPOE,IP,TCP,UDP,FTP,DNS协议分析教材

以太网帧,PPPOE,IP,TCP,UDP,FTP,DNS协议分析教材

一、以太网帧格式来自线路的二进制数据包称作一个帧。

从物理线路上看到的帧,除其他信息外,还有前导码和帧开始符。

任何物理硬件都会需要这些信息。

下面的表格显示了在以1500个八位元组为MTU传输(有些吉比特以太网甚至更高速以太网支持更大的帧,称作巨型帧)时的完整帧格式。

一个八位元组是八个位组成的数据(也就是现代计算机的一个字节)。

表1:802.3 以太网帧结构二、PPPOE格式PPPOE,全称Point-to-Point Protocol Over Ethernet,它工作在OSI的数据链路层,PPPOE协议提供了在广播式的网络(如以太网)中多台主机连接到远端的访问集中器(我们对目前能完成上述功能的设备为宽带接入服务器)上的一种标准。

PPPOE协议共包括两个阶段,即PPPOE的发现阶段(PPPOE Discovery Stage)和PPPOE的会话阶段(PPPOE Session Stage)。

而两者的主要区别在于只是在PPP的数据报文前封装了PPPOE的报文头。

PPPOE的数据报文是被封装在以太网帧的数据域内的。

简单来说我们可能把PPPOE报文分成两大块,,一大块是PPPOE的数据报头,另一块则是PPPOE 的净载荷(数据域),对于PPPOE报文数据域中的内容会随着会话过程的进行而不断改变。

下表为PPPOE的报文的格式:表2:PPPOE报文的格式以下是对上表中PPPOE各个字段的描述:表1:PPPOE各个字段的描述三、IP数据报格式TCP/IP协议定义了一个在因特网上传输的包,称为IP数据报(IP Datagram)。

这是一个与硬件无关的虚拟包,由首部和数据两部分组成。

首部的前一部分是固定长度,共20 字节,是所有IP数据报必须具有的。

在首部的固定部分的后面是一些可选字段,其长度是可变的。

首都中的源地址和目的地址都是IP 协议地址。

IP数据报头格式见下图::表3:IP数据报格式IP数据报各个字段的描述:四、TCP数据报格式在因特网协议族(Internet protocol suite)中,TCP层是位于IP层之上,应用层之下的传输层。

以太网帧,IP,TCP,UDP首部结构

以太网帧,IP,TCP,UDP首部结构

以太网帧,IP,TCP,UDP首部结构1.以太网帧的格式以太网封装格式2.IP报头格式IP是TCP/IP协议簇中最为重要的协议。

所有的TCP,UDP, ICMP 和IGMP数据都以IP数据报格式传输。

IP提供的是不可靠、无连接的协议。

普通的IP首部长为20个字节,除非含有选项字段。

4位版本:目前协议版本号是4,因此IP有时也称作IPV4.4位首部长度:首部长度指的是首部占32bit字的数目,包括任何选项。

由于它是一个4比特字段,因此首部长度最长为60个字节。

服务类型(TOS):服务类型字段包括一个3bit的优先权字段(现在已经被忽略),4bit的TOS子字段和1bit未用位必须置0。

4bit的TOS分别代表:最小时延,最大吞吐量,最高可靠性和最小费用。

4bit中只能置其中1比特。

如果所有4bit均为0,那么就意味着是一般服务。

总长度:总长度字段是指整个IP数据报的长度,以字节为单位。

利用首部长度和总长度字段,就可以知道IP数据报中数据内容的起始位置和长度。

由于该字段长16bit,所以IP数据报最长可达65535字节。

当数据报被分片时,该字段的值也随着变化。

标识字段:标识字段唯一地标识主机发送的每一份数据报。

通常每发送一份报文它的值就会加1。

生存时间:T T L(time-to-live)生存时间字段设置了数据报可以经过的最多路由器数。

它指定了数据报的生存时间。

T T L的初始值由源主机设置(通常为 3 2或6 4),一旦经过一个处理它的路由器,它的值就减去 1。

当该字段的值为 0时,数据报就被丢弃,并发送 I C M P报文通知源主机。

首部检验和:首部检验和字段是根据 I P首部计算的检验和码。

它不对首部后面的数据进行计算。

I C M P、I G M P、U D P和T C P在它们各自的首部中均含有同时覆盖首部和数据检验和码。

3.TCP首部格式尽管T C P和U D P都使用相同的网络层( I P),T C P却向应用层提供与U D P完全不同的服务。

常见以太网错误帧的解释

常见以太网错误帧的解释

常见以太网错误帧的解释1 引言我们在测试中经常会听到各种以太网帧术语,比如说CRC,Alignment,Fragment,超小帧(Runt),超长帧(oversize),Jabber帧, Jumbo帧等。

很多初学者对这些概念不清楚,我在此想对这些术语做些总结。

首先介绍一些基本的概念然后再做关于错误的介绍。

2 以太网帧基本概念以太网主要有两种帧结构Ethernet II帧和IEEE 802.3帧:Preamble : 称前导符, 由0,1 交替组成的7字节, 通知目的地准备接收SOF: 帧首定界字符, 由两个连续的代码1结尾, 标识一帧的开始Destination Adress & Source Adress:目的MAC地址\源MAC地址,可以是单播,组播或广播地址;Type\Length:type表明数据域类型长度;Length表明紧随其后数据段的字节数。

该值的大小区分Ethernet II帧和IEEE 802.3帧大于1500:类型域中数值大于1500的帧是Ethernet II帧,该域中的值最小为1536 (600 hex)。

小于等于1500:长度域中数值小于等于1500的帧是IEEE 802.3帧, 该域中的值最大为1500。

DATA: 数据段, 以太网的字节传输最大值是1518 bytes(未启用Jumbo),最小值是64 bytes,数据包中的字节数必须要能被8整除。

FCS : 帧校验,该序列为4个字节的循环冗余校验CRC, 发送方按一定计算方式产生,接收方对接收到的数据用同样的方式计算并将得到的校验码和接收到的校验码比较,如果一致认为传输正确.。

Jumbo帧:伴随着以太网速率的提高,千兆以太网的产生而提出了Jumbo帧.也称巨型帧即字节数大于1518字节的帧. 现在的单板TGE,SEC,RSEB\RSEA, MSEB\MSEA都有支持Jumbo帧的配置选项. MSEB单板最大支持的帧长可以达到64kbyte(需求只要求9600byte).3 以太网CRC实现在传输系统中,为了保证数据传输的正确性, 对传输过程进行差错控制, 循环冗余校验(CRC)就是一种差错控制机制.循环冗余码是建立在近世代数基础上的,编解码电路简单,检错能力强。

以太网帧格式分析实验报告

以太网帧格式分析实验报告

以太网帧格式分析实验报告【摘要】本实验主要对以太网帧格式进行了详细分析和实验验证。

首先,我们了解了以太网帧的基本概念和结构,并学习了以太网帧在网络中的传输过程。

然后,我们通过Wireshark工具对以太网帧进行捕获和分析,并对实验结果进行了解读。

最后,我们总结了实验过程中遇到的问题和经验教训,并对以太网帧格式进行了简要评价。

【关键词】以太网帧格式,Wireshark,捕获,分析一、引言以太网是目前最常用的局域网传输技术,而以太网帧则是以太网传输过程中的基本单位。

以太网帧格式的正确理解对于网络工程师来说非常重要。

本实验的目的是通过对以太网帧格式的分析和实验验证,加深对以太网帧的理解和应用能力。

二、以太网帧结构以太网帧是由头部(header)、数据(data)和尾部(trailer)三部分组成的。

头部包含了目的MAC地址、源MAC地址、帧类型等信息;数据部分是要传输的数据内容;尾部则包括了帧校验序列等信息。

三、以太网帧的传输过程以太网帧的传输是通过物理层和数据链路层进行的。

当数据从网络层传输到数据链路层时,会被封装成以太网帧的格式。

然后,以太网帧通过物理层的传输介质(如电缆)进行传输。

接收端收到以太网帧后,会解析帧头部来获取目的MAC地址,并将帧传输到上层。

四、Wireshark工具的使用Wireshark是一个常用的网络抓包工具,可以捕获网络中的数据包,并对数据包进行分析。

在本实验中,我们使用Wireshark来捕获和分析以太网帧。

五、实验步骤与结果1. 打开Wireshark并选择网络接口;2. 开始启动网络通信,在Wireshark中捕获数据包;3.分析捕获到的数据包,查看其中的以太网帧信息,如目的MAC地址、源MAC地址、帧类型等。

通过实验,我们成功捕获了多个以太网帧,并对其进行了分析。

我们发现,捕获到的以太网帧中的帧头部包含了各种重要信息,如源MAC地址、目的MAC地址、帧类型等。

这些信息对于实现正确的数据传输非常重要。

以太网之帧结构

以太网之帧结构

以太网的帧结构分两种:第一种是Ethernet_II的帧结构,如下图所示:| DMAC(6byte) | SMAC(6byte) | Type(2byte) | Data(46~1500byte) | CRC(4byte) |DMAC:指(destination mac)目的地址,即是接收信息设备的物理地址。

SMAC:指(source MAC)源地址,即是发送信息设备的物理地址。

Type:用来标识data字段中包含的高层协议,即是通告接收信息的设备如何解释该数据字段(数据的封装都是从应用层到低层逐渐添加的,在数据链路层以上的数据都封装在了data字段中)。

其中:(1)IP协议帧该字段为0800(2)ARP协议帧该字段为0806(3)RARP协议帧该字段为0835(4)IPX和SPX协议帧该字段为8137。

Data:数据字段,上层下到本层的数据都被包含到了这里面。

前面讲到,它必须大于46字节,但必须小于1500字节。

CRC:(Cyclic Redundancy CHeck)即是循环冗余校验字段。

发送数据的设备会提供一个包含MAC字段、Type字段、Data字段的CRC码,然后计算出CRC 码填入到该处,起到错误检测控制的功能。

第二种是IEEE802.3的帧结构,如下如所示:| DMAC(6byte) | SMAC(6byte) | Length(2byte)|llC(3byte) |Data(43~1497byte) | CRC(4byte) |DMAC、SMAC、Data和CRC字段不再赘述。

这种帧结构用length字段替代了type字段,并从Data字段中划出了3byte 作为LLC字段,作为服务访问点(SAP)的新区域来解决识别上层协议的问题。

Length:即是长度字段,记录Data字段的长度。

LLC:由目的服务访问点DSAP(Destination Service Access Point)、源服务访问点SSAP(Source Service Access Point)和Control字段组成,分别占有1byte。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Page 2
网络通信协议
OSI
TCP/IP
IPX/SPX
SNA
局域网
IEEE 802
广域网
以太网
帧中继 PPP HDLC

不同的协议栈用于定义和管理不同网络的数据转发规则。
Page 3
分层模型- OSI
7
应用层 表示层 会话层 传输层
为应用程序提供网络服务
6
数据格式化,加密、解密
5
建立、维护、管理会话连接
MAC:00-03-04-05-06-07

数据链路层基于MAC地址进行帧的传输。
Page 11
以太网的MAC地址
48 bits
24 bits
24 bits
OUI
由供应商分配

MAC地址由两部分组成,分别是供应商代码和序列号。其中前24位代表 该供应商代码,由IEEE管理和分配。剩下的24位序列号由厂商自己分配。
4
建立、维护、管理端到端连接 IP寻址和路由选择
3
网络层
数据链路层 物理层
2
控制网络层与物理层之间通信 比特流传输
1
Page 4
分层模型– TCP/IP
应用层
传输层
TCP/IP
网络层
网络接口层
Page 5
数据封装
PDU
应用层
数据
传输层
数据
Segment
网络层
数据
Packet
网络接口层
数据
Frame
主机 A 主机 B
MAC B
MAC A
0x0800
Data
FCS
IP
Data
Data

当主机接收到的数据帧所包含的目的MAC地址是自己时,会把以太网封 装剥掉后送往上层协议。
Page 16
总结

网络设备如何确定以太网数据帧的上层协议? 终端设备接收到数据帧时,会如何处理?
Page 17
Page 12
单播
48 bits
7 bits
0
主机 A 主机 B
单播
主机 C
主机 D
Page 13
广播
48 bits
FF
主机 A
FF
FF
FF
主机 B
FF
FF
广播
主机 C
主机 D
Page 14组播48 bis7 bits1
主机 A 主机 B
组播
主机 C
主机 D
Page 15
数据帧的发送和接收
前言
网络中传输数据时需要定义并遵循一些标准,以太网是根据IEEE 802.3标
准来管理和控制数据帧的。了解IEEE802.3标准是充分理解以太网中链路
层通信的基础。
Page 1
学习目标
学完本课程后,您应该能:

理解分层模型的作用 掌握以太网中数据帧的结构 掌握MAC地址的作用

掌握以太网中数据帧转发的过程
0x0806
ARP
0x0806 (2054 )

Ethernet_II 帧类型值大于等于1536 (0x0600)。 以太网数据帧的长度在64-1518字节之间。
Page 9
IEEE802.3 帧格式
6B 6B 2B 3B 5B 38-1492 B 4B
D.MAC
S.MAC
Length
LLC
SNAP
Data
FCS
1B
1B
1B
3B
2B
D.SAP
S.SAP
Control
Org Code
Type

IEEE 802.3 帧长度字段值小于等于1500 (0x05DC)。
Page 10
数据帧传输
主机 A 主机 B
MAC:00-02-03-04-05-06
MAC:00-03-04-05-06-07
D.MAC
Length/Type >= 1536 (0x0600) Length/Type <= 1500 (0x05DC)
Ethernet_II IEEE802.3
Page 8
Ethernet_II 帧格式
6B
6B
2B
46-1500 B
4B
D.MAC
S.MAC
Type
Data
FCS
0x0800
IP
0x0800 (2048 )
Bit
Page 6
终端之间的通信
主机 A
主机 B

Header
Data
Trailer

数据链路层控制数据帧在物理链路上传输。
Page 7
帧格式
主机 A
主机 B
Ethernet_II
D.MAC
S.MAC
Type
Data
FCS
IEEE802.3
D.MAC
S.MAC
Length
LLC
SNAP
Data
FCS
相关文档
最新文档