第二节 简谐运动的描述
简谐运动的描述
面上做简谐运动,振动过程中A、B之间无相对运动,A的下表面与B的上
表面间的动摩擦因数为μ,弹簧的劲度系数为k。若滑动摩擦力等于最
大静摩擦力,重力加速度大小为g,则该简谐运动的最大位移为(
A.
mg
k
M m g
C.
k
B.
小球,小球静止。现将小球向下拉动距离A后由静止释放,并开始计时,
小球在竖直方向做简谐运动,周期为T。经 T 时间,小球从最低点向上
8
运动的距离_____
A (选填“大于”、“小于”或“等于”);在 T 时
2
4
刻,小球的动能______(选填“最大”或“最小”)。
【答案】小于
最大
典例分析
【典例3】(2022·河北·临城中学高二开学考试)如图所示,质量为m
问题1:O—D—B—D—O是一个周期吗?
问题2:若从振子经过C向右起,经过
怎样的运动才叫完成一次全振动?
问题3:如何测弹簧振子的周期? 简谐运动的周期与振幅有关吗?
二、周期和频率
做一做
测量小球振动的周期
如图,弹簧上端固定,下端悬挂钢球。把钢球从平衡位置
向下拉一段距离 A,放手让其运动,A 就是振动的振幅。
2.振动周期与弹簧的劲度系数有
关,劲度系数较大时,周期较小。
3.振动周期与振子的质量有关,质量较小时,周期较小。 T 2 m
k
结论: 弹簧振子的周期由振动系统本身的质量和劲度系数决定,而与
振幅无关,所以常把周期和频率叫做固有周期和固有频率。
二、周期和频率
根据正弦函数规律,(ωt+)在每增加2π的过程中,函数值循
简谐运动的描述(高中物理教学课件)完整版
四.简谐运动的表达式
简谐运动的表达式:x=Asin(ωt+φ)
位移 振幅
时刻 初相位
圆频率 ω=2π/T=2πf
也可以写成:x Asin(2 t )
T
相位
根据一个简谐运动的振幅、周期、初相位,可以知道做 简谐运动的物体在任意时刻的位移,故振幅、周期、初 相位是描述简谐运动特征的物理量。
三角变换
因为 2 , T 2 2 m
T
k
振动系统本身性质决 定的。
同时放开的两个小球振动步调总是 一致,我们说它们的相位是相同的;
而对于不同时放开的两个小球,我 们说第二个小球的相位落后于第一个 小球的相位。
如何定量的表示相位呢?
三.相位
1.相位:物理学中把(ωt+φ)叫作相位,其中φ 叫初相位,也叫初相。 由简谐运动的表达式x=Asin(ωt+φ)可以知道, 一旦相位确定,简谐运动的状态也就确定了。 2.相位差:两个具有相同频率的简谐运动的相位 的差值。 如果两个简谐运动的频率相同,其初相分别是φ1 和φ2,当φ1>φ2时,它们的相位差是Δφ=(ωt+φ1) -(ωt+φ2)=φ1-φ2此时我们常说1的相位比2超前 Δφ,或者说2的相位比1落后Δφ。
x甲 0.5sin(5t )cm 或者x甲 0.5sin 5tcm
x乙
0.2 sin(2.5t
2
)cm
或者x乙 0.2 cos 2.5tcm
注意: 振动物体运动的范围是振幅的两倍。
二.周期和频率
做简谐振动的振子,如果从A点开始运动,经过O点运动到Aˊ点再 经过O点回到A点,这样的过程物体的振动就完成了一次全振动。 如果从B点向左运动算起,经过O点运动到Aˊ点,再经过O点回到 B点,再经A点返回到B点时,这样的过程也是一种全振动。
2.2 简谐运动的描述
(2)
2
=2πf 是解题时常涉及到的表达式。
T
像,会使解答过程简捷、明了。
(3)解题时画出其振动图
课堂评价
1.如图所示为A、B 两个简谐运动的位移—时间图像。试根据图像写出:
⑴A 的振幅、周期;B 的振幅、周期。
⑵试写出这两个简谐运动的位移随时间变化的衡位置为点O,在B、C之间做简谐运动。B、C相
距20cm。小球经过B点开始计时,经过0.5s首次到达C点。
⑴画出小球在第一个周期内的x-t图像。
⑵求5s内小球通过的路程及5s末小球的位移。
C
考虑:①对称性
②周期性
O
B
x
总结:用简谐运动位移表达式解答振动问题的方法
⑶在时间t =0.05s时两质点的位移分别是多少?
参考答案
(1)由题图知:A 的振幅是0.5 cm,周期是0.4 s;
B 的振幅是0.2 cm,周期是0.8 s。
(2) xA=0.5sin(5πt+π)cm
xB=0.2 sin(2.5πt+ ) cm
(3) xA=-
2
4
2
cm xB =
5
0.2sin π
1
T
f
2
2f
T
3.周期与振幅关系
探究:如图是竖直悬挂的弹簧振子,向下拉开一段距离A使其做简谐运动。
⑴是否振幅A越大,运动的周期T也越大?
⑵给你一个秒表,应该如何测量周期T?请验证你的猜想。
演示:测量小球振动的周期
结论:在简谐运动中,一个确定的振动系统的周期由振动系统本身的因素决定,
与振幅无关。
人教版选修3-4 第11章 第2节 简谐运动的描述
一、描述简谐运动的物理量┄┄┄┄┄┄┄┄① 1.振幅(1)定义:振动物体离开平衡位置的最大距离,叫做振动的振幅。
用A 表示,单位为米(m)。
(2)物理意义:振幅是描述振动强弱的物理量;振幅的大小反映了振动系统能量的大小。
2.全振动:振动物体以相同的速度相继通过同一位置所经历的过程。
3.周期(T)和频率(f)内容 周期频率定义 做简谐运动的物体完成一次全振动需要的时间 单位时间内完成全振动的次数单位 秒(s)赫兹(Hz)物理含义 表示振动快慢的物理量关系式T =1f相位:表示振动物体不同状态的物理量,用来描述周期性运动在各个时刻所处的不同状态。
[说明]1.振幅是振子离开平衡位置的最大距离,数值上等于最大位移的绝对值。
2.正确理解全振动,应注意把握全振动的五个特征 (1)振动特征:一个完整的振动过程。
(2)物理量特征:位移(x)、加速度(a)、速度(v)三者第一次同时与初始状态相同。
(3)时间特征:历时一个周期。
(4)路程特征:振幅的4倍。
(5)相位特征:增加2π。
①[判一判]1.振幅就是指振子的位移(×)2.振子从离开某位置到重新回到该位置的过程为一次全振动过程(×) 3.振子完成一次全振动的路程等于振幅的4倍(√) 二、简谐运动的表达式┄┄┄┄┄┄┄┄②简谐运动的一般表达式为:x =Asin(ωt+φ)。
1.x 表示振动物体相对于平衡位置的位移。
2.A 表示简谐运动的振幅。
3.ω是一个与频率成正比的量,称做简谐运动的圆频率,表示简谐运动振动的快慢,ω=2πT =2πf。
4.(ωt+φ)代表简谐运动的相位,φ表示t =0时的相位,叫做初相。
[说明]1.相位差是指两个相位之差,在实际应用中经常用到的是两个具有相同频率的简谐运动的相位差,设其初相位分别为φ1和φ2,其相位差Δφ=(ωt+φ2)-(ωt+φ1)=φ2-φ1,它反映出两个简谐运动的步调差异。
(1)同相:表明两个振动物体步调相同,相差位Δφ=0。
2.2简谐运动的描述
例5.如图 ,弹簧振子的平衡位置为 O 点,在 B、C两点之间做简谐运动。B、C 相距 20 cm。小球经过 B 点时开始计时,经过 0.5 s 首次到达 C 点。 (1)画出小球在第一个周期内的 x-t 图像。 (2)求 5 s 内小球通过的路程及 5 s 末小球的位移。
【思考】 振子的振幅为多大? 振子的周期为多大? 振子的圆频率为多少? 振子的初相是多大?
简谐运动的位移-时间关系
振动图象:正弦曲线
振动方程:
x Asin(t )
振子水 平方向振动 的位移恰好 等于质点做 匀速圆周运 动在竖直方 向的投影。
二.简谐运动的表达式
x Asin(t )
x A sin t (平衡位置处开始计时) x A cos t (最大位移处开始计时)
振幅
相位
离是20 cm,A到B运动时间是2 s,如图所示,则( A.从O→B→O振子做了一次全振动 半个周期
C)
B.振动周期为2 s,振幅是10 cm
C.从B开始经过6 s,振子通过的路程是60 cm
D.从O开始经过3 s,振子处在平衡位置
6s=1.5T s=6A=60cm
1个周期=4s
3s=0.75T
例4.(多选)一质点做简谐运动,其位移x与时间t的关系图
标量
矢量
标量
在稳定的振动系统 中不发生变化
大小和方向随时间 做周期性变化
随时间增加
(1)振幅等于位移最大值的数值;(2)振子在一个周期内的 路程等于4个振幅;而振子在一的特点是什么?
往复性-重复性-周期性
2.周期和频率:
(1)周期:做简谐运动的物体完成一次全振动所需要
结论:弹簧振子的周期由振动系统本身
的质量和劲度系数决定,而与振幅无关, 所以常把周期和频率叫做固有周期和固
高中物理选修3---4第十一章第二节《简谐运动的描述》
(2)符号A,是标量
(3)振动物体运动范围为振幅的两倍(2A)
(4)物理意义:描述振动强弱的物理量
(5)简谐运动没有能量损耗,所以机械 能守恒定律。系统总的机械能为:
E
Ek
Ep
1 2
kA(2 其中k为一个常数)
课堂小 结
二、全振动: 1.定义:做简谐运动的物体从某一初始状态开 始,再次回到初始状态(即位移、速度、加速 度其中的任意两个物理量完全相同)所经历的 过程。
A
定为4A;
B
(2)半个周期通过的路程必 定为2A;
x/m
(3)四分之一个周期通过的路
程可能等于A,可能小于A,还
可能大于A。
t/s
六、拓展延伸:
3.简谐运动初相位 0 的求解方法:
x/m
注意:
一般情况下,初相位的取值范围- 0
t/s
①函数法:
将位移与时间的函数关系式正确表示出来:
A C O DB
物体的运动存在 周期性。
二、全振动:
A C O DB
1.定义:做简谐运动的物体从某一初始状态开始,再次回到初 始状态(即位移、速度、加速度其中的任意两个物理量完全相 同)所经历的过程。
2.规律:物体完成一次全振动经过的路程为4A。
3.规律:物体完成一次全振动所用时间均相同。
问题:若从振子经过C向右起,经过怎样的运动才叫完成一次 全振动?
x Asin(t 0) ,其中A0,0
②平移法:
将x A sin t的图像在- 范围内平移得到
x A sin(t 0 )的图像,当向左移时,0取正值, 向右移时0取负值,并且0 t
【例题】有两个简谐动:
描述简谐运动的物理量
.
9
二、简谐运动的表达式 相位
xAsi nt ()
振幅
圆频率
2 2f
T
初相位
xA si2 n t( )A si2 n f ( t)
T
.
10
课堂练习
例题一1个:质点作简谐运动的振动图像如图.从图中 可以看出,该质点的振幅A= __ 0m.1,周期T=__ s0,.4 频率f= __ 2H.5z,从t=0开始在△t=0.5s内质点的位移 __ 0,路.1程m= ___ .0.5m
2.全振动:
一个完整的振动过程
BO A
1.若从振子向右经过某点p起,经过怎样 的运动才叫完成一次全振动?
振动物体连续两次以相同速度通过同一点所经历的 过程.
一次全2振、动弹所簧经振过子的完路成程一等次于全4振倍动的的振路幅程与振幅 之间存在怎样的关系?
半周期? 1/4周期?.
3
3、周期和频率
(1)周期T:做简谐运动的物体完成一次全振动所需要的
第二节 简谐运动的描述
.
1
一、描述简谐运动的物理量 1、振幅A:
(1)定义:振动物体离开平衡位置的最大距离.
(2)意义:描述振动的强弱.
振幅的2倍表示振动物体运动范围的大小. 振幅和位移的区别?
(1)振幅等于最大位移的数值. (2)对于一个给定的振动,振子的位移是时刻变化的, 但振幅是不变的.
.
2
2. 叫圆频率.表示简谐运动的快慢.
它与频率的关系: =2f
3.“ t+” 叫简谐运动的相位.表示简谐 运动所处的状态.
叫初相,即t=0时的相位.
第二节 简谐运动的描述
第二节简谐运动的描述教学目标:(一)知识与技能1、知道振幅、周期和频率的概念,知道全振动的含义。
2、了解初相和相位差的概念,理解相位的物理意义。
3、了解简谐运动位移方程中各量的物理意义,能依据振动方程描绘振动图象。
(二)过程与方法1、在学习振幅、周期和频率的过程中,培养学生的观察能力和解决实际问题的能力。
2、学会从相位的角度分析和比较两个简谐运动。
(三)情感、态度与价值观1、每种运动都要选取能反映其本身特点的物理量来描述,使学生知道不同性质的运动包含各自不同的特殊矛盾。
2、通过对两个简谐运动的超前和滞后的比较,学会用相对的方法来分析问题。
教学重点:简谐运动的振幅、周期和频率的概念;相位的物理意义。
教学难点:1、振幅和位移的联系和区别、周期和频率的联系和区别。
2、对全振动概念的理解,对振动的快慢和振动物体运动的快慢的理解。
3、相位的物理意义。
教学方法:分析类比法、讲解法、实验探索法、多媒体教学。
教学用具:CAI课件、劲度系数不同的弹簧、质量不同的小球、秒表、铁架台、音叉、橡皮槌;两个相同的单摆、投影片。
教学过程:(一)引入新课教师:描述匀速直线运动的物理量有位移、时间和速度;描述匀变速直线运动的物理量有时间、速度和加速度;描述匀速圆周运动的物体时,引入了周期、频率、角速度等能反映其本身特点的物理量。
上节课我们学习了简谐运动,简谐运动也是一种往复性的运动,所以研究简谐运动时我们也有必要像匀速圆周运动一样引入周期、频率等能反映其本身特点的物理量。
本节课我们就来学习描述简谐运动的几个物理量。
(二)新课教学1、振幅如果我们要乘车,我想大家都愿意坐小汽车,而不坐拖拉机,因为拖拉机比小汽车颠簸得厉害。
演示:在铁架台上悬挂一竖直方向的弹簧振子,分别把振子从平衡位置向下拉不同的距离,让振子振动。
现象:①两种情况下,弹簧振子振动的范围大小不同;②振子振动的强弱不同。
在物理学中,我们用振幅来描述物体的振动强弱。
(1)物理意义:振幅是描述振动强弱的物理量。
简谐运动的描述PPT课件
二、简谐运动的表达式
x Asint
课堂训练
1.右图中是甲乙两弹簧振子的振动图象,两振 动振幅之比为_2_∶_1__,
频率之比为__1_∶_1,
甲和乙的相差为_____ 2
2.某简谐运动的位移与时间关系为:x=0.1sin (100πt+π )cm, 由此可知该振动的振幅
频率
实际上经常用到的是两个相同频率 的简谐运动的相位差,简称相差
t 1 t 2 1 2
同相:频率相同、初相相同(即相差 为0)的两个振子振动步调完全相同
反相:频率相同、相差为π的两个
振子振动步调完全相反
思考题
练习
两个简谐振动分别为
x1=4asin(4πbt+
1π)
2
x2=2asin(4πbt+
是____0._1_cm,频率是 50Hz,零时刻振动 物体的速度与规定正方向_____相(反填“相同” 或“相反”).
3、有一个在光滑水平面内的弹簧振子, 第一次用力把弹簧压缩x后释放,第二 次把弹簧压缩2x后释放,则先后两次 振动的周期和振幅之比分别为多少?
3、有一个在光滑水平面内的弹簧振子, 第一次用力把弹簧压缩x后释放,第二 次把弹簧压缩2x后释放,则先后两次 振动的周期和振幅之比分别为多少?
1:1
1:2
4、弹簧振子以O点为平衡位置,在B、C两点之 间做简谐振动,B、C相距20cm,某时刻振子 处于B点,经过0.5s,振子首次到达C点,求:
(1)振子的周期和频率 T=1.0s f=1HZ (2)振子在5s末的位移的大小 10cm (3)振子5s内通过的路程 200cm
3π
2
求它们的振幅之比,各自的频率,以及
2 第2节 简谐运动的描述
第2节 简谐运动的描述1.知道什么是振动的振幅、周期、频率及相位.2.理解周期和频率的关系.3.了解简谐运动的数学表达式,知道在数学表达式中各物理量的意义.一、描述简谐运动的物理量1.振幅:振动物体离开平衡位置的最大距离.振幅的两倍表示的是做振动的物体运动范围的大小.2.周期和频率(1)全振动:一个完整的振动过程,称为一次全振动.弹簧振子完成一次全振动的时间总是相同的.(2)周期:做简谐运动的物体完成一次全振动所需要的时间,叫做振动的周期,用T 表示.单位:在国际单位制中,周期的单位是秒(s).(3)频率:单位时间内完成全振动的次数,叫做振动的频率,用f 表示.单位:在国际单位制中,频率的单位是赫兹,简称赫,符号是Hz.(4)周期和频率的关系:f =1T. (5)周期和频率都是表示物体振动快慢的物理量,周期越小,频率越大,表示振动越快.3.相位:在物理学上,我们用不同的相位来描述周期性运动在各个时刻所处的不同状态.二、简谐运动的表达式简谐运动的表达式为x =A sin(ωt +φ).1.A :表示简谐运动的振幅.2.ω:是一个与频率成正比的量,叫做简谐运动的“圆频率”,表示简谐运动的快慢,ω=2πT=2πf . 3.ωt +φ:代表简谐运动的相位.4.φ:表示t =0时的相位,叫做初相.判一判 (1)振幅就是指振子的位移.( )(2)振幅就是指振子的路程.( )(3)振子从离开某位置到重新回到该位置的过程为一次全振动过程.( )提示:(1)× (2)× (3)×想一想 简谐运动的表达式一般表示为x =A ·sin(ωt +φ),那么简谐运动的函数表达式能否用余弦函数表示?提示:简谐运动的位移和时间的关系既可以用正弦函数表示,也可以用余弦函数表示,只是对应的初相位不同.描述简谐运动的物理量及其关系1.对全振动的理解正确理解全振动的概念,应注意把握振动的五种特征.(1)振动特征:一个完整的振动过程.(2)物理量特征:位移(x )、加速度(a )、速度(v )三者第一次同时与初始状态相同.(3)时间特征:历时一个周期.(4)路程特征:振幅的4倍.(5)相位特征:增加2π.2.简谐运动中振幅和几个常见量的关系(1)振幅和振动系统能量的关系:对一个确定的振动系统来说,系统能量仅由振幅决定,振幅越大,振动系统能量越大.(2)振幅与位移的关系:振动中的位移是矢量,振幅是标量,在数值上,振幅与某一时刻位移的大小可能相等,但在同一简谐运动中振幅是确定的,而位移随时间做周期性的变化.(3)振幅与路程的关系:振动中的路程是标量,是随时间不断增大的.其中常用的定量关系是:一个周期内的路程为4倍的振幅,半个周期内的路程为2倍的振幅.(4)振幅与周期的关系:在简谐运动中,一个确定的振动系统的周期(或频率)是固定的,与振幅无关.命题视角1 从振动图象上获取解题信息(多选)如图是一做简谐运动的物体的振动图象,下列说法正确的是( )A .振动周期是2×10-2 s B .物体振动的频率为25 HzC .物体振动的振幅为10 cmD .在6×10-2 s 内物体通过的路程是60 cm [解析] 周期在图象上是两相邻极大值间的距离,所以周期是4×10-2 s ,A 项错误;又f =1T,所以f =25 Hz ,则B 项正确;正、负极大值表示物体的振幅,所以振幅A =10 cm ,则C 项正确;t =6×10-2s =112T ,所以物体通过的路程为4A +2A =6A =60 cm ,故D 正确.[答案] BCD命题视角2 简谐运动中的位移、振幅和路程关系(2018·厦门高二检测)弹簧振子以O 点为平衡位置在B 、C 两点间做简谐运动,B 、C 相距20 cm ,某时刻振子处于B 点,经过0.5 s ,振子首次到达C 点,求:(1)振子的振幅;(2)振子的周期和频率;(3)振子在5 s 内通过的路程及5 s 末位移的大小.[思路点拨] 对弹簧振子做简谐运动而言,离平衡位置最远的两个点关于平衡位置对称,其距离为2A .一个全振动的时间叫做周期,周期和频率互为倒数关系.简谐运动的位移是振子离开平衡位置的距离.要注意各物理量之间的区别与联系.[解析] (1)振幅设为A ,则有2A =BC =20 cm ,所以A =10 cm.(2)从B 首次到C 的时间为周期的一半,因此T =2t 1=1 s ;再根据周期和频率的关系可得f =1T=1 Hz. (3)振子一个周期通过的路程为4A =40 cm ,即一个周期运动的路程为40 cm ,s =t T×4A =5×40 cm =200 cm , 5 s 的时间为5个周期,又回到原始点B ,故5 s 末位移的大小为10 cm.[答案] (1)10 cm (2)1 s 1 Hz (3)200 cm 10 cm振动物体在一个周期内通过的路程一定为四个振幅;在半个周期内的路程一定为两个振幅;在14个周期内的路程可能等于一个振幅,可能大于一个振幅,还可能小于一个振幅.只有当振动物体的初始位置在平衡位置或最大位移处时,14个周期内的路程才等于一个振幅. 【通关练习】1.有一个在光滑水平面内的弹簧振子,第一次用力把弹簧压缩x 后释放让它振动,第二次把弹簧压缩2x 后释放让它振动,则先后两次振动的周期之比和振幅之比分别为( )A .1∶1,1∶1B .1∶1,1∶2C .1∶4,1∶4D .1∶2,1∶2解析:选B.弹簧的压缩量即为振动过程中偏离平衡位置的最大距离,即振幅,故振幅之比为1∶2;而对同一振动系统,其周期与振幅无关,故周期之比为1∶1.正确选项为B.2.(2018·宁夏育才中学高二期中)如图是某振子做简谐振动的图象,以下说法中正确的是( )A .因为振动图象可由实验直接得到,所以图象就是振子实际运动的轨迹B .由图象可以直观地看出周期、振幅C .振子在B 位置的位移就是曲线BC 的长度D .振子运动到B 点时的速度方向即为该点的切线方向解析:选B.振动图象反映了振子的位移随时间的变化情况,并不是振子的运动轨迹,所以不能说:振子运动到B 点时的速度方向为该点的切线方向,而是沿x 轴负方向,A 、D 错误;由图读出振幅A =4 cm ,周期T =0.2 s ,B 正确;振子的位移等于图象的纵坐标,不是曲线的长度,C 错误.3.(多选)(2018·安徽屯溪一中高二期中)物体做简谐运动,通过A 点时的速度为v ,经过时间t 后物体第一次以相同速度v 通过B 点,又经过同样的时间物体紧接着又通过B 点,已知物体在这段时间内走过的总路程为18 cm ,则该简谐运动的振幅可能是( )A .3 cmB .5 cmC .7 cmD .9 cm解析:选AD.过A 、B 点速度相等,AB 两点一定关于平衡位置O 对称,若从A 点向右运动,则如图所示:根据对称性可以知道:2A =18 cm ,则A =9 cm ,故选项D 正确;若从A 点向左运动,则如图所示:根据对称性可以知道:2A +A +2A +A =18 cm ,则A =3 cm ,故选项A 正确.对简谐运动表达式的理解做简谐运动的物体位移x 随时间t 变化的表达式为x =A sin(ωt +φ),式中各物理量的意义是:1.x :表示振动物体相对于平衡位置的位移.2.A :表示振幅,描述简谐运动振动的强弱.3.ω:圆频率,它与周期、频率的关系为ω=2πT=2πf . 可见ω、T 、f 相当于一个量,描述的都是振动的快慢.4.ωt +φ:表示相位,描述做周期性运动的物体在各个不同时刻所处的不同状态,是描述不同振动的振动步调的物理量.它是一个随时间变化的量,相当于一个角度,相位每增加2π,意味着物体完成了一次全振动.5.φ:表示t =0时振动物体所处的状态,称为初相位或初相.6.相位差:即某一时刻的相位之差.(2018·青岛高二检测)物体A 做简谐运动的振动位移为x A =3cos ⎝⎛⎭⎫100t +π2 m ,物体B 做简谐运动的振动位移为x B =5cos ⎝⎛⎭⎫100t +π6 m .比较A 、B 的运动( ) A .振幅是矢量,A 的振幅是6 m ,B 的振幅是10 mB .周期是标量,A 、B 周期相等为100 sC .A 振动的频率f A 等于B 振动的频率f BD .A 振动的频率f A 大于B 振动的频率f B[解题探究] (1)从简谐运动的表达式中,可以直接得到哪些物理量?(2)简谐运动中怎样根据周期T 或频率f 求ω?[解析] 振幅是标量,A 、B 的振动范围分别是6 m 、10 m ,但振幅分别是3 m 、5 m ,选项A 错误;周期是标量,A 、B 的周期T =2πω=2π100s =6.28×10-2 s ,选项B 错误;因为ωA =ωB ,故f A =f B ,选项C 正确,选项D 错误.[答案] C【通关练习】1.(2018·宁夏平罗中学高二期末)某质点做简谐运动,其位移随时间变化的关系式为x =10sin ⎝⎛⎭⎫π4t cm ,则下列关于质点运动的说法中正确的是( ) A .质点做简谐运动的振幅为5 cmB .质点做简谐运动的周期为4 sC .在t =4 s 时质点的速度最大D .在t =4 s 时质点的位移最大解析:选C.由x =10sin ⎝⎛⎭⎫π4t cm 可知,A =10 cm ,ω=2πT =π4rad/s ,得T =8 s .t =4 s 时,x =0,说明质点在平衡位置,此时质点的速度最大、位移为0,所以只有选项C 正确.2.如图所示为A 、B 两个简谐运动的位移-时间图象.请根据图象写出:(1)A 的振幅是________cm ,周期是________s ;B 的振幅是________cm ,周期是________s.(2)这两个简谐运动的位移随时间变化的关系式.解析:(1)由图象知:A 的振幅是0.5 cm ,周期是0.4 s ;B 的振幅是0.2 cm ,周期是0.8 s.(2)由图象知:A 中振动的质点已振动了12周期,φ=π,由T =0.4 s ,得ω=2πT=5π,则简谐运动的表达式为x A =0.5sin (5πt +π) cm.B 中振动的质点在0时刻从平衡位置沿x 轴正方向已振动了14周期,φ=π2,由T =0.8 s ,得ω=2πT=2.5π,则简谐运动的表达式为x B =0.2·sin ⎝⎛⎭⎫2.5πt +π2 cm. 答案:(1)0.5 0.4 0.2 0.8(2)x A =0.5sin (5πt +π) cmx B =0.2sin ⎝⎛⎭⎫2.5πt +π2 cm简谐运动的多解性问题1.周期性造成的多解问题:简谐运动是一种周期性的运动,其运动过程中每一个物理量都随时间周期性变化.因此,物体经过同一位置可以对应不同的时刻,物体的位移、加速度相同,而速度可能相同, 也可能等大反向,这样就形成简谐运动的多解问题.2.对称性造成的多解问题:由于简谐运动具有对称性,因此当物体通过两个对称位置时,其位移、加速度大小相同,而速度可能相同,也可能等大反向,这种也形成多解问题.命题视角1 简谐运动的周期性造成多解(多选)(2018·牡丹江市一中高二月考)弹簧振子以O 点为平衡位置做简谐运动,从振子通过O 点时开始计时,振子第一次到达M 点用了0.3 s ,又经过0.2 s 第二次通过M 点,则振子第三次通过M 点还要经过的时间可能是( )A.13s B .815 s C .1.4 s D .1.6 s[解析] 如图,假设弹簧振子在水平方向BC 之间振动,如图1,若振子开始先向左振动,振子的振动周期为T =2×0.2 s +0.13×4 s =1.63s ,则振子第三次通过M 点还要经过的时间是t =0.2 s +0.13×4 s =13s.如图2,若振子开始先向右振动,振子的振动周期为T =4×⎝⎛⎭⎫0.3+0.22 s =1.6 s ,则振子第三次通过M 点还要经过的时间是t =1.6 s -0.2 s =1.4 s ,A 、C 正确.[答案] AC命题视角2 简谐运动的对称性造成多解(多选)一弹簧振子做简谐运动,O 为平衡位置,当它经过O 点时开始计时,经过0.3s ,第一次到达M 点,再经过0.2 s 第二次到达M 点,则弹簧振子的周期为( )A .0.53 sB .0.14 sC .1.6 sD .3 s[思路点拨] 振子通过O 点的速度方向有两种可能,一种是从O 指向M ,另一种是背离M .再利用简谐运动的对称性找出周期与运动时间的关系.[解析] 如图甲所示,O 为平衡位置,OB (OC )代表振幅,振子从O →C 所需时间为T 4.因为简谐运动具有对称性,所以振子从M →C 所用时间和从C →M 所用时间相等,故T 4=0.3 s +0.2 s 2=0.4 s ,解得T =1.6 s.如图乙所示,若振子一开始从平衡位置向B 运动,设M ′与M 关于O 点对称,则振子从M ′经B 到M ′所用的时间与振子从M 经C 到M 所需时间相等,即0.2 s .振子从O 到M ′和从M ′到O 及从O 到M 所需时间相等,为0.3 s -0.2 s 3=130 s ,故周期为T =⎝⎛⎭⎫0.5+130 s =1630s ≈0.53 s.[答案] AC求解这类问题,要认真分析题意,画出振子运动的过程示意图,防止漏解.也可画出振子的x -t 图象,根据图象分析求解.【通关练习】1.一水平弹簧振子做简谐运动,周期为T ,则( )A .若t 时刻和(t +Δt )时刻振子运动位移的大小相等、方向相同,则Δt 一定等于T 的整数倍B .若t 时刻和(t +Δt )时刻振子运动位移的大小相等、方向相反,则Δt 一定等于T 2的整数倍 C .若Δt =T ,则在t 时刻和(t +Δt )时刻振子振动的加速度一定相等D .若Δt =T 2,则在t 时刻和(t +Δt )时刻弹簧的长度一定相等 解析:选C.本题可以结合弹簧振子的运动示意图和振动图象进行分析.如图所示,图中的a 、b 、c 三点位移大小相等、方向相同,显然Δt 不等于T 的整数倍,故选项A 是错误的;图中的a 、d 两点的位移大小相等、方向相反,Δt <T 2,故选项B 是错误的;在相隔一个周期T 的两个时刻,振子只能位于同一位置,其位移相同,合外力相同,加速度必相等,选项C 是正确的;相隔T 2的两个时刻,振子的位移大小相等,方向相反,其位置关于平衡位置对称,弹簧分别处于压缩和拉伸状态,弹簧的长度并不相等,选项D 是错误的.2.(多选)(2018·河南鹤壁市淇县一中高二月考)水平方向振动的弹簧振子做简谐运动的周期为T ,则( )A .若在时间Δt 内,弹力对振子做的功为零,则Δt 一定是T /2的整数倍B .若在时间Δt 内,弹力对振子做的功为零,则Δt 可能小于T /2C .若在时间Δt 内,弹簧振子的速度变化量为零,则Δt 一定是T 的整数倍D .若在时间Δt 内,弹簧振子的速度变化量为零,则Δt 可能小于T /4解析:选BD.若在时间Δt 内,弹簧的弹力对振子做的功为0,两个时刻振子可能经过同一位置,也可能经过关于平衡位置对称的位置,所以Δt 不一定是T 2的整数倍,也可能小于T 2,故A 错误,B 正确;若在时间Δt 内,要使振子在两个时刻速度相等,则Δt 可能是T 的整数倍.也可能振子经过关于平衡位置对称的位置,即可能小于T 4,故C 错误,D 正确.[随堂检测]1.(2018·烟台高二检测)如图所示,弹簧振子以O 为平衡位置在B 、C 间做简谐运动,则( )A .从B →O →C 为一次全振动B .从O →B →O →C 为一次全振动C .从C →O →B →O →C 为一次全振动D .从D →C →O →B →O 为一次全振动解析:选C.由全振动的定义可得,选项C 正确.2.(2018·河北定州中学高三考试)一质点做简谐运动的图象如图所示,下列说法中正确的是( )A .质点的振动频率是4 HzB .在10 s 内质点经过的路程是20 cmC .第4 s 末质点的速度是零D .在t =1 s 和t =3 s 两时刻,质点位移大小相等,方向相同解析:选B.从图中可知质点振动的周期T =4 s ,故频率为:f =1T =14Hz =0.25 Hz ,故A 错误;10 s 内的质点路程为振幅的10倍,故路程为s =10A =20 cm ,故B 正确;O 时刻与第4 s 末,质点位于平衡位置,故速度最大,故C 错误;在t =1 s 和t =3 s 两时刻,质点的位移大小相同,但方向相反,故D 错误.3.(2018·牡丹江市一中高二期中)某弹簧振子在水平方向上做简谐运动,位移x 随时间t 变化的关系为x =A sin ωt ,振动图象如图所示,下列说法不正确的是( )A .弹簧在第1 s 末与第3 s 末的长度相同B .简谐运动的角速度ω=π4rad/s C .第3 s 末振子的位移大小为22A D .从第3 s 末到第5 s 末,振子的速度方向发生变化解析:选D.在第1 s 末与第3 s 末的位移相同,振子经过同一位置,故弹簧的长度相同,故A 说法正确;由图知,振子振动的周期T =8 s ,则角速度ω=2πT =π4rad/s ,故B 说法正确;位移x 随时间t 变化的关系为x =A sin ωt ,第3 s 末振子的位移大小为:x =A sin 3π4=22A ,故C 说法正确;x -t 图象的切线斜率表示速度,则知,从第3 s 末到第5 s 末,振子的速度方向并没有发生变化,一直沿负向,故D 说法不正确.4.质点沿x 轴做简谐运动,平衡位置为坐标原点O ,质点经过a 点和b 点时速度相同,时间t ab =0.2 s ;质点由b 再次回到a 点所需的最短时间t ba =0.4 s ,则质点做简谐运动的频率为( )A .1 HzB .1.25 HzC .2 HzD .2.5 Hz解析:选B.由题意可知a 、b 是关于平衡位置的对称点,且不是最大位置,设右侧的最大位置为c 点,则运动的示意图如图所示.从a →b ,t ab =0.2 s ;从b 到c 再到a ,t ba =0.4 s .由对称性可知,从b →c 所用时间t bc =0.1 s ,则t Oc =T 4=0.2 s ,所以T =0.8 s ,则f =1T=1.25 Hz ,选项B 正确. [课时作业] [学生用书P87(单独成册)]一、单项选择题1.质点做简谐运动,从质点经过某一位置时开始计时,下列说法正确的是( )A .当质点再次经过此位置时,经过的时间为一个周期B .当质点的速度再次与零时刻的速度相同时,经过的时间为一个周期C .当质点的加速度再次与零时刻的加速度相同时,经过的时间为一个周期D .当质点经过的路程为振幅的2倍时,经过的时间为半个周期解析:选D.质点连续两次经过同一位置经过的时间一般不是一个周期,选项A 错误;质点同向经过关于平衡位置对称的两点速度相同,但经过的时间不为一个周期,选项B 错误;质点连续两次经过同一位置时,加速度相同,但经历的时间一般不等于一个周期,选项C 错误;质点在任何半周期内通过的路程一定是振幅的2倍,选项D 正确.2.(2018·吉林高二月考)一个物体做简谐运动时,周期是T ,振幅是A ,那么物体( )A .在任意T 4内通过的路程一定等于A B .在任意T 2内通过的路程一定等于2A C .在任意3T 4内通过的路程一定等于3A D .在任意T 内通过的路程一定等于2A解析:选B.物体做简谐运动,是变加速直线运动,在任意T 4内通过的路程不一定等于A ,故A 错误;物体做简谐运动,在任意T 2内通过的路程一定等于2A ,故B 正确;物体做简谐运动,在任意3T 4内通过的路程不一定等于3A ,故C 错误;物体做简谐运动,在一个周期内完成一次全振动,位移为零,路程为4A ,故D 错误.3.某质点做简谐运动,其位移随时间变化的关系式为x =8sin π2t (cm),则( ) A .质点的振幅为16 cmB .质点的振动周期为2 sC .在0~1 s 内,质点的速度逐渐减小D .在1~2 s 内,质点的动能逐渐减小解析:选C.根据简谐运动的表达式x =A sin2πT t 可知振幅A =8 cm ,周期T =2πω=4 s ,选项A 、B 错误;根据简谐运动的表达式可画出质点的振动图象,如图所示,由图可知,在0~1 s 内,质点由平衡位置向正的最大位移处运动,速度逐渐减小,在1~2 s 内,质点由正的最大位移向平衡位置运动,速度逐渐增大,动能逐渐增大,选项C 正确,D 错误.4.一个做简谐运动的物体,频率为25 Hz ,那么它从一侧最大位移的中点D ,振动到另一侧最大位移的中点C 所用的最短时间,下面说法中正确的是( ) A .等于0.01 s B .小于0.01 sC .大于0.01 sD .小于0.02 s 大于0.01 s解析:选B.一侧最大位移的中点D ,振动到另一侧最大位移的中点C 所用的最短时间,可以知道小于14T ,即小于0.01 s ,故选项B 正确.5.弹簧振子在A 、B 间做简谐运动,O 为平衡位置,A 、B 间的距离是20 cm ,振子由A 运动到B 的时间是2 s ,如图所示,则( )A .从O →B →O 振子做了一次全振动 B .振动周期为2 s ,振幅是10 cmC .从B 开始经过6 s ,振子通过的路程是60 cmD .从O 开始经过3 s ,振子处在平衡位置解析:选C.振子从O →B →O 只完成半个全振动,A 选项错误;从A →B 振子也只完成了半个全振动,半个全振动的时间是2 s ,所以振动周期是4 s ,振幅是振动物体离开平衡位置的最大距离,振幅A =10 cm ,B 选项错误;t =6 s =112T ,所以振子经过的路程为4A +2A =6A=60 cm ,C 选项正确;从O 开始经过3 s ,振子处在位置A 或B ,D 选项错误.6.一位游客在千岛湖边欲乘坐游船,当日风浪较大,游船上下浮动.可把游船浮动简化成竖直方向的简谐运动,振幅为20 cm ,周期为3.0 s .当船上升到最高点时,甲板刚好与码头地面平齐.地面与甲板的高度差不超过10 cm 时,游客能舒服地登船.在一个周期内,游客能舒服登船的时间为( ) A .0.5 s B .0.75 s C .1.0 sD .1.5 s解析:选C.由振动周期T =3.0 s 、ω=2πT、A =20 cm 知,游船做简谐运动的振动方程x =A sinωt=20sin 2π3t cm.在一个周期内,当x=10 cm时,解得t1=0.25 s,t2=1.25 s.游客能舒服登船的时间Δt=t2-t1=1.0 s,选项C正确,选项A、B、D错误.二、多项选择题7.下列关于简谐运动的振幅、周期和频率的说法中正确的是()A.振幅是矢量,方向从平衡位置指向最大位移处B.周期和频率的乘积是一个常数C.振幅增加,周期必然增加,而频率减小D.做简谐运动的物体,其频率固定,与振幅无关解析:选BD.振幅A是标量,A错误;周期与频率互为倒数,即T·f=1,B正确;简谐运动的周期与振幅没有关系,振子周期的长短由系统本身决定,这就是固有周期,C错误,D正确.8.弹簧振子在AOB之间做简谐运动,O为平衡位置,测得A、B之间的距离为8 cm,完成30次全振动所用时间为60 s,则()A.振子的振动周期是2 s,振幅是4 cmB.振子的振动频率是2 HzC.振子完成一次全振动通过的路程是16 cmD.从振子通过O点时开始计时,3 s内通过的路程为36 cm解析:选AC.由题意知,振子做简谐运动的振幅A=8 cm2=4 cm,周期T=6030s=2 s,选项A正确;振动的频率f=1T=12Hz=0.5 Hz,选项B错误;完成一次全振动通过的路程s=4A=4×4 cm=16 cm,选项C正确;3 s内通过的路程s′=6A=6×4 cm=24 cm,选项D错误.9.一质点做简谐运动,其位移x与时间t的关系图象如图所示,由图可知()A.质点振动的频率是4 HzB.质点振动的振幅是2 cmC.t=3 s时,质点的速度最大D.t=3 s时,质点的振幅为零解析:选BC.由题图可以直接看出振幅为2 cm,周期为4 s,所以频率为0.25 Hz,所以选项A错误,B正确;t=3 s时,质点经过平衡位置,速度最大,所以选项C正确;振幅等于质点偏离平衡位置的最大位移大小,与质点的位移有着本质的区别,t=3 s时,质点的位移为零,但振幅仍为2 cm,所以选项D错误.10.(高考山东卷)如图,轻弹簧上端固定,下端连接一小物块,物块沿竖直方向做简谐运动.以竖直向上为正方向,物块简谐运动的表达式为y =0.1sin (2.5πt ) m .t =0时刻,一小球从距物块h 高处自由落下;t =0.6 s 时,小球恰好与物块处于同一高度.取重力加速度的大小g =10 m/s 2.以下判断正确的是( )A .h =1.7 mB .简谐运动的周期是0.8 sC .0.6 s 内物块运动的路程为0.2 mD .t =0.4 s 时,物块与小球运动方向相反解析:选AB.由物块简谐运动的表达式y =0.1·sin (2.5πt ) m 知,ω=2.5π rad/s ,T =2πω=2π2.5πs =0.8 s ,选项B 正确;t =0.6 s 时,y =-0.1 m ,对小球:h +|y |=12gt 2,解得h =1.7 m ,选项A 正确;物块0.6 s 内路程为0.3 m ,t =0.4 s 时,物块经过平衡位置向下运动,与小球运动方向相同.故选项C 、D 错误. 三、非选择题11.如图所示是弹簧振子的振动图象,请回答下列问题.(1)振子的振幅、周期、频率分别为多少; (2)振子在5 s 内通过的路程;(3)根据振动图象写出该简谐运动的表达式.解析:(1)由图象可知,振幅A =2 cm ;周期T =0.8 s ;频率f =1T =1.25 Hz.(2)在5 s 内通过的路程s =t T ×4A =50.8×4×2 cm =50 cm. (3)由图象可知,振子的初相为0,ω=2πf =2.5π rad/s ,表达式为x =2sin (2.5πt ) cm. 答案:见解析12.A 、B 两人先后观察同一弹簧振子在竖直方向上下振动的情况.(1)A 开始观察时,振子正好在平衡位置并向下运动,试在图甲中画出A 观察到的弹簧振子的振动图象.已知经过1 s 后,振子第一次回到平衡位置,振子振幅为5 cm(设平衡位置上方为正方向,时间轴上每格代表0.5 s).(2)B 在A 观察3.5 s 后,开始观察并记录时间,试在图乙中画出B 观察到的弹簧振子的振动图象.解析:(1)由题意知,振子的振动周期T =2 s ,振幅A =5 cm.根据正方向的规定,A 观察时,振子从平衡位置向-x 方向运动,经t =0.5 s ,达到负向最大位移.画出的A 观察到的振子的振动图象如图A 所示.(2)因为t =3.5 s =134T ,根据振动的重复性,这时振子的状态跟经过时间t ′=34T 的状态相同,所以B 开始观察时,振子正好处于正向最大位移处.画出的B 观察到的振子的振动图象如图B 所示.答案:见解析。
11-2 简谐运动的描述
第2节简谐运动的描述学习目标:1.理解振幅、全振动、周期、频率.2.了解相位、初相位及相位差,知道简谐运动的表达式和式中各物理量的含义.3.能用公式和图象描述简谐运动的特征.一、描述简谐运动的物理量[课本导读]预习教材第5页~第7页“描述简谐运动的物理量”部分,请同学们关注以下问题:1.什么是全振动?什么是振幅?它的物理意义是怎样的?2.什么是周期、频率,它们各自的单位、物理意义是什么?它们之间有什么关系?3.什么是相位?它的物理意义是怎样的?[知识识记]1.振幅是指振动物体离开平衡位置的最大距离,通常用字母A 表示,是标量.2.振子完成一次完整的振动过程称为一次全振动,不论从哪一位置开始计时,弹簧振子完成一次全振动所用的时间总是相同的.3.做简谐运动的物体完成一次全振动所需要的时间,叫做振动的周期,用字母T 表示.其物理意义是表示物体振动的快慢.4.单位时间内完成全振动的次数,叫做振动的频率,用字母f 表示;其单位是赫兹,符号是Hz.5.周期与频率的关系是T =1/f .频率的大小表示振动的快慢.6.用来描述周期性运动在各个时刻所处的不同状态的物理量叫相位,当t =0时的相位称做初相位,用字母φ表示.二、简谐运动的表达式[课本导读]预习教材第7页~第9页“简谐运动的表达式”部分,请同学们关注以下问题:1.简谐运动的表达式是怎样的?2.表达式中各物理量的含义是怎样的?[知识识记]简谐运动的一般表达式为x =A sin(ωt +φ).1.x 表示离开平衡位置的位移,A 表示简谐运动的振幅,表示振动的强弱.2.式中ω叫做“圆频率”,它与周期频率的关系为ω=2πT =2πf .可见ω、T 、f 相当于一个量,描述的都是振动的快慢.简谐运动的表达式也可写成:x =A sin ⎝ ⎛⎭⎪⎫2πT t +φ或x =A sin(2πft +φ).3.式中(ωt+φ)表示相位,描述做周期性运动的物体在各个不同时刻所处的不同状态,是描述不同振动的振动步调的物理量.它是一个随时间变化的量,相当于一个角度,单位为弧度,相位每增加2π,意味着物体完成了一次全振动.4.式中φ表示t=0时简谐运动质点所处的状态,称为初相位或初相.5.相位差:即某一时刻的相位之差.两个具有相同ω的简谐运动,设其初相分别为φ1和φ2,其相位差Δφ=(ωt+φ2)-(ωt+φ1)=φ2-φ1.1.振子从离开平衡位置到第一次回到平衡位置的过程是一次全振动.()[答案]×2.振幅是振子通过的路程.()[答案]×3.振子一次全振动走过的路程为振幅的4倍.()[答案]√4.振子位移相同时,速度和加速度相同.()[答案]×5.振子经过关于平衡位置对称的两点,速度方向一定不同.()[答案]×6.振子先后经过同一位置经过的时间就是一个周期.()[答案]×7.ω、T、f描述的都是振动的快慢.()[答案]√要点一对描述简谐运动的各物理量及其关系的理解——概念辨析型[合作探究]1.弹簧振子经历一次全振动后,其位移、加速度、速度有何特点?弹簧振子的一次全振动经历了多长时间?提示:弹簧振子的位移、加速度、速度第一次同时与初始状态相同;弹簧振子的一次全振动的时间刚好为一个周期.2.始末速度相同的过程是一次全振动吗?简谐运动在一个周期内,振子通过的路程一定等于多少个振幅?振子在半个周期内通过的路程又是多少呢?14个周期呢?提示:不是.一次全振动,物体的始末速度一定相同,始末速度相同的一个过程不一定是一次全振动.一次全振动的路程等于四个振幅,半个周期内振子通过的路程等于两个振幅.若从平衡位置或从最大位移处开始计时,14个周期内振子通过的路程等于一个振幅,从其他位置开始计时,14个周期内振子通过的路程可能大于或小于一个振幅.[知识精要]1.对全振动的理解(1)全振动的定义:振动物体以相同的速度相继通过同一位置所经历的过程,叫做一次全振动.(2)注意把握全振动的四个特征①物理量特征:位移(x)、加速度(a)、速度(v)三者第一次同时与初始状态相同.②时间特征:历时一个周期.③路程特征:振幅的四倍.④相位特征:增加2π.2.对振幅的理解(1)定义:振动物体离开平衡位置的最大距离叫做振动的振幅.在国际单位制中,振幅的单位是米(m).(2)振幅是标量,只有大小,没有方向,是用来表示振动强弱的物理量.(3)同一振动系统,系统的能量仅由振幅决定,振动越强,振幅就越大,振动能量也越多.(4)振幅与位移、路程的区别①振幅是振动物体离开平衡位置的最大距离,是标量;而位移是由平衡位置指向末位置的有向线段,是矢量;路程是运动路径的总长度,是标量.一个周期内的路程为振幅的四倍,半个周期内的路程为振幅的两倍.②当物体做简谐运动时,振幅是定值;位移的大小和方向时刻都在变化;路程则会持续不断地增加.3.对周期和频率的理解(1)周期(T)和频率(f)都是标量,反映了振动的快慢,T=1f,即周期越大,频率越小,振动越慢.(2)振动周期、频率由振动系统决定,与振幅无关.(3)全振动次数N与周期T和振动时间t的关系为N=t T.[典例剖析](对简谐运动的描述)如图所示,将弹簧振子从平衡位置拉下一段距离Δx,释放后振子在A、B间振动,且AB=20 cm,振子首次由A到B的时间为0.1 s,求:(1)振子振动的振幅、周期和频率.(2)振子由A到O的时间.(3)振子在5 s内通过的路程及位移大小.[审题指导](1)AB间距与振幅有何关系?(2)振子首次由A到B的时间与周期有何关系?[尝试解答](1)从题图可知,振子振动的振幅为10 cm,t=0.1 s=T2,所以T=0.2 s.由f=1T得f=5 Hz.(2)根据简谐运动的对称性可知,振子由A到O的时间与振子由O到B的时间相等,均为0.05 s.(3)设弹簧振子的振幅为A,A=10 cm.振子在1个周期内通过的路程为4A,故在t=5 s=25T内通过的路程s=40×25 cm=1000 cm.5 s内振子振动了25个周期,5 s末振子仍处在A点,所以振子偏离平衡位置的位移大小为10 cm.[答案](1)10 cm0.2 s 5 Hz(2)0.05 s(3)1000 cm10 cm如图,弹簧振子在BC间做简谐运动,O为平衡位置,BC间距离是10 cm,B→C运动时间是1 s,求:(1)振子的周期、振幅和频率;(2)振子从O 到C 的时间;(3)从O 位置,经过10 s ,振子走过的距离.[审题指导] (1)BC 间距与振幅有何关系?(2)振子首次由B 到C 的时间与周期有何关系?[尝试解答] (1)由B →C 运动特征可知,振幅A =5 cm ,周期T=2 s ,由f =1T 得频率为0.5 Hz.(2)若是直线从O 至C ,则为T 4=0.5 s ,若是O →B →C ,则为3T 4=1.5 s.(3)由n =t T ,经过10 s ,做了5次全振动,通过的路程为5A =20cm.[答案] (1)2 s 5 cm 0.5 Hz (2)1.5 s (3)20 cm判断全振动的两种思路思路1:物体完成一次全振动时,一定回到了初位置,且以原来相同的速度回到初位置.思路2:全振动中路程与振幅有固定关系,即一次全振动通过的路程是振幅的四倍.要点二对简谐运动表达式的理解——概念理解型[合作探究]两个频率相同的简谐运动,相位差为Δφ=φ2-φ1,若Δφ>0或Δφ<0时,说明两振动满足什么关系?提示:若Δφ>0,表示振动2比振动1超前;若Δφ<0,表示振动2比振动1滞后.[知识精要]做简谐运动的物体位移x随时间t变化的表达式:x=A sin(ωt+φ)1.x:表示振动质点相对于平衡位置的位移.2.A:表示振幅,描述简谐运动振动的强弱.3.ω:圆频率,它与周期、频率的关系为ω=2π/T=2πf.可见ω、T、f相当于一个量,描述的都是振动的快慢.4.ωt+φ:表示相位,描述做周期性运动的物体在各个不同时刻所处的不同状态,是描述不同振动的振动步调的物理量.它是一个随时间变化的量,相当于一个角度,相位每增加2π,意味着物体完成了一次全振动.5.φ:表示t=0时振动质点所处的状态,称为初相位或初相.6.相位差:即某一时刻的相位之差.两个具有相同ω的简谐运动,设其初相分别为φ1和φ2,其相位差Δφ=(ωt +φ2)-(ωt +φ1)=φ2-φ1.[题组训练]1.(简谐运动的表达式)(多选)物体A 做简谐运动的振动位移x A =3sin ⎝ ⎛⎭⎪⎫100t +π2m ,物体B 做简谐运动的振动位移x B =5sin ⎝ ⎛⎭⎪⎫100t +π6m.比较A 、B 的运动( )A .振幅是矢量,A 的振幅是6 m ,B 的振幅是10 mB .周期是标量,A 、B 周期相等为100 sC .A 振动的频率f A 等于B 振动的频率f BD .A 的相位始终超前B 的相位π3[解析] 振幅是标量,A 、B 的振动范围分别是6 m 、10 m ,但振幅分别为3 m 、5 m ,A 错;A 、B 的周期T =2πω=2π100s =6.28×10-2 s ,B 错;因为T A =T B ,故f A =f B ,C 对;Δφ=φA 0-φB 0=π3,D 对. [答案] CD2.(简谐运动的表达式)(多选)某质点做简谐运动,其位移随时间变化的关系式为x =A sin π4t ,则质点( ) A .第1 s 末与第3 s 末的位移相同B .第1 s 末与第3 s 末的速度相同C .第3 s 末至第5 s 末的位移方向都相同D .第3 s 末至第5 s 末的速度方向都相同[解析] 根据x =A sin π4t 可求得该质点振动周期T =8 s ,则该质点振动图象如图所示,图象的斜率为正,表示速度为正,反之为负,由图可以看出第1 s 末和第3 s 末的位移相同,但斜率一正一负,故速度方向相反,选项A 正确、B 错误;第3 s 末和第5 s 末的位移方向相反,但两点的斜率均为负,故速度方向相同,选项C 错误、D 正确.[答案] AD3.(对简谐运动表达式的理解)(多选)某质点做简谐运动,其位移随时间变化的关系式为x =10sin ⎝ ⎛⎭⎪⎫π4t cm ,则下列关于质点运动的说法中正确的是( )A .质点做简谐运动的振幅为10 cmB .质点做简谐运动的周期为4 sC .在t =4 s 时质点的速度最大D .在t =4 s 时质点的位移最大[解析] 由简谐运动的表达式x =10sin ⎝ ⎛⎭⎪⎫π4t cm ,知质点的振幅为10 cm ,2πT =π4,得:T =8 s ,故A 正确,B 错误;将t =4 s 代入x =10 sin ⎝ ⎛⎭⎪⎫π4t cm ,可得位移为零,质点正通过平衡位置,速度最大,故C 正确,D 错误.[答案] AC要点三 简谐运动图象与简谐运动表达式对比分析——重难点突破型[合作探究]到现在为止,我们描述简谐运动有几种方法?它们各自的特点是什么?提示:我们可以用函数表达式和图象描述简谐运动.图象形象、直观;函数表达式精确、抽象,两种方法是从不同的角度描述同一个简谐运动过程.[知识精要]简谐运动两种描述方法的比较1.简谐运动图象即x -t 图象是直观表示质点振动情况的一种手段,直观表示了质点的位移x 随时间t 变化的规律.2.x =A sin(ωt +φ)是用函数表达式的形式反映质点的振动情况. 两者对同一个简谐运动的描述应该是一致的,只是描述的方法不同.我们可以根据振动方程作出振动图象,也可以根据振动图象读出振幅、周期、初相,进而写出位移的函数表达式.[题组训练]1.(简谐运动的表达式与图象)用余弦函数描述一简谐运动,已知振幅为A ,周期为T ,初相φ=-13π,则振动曲线为( )[解析] 根据题意可以写出振动表达式为x =A cos ⎝ ⎛⎭⎪⎫2πT t -π3,故选A.[答案] A2.(简谐运动的图象)一质点做简谐运动,其位移和时间关系如图所示.(1)求t =0.25×10-2 s 时的位移;(2)在t =1.5×10-2 s 到2×10-2 s 的振动过程中,质点的位移、回复力、速度、动能、势能如何变化?(3)在t =0到8.5×10-2 s 时间内,质点的路程、位移各多大?[解析] (1)由题图可知A =2 cm ,T =2×10-2 s ,振动方程为x =A sin ⎝ ⎛⎭⎪⎫ωt -π2=-A cos ωt =-2cos100πt cm. 当t =0.25×10-2s 时,x =-2cos π4 cm =- 2 cm. (2)由图可知,在1.5×10-2~2×10-2 s 的振动过程中,质点的位移变大,回复力变大,速度变小,动能变小,势能变大.(3)从t =0至8.5×10-2 s 时间内为4.25个周期,质点的路程为s =17A =34 cm ,位移为2 cm.[答案] (1)- 2 cm (2)变大 变大 变小 变小 变大(3)34 cm 2 cm3.(简谐运动的表达式与图象)有一弹簧振子在水平方向上的B 、C 之间做简谐运动,已知B 、C 间的距离为20 cm ,振子在2 s 内完成了10次全振动.若从某时刻振子经过平衡位置时开始计时(t =0),经过14周期振子有负向最大位移. (1)求振子的振幅和周期;(2)画出该振子的位移—时间图象;(3)写出振子的位移随时间变化的关系式.[解析] (1)弹簧振子在B 、C 之间做简谐运动,故振幅A =10 cm ,振子在2 s内完成了10次全振动,振子的周期T=tn=0.2 s.(2)振子从平衡位置开始计时,故t=0时刻,位移是0,经14周期振子的位移为负向最大,故如图所示.(3)由函数图象可知振子的位移与时间函数关系式为x=10sin(10πt+π) cm.[答案](1)10 cm0.2 s(2)图见解析(3)x=10sin(10πt+π) cm要点四简谐运动的多解问题——易错型[合作探究]一质点在平衡位置O附近做简谐运动,从它经过平衡位置起开始计时,经t1质点第一次通过M点,再经t2第二次通过M点,则质点振动周期的值为多少?提示:将物理过程模型化,画出具体化的图景如图所示.第一种可能,质点从平衡位置O 向右运动到M 点,那么质点从O 到M 运动时间为t 1,再由M 经最右端A 返回M 经历时间为t 2,如图甲所示.此时周期为4(t 1+t 2/2).另一种可能就是M 点在O 点左方,如图乙所示,质点由O 点经最右方A 点后向左经过O 点到达M 点历时t 1,再由M 点向左经最左端A ′点返回M 点历时t 2.此时周期为43⎝ ⎛⎭⎪⎫t 1+t 22. [知识精要]由于振动的往复性,质点经过某一位置时因速度方向不确定常会导致多解,或由于简谐运动的方向的不确定以及对称性,质点先后经过同一位置的时间不确定,而导致多解.[题组训练]1.(简谐运动的周期性)下列说法中正确的是( )A .若t 1、t 2两时刻振动物体在同一位置,则t 2-t 1=TB .若t 1、t 2两时刻振动物体在同一位置,且运动情况相同,则t 2-t 1=TC .若t 1、t 2两时刻振动物体的振动反向,则t 2-t 1=T 2D .若t 2-t 1=T 2,则在t 1、t 2时刻振动物体的振动反向[解析]该题考查了振动的周期性及其相位的问题.相差一个周期的两时刻,物体在同一位置且运动情况相同;但物体在同一位置,两时刻的时间差不一定是一个周期.即使物体在同一位置,且运动情况相同,它可能是一个周期,也可能是几个周期,故A、B错误.振动情况反向,不一定是相隔半个周期,但相隔半个周期振动一定反向,故C错,D对.[答案]D2.(简谐运动的对称性)一质点在平衡位置O附近做简谐运动,从它经过平衡位置起开始计时,经0.13 s质点第一次通过M点,再经0.1 s第二次通过M点,则质点振动周期的值为多少?[解析]设质点从平衡位置O向右运动到M点,那么质点从O 点到M点运动时间为0.13 s,再由M点经最右端A点返回M点经历时间为0.1 s,如图甲、乙所示.根据以上分析,可以看出从O→M→A′历时0.18 s,根据简谐运动的对称性,可得到T1=4×0.18 s=0.72 s.另一种可能如图乙所示,由O→A→M历时t1=0.13 s,由M→A′历时t2=0.05 s,则34T2=t1+t2,故T2=43(t1+t2)=0.24s,所以周期的可能值为0.72 s和0.24 s.[答案]0.72 s和0.24 s3.(简谐运动的周期性)物体做简谐运动,通过A点时的速度为v,经过1 s后物体第一次以相同速度v通过B点,再经过1 s物体紧接着又通过B点,已知物体在2 s内所走过的总路程为12 cm,则该简谐运动的周期和振幅分别是多大?[解析]物体通过A点和B点时的速度大小相等,A、B两点一定关于平衡位置O点对称.依题意作出物体的振动路径草图如图甲、乙所示,在图甲中物体从A向右运动到B,即图中从1运动到2,时间为1 s,从2运动到3,又经过1 s,从1到3共经历了0.5T,即0.5T =2 s,T=4 s,2A=12 cm,A=6 cm.在图乙中,物体从A先向左运动,当物体第一次以相同的速度通过B点时,即图中从1运动到2时,时间为1 s,从2运动到3,又经过1 s,同样A、B两点关于O点对称,从图中可以看出从1运动到3共经历了1.5T,即1.5T=2 s,T=43s,1.5×4A=12 cm,A=2cm.[答案]T=4 s,A=6 cm或T=43s,A=2 cm课堂归纳小结[知识体系][本节小结]1.全振动以及描述简谐运动的物理量:振幅、周期、频率、角速度以及它们的关系.2.简谐运动的表达式:x=A sin(ωt+φ),明确相位、初相位、相位差.3.简谐运动的表达式和图象之间的关系:两者对同一个简谐运动的描述应该是一致的,只是描述的方法不同(如要点三题组训练1、2).4.简谐运动的周期性和对称性(如要点四题组训练1、2、3).。
第2节-简谐运动的描述
区别振幅和位移
对于一种给定旳振动:
1、振子旳位移是偏离平衡位置旳距离,故 时刻在变化;但振幅是不变旳。 2、位移是矢量,振幅是标量,它等于最大 位移旳数值。
想一想
振子旳运动最明显旳特点是什么?
往复性-反复性-周期性
全振动
1)、一次全振动: 振子在AA/之间振动,O为平衡位置。
在一次全振动过程中,一定是 振子连续两次以相同速度经过同一 点所经历旳过程。
看一看 两个振子旳运动快慢有何不同?
2、周期和频率
1)、描述振动快慢旳物理量
2)、周期T:做简谐运动旳物体完毕一次全振
动所需旳时间,单位:s。
3)、频率f:单位时间内完毕旳全振动 旳次数,单位:Hz。
4)、周期和频率之间旳关系:
s
s
x=10sin(2πt+π/2) (cm)
科学漫步——月相
1、伴随月亮每天在星空 中自西向东移动,在地球 上看,它旳形状从圆到缺, 又从缺到圆周期性地变化 着,周期为29.5天,这就 是月亮位相旳变化,叫做 月相。
2、伴随月亮相对于地球和 太阳旳位置变化,使它被 太阳照亮旳一面有时朝向 地球,有时背向地球;朝 向地球旳月亮部分有时大 某些,有时小某些,这么 就出现了不同旳月相。
有频率。
T 2 m k
二、简谐运动旳体现式
简谐运动旳位移-时间关系 振动图象:正弦曲线
振动方程:x Asin(t )
二、简谐运动旳体现式
相位
x Asin(t )
振幅
圆频率 2 2f 初相位
T
x Asin( 2 t ) Asin(2ft )
T
振动方程
中各量含义:
人教版高中物理选择性必修第1册 第二章机械振动 第二节简谐运动的描述
例题5.一质点做简谐运动,它从最大位移处经0.3s第一次到达某点M处, 再经0.2s第二次到达M点,则其振动频率为 A.0.4 Hz B.0.8 Hz C.2.5 Hz D.1.25 Hz
解析:由题意知,从M位置沿着原路返回到起始最大位移处的时间也为 0.3s,故完成一个全振动的时间为:T=0.3 s+0.2 s+0.3 s=0.8 s, 故频率为f=1/T=1.25 Hz,D正确.
二、简谐运动的图像描述
假设两个振子P、Q做简谐运动的位移-时间函数表达式分别为
P、Q振动曲线如下图: Q的振动与P的振动有 位移-时间函数
的相位差.
中的
叫作相位动的位移-时间函数表达式为
相位每增加 2π ,振子完成一次全振动. 相位表示振子处在振动周期中的哪个位置的物理量. 对于频率相同、相位不同的振子,通过对比二者的相位差来比较 振动先后的关系.若相位差用 Δφ表示,则
高二—粤教版—物理—第二单元
简谐运动的描述
复习回顾:简谐运动的位移-时间图象
(1)简谐运动的位移-时间图象反映的是质点偏离平衡位置的位移随时间 变化的规律,简谐运动的图象并不是质点的运动轨迹
(2)在xt图象上,质点在某时刻的位移,即为此时刻对应的纵坐标. (3)质点在某段时间内的路程(轨迹的长度),需结合振动质点的实际运动 轨迹进行计算.
相位是一个相对概念,与所取的时间零点有关; 相位差是个绝对概念,表示两个频率相同的简谐运动的振动先后关系.
二、简谐运动的图像描述
由简谐运动的图像获取的信息 (1)简谐运动的周期、频率、相位、振幅. (2)任意时刻质点的位移的大小和方向 如图所示,质点在t1、t2时刻的位移分别为x1和-x2. (3)任意时刻质点的运动方向 根据下一时刻质点的位移确定运动方向,如图中的 a点,下一时刻质点离平衡位置更远,故a点对应时 刻质点向正方向远离平衡位置运动.
高中物理人教版(2019)选择性必修第一册 第二章机械振动第2节简谐运动的描述课件
w 2 2f
T
例.(多选)如图,弹簧振子在BC间做简谐运动,O为平衡位置,B、C间距离是10 cm,B→C运动 时间是1 s,则C(D )
A.振动周期是1 s,振幅是10 cm B.从B→O→C振子做了一次全振动 C.经过两次全振动,通过的路程是40 cm D.从B开始运动经过3 s,振子通过的路程是30 cm
例:如图,弹簧振子的平衡位置为O 点,在B、C两点之间做简 谐运动。B、C 相距20 cm。小球经过B 点时开始计时,经过 0.5 s 首次到达C 点。 (1)画出小球在第一个周期内的x-t 图像。 (2)求5 s 内小球通过的路程及5 s 末小球的位移。 分析:根据简谐运动的位移与时间的函数关系,可以画出简谐运动的 x-t 图像。要得到简谐运动 的位移与时间的函数关系,就需要首先确定计时的起点,进而确定初相位。根据振幅、周期及初相 位写出位移与时间的函数关系,画出图像。 我们也可以采用描点法来画出位移-时间图像。根据题意,可以确定计时起点的位移、通过平衡位 置及最大位移处的时刻,在x-t 图上描出这些特殊坐标点,根据正弦图像规律画出图像。 根据简谐运动的周期性,在一个周期内,小球的位移为0,通过的路程为振幅的4 倍。据此,可以 求出5 s 内小球通过的路程及5 s 末小球的位移。
A.3 s,6 cm
B.4 s,6 cm
C.4 s,9 cm
D.2 s,8 cm
解析:以相同的速度依次通过M、N两点画出示意图如图所示,质
点由M到O和由O到N运动时间相同,均为0.5 s,质点由N到最大
位置和由最大位置到N运动时间相同,均为0.5 s,可见周期为4 s,
振幅为路程的一半,即A=6 cm,故B正确。
一、振幅
用M点 和M ′点 表 示 水 平 弹 簧 振子在平衡位置O点右端及左 端最远位置。
教法分析11.2 简谐运动的描述
第2节简谐运动的描述
本节思路:
“振幅”、“周期和频率”、“相位”几个术语的物理意义
↓
利用数学知识引入表达式x= A sin (ωt+φ)
↓
分析它们在表达式中各由哪个量来代表
P7相位:“在物理学中,我们用不同的相位来描述周期性运动在各个时刻所处的不同状态。
”这不是定义,没给严格的定义。
目的:描述任何周期性运动都
会涉及相位。
图11.2-3有待改进。
P8简谐运动的表达式
“x= A sin (ωt+φ)”
与数学课本中公式的形式完
全一样!
P9公式中(ωt+φ)代表相位。
P9下面的标示很有用:
P10科学漫步:乐音和音阶
不同唱名的频率有不同的约定:
P11做一做:用计算机观察声音的波形
可以利用计算机的录音功能
P11第2题:
2. 图11.2-5是两个简谐运动的振动图象,它们的相位差是多少?
两种说法。
2 简谐运动的描述
2 简谐运动的描述一、描述简谐运动的物理量1.振幅:振动物体离开平衡位置的最大距离.2.全振动(如图1所示)图1类似于O →B →O →C →O 的一个完整的振动过程. 3.周期和频率 (1)周期①定义:做简谐运动的物体完成一次全振动所需要的时间. ②单位:国际单位是秒(s). (2)频率①定义:单位时间内完成全振动的次数. ②单位:赫兹(Hz). (3)T 和f 的关系:T =1f .4.相位描述周期性运动在各个时刻所处的不同状态. 二、简谐运动的表达式简谐运动的一般表达式为x =A sin(ωt +φ).1.x 表示振动物体相对于平衡位置的位移;t 表示时间.2.A 表示简谐运动的振幅.3.ω叫做简谐运动的“圆频率”,表示简谐运动的快慢,ω=2πT=2πf (与周期T 和频率f 的关系). 4.ωt +φ代表简谐运动的相位,φ表示t =0时的相位,叫做初相位(或初相). 5.相位差若两个简谐运动的表达式为x 1=A 1sin(ωt +φ1),x 2=A 2sin(ωt +φ2),则相位差为 Δφ=(ωt +φ2)-(ωt +φ1)=φ2-φ1.一、描述简谐运动的物理量 1.对全振动的理解(1)全振动的定义:振动物体以相同的速度相继通过同一位置所经历的过程,称为一次全振动. (2)全振动的四个特征:①物理量特征:位移(x )、加速度(a )、速度(v )三者第一次同时与初始状态相同. ②时间特征:历时一个周期. ③路程特征:振幅的4倍. ④相位特征:增加2π. 2.对周期和频率的理解(1)周期(T )和频率(f )都是标量,反映了振动的快慢,T =1f ,即周期越大,频率越小,振动越慢.(2)一个振动系统的周期、频率由振动系统决定,与振幅无关. 3.对振幅的理解(1)振动物体离开平衡位置的最大距离. (2)振幅与位移的区别 ①振幅等于最大位移的数值.②对于一个给定的振动,振动物体的位移是时刻变化的,但振幅是不变的. ③位移是矢量,振幅是标量. (3)路程与振幅的关系①振动物体在一个周期内的路程为四个振幅. ②振动物体在半个周期内的路程为两个振幅. ③振动物体在14个周期内的路程不一定等于一个振幅.例1 如图2所示,将弹簧振子从平衡位置下拉一段距离Δx ,释放后振子在A 、B 间振动,且AB =20 cm ,振子由A 首次到B 的时间为0.1 s ,求:图2 (1)振子振动的振幅、周期和频率; (2)振子由A 到O 的时间;(3)振子在5 s 内通过的路程及偏离平衡位置的位移大小.例2 (多选)(2018·嘉兴市高二第一学期期末)如图3所示为一质点的振动图象,曲线满足正弦变化规律,则下列说法中正确的是( )图3 A.该振动为简谐振动 B.该振动的振幅为10 cmC.质点在前0.12 s 内通过的路程为20 cmD.0.04 s 末,质点的振动方向沿x 轴负方向二、简谐运动表达式的理解2.从表达式x =A sin (ωt +φ)体会简谐运动的周期性.当Δφ=(ωt 2+φ)-(ωt 1+φ)=2n π时,Δt =2n πω=nT ,振子位移相同,每经过周期T 完成一次全振动.3.从表达式x =A sin (ωt +φ)体会特殊点的值.当(ωt +φ)等于2n π+π2时,sin (ωt +φ)=1,即x =A ;当(ωt +φ)等于2n π+3π2时,sin (ωt +φ)=-1,即x =-A ;当(ωt +φ)等于n π时,sin (ωt +φ)=0,即x =0.例3 (多选)一弹簧振子A 的位移x 随时间t 变化的关系式为x =0.1sin 2.5πt ,位移x 的单位为m ,时间t 的单位为s.则( )A.弹簧振子的振幅为0.2 mB.弹簧振子的周期为1.25 sC.在t =0.2 s 时,振子的运动速度为零D.若另一弹簧振子B 的位移x 随时间t 变化的关系式为x =0.2sin (2.5πt +π4),则A 滞后B π4三、简谐运动的周期性和对称性 如图4所示图4(1)时间的对称①物体来回通过相同两点间的时间相等,即t DB =t BD .②物体经过关于平衡位置对称的等长的两线段的时间相等,图中t OB =t BO =t OA =t AO ,t OD =t DO =t OC =t CO . (2)速度的对称①物体连续两次经过同一点(如D 点)的速度大小相等,方向相反.②物体经过关于O 点对称的两点(如C 与D )时,速度大小相等,方向可能相同,也可能相反. (3)位移的对称①物体经过同一点(如C 点)时,位移相同.②物体经过关于O 点对称的两点(如C 与D )时,位移大小相等、方向相反.利用简谐运动图像理解简谐运动的对称性(1)相隔Δt =⎝ ⎛⎭⎪⎫n +12T (n =0,1,2,…)的两个时刻,弹簧振子的位置关于平衡位置对称,位移等大反向,速度也等大反向。
简谐运动的描述(解析版)
第2节简谐运动的描述一、描述简谐运动的物理量1.弹簧振子做简谐运动,若从平衡位置O开始计时,经过4s振子第一次经过P点,又经过了1s,振子第二次经过P点,则该简谐运动的周期为()A.5s B.8s C.14s D.18s【答案】D【详解】如图,假设弹簧振子在水平方向BC之间振动若振子开始先向右振动,振子的振动周期为14(4)s18s2T=⨯+=若振子开始先向左振动,设振子的振动周期为T',则1()4s242T T''+-=解得6sT'=故选D。
2.如图所示,弹簧振子在B、C间振动,O为平衡位置,BO=OC=5cm。
若振子从B到C的运动时间是1s,则下列说法中正确的是()A.振子从B经O到C完成一次全振动B.振动周期是1s,振幅是10cmC.经过两次全振动,振子通过的路程是20cmD.从B开始经过3s,振子通过的路程是30cm【答案】D【详解】AB .振子从B 经O 到C 只完成半次全振动,再回到B 才算完成一次全振动,完成一次全振动的时间为一个周期,故T =2s ,AB 错误;C .经过一次全振动,振子通过的路程是4倍振幅,故经过两次全振动,振子通过的路程是40cm ,C 错误;D .从B 开始经过3s ,振子通过的路程是30cm ,D 正确。
故选D 。
二、简谐运动表达式3.如图所示,水平弹簧振子沿x 轴在M 、N 间做简谐运动,坐标原点O 为振子的平衡位置,其振动方程为5sin(10)cm 2x t ππ=+。
下列说法不正确的是( )A .MN 间距离为5 cmB .振子的运动周期是0.2sC . 0=t 时,振子位于N 点D .0.05s t =时,振子具有最大速度【答案】A【详解】A .MN 间距离为210 cm A =,A 错误;B .由5sin(10)cm 2x t ππ=+可知10rad/s ωπ=可知振子的运动周期是20.2s πω==T ,B 正确; C .由5sin(10)cm 2x t ππ=+可知0=t 时 5 cm x =即振子位于N 点,C 正确;D .由5sin(10)cm 2x t ππ=+可知t=0.05 s 时0x =此时振子在O 点,振子速度最大,D 正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节简谐运动的描述
1、振幅(A):振动物体离开平衡位置的最大距离。
意义:表征振动强弱的物理量,振幅越大,振动能量越大;
是标量,大小不变(简振)。
单位:米(m)
2、频率(f):一秒钟内完成全振动的次数。
单位:赫兹(Hz)
周期(T):完成一次全振动所经历的时间。
单位:秒(S)
意义:表征振动快慢的物理量
关系:Tf=1 T越大,f越小,振动越慢。
说明:物体的振动频率是由振动物体本身的性质决定的,与振幅的大小无关,所以又叫固有频率。
振动的周期叫做固有周期。
练习:
1.如图9—2—1所示,弹簧振子以O为平衡位置在BC 间振动,则
A. 从B→O→C→O→B为一次全振动
B. 从O→B→O→C→B为一次全振动
C.从C→O→B→O→C为一次全振动
D. 振幅大小是OB
2.上题中振子,若BC=5cm,则
A. 振幅是5 cm B.振幅是2.5 cm
C.经3个全振动,振子通过的路程是30cm
D. 不论从哪个位置开始振动,经两个全振动,振子偏离平衡位置的位移都是零
3.第1题中,若振子由O→B所需最短时间是0.1 s,则
A.振动周期是0.2 s B.振动周期是0.4 s
C. 振动频率是0.4 Hz
D. 振动频率是2.5 Hz
4.关于简谐运动的下述各物理量,说法正确的是A.振幅是由平衡位置指向最大位移处的一个矢量B. 周期和频率的乘积为一常量
C.振幅越大,周期越长
D.振幅越小,频率越大
5.一弹簧振子分别拉离平衡位置5 cm和1 cm处放手,使它们都做简谐运动,则前后两次振幅之比为__________,周期之比为___________,回复力的最大值之比为____________.
6.甲、乙两个做简谐运动的弹簧振子,在甲振动20次时间里,乙振动了40次,则甲、乙振动周期之比为__________;若甲的振幅加倍而乙的不变,则甲、乙振动频率之比为__________.
7.质点做简谐运动,从质点经过某一位置时开始记时,下列说法正确的是
A.当质点再次经过此位置时,经过的时间为一个周期
B.当质点的速度再次与零时刻的速度相同时,经过的时间为一个周期
C.当质点的加速度再次与零时刻的加速度相同时,经过的时间为一个周期
D.当质点经过的路程为振幅的4倍时,经过的时间为一个周期
8.一质点做简谐运动,振幅是4 cm、频率是2.5 Hz,该质点从平衡位置起向正方向运动,经2.5 s质点的位移和路程分别是(选初始运动方向为正方向)
A.4 cm,24 cm B.-4 cm,100 cm
C.0,100 cm D.4 cm,100 cm
9.一质点在O点附近做简谐运动,它离开O向M点运动,3 s末第一次到达M点,又经过2 s第二次到达M点,再经过_________s它将第三次到达M点.若该质点由O出发在8 s内走过8cm的路程,该质点的振幅为_________㎝.
10.弹簧振子经过a、b两点时速度大小相等,方向相反,所用最短时间为0.2 s,则这个振子周期为_________.
11.做简谐运动的弹簧振子,质量为m,最大速率为v 从某时刻算起:
A.半个周期内,弹力做的功一定为零
B.半个周期内,弹力做的功可能是零到2
1
2
m v之间的某一值
C. 1/4周期内,弹力做的功一定为2
1
2
m v
D.1/4周期内,弹力做的功可能是零到2
1
2
m v之间的某一值
图9-2-1。