最新初一数学培优竞赛专题2--整式的乘除
(完整版)整式的乘除培优(可编辑修改word版)
(完整版)整式的乘除培优(可编辑修改word版)整式的乘除培优⼀、选择题:1﹒已知x a=2,x b=3,则x3a+2b 等于()A﹒17 B﹒72 C﹒24 D﹒362﹒下列计算正确的是()A﹒5x6·(-x3)2=-5x12 B﹒(x2+3y)(3y-x2)=9y2-x4C﹒8x5÷2x5=4x5 D﹒(x-2y)2=x2-4y23、已知M=20162,N=2015×2017,则M 与N 的⼤⼩是()A﹒M>N B﹒M<N C﹒M=N D﹒不能确定4、已知x2-4x-1=0,则代数式 2x(x-3)-(x-1)2+3 的值为()A﹒3 B﹒2 C﹒1 D﹒-15、若a x ÷a y =a2,(b x)y=b3,则(x+y)2的平⽅根是()A﹒4 B﹒±4C﹒±6D﹒166、计算-(a -b)4 (b -a)3 的结果为()A、-(a -b)7B、-(a +b)7C、(a-b)7D、(b-a)77、已知a=8131,b=2741,c=961,则a,b,c 的⼤⼩关系是()B、A.a>b>c B.a>c>b C.a<b<c D.b>c>a8、图①是⼀个边长为(m+n)的正⽅形,⼩颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式⼦是()A.(m+n)2﹣(m﹣n)2=4mn B.(m+n)2﹣(m2+n2)=2mnC.(m﹣n)2+2mn=m2+n2 D.(m+n)(m﹣n)=m2﹣n29、若a﹣2=b+c,则a(a﹣b﹣c)+b(b+c﹣a)﹣c(a﹣b﹣c)的值为()=90 pA.4 B.2 C.1 D.810、当x=1 时,ax+b+1 的值为﹣2,则(a+b﹣1)(1﹣a﹣b)的值为()A.﹣16 B.﹣8 C.8 D.1611、已知a2+a﹣3=0,那么a2(a+4)的值是()A.9 B.﹣12 C.﹣18 D.﹣1512、在求1+6+62+63+64+65+66+67+68+69 的值时,⼩林发现:从第⼆个加数起每⼀个加数都是前⼀个加数的6 倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①,然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②,②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S=,得出答案后,爱动脑筋的⼩林想:如果把“6”换成字母“a”(a≠0 且a≠1),能否求出1+a+a2+a3+a4+…+a2014 的值?你的答案是()A. B. C. D.a2014﹣1⼆、填空:1、若ax3m y12÷3x3y2n=4x6y8,则(2m+n-a)n=﹒2、若(2x+3y)(mx-ny)=4x2-9y2,则mn=.3. 已知a+b=8,a2b2=4,则1(a2+b2)-ab=. 2999 p999 , q =119,那么9q (填>,<或=)5.已知10a= 20, 10b=1,则3a÷ 3b= 56.设A =(x -3)(x - 7),B =(x - 2)(x -8),则A B(填>,<,或=)7.若关于x 的多项式x2-8x +m =(x - 4)2 ,则m 的值为若关于x 的多项式x2+nx +m2=(x - 4)2 ,则m n=4. 若225 4 3 2 1 3 1 若关于 x 的多项式 x 2 + nx + 9 是完全平⽅式,则 n=8.计算: 20162 - 2015? 2016 =9. 计算: ?1- 1 ??1- 1 ? ?1- 1 ??1- 1 ? =? 32 ? 992 1002 ? 10.计算: (2 +1)(22 +1)(24 +1)(22n+1)=11、已知:(x +1)5 = a x 5 + a x 4 + a x 3 + a x 2+ a x + a ,则 a + a + a =12、已知: x 2 - (m - 2)x + 36 是完全平⽅式,则 m=13、已知:x 2 + y 2- 6 y = 2x - 10 ,则 x - y =14、已知:13x 2 - 6xy + y 2 - 4x +1 = 0 ,则(x + y )2017 x 2016= 15、若 P = a 2 + 2b 2 + 2a + 4b + 2017 ,则 P 的最⼩值是=16、已知 a =1 2018 x2 + 2018,b = 1 2018 x 2 + 2017,c = 1 2018x 2+ 2016 ,则 a 2 + b 2 + c 2 - ab - bc - ac 的值为17、已知(2016 - a )(2018 - a ) = 2017 ,则(2016 - a )2 + (2018 - a )2 =x - 1 18、已知 x x 2 5,则 x 4+ 1 =19、已知: x 2 - 3x - 1 = 0 ,则 x 2 + 1x2三、解答题:=, x 4 +1=x41、(x 2-2x -1)(x 2+2x -1);②(2m+n ﹣p )(2m ﹣n+p )2、形如 a b c的式⼦叫做⼆阶⾏列式,它的运算法则⽤公式表⽰为da c = ad - bc ,⽐如 2b d 1 5= 2 ? 3 -1? 5 = 1,请按照上述法则计算 30 5 =-2ab -3ab2a2b(-ab)2的结果。
整式的乘除 浙教版七年级数学下册期中培优训练卷2(含答案)
2021年度浙教版七年级数学下册《第3章整式的乘除》经典好题优生辅导训练1.已知a m=3,a n=2,那么a m+n+2的值为()A.8B.7C.6a2D.6+a22.下列有四个结论,其中正确的是()①若(x﹣1)x+1=1,则x只能是2;②若(x﹣1)(x2+ax+1)的运算结果中不含x2项,则a=1③若a+b=10,ab=2,则a﹣b=2 ④若4x=a,8y=b,则22x﹣3y可表示为A.①②③④B.②③④C.①③④D.②④3.若a=(99×99×99)9,b=999,则下列结论正确的是()A.a<b B.a=b C.a>b D.ab=14.如图所示,将四张全等的长方形硬纸片围成一个正方形,根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=(a+b)2﹣4ab D.a2+ab=a(a+b)5.若长方形的面积是4a2+8ab+2a,它的一边长为2a,则它的周长为()A.2a+4b+1B.2a+4b C.4a+4b+1D.8a+8b+26.下列运算正确的是()A.3x3+2x3=5x6B.x﹣3•x﹣3=x9C.[(﹣2x)•(2x)]3=﹣64x6D.x4÷x﹣2=x27.如图,长方形ABCD的边BC=13,E是边BC上的一点,且BE=BA=10.F,G分别是线段AB,CD上的动点,且BF=DG,现以BE,BF为边作长方形BEHF,以DG为边作正方形DGIJ,点H,I均在长方形ABCD内部.记图中的阴影部分面积分别为S1,S2,长方形BEHF和正方形DGIJ的重叠部分是四边形KILH,当四边形KILH的邻边比为3:4时,S1+S2的值为.8.计算(﹣9)3×(﹣)6×(1+)3=.9.若9x2﹣kxy+4y2是一个完全平方式,则k的值是.10.已知k a=4,k b=6,k c=9,2b+c•3b+c=6a﹣2,则9a÷27b=.11.如图,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为3和15,则正方形A,B的面积之和为.12.已知=(a﹣b)(c﹣a)且a≠0,则=.13.若a﹣b=13,a2﹣b2=39,则(a+b)2=.14.(﹣b2)•b3÷(﹣b)5=.15.22x+3﹣22x+1=48,则x的值是.16.若x﹣y=2,xy=1,则x2+y2=.17.已知(x+5)(x+n)=x2+mx﹣5,则m+n=.18.(x+a)(x+)的计算结果不含x项,则a的值是.19.若(x+y)2=9,(x﹣y)2=5,则xy=.20.若等式(x﹣1)x=1成立,则x=.21.如图,将一个大正方形分割成两个长方形和面积分别为a2和b2的两个小正方形,则大正方形的面积是.22.已知(3a+10b)2=100,求的值.23.先阅读小亮解答的问题(1),再仿照他的方法解答问题(2)问题(1):计算3.1468×7.1468﹣0.14682小亮的解答如下:解:设0.1468=a,则3.1468=a+3,7.1468=a+7原式=(a+3)(a+7)﹣a2=a2+10a+21﹣a2=10a+21把a=0.1468代入原式=10×0.1468+21=22,468∴3.1468×7.1468﹣0.14682=22.468问题(2):计算:67897×67898﹣67896×67899.24.阅读下列材料若x满足(9﹣x)(x﹣4)=4,求(4﹣x)2+(x﹣9)2的值.设9﹣x=a,x﹣4=b,则(9﹣x)(x﹣4)=ab=4,a+b=(9﹣x)+(x﹣4)=5,∴(4﹣x)2+(x﹣9)2=(9﹣x)2+(x﹣4)2=a2+b2=(a+b)2﹣2ab=52﹣2×4=17.请仿照上面的方法求解下面问题:(1)若x满足(5﹣x)(x﹣2)=2,求(5﹣x)2+(x﹣2)2的值;(2)已知正方形ABCD的边长为x,E,F分别是AD、DC上的点,且AE=1,CF=3,长方形EMFD的面积是48,分别以MF、DF为边作正方形.①MF=,DF=;(用含x的式子表示)②求阴影部分的面积.25.如图1,将一个长为4a,宽为2b的长方形,沿图中虚线均匀分成4个小长方形,然后按图2形状拼成一个正方形.(1)图2的空白部分的边长是多少?(用含a、b的式子表示)(2)若2a+b=7,且ab=3,求图2中的空白正方形的面积.(3)观察图2,用等式表示出(2a﹣b)2,ab和(2a+b)2的数量关系.26.把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积.(1)如图1,是将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的方法计算这个图形的面积,你能发现什么结论,请写出来.(2)如图2,是将两个边长分别为a和b的正方形拼在一起,B、C、G三点在同一直线上,连接BD和BF,若两正方形的边长满足a+b=10,ab=20,你能求出阴影部分的面积吗?27.乘法公式的探究及应用(1)如图1,可以求出阴影部分的面积是(写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,面积是(写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式;(4)运用你所得到的公式,计算:(a+b﹣2c)(a﹣b+2c).28.已知(x+y)2的展开式为x2+2xy+y2,即:(x+y)2=x2+2xy+y2.则要想知道(x﹣y)2的展开式,可以将(x﹣y)2看成[x+(﹣y)]2,那么可得(x﹣y)2=[x+(﹣y)]2=x2+2•x•(﹣y)+y2=x2﹣2xy+y2.(1)已知(x+y+z)2=x2+y2+z2+2xy+2yz+2xz,则要想知道(x﹣y﹣z)2的展开式,可以将其看成.(2)在(1)的条件下,写出(2x﹣3y﹣z)2的展开式.参考答案1.解:a m+n+2=a m•a n•a2=3×2×a2=6a2.故选:C.2.解:①若(x﹣1)x+1=1,则x可以为﹣1,此时(﹣2)0=1,故①错误,从而排除选项A和C;由于选项B和D均含有②④,故只需考查③∵(a﹣b)2=(a+b)2﹣4ab=102﹣4×2=92∴a﹣b=±,故③错误.故选:D.3.解:∵a=(99×99×99)9,b=999,两个数均大于1∴D选项:ab=1错误;∵====•∵1<<227<945∴0<•<1∴0<<1∴a<b∴选项B,C不正确.故选:A.4.解:方法一阴影部分的面积为:(a﹣b)2,方法二阴影部分的面积为:(a+b)2﹣4ab,所以根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为(a﹣b)2=(a+b)2﹣4ab.故选:C.5.解:另一边长是:(4a2+8ab+2a)÷2a=2a+4b+1,则周长是:2[(2a+4b+1)+2a]=8a+8b+2.故选:D.6.解:3x3+2x3=5x3,故A错误;B、x﹣3•x﹣3=x﹣6,故B错误;C、[(﹣2x)•(2x)]3=(﹣4x2)3=﹣64x6,故C正确;D、x4÷x﹣2=x4•x2=x6,故D错误.故选:C.7.解:在矩形ABCD中,AB=CD=10,AD=BC=13.∵四边形DGIJ为正方形,四边形BFHE为矩形,BF=DG,∴四边形KILH为矩形,KI=HL=2DG﹣AB=2DG﹣10.∵BE=BA=10,∴LG=EC=3,∴KH=IL=DG﹣LG=DG﹣3.当矩形KILH的邻边的比为3:4时,(DG﹣3):(2DG﹣10)=3:4,或(2DG﹣10):(DG﹣3)=3:4,解得DG=9或.当DG=9时,AF=CG=1,AJ=4,∴S1+S2=AF•AJ+CE•CG=1×4+1×3=7;当DG=时,AF=CG=,AJ=,∴S1+S2=AF•AJ+CE•CG==.故答案为7或.8.解:(﹣9)3×(﹣)6×(1+)3,=(﹣9)3×[(﹣)2]3×()3,=[(﹣9)××]3,=(﹣6)3,=﹣216.9.解:中间一项为加上或减去3x和2y积的2倍.故k=±12.10.解:9a÷27b=(32)a÷(33)b=(3)2a﹣3b,∵k a=4,k b=6,k c=9,∴k a•k c=k b•k b,∴k a+c=k2b,∴a+c=2b①;∵2b+c•3b+c=6a﹣2,∴(2×3)b+c=6a﹣2,∴b+c=a﹣2②;联立①②得:,∴,∴2b﹣a=a﹣2﹣b,∴2a﹣3b=2,∴9a÷27b=(3)2a﹣3b=32=9.故答案为:9.11.解:如图所示:设正方形A、B的边长分别为x,y,依题意得:x2+y2=18,∴,故答案为18.12.解:,化简:4a2﹣4a(b+c)+(b+c)2=0,,即:,所以=2.故答案为:2.13.解:∵a2﹣b2=(a+b)(a﹣b)=13×(a+b)=39,∴a+b=3,∴(a+b)2=32=9.故答案为9.14.解:(﹣b2)•b3÷(﹣b)5,=﹣b5÷(﹣b5),=1.15.解:∵22x+3﹣22x+1=48,∴8×22x﹣2×22x=48,即6×22x=48,∴22x=8,∴2x=3,解得x=.故答案为:.16.解:∵x﹣y=2,∴(x﹣y)2=4,x2﹣2xy+y2=4.∵xy=1,∴x2+y2=4+2×1=6.故答案为:6.17.解:展开(x+5)(x+n)=x2+(5+n)x+5n ∵(x+5)(x+n)=x2+mx﹣5,∴5+n=m,5n=﹣5,∴n=﹣1,m=4.∴m+n=4﹣1=3.故答案为:318.解:∵(x+a)(x+)=又∵不含关于字母x的一次项,∴,解得a=.19.解:(x+y)2=x2+2xy+y2=9 (1),(x﹣y)2=x2﹣2xy+y2=5 (2),(1)﹣(2)可得:4xy=4,解得xy=1.20.解:①x=0且x﹣1≠0,解得x=0;②x﹣1=1,解得x=2;③x﹣1=﹣1且x为偶数,解得x=0.故x=0或2.故答案为:0或2.21.解:∵两小正方形的面积分别是a2和b2,∴两小正方形的边长分别是a和b,∴两个长方形的长是b,宽是a,∴两个长方形的面积为2ab,∴大正方形的面积为:a2+2ab+b2=(a+b)2.故答案为:(a+b)2.22.解:=(4a2+4ab+b2﹣2a2﹣ab+b2﹣2a2+8b2)×=(3ab+10b2)×=2(3a+10b),∵(3a+10b)2=100,∴3a+10b=±10,∴原式=2×(±10)=±20.23.解:设67897=a,则67898=a+1,67896=a﹣1,67899=a+2,则67897×67898﹣67896×67899=a(a+1)﹣(a﹣1)(a+2)=(a2+a)﹣(a2+a﹣2)=a2+a﹣a2﹣a+2=2.24.解:(1)设5﹣x=a,x﹣2=b,则(5﹣x)(x﹣2)=ab=2,a+b=(5﹣x)+(x﹣2)=3,∴(5﹣x)2+(x﹣2)2=(a+b)2﹣2ab=32﹣2×2=5;(2)①MF=DE=x﹣1,DF=x﹣3,故答案为:x﹣1;x﹣3;②(x﹣1)(x﹣3)=48,阴影部分的面积=FM2﹣DF2=(x﹣1)2﹣(x﹣3)2.设x﹣1=a,x﹣3=b,则(x﹣1)(x﹣3)=ab=48,a﹣b=(x﹣1)﹣(x﹣3)=2,∴(a+b)2=(a﹣b)2+4ab=22+4×48=196,∴a+b=±14,又∵a+b>0,∴a+b=14,∴(x﹣1)2﹣(x﹣3)2=a2﹣b2=(a+b)(a﹣b)=14×2=28.即阴影部分的面积是28.25.解:(1)图2的空白部分的边长是2a﹣b(2)由图21﹣2可知,小正方形的面积=大正方形的面积﹣4个小长方形的面积,∵大正方形的边长=2a+b=7,∴大正方形的面积=(2a+b)2=49,又∵4个小长方形的面积之和=大长方形的面积=4a×2b=8ab=8×3=24,∴小正方形的面积=(2a﹣b)2=49﹣24=25(3)由图2可以看出,大正方形面积=空白部分的正方形的面积+四个小长方形的面积即:(2a+b)2﹣(2a﹣b)2=8ab.26.(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac(2)∵a+b=10,ab=20,∴S阴影=a2+b2﹣(a+b)•b﹣a2=a2+b2﹣ab=(a+b)2﹣ab=×102﹣×20=50﹣30=20.27.解:(1)阴影部分的面积=大正方形的面积﹣小正方形的面积=a2﹣b2;故答案为:a2﹣b2;(2)长方形的宽为(a﹣b),长为(a+b),面积=长×宽=(a+b)(a﹣b),故答案为:(a+b)(a﹣b);(3)由(1)、(2)得到,(a+b)(a﹣b)=a2﹣b2 ,故答案为:(a+b)(a﹣b)=a2﹣b2;(4)(a+b﹣2c)(a﹣b+2c)=[a+(b﹣2c)][a﹣(b﹣2c)]=a2﹣(b﹣2c)2=a2﹣b2+4bc ﹣4c2.28.解:(1)(x﹣y﹣z)2的展开式,可以将其看成[x+(﹣y)+(﹣z)]2.(2)(2x﹣3y﹣z)2=[2x+(﹣3y)+(﹣z)]2=(2x)2+(﹣3y)2+(﹣z)2+2×2x×(﹣3y)+2×(﹣3y)×(﹣z)+2×2x×(﹣z)=4x2+9y2+z2﹣12xy+6yz﹣4xz.故答案为:[x+(﹣y)+(﹣z)]2.。
初中数学培优竞赛__整式的乘法与除法
第十七讲 整式的乘法与除法指数运算律是整式乘除的基础,有以下4个:nm nmaa a +=⋅,nm n m a a =)(,n n nb a ab ⋅=)(,n m n m a a a -=÷.学习指数运算律应注意:【例4】))(2(67222B y x A y x y x y xy x +++-=-----.求A 、B 的值.思路点拨 等号左右两边的式子是恒等的,它们的对应项系数对应相等,从而可以通过比较对应项系数来解.【例5】 是否存在常数p 、q 使得q px x ++24能被522++x x 整除?如果存在,求出p 、q 的值,否则请说明理由.思路点拔 由条件可推知商式是一个二次三项式(含待定系数),根据“被除式=除式×商式”,运用待定系数法求出p 、q 的值,所谓p 、q 是否存在,其实就是关于待定系数的方程组是否有解.学力训练2.若2x+5y —3=0,则4x .32y . (绍兴市竞赛题)3.满足(x —1)200>3200的x 的最小正整数为 . (2003年武汉市选拔赛试题)4.d c b a 、、、都是正数,且5,4,3,25432====d c b a ,则d c b a 、、、中,最大的一个是 . (“英才杯”竞赛题)5.化简)2(2)2(2234++-n n n 得( ). (IT 杯全国初中数学竞赛题) A .8121-+n B .12+-n C .87 D .47 7.已知a 是不为0的整数,并且关于x 的方程453223+--=a a a ax 有整数根,则a 的值共有( ). A . 1个 B .3个 C .6个 D .9个15.如果多项式1)2)((-+-x a x 能够写成两个多项式(x+3)和(x+b)的乘积,那么a= ,b= . 16.若2233445566,55,33,22====d c b a ,那么d c b a 、、、从小到大的顺序是( ). A .a>b>c>d B .a>b>d>c C .b>a>c>d D .a>d>b>c (北京市“迎春杯”竞赛题) 17.已知199********,,,,,a a a a a 均为正数,又M ))((199732199621a a a a a a ++++++= ,N ))((199632199721a a a a a a ++++++= ,则M 与N 的大小关系是( ).A .M=NB .M<NC .M>ND .关系不确定A .1997B .1999C .2001D .2003 (北京市竞赛题)19.已知关于x 的整系数二次三项式ax 2十bx+c 当x 取1,3,6,8时,某同学算得这个二次三项式的值分别为l ,5,25,50.经检验,只有一个结果是错误的,这个错误的结果是( ).A .当x=1时,ax 2十bx+c=1B .当x =3时,ax 2十bx+c=5C .当x=6时,ax 2十bx+c=25D .当x =8时,ax 2十bx+c=5020.已知3x 2-x-1=0,求6x 3十7x 2一5x+1999的值.21.已知a 是方程01322=-+x x 的一个根,试求代数式131593322345-+-+++a a a a a a 的值.22.已知102222=⋅=⋅dcba,求证:(a 一1)(d —1)=(b 一1)(c 一1).23.是否存在整数c b a 、、满足2)1516()910()89(=cb a ?若存在,求出c b a 、、的值;若不存在,说明理由.242,n 3,n 4,n 5的个位数如表所示(1)从所列的表中你能发现什么规律?(2)若n 为自然数,和数1981n +1982 n +1983 n +1984 n 不能被10整除,那么n 必须满足什么条件?第十七讲整式的乘法与除法参考答案。
(word完整版)整式的加减乘除培优精华
练习:1、下列那些式子是单项式,并指出他的系数和次数 2013 a 2bba +5x y 2 2013y x + 0 -10 π b a 2221012⨯2、若c ax y -是关于x ,y 的单项式,且系数为2013,次数为12,则a= ,c= 。
3、12)1(++n y x m 是关于x ,y 的四次单项式,则m= ,n= 。
4、下列那些式子是多项式,并指出他的次数,读法,各项的次数x 2+x 3+x 40 4—2π 9 x 4y b a y x +- 6ab+4 243(a+b)5、z y xy x +++444读作: ; 1425-+++-z xz y xy 读作: ;6、2013435232--+-+b a ab b a b a 这个多项式的最高次项是 ,一次项是 ,二次项是 ,三次项是 ,常数项是 。
7、已知4543433515a y y x y x y x +-+-,按a 升幂排列为: ; 按a 的降幂排列为 ;按b 升幂排列为: ;按b 的降幂排列为 . 8、下列那些式子是整式12π -4yxz x 2-y 22a-b+8c 543 43x 4y 0 322013y x + b a 2221012⨯9、若b b a x y x 532-+和是同类项则a= ,b= 。
若363543y x y x nn m -+和是同类项则m= ,n= 。
11、若442-+x x 的值为0,则51232-+x x 的值是________.12、如果代数式535ax bx cx ++-当2x =-时的值为13,那么当2x =时,该式的值是 . 13、若3a =-,25b =,则20072006a b +的个位数字是=________。
14、已知012=-+a a ,求2013223++a a = 。
15、当2x =时,代数式31ax bx -+的值等于17-,那么当1x =-时,代数式31235ax bx --的值 。
整式的乘除竞赛题教学内容
整式的乘除竞赛题教学内容整式的乘除复习题1、阅读解答题:有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答后面的问题.例:若x=123456789×123456786,y=123456788×123456787,试比较x、y的大小.解:设123456788=a,那么x=(a+1)(a-2)=a2-a-2,y=a(a-1)=a2-a .∵x-y=(a2-a-2)-(a2-a)=-2<0∴x<y看完后,你学到了这种方法吗再亲自试一试吧,你准行!问题:计算1.345×0.345×2.69-1.3453-1.345×0.3452解:设1.345=x,那么:原式=x(x-1)?2x-x3-x(x-1)2,=(2x3-2x2)-x3-x(x2-2x+1),=2x3-2x2-x3-x3+2x2-x,=-1.345.4、我们把符号“n!”读作“n的阶乘”,规定“其中n为自然数,当n≠0时,n!=n?(n-1)?(n-2)…2?1,当n=0时,0!=1”.例如:6!=6×5×4×3×2×1=720.又规定“在含有阶乘和加、减、乘、除运算时,应先计算阶乘,再乘除,后加碱,有括号就先算括号里面的”.按照以上的定义和运算顺序,计算:(1)4!= ;(2)(3+2)!-4!= ;(3)用具体数试验一下,看看等式(m+n)!=m!+n!是否成立?12. 小明和小强平时是爱思考的学生,他们在学习《整式的运算》这一章时,发现有些整式乘法结果很有特点,例如:(x-1)(x2+x+1)=x3-1,(2a+b)(4a2-2ab+b2)=8a3+b3,小明说:“这些整式乘法左边都是一个二项式跟一个三项式相乘,右边是一个二项式”,小强说:“是啊!而且右边都可以看成是某两项的立方的和(或差)”小明说:“还有,我发现左边那个二项式和最后的结果有点像”小强说:“对啊,我也发现左边那个三项式好像是个完全平方式,不对,又好像不是,中间不是两项积的2倍”小明说:“二项式中间的符号、三项式中间项的符号和右边结果中间的符号也有点联系”…亲爱的同学们,你能参与到他们的讨论中并找到相应的规律吗?(1)能否用字母表示你所发现的规律?(2)你能利用上面的规律来计算(-x-2y)(x2-2xy+4y2)吗?2、一个单项式加上多项式9(x-1)2-2x-5后等于一个整式的平方,试求所有这样的单项式.3、化简:(1);(2)多项式x2-xy与另一个整式的和是2x2+xy+3y2,求这一个整式解:(1)原式=2a2-ab+a2-8ab-ab=a2-9ab;(2)(2x2+xy+3y2)-(x2-xy)=2x2+xy+3y2-x2+xy=x2+2xy+3y2.∴这个整式是x2+2xy+3y2.点评:(1)关键是去括号.①按只供学习与交流5、设,求整式的值.6、已知整式2x2+ax-y+6与整式2bx2-3x+5y-1的差与字母x的值无关,试求代数式7(ab2+2b3-a2b)+3a2-(2a2b-3ab2-3a2)的值.解:(2x2+ax-y+6)-(2bx2-3x+5y-1)=2x2+ax-y+6-2bx2+3x-5y+1=(2-2b)x2+(a+3)x-6y+7,因为它们的差与字母x的取值无关,所以2-2b=0,a+3=0,解得a=-3,b=1.2(ab2+2b3-a2b)+3a2-(2a2b-3ab2-3a2)=6a2-4a2b+5ab2+4b3=6×(-3)2-4×(-3)2×1+5×(-3)×1+4×1=7.8。
七年级数学-第02讲 整式的乘法(解析版)
2021-2022学年七年级数学【赢在寒假】同步精讲精练系列第1章整式的乘除第02讲整式的乘法【考点梳理】考点1:单项式、多项式及整式的概念1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
如:bc a 22-的系数为2-,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、多项式按字母的升(降)幂排列:如:1223223--+-y xy y x x 按x 的升幂排列:3223221x y x xy y +-+--按x 的降幂排列:1223223--+-y xy y x x 按y 的升幂排列:3223221yy x xy x --++-按y 的降幂排列:1223223-++--x xy y x y 考点2:单项式及多项式的乘法法则1、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
注意:①积的系数等于各因式系数的积,先确定符号,再计算绝对值。
②相同字母相乘,运用同底数幂的乘法法则。
③只在一个单项式里含有的字母,则连同它的指数作为积的一个因式④单项式乘法法则对于三个以上的单项式相乘同样适用。
⑤单项式乘以单项式,结果仍是一个单项式。
如:=∙-xy z y x 32322.单项式乘以多项式就是用单项式去乘多项式的每一项,再把所得的积相加,即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式)注意:①积是一个多项式,其项数与多项式的项数相同。
2020北师大版七年级数学整式的乘除期末复习培优练习题2(附答案)
2020北师大版七年级数学整式的乘除期末复习培优练习题2(附答案)1.下列各式计算正确的是( )A .236a a a ⋅=B .1025a a a ÷=C .428(a )a -=D .444(2ab)8a b =2.已知:()()22x 1x 32x px q +-=++,则p ,q 的值分别为( )A .5,3B .5,−3C .−5,3D .−5, −33.下列运算中,正确的是( )A .235()a a -=-B .3515a a a ⋅=C .23246()a b a b -=D .623a a a += 4.下面计算正确的是( )A .23a b +=5abB .23a a +=5aC .323(2)a b -=968a b -D .32a a ⋅=6a 5.下列各式计算正确的是( )A .a 6÷a 2=a 3B .(﹣2a 3)2=4a 6C .2a 2﹣a 2=2D .(a +b )2=a 2+b 2 6.下列运算正确的是( ).A .m 2·m 3=m 6B .(-a 3)2=a 6C .ab 2·3a 2b=3a 2b 2D .-2a 6÷a 2=-2a 3 7.已知()22349x m x +-+是完全平方公式,则m 的值是( )A .4-或3-B .10-或4C .10D .4-或108.下列运算正确的是( )A .a 5+a 5=a 10B .(a 2)3=a 5C .a 2•a 3=a 5D .(2a 2)3=6a 6 9.下列运算正确的是( )A .623x x x ÷=B .()2233x x =C .()325x x =D .235x x x ? 10.下列运算正确的是( )A .a 2•a 3=a 6B .(a 2)3=a 5C .﹣a 2•ab =﹣a 3bD .a 5÷a 3=211.计算:1022﹣204×104+1042的结果为________.12.(1)①(-a)3÷(-a 2)=_______,②a 10÷(a 5÷a 2)=_______;(2)①x n +1÷x 2n -3=_______,②8m +1÷4m =_______13.计算:(x 2-x+1)(x+1)=______.14.计算:(-2x 2y 3)2÷312x y ⎛⎫- ⎪⎝⎭=________. 15.(______________)23x x ÷-=+()16.(1)()()104ab ab -÷-=______;(2)()221210x x x -÷÷=______.17.计算(a 2)3=________.18.计算:()()2121x x -+-=______.19.若2m a =,8n b =,n 为正整数,则392m n +=____(用含a 、b 的式子表示). 20.计算=____. 21.我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如图1可以得到()()2a b a b ++=2232a ab b ++.请解答下列问题:(1)写出图2中所表示的数学等式;(2)利用(1)中所得到的结论,解决下面的问题:已知12a b c ++=,47ab bc ac ++=,求222a b c ++的值;(3)小明同学打算用x 张边长为a 的正方形,y 张边长为b 的正方形,z 张相邻两边长为分别为a 、b 的长方形纸片拼出了一个面积为 ()()5874a b a b ++长方形,那么他总共需要多少张纸片?22.大数学家欧拉非常推崇观察能力,他说过,今天已知的许多数的性质,大部分是通过观察发现的,历史上许多大家,都是天才的观察家化归就是将面临的新问题转化为已经熟悉的规范问题的数学方法,这是一种具有普遍适用性的数学思想方法如多项式除以多项式可以类比于多位数的除法进行计算: 21512326445 246184 123615615()232133203x x x x x x ++++⋅--32230x x x x-+⋅ 23333x x x -- 330x - 请用以上方法解决下列问题:(1)计算:()322310(2)x x x x +--÷-;(2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值及相应的商.23.已知32m =5,3n =10.(1)求32m+n 的值;(2)求32m-n 的值.24.化简或求值(1)若A=-2a 2+ab-b 3,B=a 2-2ab+b 3,求A -2B 的值.(2)先化简,再求值:5x 2y-3xy 2-7(x 2y- xy 2),其中x=2,y=-1.25.已知的值. 26.小马虎在计算多项式乘以-2xy 2时将符号抄错,算成加上-2xy 2,得到的答案是2x 2y -5xy 2-12xy +1.请帮助小马虎算出正确的结果.27.已知x n -2·(x n )3=x 2,求代数式(2n 2-3n +1)的值.28.先化简,再求值:2(x+4)2-(x+5)2-(x+3)(x-3),其中x=-2.29.化简(1)2222443a b ab ba a b -+-(2)()()22222232y xy x y xy y -+---30.计算(-2xy 2)2•xy=______.参考答案1.C【解析】【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别计算得出答案.【详解】A 、a 2•a 3=a 5,故此选项错误;B 、a 10÷a 2=a 8,故此选项错误;C 、(-a 4)2=a 8,正确;D 、(2ab )4=16a 4b 4,故此选项错误;故选C .【点睛】此题主要考查了直接利用同底数幂的乘除运算以及幂的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.2.D【解析】【分析】此题可以将等式左边展开和等式右边对照,根据对应项系数相等即可得到p 、q 的值.【详解】由于()()2x 1x 3+-=2x 2-6x+x-3=2 x 2-5x-3=22x px q ++, 则p=-5,q=-3,故答案选D.【点睛】本题考查了多项式乘多项式的法则,根据对应项系数相等求解是关键.3.C【解析】【分析】根据同底数幂的乘法法则对B 进行判断;根据幂的乘方与积的乘方法则对A 、C 进行判断;根据合并同类项对D 进行判断.解:A 、()326a a -=-,所以A 选项不正确;B 、358a a a ⋅=,所以B 选项不正确;C 、()22346a b a b -=,所以C 选项正确;D 、62a a +,6a 与2a 不是同类项,不能合并,所以D 选项不正确.故选C .【点睛】本题考查同底数幂的乘法、幂的乘方与积的乘方以及合并同类项,解题关键是熟练掌握以上法则.4.C【解析】【分析】根据合并同类项法则,积的乘方、同底数幂乘法法则逐一判断即可得答案.【详解】A.2a 和3b 不是同类项,不能合并,故该选项计算错误,不符合题意,B.a 2和a 3不是同类项,不能合并,故该选项计算错误,不符合题意,C.(-2a 3b 2)3=-8a 9b 6,故该选项计算正确,符合题意,D.a 3·a 2=a 5,故该选项计算错误,不符合题意,故选C.【点睛】本题考查整式的运算,熟练掌握合并同类项法则、积的乘方及同底数幂乘法法则是解题关键. 5.B【解析】【分析】同底数幂的除法法则:底数不变,指数相减;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.幂的乘方法则:底数不变,指数相乘.积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.完全平方公式:(a ±b )2=a 2±2ab +b 2.可巧记为:“首平方,末平方,首末两倍中间放”.A.a6÷a2=a4,A错误;B.(﹣2a3)2=4a6,B正确;C.2a2﹣a2=a2,C错误;D.(a+b)2=a2+b2+2ab,D错误;故选B.【点睛】本题考查了幂的运算,熟练掌握同底数幂乘除法法则、幂的乘方法则、完全平方公式是解题的关键.6.B【解析】【分析】根据同底数幂的乘法、幂的乘方、单项式的乘法、单项式的除法逐项计算即可.【详解】A. m2·m3=m5,故不正确;B. (-a3)2=a6,正确;C. ab2·3a2b=3a3b3,故不正确;D. -2a6÷a2=-2a4,故不正确;故选B.【点睛】本题考查了整式的运算,熟练掌握运算法则是解答本题的关键.同底数的幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘;单项式与单项式的乘法法则是,把它们的系数相乘,字母部分的同底数的幂分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式;单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.7.D【解析】【分析】利用完全平方公式的结构特征即可求出m的值.【详解】∵关于x 的代数式x 2+2(m−3)x +49是完全平方公式,∴2(m−3)=±2×7,解得:m =10或−4.故选D.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.8.C【解析】【分析】分别根据合并同类项,幂的乘方,同底数幂的乘法法则以及积的乘方逐一判断即可.【详解】解:a 5+a 5=2a 5,故选项A 不合题意;(a 2)3=a 6,故选项B 不合题意;a 2•a 3=a 5,故选项C 符合题意;(2a 2)3=8a 6,故选项D 不合题意.故选:C .【点睛】本题主要考查了合并同类项,同底数幂的乘法以及幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.9.D【解析】【分析】根据幂的乘方、同底数幂的乘法和除法法则分别求出每个式子的值,再判断即可.【详解】A. 624x x x ÷=,故是错误的;B .()2239x x =,故是错误的;C .()326x x =,故是错误的;D .235x x x ⋅=,计算正确,故是正确的;故选:D.考查了合并同类项法则、幂的乘方、单项式乘以单项式、完全平方公式等知识点,能求出每个式子的值是解此题的关键.10.C【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:(A)原式=a5,故A错误;(B)原式=a6,故B错误;(D)原式=a2,故D错误;故选:C.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型. 11.4【解析】【分析】原式利用完全平方公式变形,计算即可得到结果.【详解】原式=(102-104)2=(-2)2=4,故答案为:4【点睛】本题考查了完全平方公式,熟练掌握完全平方公式是解题的关键.12.a a7x4-n2m+3【解析】【分析】根据a m÷a n=a m-n,( a m) n=a mn,即可解题.【详解】解:(1)①(-a)3÷(-a2)=-(a)3÷(-a2)=a,②a10÷(a5÷a2)=a10÷a3=a7(2)①x n+1÷x2n-3= x n+1-(2n-3)=x4-n,②8m+1÷4m=23(m+1)÷22m=23m+3-2m=2m+3【点睛】本题考查了同底数幂的乘法和除法,属于简单题,熟悉运算法则,转变成同底数是解题关键. 13.x3+1【解析】【分析】根据多项式乘多项式的法则(先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加)进行计算即可.【详解】(x2-x+1)(x+1) x3+x2-x2-x+x+1=x3+1.故答案是:x3+1.【点睛】考查了多项式乘多项式的计算,解题关键熟记其计算法则:先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.14.-8xy5【解析】【分析】根据有理数运算规则,应该先乘方,再算除法。
初中数学整式乘除培优讲义(含解析)
初中数学整式乘除培优考试要求:知识点汇总:模块一壽的运算需的运算概念:求〃个相同因数的积的运算,叫做乘方,乘方的结果叫做幕,在/中,α叫做底数, n叫做指数. 含义:水中,"为底数,〃为指数,即表示α的个数,/表示有刃个α连续相乘.例如:3'表示3×3×3×3×3 , (一3f 表示(一3)x(-3)x(-3)x(-3)x(-3) , -3'表示 -(3×3×3×3×3)5. . 2x2x2x2x2z2 < . . 2 2 2 2 2 27 7 7 7 7 7 7 7特别注意负数及分数的乘方,应把底数加上括号.“奇负偶正” 口诀的应用:口诀“奇负偶正”在多处知识点中均提到过,它具体的应用有如下几点:⑴多重负号的化简,这里奇偶指的是“一”号的个数,例如:一[-(一3)] = -3; -[+(-3)] = 3・⑵有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(—3) × (—2) × (—6) = —36,而(—3) × (—2) X (+6) = 36 ・⑶有理数乘方,这里奇、偶指的是指数,当底数为负数时,指数为奇数,则嫌为负;指数为偶数,则幕为正,例如:(一3)‘ = 9 , (一3)、= 一27 ・特别地:当“为奇数时,(一")”=一『:而当“为偶数时,(-a)n =a n・负数的奇次幕是负数,负数的偶次幕是正数正数的任何次幕都是正数,1的任何次幕都是1,任何不为O的数的O次幕都是⑴・(1)同底数幕相乘・同底数的彖相乘,底数不变,指数相加.用式子表示为:(m√ι都是正整数)・(2) 策的乘方.幕的乘方的运算性质:幕的乘方.底数不变,指数相乘.用式子麦示为: (町=旷(m 9n 都是正整数)・ ⑶积的乘方.积的乘方的运算性质:积的乘方,等于把积的每一个因式分别乘方,再把所得的無相乘•用 式子表示为: (ab)n ≈a fl h fl(“是正整数)・ (4)同底数彖相除・同底数的幕相除,底数不变,指数相减.用式子表示为:模块二整式的乘法⑴单项式与单项式相乘:系数、同底数幕分别相乘作为积的因式,只有一个单项式里含有的 字母,则连同它的指数作为积的一个因式・以下举例说明单项式与单项式相乘的规则如下:Ub • 3a 2b y c 2= 3a^c 2,两个单项式的系数分 别为1和3,乘积的系数是3,两个单项式中关于字母α的幕分别是α和/,乘积中d 的幕 是才,同理,乘积中b 的幕是戻,另外,单项式“b 中不含C 的幕,而3i l 2b i c 2中含¢2,故乘 积中含疋・ ⑵单项式与多项式相乘:单项式分别与多项式中的每一项相乘,然后把所得的积相加,公式为:m(a + b + c) = ma + mb + me ,其中加为单项式,a+b + c为 多项式.⑶多项式与多项式相乘:将一个多项式中的每一个单项式分别与另一个多项式中的每一个单 项式相乘,然后把积相加,公式为:(∕π + n)(a + b) = ma + mb + Ha + Hh模块三整式的除法(1) 单项式除以单项式^系数、同底数的幕分别相除作为商的因式,对于只在被除式中含有 的字母,則连同它的指数作为商的一个因式•如:3a 2b 3c 2*ab = 3ab 2c 2,被除式为3a 2b 3c 2, 除式为肪,系数分别为3和1,故商中的系数为3, α的彖分别为/和α,故商中α的 幕为∕τ=α,同理,〃的幕为,,另外,被除式中含Y,而除式中不含关于c ・的策,故 商中e 的幕为c'・(2) 多项式除以单项式:多项式中的每一项分别除以单项式,然后把所得的商相加, 公式为:(" + b + c ∙)÷∙m = "*"2 + b*m + c*"?,其中加为单项式,a + h + c 为多项式.(3) 多项式除以多项式后有专题介绍.模块四平方差公式(a+ h){a-b) = a 2 -h 2平方差公式的特点:即两数和与它们差的积等于这两数的平方差。
初中数学《整式的乘除》培优、拔高(奥数)专题讲义
初中数学《整式的乘除》培优、拔高(奥数)专题讲义阅读与思考指数运算律是整式乘除的基础,有以下5个公式:a m a n=a m4n, (a m)n = a mn, (ab)n = a n b n,a m+a n =a m"(a #0), a0=1(a¥0), a"=1(a¥0).a p学习指数运算律应注意:1.运算律成立的条件;2.运算律中字母的意义:既可以表示一个数,也可以表示一个单项式或者多项式;3.运算律的正向运用、逆向运用、综合运用.多项式除以多项式是整式除法的延拓与发展,方法与多位数除以多位数的演算方法相似,基本步骤是:1.将被除式和除式按照某字母的降哥排列,如有缺项,要留空位;2.确定商式,竖式演算式,同类项上下对齐;3.演算到余式为零或余式的次数小于除式的次数为止.例题与求解【例1】(1)若n为不等式n200> 6300的解,则n的最小正整数的值为 .(华罗庚杯”香港中学竞赛试题)(2)已知x2 +x =1 ,那么x4 +2x3 —x2 -2x + 2005 =. (华杯赛”试题)(3)把(x2—x+1)6 展开后得ai2x12+&1/+|||+a2x2+a1x + a0 ,则a12 +a10 +a8 +a6 +a4 +a2 +a0 = (祖冲之杯”邀请赛试题)(4)若x5 -3x4 +7x3 -6x2 +2x + 9 = (x - a)(x - b)(x -c)(x -d )(x -e)则ab+ac + ad +ae + bc + bd+be + cd +ce+de=. (创新杯训练试题)解题思路:对于(1),从哥的乘方逆用入手;对于(2),目前无法求x值,可考虑高次多项式用低次多项式表示;对于(3),它是一个恒等式,即在x允许取值范围内取任何一个值代入计算,故可考虑赋值法;对于(4),可考虑比较系数法.1 1【例2】已知25x =2000 , 80y =2000,则一十一等于()x y,一一 1 1 x yx, y 的值,而一十—= ,所以只需求出 x+y,xy 的值或x y xy它们的关系,于是自然想到指数运算律.【例3】设a,b,c,d 都是正整数,并且a5=b 4,c 3 =d 2,c —a =19 ,求d —b 的值.(江苏省竞赛试题)解题思路:设a5=b 4 =m 20,c 3 =d 2=n 6,这样a,b 可用m 的式子表示,c,d 可用n 的式子表示,通过减少字母个数降低问题的难度.m 3 1 ,,【例 4】已知多项式 2x +3xy —2y —x+8y-6 = (x + 2y + m)(2 x - y + n),求 ——的值. n - 1解题思路:等号左右两边的式子是恒等的,它们的对应系数对应相等,从而可考虑用比较系数法.【例5】是否存在常数p,q 使得x4+ px 2 +q 能被x 2+2x+5整除?如果存在,求出 p,q 的值,否则请说 明理由.解题思路:由条件可推知商式是一个二次三项式(含待定系数),根据被除式=除式 X 式”,运用待定系数法求出p,q 的值,所谓p,q 是否存在,其实就是关于待定系数的方程组是否有解.【例6】已知多项式2x 4 -3x3+ax 2 +7x + b 能被x 2 +x-2整除,求-的值.(北京市竞赛试题)bA. 2B. 1 D.(“希望杯”邀请赛试题)解题思路:x,y 为指数,我们无法求出解题思路:本题主要考查了待定系数法在因式分解中的应用. 本题关键是能够通过分析得出当x = -2和x=1时,原多项式的值均为0,从而求出a,b的值.当然本题也有其他解法.能力训练A级.24 23 . ...........1. (1) 4 M(—0.25)—1=. (福州市中考试题)(2)若a2n =3 ,则2a6n -1 =. (广东省竞赛试题)2.若2x +5y -3=0 ,则4x U2y.3.满足(x -1 )200> 3300的x的最小正整数为 . (武汉市选拔赛试题)4. a,b,c,d 都是正数,且a2 =2,b3 =3,c4 =4,d5 =5 ,则a,b,c,d 中,最大的一个是 .(“英才杯”竞赛试题)5.探索规律:31 =3,个位数是3; 32=9,个位数是9; 33 =27,个位数是7;34=81,个位数是1;35 =243,个位数是3; 36=729,个位数是9;…那么37的个位数字是, 330的个位数字是. (长沙市中考试题)6.已知a =8131,b =2741,c = 961,则a,b,c 的大小关系是()A. a >b >cB. a >c >bC. a<b<cD. b >c> a 55 44 33 227.已知a =2 ,b =3 ,c = 5 ,d =6 ,那么a,b,c,d从小到大的顺序是()A . a<b<c<d B. a<b<d<c C. b <a <c<d D. a<d<b<c(北京市“迎春杯”竞赛试题)8.若x =2n++2n, y =2n4+2T ,其中n为整数,则x与y的数量关系为()B.y=4xC.x=12y(江苏省竞赛试题)9.已知2a =3,2b =6,2c =12,则a,b,c的关系是A.2b<a+cB.2b = a +cC.2b〉a + cD. a b c(河北省竞赛试10.化简2n 4 -2(2n) 2(2n 3)A.2nJB.~2n*C.-87 D.—2 . 23 . 3 4.411.已知ax + by =7, ax +by =49,ax +by =133,ax +by =406,、…17 .一试求1995(x + y) +6xy - - (a +b)的值.12.已知6x2 -7xy -3y2 +14x + y +a = (2x -3y +b)(3x + y +c).试确定a,b, c的值.13.已知x3+kx2+3除以x+3,其余数较被x+1除所得的余数少2,求k的值.(香港中学竞赛试题)(青少年数学周“宗沪杯”竞赛试题)3. (1) 1516与3313的大小关系是15163313 (填 4"之"建").. 23 2 4.如果x +x -1 =0,则x 3 +2x 2 +3=.(“希望杯”邀请赛试题)55. 43. 25 .已知(x +2) =ax +bx +cx +dx +ex+ f ,贝U 16b +4d + f =.(“五羊杯”竞赛试题)6 .已知a,b,c 均为不等于1的正数,且a" =b 3= c 6,则abc 的值为()…1A. 3B. 2C. 1D.一2(CASIO 杯”武汉市竞赛试题)7,若 x 3 +x 2 +x+1 =0 ,则 x^7 +x* +IH+x'+1+x+x 2+||| 十 x 26 + x 27 的值是()A. 1B. 0C. -1D. 2.一 328 .如果x +ax +bx +8有两个因式x+1和x+2 ,则a + b =()A. 7B. 8C. 15D. 21(奥赛培训试题)9 .已知 a 1,a 2, a 3,川 a 1996, a 1997 均为正数,又 M = (a ] + a ? ’a )996 )L (a 2 + a 3 +…* a-?),N =(a 1 +a 2 +…+ a [997)L (a 2 +a 3 +… 匕语),则M 与N 的大小关系是()A. M =NB. M <NC. M >ND.关系不确定1.已知 2a=3,4b =5,8c =7,则8a*Nb =(第16届“希望杯”邀请竞赛试题)(2) 如果5555_5_5_5_5_5_54 4 4 46 6 6 6 6 6 25• 25= 2n, 32001 -1 32002 1 的大小关系是:32000 , 1 32001 1 32001 - 1 32002-2. (1)计算:c20002000315V ___________________ -,2000 CL 200010.满足(n2 -n -1)nH2 =1的整数门有()个A. 1B. 2C. 3D. 411.设a,b,x, y 满足ax +by =3,ax2 +by2 = 7,ax3 +by3 =16,ax4 +by4 = 42,求ax5 +by5的值.512.右x, y,z, w 为整数,且x>y〉z>w, 2 +2 +2 +2 = 20—,求(x+y + z + w — 1) 的值.8(美国犹他州竞赛试题)13.已知a, b,c为有理数,且多项式x3+ax2+bx+c能够被x2+3x — 4整除.(1)求4a +c的值;(2)求2a-2b-c 的值;(3)若a,b,c为整数,且c> a >1.试比较a,b,c的大小.(四川省竞赛试题)。
整式的乘除培优题目.doc
第三讲整式的乘法和除法一、指数运算律是整式乘除的基础,分别有同底数幂的乘法:,幂的乘方:,积的乘方:,同底数幂的除法:. 学习指数运算律应该注意:(1)运算律成立的条件;(2)运算律字母的意义:既可以表示一个数,也可以是一个单项式或者多项式.(3)运算律的正向运用、逆向运用、综合运用.二、乘法公式是在多项式乘法的基础上。
经多项式乘法的一般法则应用于一些特殊形式的多项式相乘,得出的既有特殊性又有实用性的具体结论,在复杂的数值计算,代数式的化简求值、代数式的恒等变形、代数式的证明等方面有着广泛的应用. 在学习乘法公式时应该注意:(1)熟悉公式的结构特点,理解掌握公式;(2)根据待求式的特点,模仿套用公式;(3)对公式中字母的全面理解,灵活应用公式;(4)既能正用,又能逆用,且能适当变形或重新组合,综合运用公式.例1:(1)计算:2000 20007 3 151998( ) (2)比较大小:2000 20003 7 35(2342)1005例2:有足够多的长方形和正方形卡片,如下图:(1)如果选取 1 号、2 号、3 号卡片分别为 1 张、2 张、3 张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是.2 2(2)小明想用类似方法解释多项式乘法(a+3b)(2a+b)=2a +7ab+3b ,那么需用 2 号卡片张,3 号卡片张.例3:(1)在2004,2005,2006,2007 这四个数中,不能表示为两个整数的平方差的是.(2)已知( 2000 a)( 1998 a) 1999 ,那么 2 ( 1998 )2( a a .2000 )2 b 2 c 2 a例4:已知a,b,c 满足a 2 7,b 2 1,c 6 17 ,则a+b+c 的值等于()练习:24 23 1、填空: 4 ( 0. 25) 12n6na ( ). ;若a 3 ,则2 13、若n 1 n ,y 2n 1 2n 2 ,其中n为整数,则x与y 的数量关系是()x 2 2A.x=4yB.y=4xC.x=12yD.y=12x4、如图,甲类纸片是边长为2的正方形,乙类纸片是边长为1的正方形,丙类纸片是长、宽边长分别是 2 和1 的长方形.现有甲类纸片1张,乙类纸片4张,则应至少取丙类纸片张才能用它们拼成一个新的正方形.2 25、计算: 1. 2345 0. 7655 2. 469 0. 76556、计算: 2 19502 19512 19522 ... 19972 19982 199919492 7、计算:(1)219991998219991997199919992 2(2)( 2 219992005)(19991996199820013995 )20022000 18、已知a 5,求aa 4 2 1a2a?2 n 29、若n满足( n 2004) ( 2005 ) 1,则(2005 n)( n 2004 ) 等于().A.-1B.0C.12D.12 mn n2 m2n mn210、若m,n为有理数,且 2 2 4 4 0 m =()m ,则A.-8B.-16C.8D.1611、小颖与同学做游戏,她把一张纸剪成5块再从所得的纸片中任取一块再剪成5块;然后再从所得 的纸片 中 任 取 一块, 再 剪 成 5块; ⋯这样类似 地进行 下 去 , 能 不 能 在 第 n 次 剪 出 的纸片 恰 好 是 2 0 13块, 若 能 , 求 出这个 n 值; 若 不 能 ,请说明 理 由 . 12、一个自然数减去 45 后是一个完全平方数,这个自然数加上44, 后仍是一个完全平方数,试求这个自然数.。
整式的乘除知识点总结及针对练习题
-思维辅导整式的乘除知识点及练习根底知识:1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。
如:bc a 22-的 系数为2-,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、多项式按字母的升〔降〕幂排列:如:1223223--+-y xy y x x按x 的升幂排列:3223221x y x xy y +-+--按x 的降幂排列:1223223--+-y xy y x x知识点归纳:一、同底数幂的乘法法则:nm n m aa a +=•〔n m ,都是正整数〕同底数幂相乘,底数不变,指数相加。
注意底数可以是多项式或单项式。
如:532)()()(b a b a b a +=+•+【根底过关】1.以下计算正确的选项是〔 〕A .y 3·y 5=y 15B .y 2+y 3=y 5C .y 2+y 2=2y 4D .y 3·y 5=y 8 2.以下各式中,结果为〔a+b 〕3的是〔 〕 A .a 3+b 3 B .〔a+b 〕〔a 2+b 2〕 C .〔a+b 〕〔a+b 〕2 D .a+b 〔a+b 〕2 3.以下各式中,不能用同底数幂的乘法法则化简的是〔 〕 A .〔a+b 〕〔a+b 〕2 B .〔a+b 〕〔a -b 〕2 C .-〔a -b 〕〔b -a 〕2 D .〔a+b 〕〔a+b 〕3〔a+b 〕2 4.以下计算中,错误的选项是〔 〕A .2y 4+y 4=2y 8B .〔-7〕5·〔-7〕3·74=712C .〔-a 〕2·a 5·a 3=a 10D .〔a -b 〕3〔b -a 〕2=〔a -b 〕5 【应用拓展】 5.计算:〔1〕64×〔-6〕5 〔2〕-a 4〔-a 〕4 〔3〕-*5·*3·〔-*〕4 〔4〕〔*-y 〕5·〔*-y 〕6·〔*-y 〕76.a *=2,a y =3,求a *+y 的值.7.4·2a ·2a+1=29,且2a+b=8,求a b 的值. 知识点归纳:二、幂的乘方法则:mnnm aa =)(〔n m ,都是正整数〕幂的乘方,底数不变,指数相乘。
整式的乘除专题训练卷(培优题)
整式的乘除专题训练卷(培优题)1.计算m3•m2的结果是()A.m6B.m5C.2m3D.2m52.已知a m=6,a n=2,则a m+n的值等于()A.8B.3C.64D.123.计算(b﹣a)2(a﹣b)3(b﹣a)5,结果为()A.﹣(b﹣a)10B.(b﹣a)30C.(b﹣a)10D.﹣(b﹣a)30 4.已知m x=2,m y=5,则m x+y值为()A.7B.10C.25D.m75.a2019可以写成()A.a2010+a9B.a2010•a9C.a2010•a D.a2010•a20096.计算a•a2•a3的正确结果是()A.a5B.a6C.a8D.a97.计算m2•m3的结果是()A.6m B.5m C.m6D.m58.计算﹣x2⋅(﹣x)2的结果是()A.﹣x4B.﹣2x2C.x4D.2x49.计算a3•(﹣a)4•a的结果是.10.计算x2•x7的结果等于.11.计算(﹣2xy3)2正确的结果是()A.﹣4x2y6B.4x2y5C.4x2y6D.﹣4x2y5 12.计算(﹣3x3y2)3的结果是()A.﹣9x6y5B.9x6y5C.﹣27x9y6D.27x9y6 13.计算(﹣ab)2的结果是()A.﹣a2b2B.a2b2C.a2b D.ab214.计算(﹣x3)2结果正确的是()A.x6B.x5C.x9D.﹣x615.计算:=()A.B.C.D.16.已知3n=2,5n=3,则152n的值为()A.25B.36C.10D.12 17.计算2x2•(﹣3x2)的结果是()A.﹣6x4B.6x5C.﹣2x5D.2x6 18.计算3n•(﹣9)•3n2的结果是()A.﹣33n2B.﹣3n4C.﹣34n3D.﹣3n6 19.下列计算正确的是()A.x2×x4=x6B.2x3+3x3=5x6C.(﹣3x)3•(﹣3x2)=81x6D.2x2•3x3=6x620.下列运算正确的是()A.m2•m2=m5B.m2+m2=m4C.(﹣2m)2•2m3=8m5D.(m4)2=m621.下列计算正确的是()A.2m2•3m3=6m6B.m•m5=(﹣m3)2C.(﹣3mn)3=﹣9m3n3D.(﹣2mn2)2=4m2n222.计算(﹣2ab)(ab﹣3a2﹣1)的结果是()A.﹣2a2b2+6a3b B.﹣2a2b2﹣6a3b﹣2abC.﹣2a2b2+6a3b+2ab D.﹣2a2b2+6a3b﹣123.计算(﹣m2)•(2m+1)的结果是()A.﹣m3﹣2m2B.﹣m3+2m2C.﹣2m3﹣m2D.﹣2m3+m2 24.若多项式mx+6y与x﹣3y的乘积中不含有xy项,则m的值为()A.﹣6B.﹣3C.0D.2 25.(3x+2y)(kx﹣y)的展开式中不含xy项,则k的值是()A.B.C.D.26.若(x2+px+q)(x﹣2)展开后不含x的一次项,则p与q的关系是()A.p+2q=0B.p=2q C.q+2p=0D.q=2p27.计算(2a2)3÷2(﹣a2)3的结果是()A.﹣3B.﹣4C.4D.﹣128.小明在做作业的时候,不小心把墨水滴到了作业本上,■×2ab=4ab+2ab3,阴影部分即为被墨汁弄污的部分,那么被墨汁遮住的一项是()A.(2+b2)B.(a+2b)C.(3ab+2b2)D.(2ab+b2)29.若长方形面积是6a2﹣3ab+3a,且该长方形的长为3a,则这个长方形的宽是()A.2a﹣b+1B.2a﹣b C.2a2﹣ab+a D.6a﹣3b+3 30.我市某小区为了便民购物,计划在小区外一块长方形空地上建一座大型超市,已知长方形空地的面积为(6y2+y)平方米,宽为y米,则这块空地的长为()A.6xy米B.(6y+1)米C.(6y+y)米D.(6xy3+y2)米31.计算﹣m3n2÷n2的结果是()A.mn2B.﹣mn2C.﹣m3D.m232.长方形的面积是3(x2﹣y2),如果它的一边长为(x+y),则它的周长是()A.4x﹣2y B.8x﹣4y C.3x﹣3y D.8x﹣8y33.计算(﹣2a2)3÷a3的结果是()A.﹣8a3B.﹣8a2C.﹣6a3D.﹣6a234.已知28a3b m÷(28a n b2)=b2,那么m,n的值分别为()A.4,3B.4,1C.1,3D.2,335.计算(x3﹣2x2y)÷(﹣x2)的结果是()A.x﹣2y B.﹣x+2y C.﹣x﹣2D.﹣x+236.计算(2ab2c﹣3)﹣2÷(a﹣2b)3的结果是()A.2a2b﹣4c6B.4a2b﹣4c6C.a4b﹣7c6D.﹣a4b﹣6c6 37.计算:=.38.计算:(﹣m3)2=.39.计算的值是.40.已知2m=a,32n=b,m,n为正整数,则24m+10n=.41.定义:如果2m=n(m,n为正数),那么我们把m叫做n的D数,记作m=D(n).(1)根据D数的定义,填空:D(2)=,D(16)=.(2)D数有如下运算性质:D(s•t)=D(s)+D(t),D()=D(q)﹣D(p),其中q>p.根据运算性质,计算:①若D(a)=1,求D(a3);②若已知D(3)=2a﹣b,D(5)=a+c,试求D(30),的值(用含a、b、c的代数式表示).42.规定两数a,b之间的一种运算,记作(a,b);如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:①(5,125)=,(﹣2,﹣32)=;②若(x,)=﹣3,则x=.(2)若(4,5)=a,(4,6)=b,(4,30)=c,试探究a,b,c之间存在的数量关系;(3)若(m,8)+(m,3)=(m,t),求t的值.43.阅读以下材料:指数与对数之间有密切的联系,它们之间可以互化.对数的定义:一般地,若a x=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x =log a N,比如指数式24=16可以转化为对数式4=log216,对数式2=log525,可以转化为指数式52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0),理由如下:设log a M=m,log a N=n,则M=a m,N=a n,∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N,∴log a(M•N)=log a M+log a N.请解决以下问题:(1)将指数式34=81转化为对数式;(2)求证:log a=log a M﹣log a N(a>0,a≠1,M>0,N>0);(3)拓展运用:计算log69+log68﹣log62=.44.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(5,125)=,(﹣2,4)=,(﹣2,1)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4),他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n∴3x=4,即(3,4)=x,∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,7)+(4,8)=(4,56).45.一般地,n个相同的因数a相乘a•a•…•a,记为a n;如2×2×2=23=8,此时3叫做以2为底8的对数,记为log28(即log28=3),一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n),如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算下列各对数的值:log24=;log216=;log264=;(2)你能得到log24、log216、log264之间满足怎样的关系式:;(3)由(2)的结果,请你归纳出log a M、log a N、log a MN之间满足的关系式:;(4)根据幂的运算以及对数的含义验证(3)的结论.46.先阅读下列材料,再解答后面的问题.一般地,n个相同的因数a相乘:记为a n.如23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n),如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).问题:(1)计算以下各对数的值:log24=,log216=,log264=;(2)通过观察(1),思考:log24,log216,log264之间满足怎样的关系式?(3)由(2)的结果,你能归纳出一个一般性的结论吗?结论:log a M+log a N=(a>0且a≠1,M>0,N>0);(4)利用(3)的结论计算:log42+log432.47.规定两数a,b之间的一种运算,记作(a,b);如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:①(4,16)=,(﹣3,81)=;②若(x,)=﹣4,则x=.(2)小明在研究这种运算时发现一个特征:(3n,4n)=(3,4),小明给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n,所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4).试解决下列问题:.①计算(9,100)﹣(81,10000)②若(16,49)=a,(4,3)=b,(16,441)=c,请探索a,b,c之间的数量关系.48.规定两数a,b之间的一种运算记作a※b,如果a c=b,那么a※b=c.例如:因为32=9,所以3※9=2.(1)根据上述规定,填空:2※16=,※36=﹣2;(2)小明在研究这种运算时发现一个现象:3n※4n=3※4,小明给出了如下的证明;设3※4n=x,则(3n)x=4n,即(3x)n=4n,所以3x=4,即3※4=x,所以3n※4n=3※4.请你尝试运用这种方法解决下列问题:①证明:5※7+5※9=5※63;②猜想:(x﹣2)n※(y+1)n+(x﹣2)n※(y﹣3)n=※(结果化成最简形式).49.阅读:已知正整数a、b、c,显然,当同底数时,指数大的幂也大,若对于同指数,不同底数的两个幂a b和c b,当a>c时,则有a b>c b,根据上述材料,回答下列问题.(1)比较大小:520420(填写>、<或=);(2)比较233与322的大小(写出比较的具体过程);(3)计算42023×0.252022﹣82023×0.1252022.50.规定两数a,b之间的一种运算,记作(a,b),如果a m=b,则(a,b)=m.我们叫(a,b)为“雅对”.例如:因为23=8,所以(2,8)=3.我们还可以利用“雅对”定义说明等式(3,3)+(3,5)=(3,15)成立.证明如下:设(3,3)=m,(3,5)=n,则3m=3,3n=5,故3m•3n=3m+n=3×5=15,则(3,15)=m+n,即(3,3)+(3,5)=(3,15).(1)根据上述规定,填空:(5,125)=;(,16)=4;(2)计算(5,2)+(5,7)=,并说明理由;(3)利用“雅对”定义说明:(2n,3n)=(2,3),对于任意自然数n都成立.。
七年级整式的乘除培优材料
整式的乘除培优讲义【知识精要】: 1幂的运算性质:① (、为正整数) ② (为正整数) ③ (、为正整数) ④(、为正整数,且)()(,为正整数)2整式的乘法公式:①② ③3. 科学记数法,其中4单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
5.单项式乘以多项式:就是用单项式去乘多项式的每一项,再把所得的积相加,多项式与多项式相乘的法则;6.多项式与多项式相乘:先用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。
7单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
8多项式除以单项式:先把这个多项式的每一项除以这个单项式,在把所的的商相加。
【例题解析】:例1, 计算:1、(a +b +c)(a -b -c) 2,()2a b c ++3、20082-2009×20074、 (2a-b)2(b+2a)2例2已知,求的值。
例3 [例2] 已知,,求的值。
例4 [例3]已知,求的值。
例5 [例4] 已知,,求的值。
【课堂精练】:1. (为偶数)2. 0.00010490用科学记数法表示为3.4.5.6.7. 若,那么8. 如果,那么=()A. B. C. D.9. 所得结果是()A. B. C. D. 210. 已知为正整数,若能被整除,那么整数的取值范围是()A. B. C. D.11. 要使成为一个完全平方式,则的值为()A. B. C. D.12. 下列各式能用平方差公式计算的是()A. B.C. D.13.计算:(1)(2)(3)(为正整数)(4)【培优拓展】:1.已知,求的值。
2. 若,求的值。
3. 已知,求的值。
4.己知x+5y=6 , 求 x2+5xy+30y 的值。
5计算(1-221)(1-231)(1-241)…(1-291)(1-2011)的值.6.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.7.已知(a -1)(b -2)-a (b -3)=3,求代数式 12(a ²+b ²)-ab 的值.8.化简求值:[(x +21y )2+(x -21y )2](2x 2-21y 2),其中x =-3,y =4.9.填空①.设12142++mx x 是一个完全平方式,则m =_______。
尖子生假期培优——整式的乘除
尖子生假期培优 整式的乘除考点·方法·破译1.整式的乘法包括单项式乘以单项式、单项式乘以多项式、多项式乘以多项式等. 2.整式的除法包括单项式除以单项式、多项式除以单项式、多项式除以多项式等. 3.乘法公式:⑴()()22b a b a b a -=-+.⑵()2222b ab a b a +±=±⑶()bc ac ab c b a c b a 2222222+++++=++⑷()()3322b a b ab a b a ±=+±⑸()3223333b ab b a a b a ±+±=±经典·考题·赏析【例1】 计算:⑴()()c b a c b a 3232-+-- ⑵()()()31222-+-+x x x⑶()()()2222211412x x x ++-【解法指导】⑴两个项数相同的多项式相乘,若两个多项式中只存在相同的项与相反的项,则将相同的项结合,相反数的项结合,然后利用平方差公式计算;⑵多项式的积作为减数时一定要将积添上括号,作为一个整体;⑶观察式子的特点,将能够利用公式的项先整合.解:⑴()()c b a c b a 3232-+--=()[]()[]()22222496432323b c ac a b c a b c a b c a -+-=--=+--- ⑵()()()31222-+-+x x x =()3224422---++x x x x=10864244222++-=++-++x x x x x x⑶()()()2222211412x x x ++-=()()()[]22141212++-x x x =()()[]2221414+-x x =()1322561164824+-=-x x x 【变式题组】01.计算:⑴()()()22933y x y x y x ++- ⑵()()c b c b --+22⑶()()c b a c b a -++-3232 ⑷()()()()221222513-+-+-+m m m m02.规定一种运算“*”:对于任意实数对(x ,y )恒有(x ,y )*(x ,y )=(x +y +1),x 2-y -1).若实数a ,b 满足(a ,b )*(a ,b )=(b ,a ),则a =__________,b =_________ 【例2】在边长为a 的正方形中挖去一个边长为b 的正方形( a >b )(如图甲),把余下部分拼成一个矩形((如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .()2222b ab a b a ++=+ B .()2222b ab a b a +-=-C .()()b a b a b a -+=-22D .()()2222b ab a b a b a -+=-+【解法指导】图甲中阴影部分面积为22b a -,图乙中阴影部分面积为()()b a b a -+.故选C .【变式题组】01.如图,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ).把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分面积,验证求法公式 .02.完全平方公式可以用平面几何图形的面积来表示,实际上还有一些代数式也可以用这种形式表示,例如()()22322b ab a b a b a ++=++就可以用图1的形式表示. ⑴请写出图2所表示的代数恒等式 ;⑵请画出一个几何图形,使它的面积能表示成:()()22343b ab a b a b a ++=++03.利用图形面积可以解释代数恒等式的正确性,也可以解释不等式的正确性.⑴根据下列图形写出一个代数恒等式;⑵已知正数a 、b 、c 和m 、n 、l 满足k l c n b m a =+=+=+,试构a甲 乙第1题图 b aaa ab a aa a ab b bbb b第2题图弦图1图2造边长为k 的正方形,利用图形面积证明2k cn bm al <++.【例3】已知()()的值及求2222,3,7b a ab b a b a +=-=+.【解法指导】形如()()2222,,,b a ab b a b a +-+的式子均为完全平方公式这一家族的成员,应由它们变形得来.解:∵ ()()3,722=-=+b a b a ,∴()()1022=-++b a b a 即(),10222=+b a 522=+b a ,()()422=--+b a b a ,1,44==ab ab【变式题组】01.=+==+b a ab b a 则,3,1122 . 02.若x +y =3,xy =2,求44y x +的值.03.若()()的值求ab b a b a b a ++=-=+2222,2,5,04.若x +y =1,x 2+y 2=3.求33y x +的值.【例4】已知a =2009x +2006,b =2009x +2007,c =2009x +2008,求多项式 ac bc ab c b a ---++222的值.【解法指导】多项式ac bc ab c b a ---++222具有完全平方式的一些特征,经过变后 可转化为()2b a -,()2c b -,()2c a -的代数和的形式,然后再结合已知即可求值.解:ac bc ab c b a ---++222=()ab bc ac c b a 22222221222---++ =()()()[]22222222221c bc b c ac a b ab a +-++-++- =()()()[]22221c b c a b a -+-+- ∵a =2009x +2006,b =2009x +2007,c =2009x +2008 ∴a -b =-1,a -c =-2,b -c =-1∴原式=()314121=++【变式题组】01.如果1232=++c b a ,且ac bc ab c b a ++=++222.则=++32c b a ( )A .12B .14C .16D .1802.如图,立方体的每一个面上都有一个自然数,已知相对的两个面上两数之和相等,如果13,9,3的对面的数分别是a 、b 、c ,求ac bc ab c b a ---++222的值.03.已知a 、b 、c 满足176,12,72222-=--=-=+a c c b b a ,求a +b +c 的值.【例5】若3223+-kx x 被12+x 除后余2,求k 的值.【解法指导】3223+-kx x 被12+x 除后余2则=-+-23223kx x 1223+-kx x 能被12+x 整除,即1223+-kx x 有一个因式为12+x ,因而关于x 方程01223=+-kx x 有一个根为21-=x ,将21-=x 代入可求k . 若利用竖式除法也可解决.解:∵3223+-kx x 被12+x 除后余2,∴1223+-kx x 能被12+x 整除 令12+x =0得21-=x 代入1223+-kx x =0成立, ∴01212123=+⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-k ,∴k =3【变式题组】01.若123+++ax ax x 被2-x 除的余数为了3,则a = .02.若42323+++nx mx x 能被652+-x x 整除,则m = .n = . 03.若多项式c bx ax x x +++-234能被()31-x 整除,则a +b +c = .【例6】设17-=a ,则12612323--+a a a = . 【解法指导】应用整体代入求值即可.解:∵17-=a ,71=+a ,()712=+a ,0622=++a a∴()121266231261232223-++-+=--+a a a a a a a a =()()2424002462662322=++=+-++-+a a a a a 【变式题组】01.若012=-+x x ,那么代数式7223-+x x 的值为( )A .6B .8C .-6D .-8 02.已知15-=a ,则1227223--+a a a 的值等于 .139303.若133=-x x ,求432912372010x x x x +--+的值.演练巩固·反馈提高01.下列计算正确的是( )A .()()x x x x x x 41281324232---=-+∙-B .()()3322y x y x y x +=++C .()()21611414a a a -=-∙--D .()242222y xy x y x +-=-02.在①()()632-=-+x x y x ;②()()191313222-=-+m m m ;③()423123-=⎪⎭⎫⎝⎛-+pq q p 中运算错误的个数是( )A .0B .1C .1或5D .±1或±503.在1,-1,-2这三个数中,任意两数之和的最大值是( )A . 1B .1C .2D .304.下列计算正确的是( )A .()2222b ab a b a +-=--B .()222b a b a -=-C .()()()4422y x y x y x y x -=--+ D .()()224422b ab a a b b a -+-=--05.下列关系式不成立的是( )A .()()ab b a b a 2222-+=+B .()()ab b a b a 2222+-=+ C .()()()222222b a b a b a -++=+D .()()222b a b a ab --+=06.已知长方形的面积为a ab a 2642+-,且一边长为2a,则其周长为( ) A . b a 34- B . b a 68- C . 134--b a D . 268+-b a 07.下列计算正确的是( )A .()2234334433129xy xy y x y x y x -=÷- B .()a a a a a a a 724771428223+-=÷+- C .()()b a a b a b a a 34712422323-=-÷-+-+274abD .()224224355)201525(x xy x x y x x +--=-÷-+08.如图,矩形花园ABCD 中,AB =a ,AD =b ,如图中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK .若 LM =RS =c ,则花园中可绿化部分的面积为( ) A .bc -ab +ac +b 2 B .a 2+ab +bc -ac C .ab -bc -ac +c 2 D .b 2-bc +a 2-ab09.已知131-=x y ,那么2323122-+-y xy x 的值为__________ 10.若=+==+22,1,3b a ab b a 则 .11.已知()()()11121,14522++---=-x x x x x 求的值.12.计算:⑴()()()()[]y y x y y x y x y x 422÷-+---+⑵()()⎪⎭⎫⎝⎛-÷⎥⎦⎤⎢⎣⎡---∙++++22122221231936m m m m a a a a a13.若A =-2xy ,B =2332443141y x y x y x -+-,求B ÷A 2的值.14.已知多项式m 除以4232+-x x 得商式2x +6,余式为3x +1,求多项式m .15.如图,有两种长方形卡片若干,卡片A 的长为y x 21+,宽为y x -21,卡片B 的长为y x 525-,宽为y x 21123-,其中x >4y ,且x 、y 均为正数.⑴你能用A 、B 两种卡片若干张,拼成一个无缝隙的正方形吗?试试看,画出示意图;⑵试用两种不同的方法计算出所拼成的正方形的面积,并比较结果是否相等.16.已知实数a 、b 、x 、y 满足ax +by =3,ay -bx =5.求()()2222y x b a ++的值.17.若规定一种运算“*”:a *b =(a +2)(b +5)-(a +3)(b +4).试化简(m -1)*(n +1).。
最新浙教版七年级数学下册第三单元《整式的乘除》培优题
浙教版七年级数学下册第三单元《整式的乘除》培优题一.选择题(共7小题)1.=()A.1 B.C.2D.2.已知x m=a,x n=b(x≠0),则x3m﹣2n的值等于()A.3a﹣2b B.a3﹣b2C.a3b2 D.3.根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是()A.(a+b)(a+2b)=a2+3ab+2b2B.(3a+b)(a+b)=3a2+4ab+b2C.(2a+b)(a+b)=2a2+3ab+b2D.(3a+2b)(a+b)=3a2+5ab+2b24.使(x2+px+8)(x2﹣3x+q)的乘积不含x3和x2,则p、q的值为()A.p=0,q=0 B.p=﹣3,q=﹣1 C.p=3,q=1 D.p=﹣3,q=15.已知2a﹣b=2,那么代数式4a2﹣b2﹣4b的值是()A.6 B.4 C.2 D.06.设0<n<m,m2+n2=4mn,则的值等于()A.3 B.C.D.27.为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1 B.52013+1 C.D.8.若代数式x2+3x+2可以表示为(x﹣1)2+a(x﹣1)+b的形式,则a+b的值是.9.有足够多的长方形和正方形的卡片,如图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).(1)请画出如图这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是.(2)小明想用类似的方法拼成了一个边长为a+3b和2a+b的矩形框来解释某一个乘法公式,那么小明需用2号卡片张,3号卡片张.10.4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣bc.若=12,则x=.11.若x=2m﹣1,y=1+4m+1,用含x的代数式表示y为.12.若m1,m2,…m2015是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2015=1525,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,则在m1,m2,…m2015中,取值为2的个数为.13.已知a是大于1的实数,且有a3+a﹣3=p,a3﹣a﹣3=q成立.(1)若p+q=4,求p﹣q的值;(2)当q2=22n+﹣2(n≥1,且n是整数)时,比较p与(a3+)的大小,并说明理由.14.归纳与猜想:(1)计算:①(x﹣1)(x+1)=;②(x﹣1)(x2+x+1)=;③(x﹣1)(x3+x2+x+1)=;(2)根据以上结果,写出下列各式的结果.①(x﹣1)(x6+x5+x4+x3+x2+x+1)=;②(x﹣1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)=;(3)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x2+x+1)=(n为整数);(4)若(x﹣1)•m=x15﹣1,则m=;(5)根据猜想的规律,计算:226+225+…+2+1.15.杨辉三角形是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n(此处n=0,1,2,3,4,5…)的计算结果中的各项系数.杨辉三角最本质的特征是,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和.(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…上面的构成规律聪明的你一定看懂了!(1)请直接写出(a+b)6的计算结果中a2b4项的系数是;(2)利用上述规律直接写出27=;杨辉三角还有另一个特征:(3)从第二行到第五行,每一行数字组成的数(如第三行为121)都是上一行的数与的积.(4)由此你可以写出115=.(5)由第行可写出118=.浙教版七年级数学下册第三单元《整式乘除》参考答案与试题解析一.选择题(共7小题)1.(2012秋•南陵县期末)=()A.1 B.C.2D.【分析】根据x a•y a=(xy)a,进行运算即可.【解答】解:原式=(×)2004×=.故选B.【点评】此题考查了同底数幂的乘法运算,属于基础题,注意式子:x a•y a=(xy)a的运用.2.(2001•乌鲁木齐)已知x m=a,x n=b(x≠0),则x3m﹣2n的值等于()A.3a﹣2b B.a3﹣b2C.a3b2 D.【分析】利用同底数幂的除法和幂的乘方的性质的逆运算计算即可.【解答】解:∵x m=a,x n=b(x≠0),∴x3m﹣2n=x3m÷x2n=.故选D.【点评】本题考查了同底数幂的除法,幂的乘方的性质,逆用性质是解题的关键.3.(2016春•苏州期中)根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是()A.(a+b)(a+2b)=a2+3ab+2b2B.(3a+b)(a+b)=3a2+4ab+b2C.(2a+b)(a+b)=2a2+3ab+b2D.(3a+2b)(a+b)=3a2+5ab+2b2【分析】大长方形的长为3a+2b,宽为a+b,表示出面积;也可以由三个边长为a的正方形,2个边长为b的正方形,以及5个长为b,宽为a的长方形面积之和表示,即可得到正确的选项.【解答】解:根据图形得:(3a+2b)(a+b)=3a2+5ab+2b2.故选:D.【点评】此题考查了多项式乘多项式,弄清题意是解本题的关键.4.(2016秋•简阳市期中)使(x2+px+8)(x2﹣3x+q)的乘积不含x3和x2,则p、q的值为()A.p=0,q=0 B.p=﹣3,q=﹣1 C.p=3,q=1 D.p=﹣3,q=1【分析】根据多项式乘多项式的法则计算,然后根据不含x2项和x3项就是这两项的系数等于0列式,求出p和q的值,从而得出.【解答】解:(x2+px+8)(x2﹣3x+q),=x4+(p﹣3)x3+(8﹣3p+q)x2+(pq﹣24)x+8q,∵(x2+px+8)(x2﹣3x+q)的展开式中不含x2项和x3项,∴解得:.故选:C.【点评】本题考查了多项式乘多项式的运算法则,根据不含哪一项就是让这一项的系数等于0列式是解题的关键.5.(2015春•房山区期末)已知2a﹣b=2,那么代数式4a2﹣b2﹣4b的值是()A.6 B.4 C.2 D.0【分析】根据完全平方公式,可得平方差公式,根据平方差公式,可得答案.【解答】解:4a2﹣b2﹣4b=4a2﹣(b2+4b+4)+4=(2a)2﹣(b+2)2+4=[2a+(b+2)][2a﹣(b+2)]+4=(2a+b+2)(2a﹣b﹣2)+4当2a﹣b=2时,原式=0+4=4,故选:B.【点评】本题考查了完全平方公式,利用完全平方公式得出平方差公式是解题关键.6.(2012•宁波模拟)设0<n<m,m2+n2=4mn,则的值等于()A.3 B.C.D.2【分析】已知等式变形后利用完全平方公式化简得到关系式,代入所求式子计算即可得到结果.【解答】解:m2+n2=4mn变形得:(m﹣n)2=2mn,(m+n)2=6mn,∵0<n<m,∴m﹣n>0,m+n>0,∴m﹣n=,m+n=,∴原式===2.故选D.【点评】此题考查了完全平方公式,以及平方差公式,熟练掌握公式是解本题的关键.7.(2014•金水区校级模拟)为了求1+2+22+23+…+22011+22012的值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是()A.52013﹣1 B.52013+1 C.D.【分析】根据题目所给计算方法,令S=1+5+52+53+…+52012,再两边同时乘以5,求出5S,用5S﹣S,求出4S的值,进而求出S的值.【解答】解:令S=1+5+52+53+ (52012)则5S=5+52+53+…+52012+52013,5S﹣S=﹣1+52013,4S=52013﹣1,则S=.故选D.【点评】本题考查了同底数幂的乘法,利用错位相减法,消掉相关值,是解题的关键.二.填空题(共5小题)8.(2012•泰州)若代数式x2+3x+2可以表示为(x﹣1)2+a(x﹣1)+b的形式,则a+b的值是11.【分析】利用x2+3x+2=(x﹣1)2+a(x﹣1)+b,将原式进行化简,得出a,b的值,进而得出答案.【解答】解:∵x2+3x+2=(x﹣1)2+a(x﹣1)+b=x2+(a﹣2)x+(b﹣a+1),∴a﹣2=3,∴a=5,∵b﹣a+1=2,∴b﹣5+1=2,∴b=6,∴a+b=5+6=11,故答案为:11.【点评】此题主要考查了整式的混合运算与化简,根据已知得出x2+3x+2=x2+(a ﹣2)x+(b﹣a+1)是解题关键.9.(2012•杭州模拟)有足够多的长方形和正方形的卡片,如图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).(1)请画出如图这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是a2+3ab+2b2=(a+b)(a+2b).(2)小明想用类似的方法拼成了一个边长为a+3b和2a+b的矩形框来解释某一个乘法公式,那么小明需用2号卡片3张,3号卡片7张.【分析】(1)画出相关草图,表示出拼合前后的面积即可;(2)得到所给矩形的面积,看有几个b2,几个ab即可.【解答】解:(1)如图所示:故答案为:a2+3ab+2b2=(a+b)(a+2b);(2)(a+3b)(2a+b)=2a2+ab+6ab+3b2=2a2+7ab+3b2,需用2号卡片3张,3号卡片7张.故答案为:a2+3ab+2b2=(a+b)(a+2b);3;7.【点评】考查多项式与多项式相乘问题;根据面积的不同表示方法得到相应的等式是解决本题的关键.10.(2015•崇左)4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣bc.若=12,则x=1.【分析】利用题中的新定义化简已知等式,求出解即可得到x的值.【解答】解:利用题中新定义得:(x+3)2﹣(x﹣3)2=12,整理得:12x=12,解得:x=1.故答案为:1.【点评】此题考查了整式的混合运算,弄清题中的新定义是解本题的关键.11.(2014春•苏州期末)若x=2m﹣1,y=1+4m+1,用含x的代数式表示y为y=4(x+1)2+1.【分析】将4m变形,转化为关于2m的形式,然后再代入整理即可【解答】解:∵4m+1=22m×4=(2m)2×4,x=2m﹣1,∴2m=x+1,∵y=1+4m+1,∴y=4(x+1)2+1,故答案为:y=4(x+1)2+1.【点评】本题考查幂的乘方的性质,解决本题的关键是利用幂的乘方的逆运算,把含m的项代换掉.12.(2015•雅安)若m1,m2,…m2015是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2015=1525,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,则在m1,m2,…m2015中,取值为2的个数为510.【分析】通过m1,m2,…m2015是从0,1,2这三个数中取值的一列数,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510从而得到1的个数,由m1+m2+…+m2015=1525得到2的个数.【解答】解:∵(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,∵m1,m2,…,m2015是从0,1,2这三个数中取值的一列数,∴m1,m2,…,m2015中为1的个数是2015﹣1510=505,∵m1+m2+…+m2015=1525,∴2的个数为(1525﹣505)÷2=510个.故答案为:510.【点评】此题考查完全平方的性质,找出运算的规律.利用规律解决问题.三.解答题(共3小题)13.(2015秋•厦门期末)已知a是大于1的实数,且有a3+a﹣3=p,a3﹣a﹣3=q成立.(1)若p+q=4,求p﹣q的值;(2)当q2=22n+﹣2(n≥1,且n是整数)时,比较p与(a3+)的大小,并说明理由.【分析】(1)根据已知条件可得a3=2,代入可求p﹣q的值;(2)根据作差法得到p﹣(a3+)=2﹣n﹣,分三种情况:当n=1时;当n=2时;当n≥3时进行讨论即可求解.【解答】解:(1)∵a3+a﹣3=p①,a3﹣a﹣3=q②,∴①+②得,2a3=p+q=4,∴a3=2;①﹣②得,p﹣q=2a﹣3==1.(2)∵q2=22n+﹣2(n≥1,且n是整数),∴q2=(2n﹣2﹣n)2,∴q2=22n+2﹣2n,又由(1)中①+②得2a3=p+q,a3=(p+q),①﹣②得2a﹣3=p﹣q,a﹣3=(p﹣q),∴p2﹣q2=4,p2=q2+4=(2n+2﹣n)2,∴p=2n+2﹣n,∴a3+a﹣3=2n+2﹣n③,a3﹣a﹣3=2n﹣2﹣n④,∴③+④得2a3=2×2n,∴a3=2n,∴p﹣(a3+)=2n+2﹣n﹣2n﹣=2﹣n﹣,当n=1时,p>a3+;当n=2时,p=a3+;当n≥3时,p<a3+.【点评】考查了负整数指数幂:a﹣p=(a≠0,p为正整数),关键是加减消元法和作差法的熟练掌握.14.归纳与猜想:(1)计算:①(x﹣1)(x+1)=x2﹣1;②(x﹣1)(x2+x+1)=x3﹣1;③(x﹣1)(x3+x2+x+1)=x4﹣1;(2)根据以上结果,写出下列各式的结果.①(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;②(x﹣1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)=x10﹣1;(3)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x2+x+1)=x n﹣1(n为整数);(4)若(x﹣1)•m=x15﹣1,则m=x14+x13+x12+…+x2+x+1;(5)根据猜想的规律,计算:226+225+…+2+1.【分析】(1)运用乘法公式以及多项式乘多项式的法进行计算即可;(2)根据(1)中的计算结果的变换规律进行判断即可;(3)根据(1)(2)中的计算结果总结变换规律即可;(4)根据(3)中的规律,直接求得m的表达式即可;(5)根据(3)中的规律列出等式进行变形,求得226+225+…+2+1的值.【解答】解:(1)①(x﹣1)(x+1)=x2﹣1;②(x﹣1)(x2+x+1)=x3﹣1;③(x﹣1)(x3+x2+x+1)=x4+x3+x2+x﹣x3﹣x2﹣1=x4﹣1;(2)①(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;②(x﹣1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)=x10﹣1;(3)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x2+x+1)=x n﹣1(n为整数);(4)∵(x﹣1)•m=x15﹣1,∴m=x14+x13+x12+…+x2+x+1;(5)∵(2﹣1)(226+225+224+…+22+2+1)=227﹣1,∴226+225+…+2+1=227﹣1.【点评】本题主要考查了多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.计算时按一定的顺序进行,必须做到不重不漏.15.(2014春•泰兴市校级期末)杨辉三角形是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n(此处n=0,1,2,3,4,5…)的计算结果中的各项系数.杨辉三角最本质的特征是,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和.(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…上面的构成规律聪明的你一定看懂了!(1)请直接写出(a+b)6的计算结果中a2b4项的系数是15;(2)利用上述规律直接写出27=128;杨辉三角还有另一个特征:(3)从第二行到第五行,每一行数字组成的数(如第三行为121)都是上一行的数与11的积.(4)由此你可以写出115=161051.(5)由第9行可写出118=214358881.【分析】观察图表寻找规律:三角形是一个由数字排列成的三角形数表,它的两条斜边都是数字1组成,而其余的数则是等于它“肩”上的两个数之和.【解答】解:(1)请直接写出(a+b)6的计算结果中a2b4项的系数是15;(2)利用上述规律直接写出27=128;杨辉三角还有另一个特征:(3)从第二行到第五行,每一行数字组成的数(如第三行为121)都是上一行的数与11的积.(4)由此你可以写出115=161051.(5)由第9行可写出118=214358881.故答案为:15,128,11,161051,9,214358881.【点评】考查了学生解决实际问题的能力和阅读理解能力,找出本题的数字规律是正确解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题二 整式的乘除
一、知识点:
1. 同底数幂的乘法
同底数幂的乘法公式: __________________(m,n 都是整数)
2.幂的乘方与积的乘方
1)幂的乘方公式: ___________________(m,n 都是整数)
2)积的乘方公式:____________________(n 为正整数)
3. 同底数幂的除法
1)同底数幂的除法公式:___________________ (a ≠0,m 、n 都是正数,且m>n).
2)任何不等于0的数的0次幂等于1,即___________________,如1100=,(-2.50=1),则00无意义.
3)任何不等于0的数的-p 次幂(p 是正整数),等于这个数的p 的次幂的倒数,即___________________ ( a ≠0,p 是正整数), 而0-1,0-3都是无意义的。
4. 整式的乘法
1)单项式与单项式相乘 2)单项式与多项式相乘 3)多项式与多项式相乘
二、基础练习:
1.计算 (-3)2n+1+3×(-3)2n 结果正确的是( )
A. 32n+2
B. -32n+2
C. 0
D. 1
2.若16n m n a a a ++= ,且21m n -= ,则n m 的值为( )
A.1
B. 2
C.3
D.4
3.-a n 与(-a)n 的关系是( )
A. 相等
B. 互为相反数
C. 当n 为奇数时,它们相等; 当n 为偶数时,它们互为相反数
D. 当n 为奇数时,它们互为相反数; 当n 为偶数时,它们相等
4.若(x -3)(x+4)=x 2+px+q,那么p 、q 的值是( )
A.p=1,q=-12
B.p=-1,q=12
C.p=7,q=12
D.p=7,q=-12
5.a 4+(1-a)(1+a)(1+a 2)的计算结果是( )
A.-1
B.1
C.2a 4-1
D.1-2a 4
6.若0<y <1,那么代数式y(1-y)(1+y)的值一定是( )
A .正的
B .非负
C .负的
D .正、负不能唯一确定.
7.如果b 2m <b m (m 为自然数),那么b 的值是( )
A .b >0
B .b <0
C .0<b <1
D .b ≠1.
8.下列运算中错误的是( )
A .-(-3a n b)4=-81a 4n b 4
B .(a n+1b n )4=a 4n+4b 4n ;
C .(-2a n )2·(3a 2)3=-54a 2n+6
D .(3x n+1-2x n )·5x=15x n+2-10x n+1.
9.t 2-(t+1)(t-5)的计算结果正确的是( )
A .-4t-5
B .4t+5
C .t 2-4t+5
D .t 2+4t-5.
10.若n 为正整数,且x 2n =7,则(3x 3n )2-4(x 2)2n 的值为( )
A .833
B .2891
C .3283
D .1225.
11.如果多项式乘积9-x 3)-b)(x -(ax 2=,那么b a -等于( )
A .-2
B .2
C .-4
D .4
12.已知:a m =2,b n =32,则n m 1032+=________
13.多项式(mx+8)(2-3x)展开后不含x 项, 则m=
14.如果=-+=-k a a k a 则),2
1)(21(312 15.计算:
(1)(-ab)3·(-a 2b)·(-a 2b 4c)2 (2) (x+2y)(5a+3b) (3)[(-a)2m ]3·a 3m +[(-a)5m ]2.
(4)5x(x 2+2x+1)-(2x+3)(x-5) (5)y[y-3(x-z)]+y[3z-(y-3x)]
16.已知ab 2=-6,求-ab(a 2b 5-ab 3-b)的值.
17.已知:2,3==n m x x ,求n m x 23+、n m x 23-的值.
18.计算:[(xy+2)(xy -2)-2x 2y 2+4]÷xy(其中x=10,y=-
125
)
19.化简求值:231332(2)(2)(2)x y x y y x ⎡⎤⎡⎤-÷-÷-⎣⎦⎣⎦,其中2(2)10x y -++=.
20.若(x 2+px+8)(x 2-3x+q)的积中不含x 2和x 3,求p ,q 的值分别是多少?
21.2222
2,5,253x xy y xy x xy y +=+=++已知代数式则的值是多少?
22.33
201012010,20101x ax bx x ax bx =++==-++当时,那么时,的值是多少?
23.如果代数式b ma t 8与b na t 528--是关于a 、b 的单项式,且它们是同类项.
(1)求2009)265(-t 的值; (2)若b ma t 80852=--b na t ,且0≠ab ,求2009)88(n m -的值. 你能说明为什么对于任意自然数n,代数式n(n+7)-(n-3)(n-2)的值都能被6整除吗?
24.已知多项式22331x ax x +++能被21x +整除,且商式是31x +,求a 的值.。