不对称短路分析(新)
最新不对称三相电路的分析
三相电路小结1
三相电源的两种联接方法:
1.星形接法:UL= 3UP ,且线电压比相应相电
压超前300。
2.三角形接法: UL= UP 。
三相负载的两种联接方法:
1.星形接法:UL= 3UP ,在相位上,线电压比 相应相电压超前300; IL= IP 。
2.三角形接法: UL= UP ; IL= 3IP ,在相位
- UA +
A
YA
IA
- UB +
B
YB
N
IB
- UC +
C
YC
IC
ZN
S
中线电流为
N’ IN
当合上开关S,即接上 中线时,如果ZN≈0,则 可强使UN’N =0。 此时尽 管电路不对称,但各相 保持独立,各相负载的 相电压对称。因此在负 载不对称时中线的存在 是非常重要的。
IN= IA+IB +IC
=27.5-j9.45=29.1 -19。A
在上例中如果 (1)A相短路而有中线时; (2)A相短路而中线又断开时。
分析过程(1)A相短路而有中线时;
解: (1)此时A相短路电流很大,将A相中 的熔断器熔断,而B相和C相未受影响,其 相电压仍为220V。
分析过程 (2)A相短路而中线又断开时。
动作,切断电源。
➢ 三相电路系统的用电安全-保护接零
.
UA
-+
A
.
UB
-+
B
.
UC
-+
C
N
R1
R2
( b) 重复接地保护
图(b)为重复接地 保护,在进入用户端, 一处或多处通过接保护作用之外,还 可以使在零线断线、 相线零线接错时所产 生的危险能够快速反 应而断电保护。
不对称短路故障分析与计算(电力系统课程设计)
不对称短路故障分析
02
不对称短路故障类型
单相接地短路
其中一相电流通过接地电阻,其余两 相保持正常。
两相短路
两相接地短路
两相电流通过接地电阻,另一相保持 正常。
两相之间没有通过任何元件直接短路。
不对称短路故障产生的原因
01
02
03
设备故障
设备老化、绝缘损坏等原 因导致短路。
外部因素
如雷击、鸟类或其他异物 接触线路导致短路。
操作错误
如误操作或维护不当导致 短路。
不对称短路故障的危害
设备损坏
短路可能导致设备过热、烧毁或损坏。
安全隐患
短路可能引发火灾、爆炸等安全事故。
停电
短路可能导致电力系统的局部或全面停电。
经济损失
停电和设备损坏可能导致重大的经济损失。
不对称短路故障计算
03
方法
短路电流的计算
短路电流的计算是电力系统故障分析中的重要步骤,它涉及到电力系统的 运行状态和设备参数。
不对称短路故障分析与 计算(电力系统课程设计)
contents
目录
• 引言 • 不对称短路故障分析 • 不对称短路故障计算方法 • 不对称短路故障的预防与处理 • 电力系统不对称短路故障案例分析 • 结论与展望
引言
01
课程设计的目的和意义
掌握电力系统不对称短路故障的基本原理和计算 方法
培养解决实际问题的能力,提高电力系统安全稳 定运行的水平
故障描述
某高校电力系统在宿舍用电高峰期发生不对称短路故障,导致部 分宿舍楼停电。
故障原因
经调查发现,故障原因为学生私拉乱接电线,导致插座短路。
解决方案
加强学生用电安全教育,规范用电行为;加强宿舍用电管理,定 期检查和维护电路。
不对称短路故障分析与计算(电力系统课程设计)
课程设计报告书
题目:不对称短路故障分析与计算
专 业:电气工程及其自动化
班 级:YYYYYYY班
学 号:YYYYYYYYY
学生姓名:YYY
指导教师:YYY老师
20XX年X月X日
电力系统分析课程设计
题目:不对称短路故障分析与计算(手算或计算机算)
一、原始资料
T4
T3
T2
T1
1、发电机参数已经给定。
4
短路点正序标幺值为:
短路点负序标幺值为:
短路点零序标幺值为:
不对称短路的短路电流正序分量标幺值:
短路电流的标幺值:
短路电流的幅值:
短路冲击电流幅值:
短路点非故障相对地电压:
5 结果分析
5.1
电力系统产生短路的主要原因是供电系统中的绝缘被破坏。在绝大多数情况下,电力系统的绝缘的破坏是由于未及时发现和消除设备中的缺陷和维护不当所成的。例如过电压、直接雷击、绝缘材料的老化、绝缘配合不当和机械损坏等,运行人员错误操作,如带负荷断开隔离开关或检修后未撤接地线就合断路器等;设备长期过负荷,使绝缘加速老化或破坏;小电流系统中一相接地,未能及时消除故障;在含有损坏绝缘的气体或固体物质地区。此外在电力系统中的某些事故也可能直接导致短路,如电杆倒塌、导线断线等也会造成短路。
短路对电力系统的正常运行和电气设备有很大的危害,引起的后果是破坏性的,具体表现在:(1)短路点的电弧有可能烧坏电气设备,同时很大的短路电流通过设备会使发热增加,当短路持续时间较长时,可能使设备过热而损坏;(2)很大的短路电流通过导体时,要引起导体间很大的机械应力,有可能使设备变形或遭到不同程度的破坏。(3)短路时,系统电压大幅度下降,对用户工作影响很大(4)发生接地短路时,会产生不平衡电流及磁通,将在领近的平行线路内感应出很大的电动势。(5)短路发生后,有可能使并列运行发电机组失去同步,破坏系统的稳定,使电力系统瓦解,引起大片地区的停电。
不对称短路的分析和计算
不对称短路的分析和计算Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】目录摘要电力系统的安全、稳定、经济运行无疑是历代电力工作者所致力追求的,但是从电力系统建立之初至今电力系统就一直伴随着故障的发生而且电力系统的故障类型多样。
在电力系统运行过程中,时常会发生故障,且大多是短路故障。
短路通常分为三相短路、单相接地短路、两相短路和两相接地短路。
其中三相短路为对称短路,后三者为不对称短路。
电力运行经验指出单相接地短路占大多数,因此分析与计算不对称短路具有非常重要意义。
求解不对称短路,首先应该计算各原件的序参数和画出等值电路。
然后制定各序网络。
根据不同的故障类型,确定出以相分量表示的边界条件,进而列出以序分量表示的边界条件,按边界条件将三个序网联合成复合网,由复合网求出故障处各序电流和电压,进而合成三相电流电压。
关键词: 不对称短路计算、对称分量法、节点导纳矩阵1电力系统短路故障的基本概念短路故障的概述在电力系统运行过程中,时常发生故障,其中大多数是短路故障。
所谓短路:是指电力系统正常运行情况以外的相与相之间或相与地(或中性线)之间的连接。
除中性点外,相与相或相与地之间都是绝缘的。
电力系统短路可分为三相短路,单相接地短路。
两相短路和两相接地短路等。
三相短路的三相回路依旧是对称的,故称为不对称短路。
其他的几种短路的三相回路均不对称,故称为不对称短路。
电力系统运行经念表明,单相短路占大多数,上述短路均是指在同一地点短路,实际上也可能在不同地点同时发生短路,例如两相在不同地点接地短路。
依照短路发生的地点和持续时间不同,它的后果可能使用户的供电情况部分地或全部地发生故障。
当在有由多发电厂组成的电力系统发生端来了时,其后果更为严重,由于短路造成电网电压的大幅度下降,可能导致并行运行的发电机失去同步,或者导致电网枢纽点电压崩溃,所有这些可能引起电力系统瓦解而造成大面积的停电事故,这是最危险的后果。
第八章 三相不对称短路分析
X 2 1.22 X d
无阻尼绕组同步发电机
X 2 1.45 X d
零序电抗:机端零序电压的基频分量与流入定子 的电流零序分量的比值。
" X 0 (0.15 ~ 0.6) X d
第8章 电力系统不对称故障的分析计算
二、异步电动机的各序电抗
异步电机的正序参数常用恒定阻抗表示
等值漏抗:正负零序相同。
励磁电抗:负序励磁电抗与正序相同。
结论:所有静止元件的正负序等值电路及其参 数完全相同。 零序励磁电抗:与变压器的铁芯结构密切相关。
第8章 电力系统不对称故障的分析计算
零序励磁电抗
对于由三个单相变压 器组成的三相变压器 组,每相的零序主磁 通和正序主磁通一样, 都有独立的铁心磁路。 对于三相四柱式变压 器,零序磁通也能在 铁芯形成回路。因此, 零序电抗很大。
(8 12)
式(8-12)表明:在三相参数对称的线性电路中,各序对称分量 相互独立,因此可对正负零序分量分别进行计算。 所谓元件的序阻抗,是指元件三相参数对称时,元件两端某一序 的电压降与通过该元件同一序电流的比值,即:
/I Z1 V a1 a1 /I Z 2 V a2 a2 /I Z 0 V a0 a0
3I0
Xn
3 I0
Xn
XI XII
3Xn
Xm0
第8章 电力系统不对称故障的分析计算
自耦变压器的零序阻抗及其等值电路
(1)中性点直接接地
其参数和等值电路,与外电路的联接,Xm0 ——与 普通变压器相同 中性点的入地电流为:
3( I I ) I n I0 II 0
图7-11
第8章 电力系统不对称故障的分析计算
20不对称短路分析(新)
一、单相短路接地f(1)
以a相为特殊相(a相发生单相接地短路)
1、边界条件: b、c相没有接地,其接地电流
a b
c
Ua
Ub
Uc
Ib 0, Ic 0
Ia Ib Ic
a相短路点的对地电压 Ua 0
f
2、用对称分量表示的边界条件
Ua 0 Ua Ua1 Ua2 Ua0 0
Ia1 Ia2 Ia0 Ia / 3 相当于各序网络相串联
Ua1
n1
jX 2 f2
Ia2 Ua2 n2
jX 0 f0
Ia0
Ua 0
n0
4、短路点各相的电流和电压
Ia 3Ia1 Ib 0 Ic 0 Ua 0 Ub a2Ua1 aUa2 Ua0 Uc aUa1 a2Ua2 Ua0
5.相量图:以 Ia1 为参考相量画电流、电压相量图
Ic 2 Ib1
0
即:Ua1 Ua2 Ua0 0
又 : Ia1 Ia2 Ia0 0
表明:正序网与负序网相并联,零序网络开路,没有 零序电流分量。
3、复合序网 两相短路的复合序网=正序网与负序网络相并联
jX 1
E
Ia1
f1
Ua1
n1
jX 2
Ia 2
f2
Ua 2
n2
由复合序网可求出短路点处的a相的电流和电压的对
Uc2 Ub1
Ua1 Ua 2
Ua
6、结论:
1)短路电流、电压中无零序分量。
2)两相短路电流中的正、负序分量大小相等,方向相反;
两故障相的电流大小相等(幅值=
)3I,a 方向相反。
3)短路点处两故障相的电压大小相等、相位相同,幅值
为非故障相的电压的一半,相位与非故障相电压相反。
电力系统发生不对称短路故障分析
摘要电力系统发生不对称短路故障的可能性是最大的,本课题要求通过对电力系统分析不对称短路故障进行分析与计算,为电力系统的规划设计、安全运行、设备选择和继电保护等提供重要的依据。
关键字:标么值;等值电路;不对称故障目录一、基础资料 (3)二、设计内容 (3)1.选择110kV为电压基本级,画出用标幺值表示的各序等值电路。
并求出各序元件的参数。
(3)2.化简各序等值电路并求出各序总等值电抗。
(6)3.K处发生单相直接接地短路,列出边界条件并画出复合相序图。
求出短路电流。
(7)4.设在K处发生两相直接接地短路,列出边界条件并画出复合相序图。
求出短路电流。
(9)5.讨论正序定则及其应用。
并用正序定则直接求在K处发生两相直接短路时的短路电流。
(11)三、设计小结 (12)四、参考文献 (12)附录 (12)一、基础资料1. 电力系统简单结构图如图1所示。
图1 电力系统结构图在K 点发生不对称短路,系统各元件标幺值参数如下:(为简洁,不加下标*) 发电机G1和G2:S n =120MV A ,U n =10.5kV ,次暂态电动势标幺值1.67,次暂态电抗标幺值0.9,负序电抗标幺值0.45;变压器T1:S n =60MV A ,U K %=10.5 变压器T2:S n =60MV A ,U K %=10.5线路L=105km ,单位长度电抗x 1= 0.4Ω/km ,x 0=3 x 1, 负荷L1:S n =60MV A ,X 1=1.2,X 2=0.35 负荷L2:S n =40MV A ,X 1=1.2,X 2=0.35 取S B =120MV A 和U B 为所在级平均额定电压。
二、设计内容1.选择110kV 为电压基本级,画出用标幺值表示的各序等值电路。
并求出各序元件的参数(要求列出基本公式,并加说明)在产品样本中,电力系统中各电器设备如发电机、变压器、电抗器等所给出的都是标么值,即以本身额定值为基准的标么值或百分值。
电力系统不对称故障的分析
短路处各相电压电流为:
I
fb
a2
X ff (2) aX ff (0) X ff (2) X ff (0)
I
fa (1)
I
fc
a
X ff (2) a2 X ff (0) X ff (2) X ff (0)
I
fa (1)
X ff (0) X ff (2)
(四)两相经阻抗短路
1.方法一:
故障点边界条件:
I ka 0, I kb I kc
U kb U kc I kb Z f
转换为对称分量:
I ka0 0, I ka1 I ka 2
U ka1ຫໍສະໝຸດ U ka 2 I ka1 Z f
U fa U fa1 U fa2 U fa0 0
I
fb
I
fa0 a2
I
fa1 a I
fa 2
I fc I fa0 a I fa1 a2 I fa2
(a2
a)
I
fa1
(a2
a)
I
fa 2
0 I fa0 (a2 a) I fa1
I fa(0)
3I fa(1)
I fb I fc 0
U fa 0
U fb a2U fa(1) aU fa(2) U fa(0)
5.3不对称短路时短路点电流和电压的分析及...
第5 章电力系统不对称短路的计算分析5.1 基本认识5.2 元件的序阻抗及系统序网络的拟制及化简5.3 不对称短路时短路点电流和电压的分析及计算前言:1. 不对称短路时短路点的电流和电压出现不对称,短路点电流和电压的计算关键是求出其中一相的各序电流、电压分量。
2. 各序电流、电压分量分量的计算方法:解析法——解方程:上述 5.1 中三序网的基本式+三个补充方程(据不同类短路型的边界条件列出。
——繁,不用有两种复合序网法——将三个序网适当连接———组成复合序网法,求各序电流、电压(该法易记,方便,故广泛用——实际上是由解析法推导出的)3. 何谓“复合序网’——将三个序网适当连接,体现 a 相各序电流、电压关系的网络图。
4. 设对短路点各序网络图以简化到最简单的形式(见下图)——且表达形式有三种正序网E jX1 I a1E jX 1Ia1(n) f ++Ua1X1Ua1__G表达1 表达2 表达3 jX jX2 2I Ia 2a2+(n)f+Ua2Ua 2X2__表达1 表达2 表达3零序网jX jXIIa0a0+(n)f+Ua0Ua 0X_—表达1 表达2 表达3一、复合序网图及相量图(一)单相接地(1)f (如下图所示)a—E+aa 相——故障相,特殊相—E b +bc 相——非故障相—E c +I I b I ca分析:边界条件:I (1)b I (1)cU (1) a 0据对称分量法, 得:I1 1(1) (1) (1) 2 (1) (1) (1)a (I aI a I ) I I I1 3a b c a a23(1)a0——即三序电流相等U (1) (1) (1)a U U Ua1 a2 (1)a0三序电流、电压可用下图5-30 体现,称为复合序网。
E jX1Ia1+Ua1_jX2Ia2+Ua 2jXIa0+Ua 0图5-30 f (1) 复合序网注:(1) 复合序网,体现了三序电流、电压的关系I (1) (1) (1)a I I1 a2a0U (1) (1) (1)a U U1 a2a0(2) 由复合序网, 可直接写出短路点 f (1) 点的各序电流、电压IE(1) (1)aa I I1 ( ) a2j X X X1 2 3(1)a0U (1) (1) (1) (1)a E jI X (U U1 a a1 a2 a01 )(1) (1) U a20 jI a X2 2(1) (1)U a00 jI a X0(3)短路点故障相电流( 31) (1) (1) (1) (1)I a I I I I ——即为正序电流a1 a 2 a0 a1(1)I 的3 倍a1(1) (1) o2. 相量图(设I a I 0 )1 a1注:(1)由相量图可见,短路点:(1) 故障相电压U 0a I (1) 3a I(1)a1非故障相电压(1) (1) 但相位差(1) (1) 0OIb IU b U , 120c c (2)作相量图方法A 先作各相各序分量B 再作各相U、I 相量(二)两相短路( 2)f (如下图所示)b,cbc 相——故障相—E a +a 相——非故障相,特殊相—E +b—E+cI I b I ca分析:边界条件:I (2) a 0I (2)b I ( 2) cU ( 2)b U ( 2)c 0据对称分量法, 得:(2) (2)I a U (无零序网)0, 0 0a0I (2) (2)a I1 a2U (2) ( 2)a U1 a2三序电流、电压可用下图5-31 体现,称为复合序网。
6-6应用对称分量法分析不对称短路
关键:
• 各序等值网络 • 各序等值阻抗
U a = U a1 + U a2 + U a0 = 0 Ib = Ib1 + Ib2 + Ib0 = a 2 Ia1
+ aIa2
+
Ia0
=
0
Ic = Ic1 + Ic2 + Ic0 = aIa1 + a 2 Ia2 + Ia0 = 0
2. 正序网络
• 正序网络与计算三相短路时的等值网络完全相同 • 除中性点接地阻抗和空载线路外,电力系统各元件均应包括在正
等值网络
U a0 = 0 − Ia0 Z 0Σ
1. 应用对称分量法分析不对称短路
U= a1
Ea1Σ
−
Ia1Z1Σ
Ua2 = −Ia2Z2Σ
U a0 = −Ia0Z0Σ
上述有三个方程式,六个未知数, 必须补充三个方程,如何补充?
—— 短路的边界条件
单相(a相)接地短路故障的边界条件为 Ua = 0,Ib=0和Ic=0, 即:
4. 零序网络
• 发电机零序电势为零,短路点的零序电势就成为零序电流的唯一来源 • 零序电流三相同相位,只能通过大地或与地连接的其他导体才能构成
通路
作零序网络可从短 路点开始: • 凡是零序电流通过
的元件,均应列入 零序网络中; • 舍去无零序电流通 过的元件
5. 例:若在k点发生单相接地短路,试分别做出其正、负、零序
除中性点接地阻抗和空载线路外电力系统各元件均应包括在正序网络中短路点正序电压不等于零因而不能像三相短路那样与零电位相接而应引入代替短路点故障条件的不对称电势的正序分量发电机等旋转元件的电抗应以其负序电抗代替其他静止元件的负序电抗与正序电抗相同零序电流三相同相位只能通过大地或与地连接的其他导体才能构成通路作零序网络可从短路点开始
影响电力系统安全稳定运行的“元凶”——不对称短路故障分析
1.问题:如何理解电网中的短路概念及出现的各类故障?回答:所谓短路是指电力系统在运行中,相与相之间或相与地(或中性线)之间发生非正常连接时而流过非常大的电流。
其电流值远大于额定电流,并取决于短路点距电源的电气距离。
短路就是不同电位的导电部分之间的低阻性短接,相当于电源未经过负载而直接由导线接通成闭合回路。
通常这是一种严重而应该尽可能避免电路的故障,会导致电路因电流过大而烧毁并发生火灾。
值得注意的是,除中性点外,相与相或相与地之间都是绝缘的。
图2 电力系统短路的分类电力系统短路可以分为三相短路、单相接地短路、两相短路和两相接地短路等。
三相短路的三相回路依旧是对称的,故称为对称短路。
其他的几种短路的三相回路均不对称,故称为不对称短路。
根据电力系统运行经验表明,单相短路占大多数,上述短路均是指在同一地点短路,实际上也可能在不同地点同时发生短路,例如两相在不同地点接地短路。
图3 故障的分类电网中的故障可以分成两大类:简单故障和复杂故障。
复杂故障一般是指由两种或者两种以上的简单故障组合而成,简单故障又分为对称故障和不对称故障;而不对称故障又可以分为短路故障(横向故障)和断路故障(纵向故障)。
在电力系统运行过程中,时常发生故障,其中大多数是短路故障。
2.问题:产生短路的原因有哪些?回答:产生短路的原因有很多,主要有如下几个方面:(1)元件损坏。
例如绝缘材料的自然老化,设计、安装及维护不良所带来的设备缺陷发展成短路。
(2)气象条件恶化。
例如雷电造成的闪络放电或者避雷针动作,架空线路由于大风或者导线覆冰引起电杆倒塌等。
(3)违规操作。
例如运行人员带负荷拉刀闸。
(4)其他原因。
例如挖沟损伤电缆。
3.问题:短路可能造成的危害有哪些?回答:短路电流所产生的电动力能形成很大的破坏力,如果导体和它的支架不够坚固,可能遭到难以修复的破坏,短路时由于很大的短路电流流经网络阻抗,必将使网络产生很大的电压损失。
另外,短路类型如果是金属性短路,短路点电压为零,短路点以上各处的电压也要相应降低很多,一旦电压低于额定电压太多的时候就会使供电受到严重影响或者被迫中断,若在发电厂附近发生短路,还可能使全电力系统运行解列,引起严重后果。
不对称短路的分析和计算
不对称短路的分析和计算不对称短路是指电路中的短路现象不对称地分布在电路中的其中一侧。
简单来说,不对称短路是指电路中其中一侧的短路现象比另一侧更为严重,或者在电路中其中一侧出现了短路而另一侧没有出现短路的情况。
这种情况会导致电压和电流在电路中的分布不平衡,可能会破坏电路元器件,甚至引起火灾事故。
因此,对不对称短路进行分析和计算是非常重要的。
1.电路拓扑分析:首先,对电路的拓扑结构进行研究,分析电路中各个元器件的连接方式和途径,确定电路的供电路径和负载分布,找出可能导致不对称短路的因素。
2.元器件参数分析:对电路中的元器件进行参数分析,包括电阻、电容、电感等参数。
如果在电路中存在不对称短路现象,可能是一些元器件的参数偏离正常范围,导致该侧电流增加,从而引发不对称短路。
3.测试测量:通过使用合适的测试工具和仪器对不对称短路的存在与程度进行测试和测量。
常用的测试仪器包括数字万用表、示波器、短路测试仪等。
通过测试测量可以准确地了解不对称短路的情况,有助于后续的计算和处理。
1.电流计算:根据电路的拓扑结构和元器件参数,计算各个分支电路中的电流大小。
通过电路中的欧姆定律和基尔霍夫定律等电路定律,可以求解各个分支电路的电流。
2.电压计算:根据电路中的电源电压和各个分支电路的电流,计算各个节点处的电压大小。
通过电路中的基尔霍夫定律和电压分压定律等电路定律,可以求解各个节点处的电压。
3.规范检查:对计算得到的电流和电压进行规范检查。
根据电路的设计和规范要求,检查计算结果是否符合规范,包括各个元器件的额定电流、电压、功率等。
4.不对称短路分析:对计算得到的电流和电压进行分析,确定是否存在不对称短路现象。
如果其中一侧的电流明显偏高,而另一侧的电流较小或接近零,可能存在不对称短路。
5.故障诊断:根据不对称短路的分析结果,进行故障诊断,并采取合适的措施进行处理。
可能的处理方法包括更换元器件、调整电路连接方式、增加保护元器件等。
7.4 简单不对称短路故障分析
7.4 简单不对称短路故障分析在中性点接地的电力系统中,简单不对称短路故障有单相接地短路、两相短路以及两相接地短路。
无论是哪一种短路,利用对称分量法分析时,都可以制订出正、负、零序网络,并经化简后从简化序网列写出各序网络故障点的电压平衡方程式,如式(7-11)。
如果略去正常分量只计故障分量,并忽略各元件电阻,可将式(7-11)改写为(7-45)式中,即是短路发生前故障点的电压。
要求解出上式中的三个电流序分量和三个电压序分量,应根据不对称短路的边界条件补充三个方程式。
由于短路类型不同,短路点的边界条件不同,补充的方程亦不同。
下面对三种不对称短路分别进行讨论。
7.4.1 单相接地短路设在中性点接地的电力系统中相接地短路,如图7-29,由图可列出短路点的边界条件图7-29 单相接地短路示意图(7-46)将上述边界条件转化为正、负、零序分量表示由有即(7-47)由有联立求解式(7-45)和式(7-47),即可解出、、和、、,但这种解析法较繁,工程中不适用。
若按照边界条件,将正、负、零序网串联,如图7-30所示,也可求出单相接地短路时短路点电流和电压的各序分量。
这种由三个序网按不同的边界条件组合成的网络称复合序网。
在复合序网中,同时满足了序网方程和边界条件,因此复合序网中的电流和电压各序分量就是要求解的未知量。
图7-30 单相接地短路复合序网从复合序网中直接可得(7-48)则短路点的故障相电流为(7-49)在近似计算中,一般有,从式(4-129)看出,当,则单相接地短路电流大于同一地点的三相短路电流,反之则单相接地短路电流小于三相短路电流。
从序网方程式(7-45)可求出短路点电压的各序分量、、,然后利用对称分量法的合成算式即可求得短路点非故障相电压代入和,则(7-50)同理可得(7-51)从式(7-50)和式(7-51)看出:当,非故障相电压较正常运行时低,极限情况时,当,则、,故障后非故障相电压不变。
当,非故障相电压较正常运行时高,极限情况时,,相当于中性点不接地系统发生单相接地短路时,中性点电位升高至相电压,而非故障相电压升高为线电压的情况。
第十三章 不对称短路故障分析
2、零序电抗与变压器铁芯结构关系
本章目录 本章目录
1 第一节 1 第一节
2 第二节 2 第二节 3 第三节 3 第三节
a1
4 第四节 4 第四节
5 第五节
X
6 第六节 7 第七节 8 第八节 9 第九节
a
(1)
a1
E
u
fa(1)
等值电势E a1等于端口f的对地开路 电压,亦即故障前f点的相电压 。 u 从f点看进去的等值阻抗。
fa 0
X
a
(1)
上海交通大学电气工程系国家级精品课程
第一节:对称分量法
f1
I
f2
I
f0
f2
I
0
f0
所以:三序网串联。 由此可以计算出故障处f点各序电压,序电流->相电压、 相电流。
上海交通大学电气工程系国家级精品课程
第二节:序阻抗与各序网构成
2004/5
一、序阻抗
本章目录 本章目录
1 第一节 1 第一节
2 第二节 2 第二节 3 第三节 3 第三节
发电机:
x1 x 2 输电线路: x 2 x1 x 0 (3.0 ~ 3.5) x L
上海交通大学电气工程系国家级精品课程
第二节:序阻抗与各序网构成
2004/5
本章目录 本章目录
变压器: 正序=负序= 零序:
1 第一节 1 第一节
2 第二节 2 第二节 3 第三节 3 第三节
一、对称分量法
本章目录 本章目录
1 第一节 1 第一节
2 第二节 2 第二节 3 第三节 3 第三节
电力系统不对称故障的分析-PPT
a1
.
Uc
.
.
aU a1 a 2 U a2
.
U a1
jX 2
. I a1
短路点得电流、电压相量图
Ua
IC
Ia2 Ia1 0
Ub Uc Ua
电压向量图
Ib
电流向量图
三、两相短路接地
Ua Ub Uc
a b c
Ia
Ib
Ic
jX f
➢短路点得边界条件为
U
b U c
Ia 0 j(Ib
.
Ib
.
I a0 a2
.
I a1 a
.
I a2
(a2
X 2 aX 0 X2 X0
)
.
I
a1
.
Ic.Leabharlann I a0.a I a1
a2
.
I a2
(a
X 2
a2 X0
. ) I a1
X2 X0
.
.
.
.
.
U a U a0 U a1 U a2 3U a1 j3
X 2 X 0
.
I a1
X 2 X 0
X 0 X1
E1
1.5
X 0 X1
2
X 0 X1
j
3 2
E1
Uc
j [(a
a2 ) X1
(a 1) X 0 ]
E12 j (2 X1
X0 )
(a
a2) 2
(a 1)
X 0 X1
X 0 X1
E1
1.5
X 0 X1
2 X0 X1
j
3 2
E1
➢非故障相电压得绝对值为
电力系统不对称故障的分析
电力系统不对称故障的分析电力系统不对称故障是指在三相电力系统中,其中一相发生了损坏或故障,导致系统中三相电压、电流、功率等参数不再保持对称。
不对称故障会导致电力系统运行不稳定,甚至造成设备损坏和系统瘫痪。
因此,对电力系统不对称故障的分析非常重要。
首先,对电力系统不对称故障进行分析需要进行故障现象的测量和记录。
可以通过测量故障相电压和电流、功率因素等参数来了解故障的具体情况。
同时,还可以记录故障发生时的系统状态和操作情况,为后续的故障分析提供依据。
其次,根据故障现象的测量和记录,初步判断故障的类型。
电力系统不对称故障可以分为单相短路故障、单相接地故障和线路不平衡故障等。
通过分析故障相电压和电流的变化规律,可以初步判断故障的类型。
然后,根据故障类型,进行故障点的定位。
故障点的定位可以通过测量故障传播速度和故障电流的方向来实现。
根据故障点位置的确定,可以进行局部化抢修和恢复供电,减少故障对系统的影响。
最后,进行故障原因分析。
故障原因分析是解决电力系统不对称故障的关键步骤,可以通过多种方法来实现。
例如,可以通过现场勘查、设备检测和故障模拟等方法来找出故障的具体原因。
同时,还可以利用故障记录仪、故障模拟软件等辅助工具,对故障进行仿真和分析。
在进行故障原因分析时,还需要考虑故障的影响范围、时间和条件等因素。
通过对故障原因的准确分析,可以采取相应的措施来防止和排除类似故障的再次发生。
综上所述,电力系统不对称故障的分析是一个复杂而重要的过程,需要对故障现象进行测量和记录,初步判断故障类型,进行故障点的定位,并最终进行故障原因分析。
通过准确的故障分析,可以及时恢复系统运行,确保电力系统的稳定和安全。
不对称短路特点总结
不对称短路特点总结不对称短路是电力系统中的一种常见故障,其特点与对称短路有所不同。
本文将总结不对称短路的特点,包括故障类型、故障电流、电压变化以及保护装置动作等方面。
一、故障类型不对称短路通常包括单相接地短路、两相短路和两相接地短路。
其中,单相接地短路是最常见的类型,其特点是只有一相线路对地绝缘被破坏,导致电流通过接地体形成回路。
两相短路和两相接地短路则分别指两相线路之间或两相线路对地绝缘被破坏,导致电流通过线路形成回路。
二、故障电流不对称短路时,由于三相电压不平衡,故障电流的大小和方向也不对称。
对于单相接地短路,故障电流为接地相电流;对于两相短路和两相接地短路,故障电流为两相电流之和。
此外,由于不对称短路时电流大小和方向的不对称性,故障点附近的电压分布也会受到影响。
三、电压变化不对称短路时,三相电压会出现不平衡现象。
对于单相接地短路,接地相电压为零,其他两相电压升高;对于两相短路和两相接地短路,故障相电压降低,其他两相电压升高。
此外,由于不对称短路时电流大小和方向的不对称性,故障点附近的电压分布也会受到影响。
四、保护装置动作在不对称短路时,保护装置会根据不同的故障类型和电压变化情况做出相应的动作。
例如,在单相接地短路时,零序保护装置会动作切除故障线路;在两相短路和两相接地短路时,负序保护装置会动作切除故障线路。
此外,为了确保系统的稳定运行,保护装置还会根据实际情况进行相应的调整和优化。
不对称短路是电力系统中的一种常见故障,其特点与对称短路有所不同。
为了确保系统的稳定运行和设备的安全运行,需要加强对不对称短路的监测和分析工作,及时发现和处理故障。
同时,还需要加强对保护装置的维护和调试工作,确保其正常工作和动作的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ib2 Ic1
E
U c (K0
)KU0
c0
1 U
c
(
K
0
0)
Ia1 Ia2 Ia0 Ia
U C U C 0 U C 2
U a 2 U a0
E (Ua 0 )
U c (K0 ) Ub 0 Ub (K0 0) K0 1
U a1
U b
U b1 U b0 U b2
第十章 不对称故障的分析计算
第一节 各种不对称短路故障时 故障处的电流和电压计算
用对称分量法分析计算电力系统的不对称故障的步骤为: 1、计算系统中各元件的各序电抗。 2、制订电力系统的各序网络。 3、形成复合序网 4 、对复合序网进行分析计算,可求出短路点特殊相的电流 和电压的对称分量。 5、根据短路点特殊相的电流和电压的对称分量,求出短路 点的各相电流、电压。
即:U a1 U a2 U a0 0
又 : Ia1 Ia2 Ia0 0
表明:正序网与负序网相并联,零序网络开路,没有 零序电流分量。
3、复合序网 两相短路的复合序网=正序网与负序网络相并联
jX 1
E
Ia1
f1
U a1
n1
jX 2Ia 2来自f2U a2n2
由各序分量电压关系可得:
UUaa12 U a0
1 3
1 1 1
a a2 1
a2 a 1
U U
a b
U b
1 3
U U
a a
(a a2 )Ub (a2 a)Ub
0
Ia1 Ia 2
Ia 0
1 3
1 1 1
a a2 1
a2
a
0 Ib
( ( aa2aa2) )IIbb
1 Ib
0
即: Ia1 Ia2 Ia0 0
Ib
Ib1 Ib 2
Ia 2 Ic1
E
Ia1
Ic 2
U b2 U c1
Ic
U b
U a1
U c U c2 Ub1
U a2
U a
6、结论:
1)短路电流、电压中无零序分量。
2)两相短路电流中的正、负序分量大小相等,方向相反;
两故障相的电流大小相等(幅值=
)3I,a 方向相反。
E
根据复合序网可得故障处三序 电压分量分别为:
U a1 E jIa1( X 2 X 0 ) U a2 jIa2 X 2 U a0 jIa0 X 0
jX 1 f1
Ia1
U a1
n1
jX 2 f2
Ia 2
U a2
n2
jX 0 f0
Ia0
3)短路点处两故障相的电压大小相等、相位相同,幅值
U a0
n0
4、短路点各相的电流和电压
Ia 3Ia1 Ib 0 Ic 0 U a 0 Ub a2U a1 aU a2 U a0 U c aU a1 a2U a2 U a0
5.相量图:以 Ia1 为参考相量画电流、电压相量图
Ic 2 Ib1
Ia1 Ia2 Ia0 Ia / 3 相当于各序网络相串联
3、复合序网——根据用对 称分量表示的边界条件,将 三个序网络连接起来的等值 电路
单相接地短路的复合序网= 正、负、零序网络相串联
由复合序网可求出短路点处的 a相的电流和电压的各序对称 分量:
jX 1
f1
E
Ia1
Ia1
E j( X1 X )
X X 2 X 0
二、两相短路f(2)
以a相为特殊相(b、c相短路) a
U a
b
1、边界条件:
c
U b
U c
a相没有短路,其短路点的短路
Ia Ib
Ic
电流 Ia 0 Ib Ic Ub Uc
2、用对称分量表示的边界条件
U a1
n1
jX 2
f2
Ia 2
U a 2
n2
jX 0
f0
Ia0
U a0
n0
Ia1 Ia2
Ia0
E j( X1 X 2 X 0 )
则a相短路电流为:
Ia
Ia1 Ia2 Ia0
3E j( X1 X 2 X 0 )
6、结论:
(1)短路点故障相电流中的正序、负序、零序分量 相等;短路点非故障相的电流等于零。
(2)短路点故障相电压等于零,两个非故障相电压 幅值相等,其值取决于 X 0 与 X1 之比,当 X 0 / X1 在 零到无穷大范围内变化时,非故障相电压的相位在
180 ~ 60之间变化。
(3)单相接地短路的正序电流值相当于在三相短路 电流计算的等值电路中的短路点处串联一个附加电抗 后发生三相短路的短路电流
一、单相短路接地f(1)
以a相为特殊相(a相发生单相接地短路)
1、边界条件:
a
b、c相没有接地,其接地电流
Ib 0, Ic 0
b
c
a相短路点的对地电压 U a 0
U a U b
Ia Ib
U c Ic
f
2、用对称分量表示的边界条件
U a 0 U a U a1 U a2 U a0 0
故障处各相的电压为:
U a
U b
U a1 U a2 2U a1
a2U a1 aU a2 U a1
j2Ia1X 2
Ua 2
j2
E j2X 2
X 2
E
U c
a
U a1
a2U a2
U a1
U a 2
5.相量图:以 Ifa1为参考相量画电流、电压相量图
由复合序网可求出短路点处的a相的电流和电压的对
称分量:
Ia1 Ia2
E j( X 1 X 2 )
U a1 U a2 jX 2Ia1 即U a1、U a2超前Ia1 90
4、故障处各相的电流为:
Ib a2Ia1 aIa2 (a2 a)Ia1 j 3Ia1 Ic aIa1 a2Ia2 (a a2 )Ia1 j 3Ia1