2019高考数学二轮(文科)小题限时训练(二) 解析版

合集下载

2019年高考数学(文)模拟试题(二)含答案及解析

2019年高考数学(文)模拟试题(二)含答案及解析

绝密 ★ 启用前2019年高考模拟试题(二)文科数学时间:120分钟 分值:150分注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、考生号填写在答题卡上。

2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试卷上无效。

3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。

4、考试结束,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数满足,则的共轭复数在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.设集合,,则( )A .B .C .D .3.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是( )A .B .C .D . 4.函数,的图象大致是( ) A . B . C . D .z ()1i 2i z -=+z {}2=36M x x <{}2,4,6,8N =MN ={}24,{}46,{}26,{}246,,121341-π42-π()cos sin x f x x x =-33,00,22x ππ⎡⎫⎛⎤∈-⎪ ⎢⎥⎣⎭⎝⎦此卷只装订不密封级 姓名 准考证号 考场号座位号5.如图所示是一个几何体的三视图,则这个几何体外接球的体积为( )A .B .C .D .6.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后入称之为三角形的欧拉线.已知的顶点,,,则的欧拉线方程为( )A .B .C .D .7.执行如图所示的程序框图,则输出的值为( )A .4097B .9217C .9729D .204818.已知函数的最小正周期为,且其图象向右平移个单位后得到函数的图象,则等于( ) A . B . C . D .9.已知实数,,,则的大小关系是( )A .B .C .D .10.如图所示,在正方体中,分别为的中点,点是底323π643π32π3πABC △()2,0A ()0,4B AC BC =ABC △230x y +-=230x y -+=230x y --=230x y -+=S ()()sin (0,)2f x x ωϕωϕπ=+><6π23π()sin g x x ω=ϕ49π29π6π3πln22a =ln33b =ln55c =,,a b c a b c <<c a b <<c b a <<b a c <<1111ABCD A B C D -,E F 1111,B C C D P面内一点,且平面,则的最大值是( )A .B . CD .11.经过双曲线的左焦点作倾斜角为的直线,若交双曲线的左支于,则双曲线离心率的取值范围是( ) A .B .C .D .12.设函数,若不等式有正实数解,则实数的最小值为( ) A .3 B.2C .D .第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题5分,共20分. 13.已知平面向量,的夹角为,,,则____.14.已知为坐标原点,若点为平面区域上的动点,则的最大值是__________.15.以等腰直角三角形的底边上的高为折痕,把和折成互相垂直的两个平面,则下列四个命题: ①;②为等腰直角三角形; ③三棱锥是正三棱锥;④平面平面; 其中正确的命题有__________.(把所有正确命题的序号填在答题卡上) 16.已知函数,若函数的所有零点1111A B C D AP ∥EFDB 1tan APA ∠212222:1(0,0)x y M a b a b-=>>60︒l l M ,A B M ()2,+∞()1,2()+∞()3e 3xaf x x x x⎛⎫=+-- ⎪⎝⎭()0f x ≤a 2e e依次记为,则__________.三、解答题:共70分。

2019年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

 2019年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

2019年普通高等学校招生全国统一考试(全国Ⅱ卷)文科数学一、选择题1.已知集合A={x|x>-1},B={x|x<2},则A∩B等于()A.(-1,+∞) B.(-∞,2)C.(-1,2) D.∅答案 C解析A∩B={x|x>-1}∩{x|x<2}={x|-1<x<2}.2.设z=i(2+i),则等于()A.1+2i B.-1+2iC.1-2i D.-1-2i答案 D解析∵z=i(2+i)=-1+2i,∴=-1-2i.3.已知向量a=(2,3),b=(3,2),则|a-b|等于()A. B.2 C.5 D.50答案 A解析∵a-b=(2,3)-(3,2)=(-1,1),∴|a-b|==.4.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A. B. C. D.答案 B解析设5只兔子中测量过某项指标的3只为a1,a2,a3,未测量过这项指标的2只为b1,b2,则从5只兔子中随机取出3只的所有可能情况为(a1,a2,a3),(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a1,b1,b2),(a2,a3,b1),(a2,a3,b2),(a2,b1,b2),(a3,b1,b2),共10种可能.其中恰有2只测量过该指标的情况为(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a2,a3,b1),(a2,a3,b2),共6种可能.故恰有2只测量过该指标的概率为=.5.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙答案 A解析由于三人成绩互不相同且只有一个人预测正确.若甲预测正确,则乙、丙预测错误,于是三人按成绩由高到低的次序为甲、乙、丙;若甲预测错误,则甲、乙按成绩由高到低的次序为乙、甲,再假设丙预测正确,则乙、丙按成绩由高到低的次序为丙、乙,于是甲、乙、丙按成绩由高到低排序为丙、乙、甲,从而乙的预测也正确,与事实矛盾;若甲、丙预测错误,则可推出乙的预测也错误.综上所述,三人按成绩由高到低的次序为甲、乙、丙.6.设f(x)为奇函数,且当x≥0时,f(x)=e x-1,则当x<0时,f(x)等于()A.e-x-1 B.e-x+1C.-e-x-1 D.-e-x+1答案 D解析当x<0时,-x>0,∵当x≥0时,f(x)=e x-1,∴f(-x)=e-x-1.又∵f(x)为奇函数,∴f(x)=-f(-x)=-e-x+1.7.设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面答案 B解析对于A,α内有无数条直线与β平行,当这无数条直线互相平行时,α与β可能相交,所以A不正确;对于B,根据两平面平行的判定定理与性质知,B正确,对于C,平行于同一条直线的两个平面可能相交,也可能平行,所以C不正确;对于D,垂直于同一平面的两个平面可能相交,也可能平行,如长方体的相邻两个侧面都垂直于底面,但它们是相交的,所以D不正确,综上可知选B.8.若x1=,x2=是函数f(x)=sin ωx(ω>0)两个相邻的极值点,则ω等于()A.2 B. C.1 D.答案 A解析由题意及函数y=sin ωx的图象与性质可知,T=-,∴T=π,∴=π,∴ω=2.9.若抛物线y2=2px(p>0)的焦点是椭圆 4+=1的一个焦点,则p等于()A.2 B.3 C.4 D.8答案 D解析由题意知,抛物线的焦点坐标为,椭圆的焦点坐标为(±,0),所以=,解得p=8,故选D.10.曲线y=2sin x+cos x在点(π,-1)处的切线方程为()A.x-y-π-1=0 B.2x-y-2π-1=0C.2x+y-2π+1=0 D.x+y-π+1=0答案 C解析设y=f(x)=2sin x+cos x,则f′(x)=2cos x-sin x,∴f′(π)=-2,∴曲线在点(π,-1)处的切线方程为y-(-1)=-2(x-π),即2x+y-2π+1=0.11.已知α∈,2sin 2α=cos 2α+1,则sin α等于()A. B. C. D.答案 B解析由2sin 2α=cos 2α+1,得4sin αcos α=1-2sin2α+1,即2sin αcos α=1-sin2α.因为α∈,所以cos α=,所以2sin α=1-sin2α,解得sin α=,故选B.12.设F为双曲线C:-=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q 两点.若|PQ|=|OF|,则C的离心率为()A. B. C.2 D.答案 A解析如图,由题意知,以OF为直径的圆的方程为2+y2=①,将x2+y2=a2记为②式,①-②得x=,则以OF为直径的圆与圆x2+y2=a2的相交弦所在直线的方程为x=,所以|PQ|=2. 由|PQ|=|OF|,得2=c,整理得c4-4a2c2+4a4=0,即e4-4e2+4=0,解得e=,故选A.二、填空题13.若变量x,y满足约束条件则z=3x-y的最大值是________.答案9解析作出已知约束条件对应的可行域,如图中阴影部分(含边界)所示,由图易知,当直线y=3x-z过点C时,-z最小,即z最大.由解得即C点坐标为(3,0),故z max=3×3-0=9.14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.答案0.98解析经停该站高铁列车所有车次的平均正点率的估计值为=0.98.15.△ABC的内角A,B,C的对边分别为a,b,c.已知b sin A+a cos B=0,则B=________.答案解析∵b sin A+a cos B=0,∴=,由正弦定理,得-cos B=sin B,∴tan B=-1,又B∈(0,π),∴B=.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为________.答案26-1解析依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,因此题中的半正多面体共有26个面.注意到该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x,则x+x+x=1,解得x=-1,故题中的半正多面体的棱长为-1.三、解答题17.如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥E-BB1C1C的体积.(1)证明由已知得B1C1⊥平面ABB1A1,BE⊂平面ABB1A1,故B1C1⊥BE.又BE⊥EC1,B1C1∩EC1=C1,B1C1,EC1⊂平面EB1C1,所以BE⊥平面EB1C1.(2)解由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以∠AEB=∠A1EB1=45°,故AE=AB=3,AA1=2AE=6.如图,作EF⊥BB1,垂足为F,则EF⊥平面BB1C1C,且EF=AB=3.所以四棱锥E-BB1C1C的体积V=×3×6×3=18.18.已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求{a n}的通项公式;(2)设b n=log2a n,求数列{b n}的前n项和.解(1)设{a n}的公比为q,由题设得2q2=4q+16,即q2-2q-8=0,解得q=-2(舍去)或q=4.因此{a n}的通项公式为a n=2×4n-1=22n-1.(2)由(1)得b n=log222n-1=(2n-1)log22=2n-1,因此数列{b n}的前n项和为1+3+…+2n-1=n2.19.某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:≈8.602.解(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为=0.21.产值负增长的企业频率为=0.02.用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)=×(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30,s2=i(y i-)2=×[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402×7]=0.029 6,s==0.02×≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17.20.已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.解(1)连接PF1.由△POF2为等边三角形可知在△F1PF2中,∠F1PF2=90°,|PF2|=c,|PF1|=c,于是2a=|PF1|+|PF2|=(+1)c,故C的离心率为e==-1.(2)由题意可知,若满足条件的点P(x,y)存在,则|y|·2c=16,·=-1,即c|y|=16,①x2+y2=c2,②又+=1.③由②③及a2=b2+c2得y2=.又由①知y2=,故b=4.由②③及a2=b2+c2得x2=(c2-b2),所以c2≥b2,从而a2=b2+c2≥2b2=32,故a≥4.当b=4,a≥4时,存在满足条件的点P.所以b=4,a的取值范围为[4,+∞).21.已知函数f(x)=(x-1)ln x-x-1.证明:(1)f(x)存在唯一的极值点;(2)f(x)=0有且仅有两个实根,且两个实根互为倒数.证明(1)f(x)的定义域为(0,+∞).f′(x)=+ln x-1=ln x-(x>0).因为y=ln x在(0,+∞)上单调递增,y=在(0,+∞)上单调递减,所以f′(x)在(0,+∞)上单调递增.又f′(1)=-1<0,f′(2)=ln 2-=>0,故存在唯一x0∈(1,2),使得f′(x0)=0.又当0<x<x0时,f′(x)<0,f(x)单调递减,当x>x0时,f′(x)>0,f(x)单调递增,因此,f(x)存在唯一的极值点.(2)由(1)知f(x0)<f(1)=-2,又f(e2)=e2-3>0,所以f(x)=0在(x0,+∞)内存在唯一根x=α.由1<x0<α得0<<1<x0.又f=ln--1===0,故是f(x)=0在(0,x0)的唯一根.综上,f(x)=0有且仅有两个实根,且两个实根互为倒数.22.[选修4-4:坐标系与参数方程]在极坐标系中,O为极点,点M(ρ0,θ0)(ρ0>0)在曲线C:ρ=4sin θ上,直线l过点A(4,0)且与OM垂直,垂足为P.(1)当θ0=时,求ρ0及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.解(1)因为M(ρ0,θ0)在C上,当θ0=时,ρ0=4sin =2.由已知得|OP|=|OA|cos =2.设Q(ρ,θ)为l上除P的任意一点,连接OQ,在Rt△OPQ中,ρcos=|OP|=2. 经检验,点P在曲线ρcos=2上.所以,l的极坐标方程为ρcos=2.(2)设P(ρ,θ),在Rt△OAP中,|OP|=|OA|cos θ=4cos θ,即ρ=4cos θ.因为P在线段OM上,且AP⊥OM,故θ的取值范围是.所以,P点轨迹的极坐标方程为ρ=4cos θ,θ∈.23.[选修4-5:不等式选讲]已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.解(1)当a=1时,f(x)=|x-1|x+|x-2|(x-1).当x<1时,f(x)=-2(x-1)2<0;当x≥1时,f(x)≥0.所以,不等式f(x)<0的解集为(-∞,1).(2)因为f(a)=0,所以a≥1.当a≥1,x∈(-∞,1)时,f(x)=(a-x)x+(2-x)(x-a)=2(a-x)(x-1)<0. 所以,a的取值范围是[1,+∞).祝福语祝你考试成功!。

2019年高考全国2卷文科数学试题含答案解析

2019年高考全国2卷文科数学试题含答案解析

2019年高考全国2卷文科数学试题解析1.设集合{1,2,3},{2,3,4}A B ==,则AB =A .{}123,4,, B .{}123,, C .{}234,, D .{}134,, 【答案】A 【解析】由题意{1,2,3,4}A B =,故选A.2.(1i)(2i)++=A .1i -B .13i +C .3i +D .33i + 【答案】B3.函数π()sin(2)3f x x =+最小正周期为 A .4π B .2π C . π D .π2【答案】C【解析】由题意2ππ2T ==,故选C. 4.设非零向量a ,b 满足+=-a b a b ,则A .a ⊥bB .=a bC .a ∥bD .>a b 【答案】A【解析】由+=-a b a b 平方得222222+⋅+=-⋅+a a b b a a b b ,即0⋅=a b ,则⊥a b ,故选A.5.若1a >,则双曲线2221x y a-=的离心率取值范围是A .)+∞B .2)C .D .(1,2) 【答案】C6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .90π B .63π C .42π D .36π【答案】B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为221π36π3463π2V =⋅⋅⋅+⋅⋅=,故选B. 7.设,x y 满足约束条件2+330,2330,30,x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩则2z x y =+的最小值是A .15-B .9-C .1D .9 【答案】A【解析】绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点()6,3B --处取得最小值,最小值为min 12315z =--=-.故选A.8.函数2()ln(28)f x x x =--的单调递增区间是A .(,2)-∞-B . (,1)-∞C . (1,)+∞D . (4,)+∞ 【答案】D9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【答案】D【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲、丁一人优秀一人良好,乙看到丙结果则知道自己的结果,丁看到甲的结果则知道自己结果,故选D.10.执行下面的程序框图,如果输入的1a=-,则输出的S=A.2 B.3 C.4 D.5【答案】B11.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.25【答案】D【解析】如下表所示,表中的点的横坐标表示第一次取到的数,纵坐标表示第二次取到的数:总计有25种情况,满足条件的有10种. 所以所求概率为102255=. 12.过抛物线2:4C y x =的焦点F ,3的直线交C 于点M (M 在x 的轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为A 5B .2C . 23D . 33【答案】C二、填空题,本题共4小题,每小题5分,共20分. 13.函数()2cos sin f x x x =+的最大值为 . 5【解析】2()215f x ≤+=14.已知函数()f x 是定义在R 上函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f = .【答案】12【解析】(2)(2)[2(8)4]12f f =--=-⨯-+=.15.长方体的长,宽,高分别为3,2,1,其顶点都在球O 球面上,则球O 的表面积为 . 【答案】14π【解析】球的直径是长方体的体对角线,所以222232114,4π14π.R S R =++===16.ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = .【答案】π3【解析】由正弦定理可得1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒=. 17.(12分)已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+=.(1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S . 18.(12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,90.2AB BC AD BAD ABC ==∠=∠=︒ (1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥P ABCD -的体积. 19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取100个网箱,测量各箱水产品产量(单位:kg ), 其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50 kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较. 附:22()()()()()n ad bc K a b c d a c b d -=++++.K 2=22006266343815.70510010096104⨯⨯-⨯⨯⨯⨯()≈.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg 到55 kg 之间,旧养殖法箱产量平均值(或中位数)在45 kg 到50 kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法. 20.(12分)设O 为坐标原点,动点M 在椭圆C 错误!未找到引用源。

2019年广东省高考数学二模试卷(文科)及答案及解析

2019年广东省高考数学二模试卷(文科)及答案及解析

集合A={x|-1vxv6},集合B={x|x2<4},那么An (?R B)=()10.函数一的局部图象不可能为〔〕B.C.D.阿基米德〔公元前287年-公元前212年〕不仅是著名的物理学家,也是著名的数学家,他利用椭圆的面积除以圆周率等于椭圆的长半轴与短半轴的乘积.假设椭圆圆的离心率为一,面积为12 g那么椭圆C的方程为〔A. ——8.函数f 〔x〕在〔-8, +8〕单调递增,且为奇函数. f 〔1〕 =2, f 〔2〕 =3,那么满足-3<f 〔x-3〕 v 2的x的取值范围是〔〕A. -B. —C. -或D.—或二、填空题〔本大题共4小题,共20.0分〕13 .假设函数 f 〔x〕 =log2 〔x+a〕的零点为-2,贝u a=.14 .假设x, y满足约束条件,那么-的最大值为 .15 .在四^^锥P-ABCD中,PA与矩形ABCD所在平面垂直,AB=3 , AD= 一,PA= 一,那么直线PC与平面PAD所成角的正切值为.16 .在数歹U{a n}中,a n+1=2 〔a n-n+3〕 , a1二-1 ,假设数列{a n-pn+q〕为等比数列,其中p, q为常数,那么a p+q=.三、解做题〔本大题共7小题,共82.0分〕1. 2021年广东省高考数学二模试卷〔文科〕、选择题〔本大题共12小题,共60.0分〕设i为虚数单位,那么复数z=i 〔2-i〕的共轲复数A. B. C. D.A. B. C. D.9.某轮胎公司的质检部要对一批轮胎的宽度〔单位:mm〕进行质检,假设从这批轮胎中随机选取3个,至少轮胎的宽度在195西内,那么称这批轮胎根本合格.这批轮胎的宽度分别为195, 196, 190, 194, 200,那批轮胎根本合格的概率为〔〕A.-B.-C.一D.-3.4.5.6.A. B. C.在样本的频率直方图中,共有9个小长方形,假设中间一个长方形的面积等于其他样本容量为200,那么中间一组的频数为〔A. B. C. 40 设向量与向量垂直,且=〔2, k〕 , =〔6, 4〕,那么以下以下与向量+A. B. C. 设S n为等差数列{a n}的前n项和,假设公差d=1, S9-S4=10,那么S17=〔〕A. 34 B. 36 C. 68某几何体的三视图如下图,三个视图都是半径相等的扇形,假设该几何体的外表积为,那么其体积为〔A.一D.8个小长方形面积的和的且D. 50共线的是〔D.D. 7211.假设函数f 〔x〕 =x3-ke x在〔0, +°°〕上单调递减,那么k的取值范围为〔〕A. B. — C. — D. -12.直线x=2a与双曲线C:——〔a>0, b>0〕的一条渐近线交于点P,双曲线C的左、右焦点分F I, F2,且cos/PF2F I=L,那么双曲线C的离心率为〔〕2.7. “逼近法〞得到C的对称轴为坐标轴,焦点在y轴上,且椭C. 一一 D.——19 .如图,在三棱柱 ABC-A 1B 1C 1 中,AA I 1^面 A 1B 1C 1, AC^AB, AC=AB=4, AA 1=6,点 E, F 分别为CA I 与AB 的中点.(1)证实:EF /平面 BCC I B I . (2)求三棱锥B I -AEF 的体积.18 .?最强大脑?是江苏卫视推出的大型科学竞技真人秀节目.节目筹备组透露挑选选手的方式:不但要对选手的空间感知、照相式记忆水平进行考核,而且要让选手经过名校最权威的脑力测试, 120分以上才有时机入围.某重点高校准备调查脑力测试成绩是否与性别有关,在该高校随机抽取男、女学生各 100名,然后对这200名学生进行脑力测试.规定:分数不小于 120分为“入围学生〞,分数小于 120分为“未入围学生〞.男生入围24人,女生未入围 80人.(1)根据题意,填写下面的 2X2列联表,并根据列联表判断是否有90%以上的把握认为脑力测试后是否为“入围学生〞与性别有关.20 .在平面直角坐标系 xOy 中,直线y=kx+1与抛物线C: x 2=4y 交于A, B 两点.(1)证实:AAOB 为钝角三角形.(2)假设直线l 与直线AB 平行,直线l 与抛物线C 相切,切点为P,且4PAB 的面积为16,求直线l 的方程.(2)用分层抽样的方法从“入围学生〞中随机抽取 11名学生. (i )求这11名学生中女生的人数;(ii )假设抽取的女生的脑力测试分数各不相同(每个人的分数都是整数),求这 11名学生中女生测试分数的平 均分的最小值.附:K 2= ,其中 n=a+b+c+d.2 .、P (K 淞)0.10 0.05 0.025 0.010 0.005 0.001 k 02.7063.8415.0246.6357.87910.82821 .函数 f (x) =-x 2- (a+1) x+alnx.(1)当a=-4时,求f (x)的单调区间; (2)aC (1, 2],bCR,函数g (x)=x 3+bx 2- (2b+4) x+lnx,假设f (x)的极小值点与g(x)的极小值点相等,证实:g (x)的极大值不大于-.17.在 AABC 中,AC=3, C=120 °, (1)假设AB=7,求BC 边的长; (2)假设 cosA= "sinB,求 BBC 的面积.22 .在平面直角坐标系xOy中,以坐标原点O为极点,x轴为正半轴建立极坐标系,曲线C的极坐标方程为2 , p-4P cos-6)p sin 0 +12=0(1)求曲线C的直角坐标方程;(2)过曲线C上一动点P分别作极轴、直线pcosdl的垂线,垂足分别为M, N,求|PM|+|PN|的最大值.23 .设函数 f (x) =|x+1|+|2-x|-k.(1)当k=4时,求不等式f (x) <0的解集;(2)假设不等式对xCR恒成立,求k的取值范围.答案和解析1.【答案】D 【解析】解:,z=i 2-i)=1+2i, 5 L 2i .应选:D.直接利用复数代数形式的乘除运算化简得答案. 此题考查复数代数形式的乘除运算,考查复数的根本概念,是根底题.2 .【答案】C 【解析】解:B={x|x2<4}={x|-2 <x<2}, 那么?R B={x|x>或xV2}, MAA ?R B)={x|2 «6}, 应选:C.求出集合B的等价条件,结合补集交集的定义进行求解即可. 此题主要考查集合的根本运算,求出集合的等价条件以及利用交集补集的定义是解决此题的关键.3 .【答案】D 【解析】解:而羊本的频率直方图中,共有9个小长方形, 中间一个长方形的面积等于其他8个小长方形面积的和的;,且样本容量为200,设其他8组的频率数和为m,那么由题意得:m+ ;m=200, 解得m=150, 1••中间一组的频数为>' =50.应选:D.设其他8组的频率数和为m,那么由题意得:m+1 m=200,由此能求出中间一组的频数. 此题考查频数的求法,考查频率分布直方图的性质等根底知识,考查运算求解水平,是根底题.4 .【答案】B【解析】解:••江_ 1;「于石=12+加=11 ;. k=-3;.不R⑴;•二1 -;• • -16, -2)与/十方共线.应选:B.根据1 _1_ &即可得出H —u ,从而得出k=-3,从而可求出b,1),从而可找出与%共线的向量.考查向量垂直的充要条件,向量坐标的加法和数量积的运算,共线向量根本定理.5 .【答案】C【解析】解:电数列{a n}是等差数列,且S9-S4=10,所以10=5司+ 36d-6d) =5 a1+6d)=5a7,所以为=2,所以a9=a7+2d=2+2=4,_ 川+鹏T E 2的__ __ _S17=——=— j =1709=17X4=68.应选:C.数列{a n}是等差数列,S9-S4=10=5a1+ 36d-6d)=5 a1+6d)=5a7,所以a7=2,所以a9=a7+2d=2+2=4, S17 = 一=—x 17=~ x17=17a9,将叱代入可得S17.此题考查了等差数列的前n项和公式,通项公式,属于根底题.6 .【答案】A【解析】解:将三视图复原可知该几何体为球体的〔,S=3X : +i:1+ 1=’尸,fl 4 -L r=收,几何体的体积为:1 x ; Rd V-J4=理^ .应选:A.首先把几何体的三视图进行转换,进一步利用外表积公式的应用求出结果.此题考查的知识要点:三视图和几何体的转换,几何体的体积公式和面积公式的应用,主要考查学生的运算水平和转化水平,属于根底题型.7 .【答案】A【解析】'口加T解:攫S意可得:<,解得a=4, b=3,[/=庐+C3由于椭圆的焦点坐标在y轴上,所以椭圆方程为:[十]=1 . I T.J应选:A.利用条件列出方程组,求出a, b,即可得到椭圆方程.此题考查椭圆飞简单性质的应用,考查转化思想以及计算水平.8 .【答案】A【解析】解:・.f幻是奇函数,且10=2, f 2)=3,・ f -2)=-3,那么不等式-3<f X-3) <2 等价为f -2) <f X-3) <f 1),, f X)是增函数,.-2<x-3< 1 得1<x<4,即x的取值范围是0,4),应选:A.根据函数奇偶性和单调性的性质将不等式进行转化求解即可.此题主要考查不等式的求解,结合函数奇偶性和单调性的性质进行转化是解决此题的关键.9 .【答案】C【解析】解:牍胎公司的质检部要对一批轮胎的宽度举位:mm)进行质检, 从这批轮胎中随机选取3个,至少有2个轮胎的宽度在195战内,那么称这批轮胎根本合格. 这批轮胎的宽度分别为195, 196, 190, 194, 200,根本领件总数n=C2 =10,至少有2个轮胎的宽度在195战内包含的根本领件个数m= 卜曰=7,••这批轮胎根本合格的概率为p=:'=' .应选:C.根本领件总数n=U =10,至少有2个轮胎的宽度在195^内包含的根本领件个数m=C*1|+U[ =7,由此能求出这批轮胎根本合格的概率.此题考查概率的求法,考查古典概型、排列组合等根底知识,考查运算求解水平,是根底题.10 .【答案】B【解析】解:A.由图象知函数的周期T=2兀,那么:=2冗得必=1,此时f X)=2sin X-「)=-2cosx为偶函数,对应图象为A,故A图象可能4 肝"jT 心1T "jT 2 万.‘TFB.由图象知函数的周期T=“ --§) = 3 = J ,艮心=;一得⑴=±,3开 4 k 开了 _荒当⑴=3寸,止出寸f x)=2sin 3x-r ) f (M )=2sin 3X石x )=2sin h为2,即B图象不可能, "J' ■J I I ■I. —.一开.1-T ITT T [K ............. 当⑴=3时,此时f x)=2sin -3x+fj ) ,f & )=2sin -3X t1 +. )=-2sin h片2,即B 图象不可能,27r LC,由图象知函数的周期T=40那么/ =4冗得w =i ,当⑴二;时,止惧寸f x)=2sin ; x-© =-2sin; x, f (TT) =-2sin, =-1,即此时C图象不可能,.. 1 - 一- l L _ ___ ______ _ ___当⑴二,.时,止时f x)=2sin Q x-施=2sin., x, f(施=2sin? =-1,即此时C图象可能,3n!卜丁37T 3zr ?灯D.由图象知函数的周期~T =s - s = ■,即1= q那么,=冗得⑴=2丁■, ■此时f x)=2sin 2x-1 ) f (s )=2sin 2X S -1)=2sin, =2,即D 图象可能,综上不可能的图象是B,应选:B.根据三角函数的图象判断周期性性以及对称轴是否对应即可得到结论. 此题主要考查三角函数图象的识别和判断,利用周期性求出⑴以及利用特殊值进行验证是解决此题的关键.注意此题的⑴有可能是复数.11 .【答案】C【解析】解:,.函数f X)=x3-ke x在0,+°°)」单调递减,. f 'X)=3x2-ke x&0在0, +00)上恒成立,「k三丁在0,+00)上包成立,令g x)=£,x>0,El . I :"(2 J')贝u仪])=———,当0Vx<2时,g' x)电此时g x)单调递增,x>2时,g' x) <0, g K)单调递减故当x=2时,g x)取得最大值g 2)=,那么k±X ,应选:C.令f'x)&姓0,十°°)上包成立得k1各在0,+8)上恒成立,求出右侧函数的最大值即可得出k的范围. 此题考查了导数与函数单调性的关系,函数包成立问题,属于中档题.12 .【答案】B【解析】解:双峻C的左、右焦点分别为F1 -c,0) ,F2 C 0) cos ZPF2F1=-I L,J可得sin/P F2F1=yL = '即有直线PF2的斜率为tanZPF2F1=vL^ ,由直线x=2a与双曲线C:=-5=i a>0, b>0)的一条渐近线y=" x交于点P, fj* i)" 41可得P 2a, 2b),可得十一=V L5 , zn —c即有4b2=15 4a2-4ac+c2)=4 C2-a2),化为11c2-60ac+64c2=0,由e=-可得11e2-60e+64=O,解得e=:或e=4,由2a-c>0,可得c<2a,即e<2,可得e=4舍去.应选:B.设出双曲线的焦点,求得一条渐近线方程可得P的坐标,求得苜线PF2的斜率,由两点的斜率公式和离心率公式,可得所求值.此题考查双曲线的方程和性质,主要是渐近线方程和离心率的求法,考查方程思想和运算水平,属于中档题.13 .【答案】3【解析】解:根岫意,假设函数f x)=log2 x+a)的零点为-2,那么f (2)=log2 a-2)=0,即a-2=1,解可得a=3,故答案为:3根据题意,由函数零点的定义可得f⑵=log2 a-2) =0,解可得a的值,即可得答案.此题考查函数的零点,关键是掌握函数零点的定义,属于根底题.14 .【答案】一【解析】解:设z=7 ,那么k得几何意义为过原点得直线得斜率,作出不等式组对应得平面区域如图:那么由图象可知OA的斜率最大,由{2工"I.,解得A 3,4),那么OA得斜率k=;,那么:的最大值为:. 41 I J 故答案为::.设z=£,作出不等式组对应得平面区域,利用z得几何意义即可得到结论. 此题主要考查直线斜率的计算,以及线性规划得应用,根据z的几何意义,利用数形结合是解决此题的关键.15 .【答案】一【解析】解:•・在四棱锥P-ABCD中,PA与矩形ABCD所在平面垂直,, CD^AD , CD1PA,.ADA PA=A, .CD"面PAD, ・•.£PD是直线PC与平面PAD所成角, .AB=3 , AD= PA=、'lii , .•直线PC与平面PAD所成角的正切值:.―CD ? :? tan/CPD=P0=^MB=4 ・故答案为::.推导出CDSD, CD1PA,从而CD」平面PAD,进而/CPD是直线PC与平面PAD所成角,由此能求出直线PC与平面PAD所成角的正切值.此题考查线面角的正切值的求法,考查空间中线线、线面、面面间的位置关系等根底知识,考查推理推论证水平、运算求解水平,是中档题.16 .【答案】-2【解析】解:数歹Sn}中,*+1=2 a-n+3)向=-1 , 假设数列{a n-pn+q)为等比数列,所以:a n+1-p n+1)+q=2 a n-pn+q)解得:p=2, q=2,故:数列a n-pn+q}是以-1+2-2=-1为首项,2为公比的等比数列.所以:&-如+£=(-1同一,整理得:通第-4加2 .故:a p+q=a4=-8+8-2=-2,故答案为:-2首先求出数列的通项公式,进一步求出结果.此题考查的知识要点:数列的通项公式的求法及应用,主要考察学生的运算水平和转换水平,属于根底题型.17 .【答案】解:(1)由余弦定理得AB2= BC2+ AC2-2 BC XAC Xcos C,代入数据整理得BC2+3BC-40=0 ,解得BC=5 (BC=-8舍去).(2)由cos A= "sin B 及C=120 °,得cos (60 -B) = ~sin B,展开得cos B+—sin B- sin B=0,即一sin B=cos B, tan B= =—,所以B=30°.从而A=60°-B=30° ,即A=B=30° ,所以BC=AC=3.故AABC的面积为-q>3 xsin120 =—.【解析】1)直接利用余弦定理和一元二次方程的解的应用求出结果.2)利用三角函数关系式的变换和三角形的面积公式的应用求出结果.此题考查的知识要点:三角函数关系式的变换,正弦定理余弦定理和三角形面积的应用,主要考察学生的运算水平和转换水平,属于根底题型.18.【答案】解:〔1〕填写列联表如下:性别入围人数未入围人数总计男生2476100女生2080100总计44156200…〔4分〕由于K2的观测值k= ------------------------- =一<2.706,…〔6分〕所以没有90%以上的把握认为脑力测试后是否为“入围学生〞与性别有关•••〔7分〕〔2〕〔i 〕这11名学生中,被抽到的女生人数为20J=5…〔9分〕〔ii〕由于入围的分数不低于120分,且每个女生的测试分数各不相同,每个人的分数都是整数, 所以这11名学生中女生的平均分的最小值为-X 〔120+121 + 122+123+124 〕=122…〔12分〕【解析】1〕甘题意填写列联表,计算观测值,对照临界值得出结论;2〕〔 i 〕根据国抽样原理计算被抽到的女生人数;〔ii〕题意计算所求平均分的最小值.此题考查了列联表与独立性检验的应用问题,也考查了分层抽样原理与平均数的计算问题,是根底题.19 .【答案】〔1〕证实:如图,连接BC1. 〔1分〕在三^^柱ABC-A1B1C1中,E为AC1的中点.〔2分〕又由于F为AB的中点,所以EF/BC1. 〔3 分〕又EF?平面BCC1B1, BC1?平面BCC I B I,所以EF /狂面BCC I B I.〔5分〕〔或先证面面平行,再证线面平行,也是常见的方法,阅卷时应同样给分.〕〔2〕解:由于ACSB, AA I^AC,AA I AAB=A,所以ACL平面ABB I A I, E到平面ABB I A I的距离为:-X4=2. 〔9分〕由于AAB I F的面积为:-X2X6=6, 〔10分〕1〕连接BC1.证实EF/BC1,然后证实EF怦■面BCC1B1.2〕说明AC1:平面ABB 1A1,求出E到平面ABB 1A l的距离,通过心=k』M 求解体积即可.此题考查直线与平面平行的判断定理以及性质定理的应用,几何体的体积的求法,考查空间想象水平以及计算水平.20 .【答案】〔1〕证实:设 A 〔XI, y1〕,B〔X2, V公,联立,得x2-4kx-4=0, 〔1 分〕贝U X1X2=-4, 〔 2 分〕所以y1y2= ------- =1 , 〔3 分〕从而? =X1X2+y1y2=-3 v 0, 〔4 分〕那么/AOB为钝角,故AAOB为钝角三角形.〔5分〕〔得到X1X2, y〔y2的值分别给〔1分〕;假设只是得到其中一个,且得到? =-3<0,可以共给〔3分〕〕.〔2〕解:由〔1〕知,X〔+X2=4k, y〔+y2=k〔X1+X2〕+2=4k2+2, 〔6分〕那么1AB i=y〔+ y2+p=4k2+4. 〔7 分〕由x2=4y,得yj, y'—,设P 〔小,V0〕,那么x0=2k, y0=k2,那么点P到直线y= kx+1的距离d=——= .〔9分〕从而^PAB 的面积S=d|AB|=2 〔k2+1〕=16, 〔10 分〕解得k=± -, 〔11分〕故直线l的方程为y=±-X-3.〔12分〕【解析】1〕设AX1,y1〕,B X2,y2〕,联立{得x2-4kx-4=0,利用韦达定理以及向量的数量积证实AAOB为钝角三角形.2〕求川AB|=y1+y2+p=4k2+4,结合函数的导数,利用斜率关系,求出点P到直线y=kx+1的距离,写出|AB|,禾1」用/TAB的面积,转化求解即可.此题考查直线与抛物线的位置关系的综合应用,函数的导数的应用,考查转化思想以及计算水平.221 .【答案】〔1〕解:当a=-4 时,f 〔X〕 =x2+3x-4ln X,定义域为〔0, +8〕.f' 〔X〕=X+3--= ------------ .当X>1时,f〔X〕>0, f〔X〕单调递增,那么f〔X〕的单调递增区间为〔1, +8〕;当0VXV 1时,f〔X〕V 0, f〔X〕单调递减,那么f〔X〕的单调递减区间为〔0,1〕.〔7分〕E为A1C的中点,所以=-X2>6=4. 〔12 分〕(2)证实:f' (x) =: g' (x) =3x2+2bx- (2b+4) +- -------------------------------------令p (x) =3x2+(2b+3) x-1 . 由于aC (1, 2],所以f (x)的极小值点为a,那么g (x)的极小值点为a, 所以p (a) =0,即3a2+ (2b+3) a-1=0,即b= ---------------------- ,此时g (x)的极大值为g (1) =1 + b- (2b+4) =-3-b=-3- -------------------- =-a ------ . 由于aC (1, 2],所以-a-—w--=一.故g (x)的极大值不大于【解析】1)当a=-4时,f x)=x2+3x-4ln x ,定义域为0,+°°) f x) =x+3-1 =©匚见匚电.即可得出单调区间.2)f x)=" - , g' x)=3x2+2bx- 2b+4)+; ="-1". +忸令「x)=3x2+ 2b+3)x-1 .由aC Q,2],可得f x)的极小直点为a,那么g K)的极小直点为a,可得p a)=.,b=—',止时g K)的极大值为g Q=1+b- 2b+4)代入利用函数的单调性即可得出. 此题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、转化方法,考查了推理水平与计算水平,属于难题.2 2 2 22 .【答案】解:(1)由p-4 P cos-60p sin 0 +12 =0 x+y-4x-6y+12=0 ,即(x-2) 2+(y-3) 2=1,此即为曲线C的直角坐标方程.(2)由(1)可设P的坐标为(2+cosa, 3+sin加,0<(<2兀,贝U|PM|=3+sin 乌又直线p cos 51的直角坐标方程为x=-1, 所以|PN|=2+cos a +1=3+cosa 所以|PM|+|PN|=6+ -sin ( a 卡),故当时,|PM|+|PN|取得最大值为6+ 一. 【解析】1)由p2-4pcos61P sin 9 +12 =0x2+y2-4x-6y+12=0 ,即*2)2+ y-3)2=1,此即为曲线C 的直角坐标方程.2)由10 □段P的坐标为2+cos% 3+sin & 0&嚏2兀,求出|PM|和|PN|后相加,用三角函数的性质求得最大值.此题考查了简单曲线的极坐标方程,属中档题.23 .【答案】解:(1) k=4 时,函数 f (x) =|x+1|+|2-x|-4,不等式 f (x) v 0化为|x+1|+|2-x|<4,当xv-1时,不等式化为-x-1+2-x<4,解得〜vxv-1,当-1虫W2时,不等式化为x+1+2-x=3<4恒成立,那么-1<x<2,当x>2时,不等式化为x+1 + x-2<4,解得2vxv—,综上所述,不等式f (x) <0的解集为(-,-);⑵由于 f (x) =|x+1|+|2-x|-k>x+1+2-x|-k=3-k,所以f (x)的最小值为3-k;又不等式对x CR恒成立,所以3-k> ,所以,解得k<l,所以k的取值范围是(-00, 1].【解析】1)k=4时,利用分类讨论思想求出不等式f x) <0的解集,再求它们的并集;2)利邢色对值不等式的性质求出f K)的最/」信,再把不等式门© > 尔!化为3-k浮工转,求出不等式的解集即可.此题考查了不等式包成立应用问题,也考查了含有绝对值的不等式解法与应用问题,是中档题.。

2019年高考押题卷文科数学(二)含答案解析

2019年高考押题卷文科数学(二)含答案解析

文 科 数 学(二)本试题卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

第Ⅰ卷一、选择题:本题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合0y A yx ⎧⎫==⎨⎬⎩⎭,集合(){}10B x x x =->,则A B =R ð( ) A .{}|01x x ≤≤ B .{}|01x x << C .{}0D ∅2.已知复数z 满足1i 1z z -=+,则复数z 在复平面内对应点在( ) A .第一、二象限B .第三、四象限C .实轴D .虚轴3.为了得到函数cos 2y x =的图像,可将函数sin 26y x π⎛⎫=-⎪⎝⎭的图像( ) A .向右平移6π个单位长度B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度4.某公司准备招聘了一批员工.有20人经过初试,其中有5人是与公司所需专业不对口,其余都是对口专业,在不知道面试者专业情况下,现依次选取2人进行第二次面试,第一个人已面试后,则第二次选到与公司所需专业不对口的概率是( ) A .519B .119C .14D .125.《九章算术》中“开立圆术”曰:“置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径”.“开立圆术”相当于给出了已知球的体积V ,求其直径d,公式为d =13,根据“开立圆术”的方法求球的体积为( ) A .481π B .6π C .481D .61 6.若变量,x y 满足不等式组120x x y x y ⎧⎪⎨⎪++⎩≤≥≥,则(),x y 的整数解有( )A .6B .7C .8D .97.某几何体的三视图如图所示,设正方形的边长为a ,则该三棱锥的表面积为( ) A .2aB2C2 D.28.已知等差数列{}n a 的前n 项和为S n ,且S 2=4,S 4=16,数列{}n b 满足1n n n b a a +=+,则数列{}n b 的前9和9T 为( )A .80B .20C .180D .1669.已知直线:21l y x =+与圆C :221x y +=交于两点A ,B ,不在圆上的一点()1,M m -,若MA 1MB ⋅=,则m 的值为( ) A .1-,75B .1,75C .1,75-D .1-,75-10.已知函数()()22e x f x x x =-,关于()f x 的性质,有以下四个推断: ①()f x 的定义域是(),-∞+∞; ②函数()f x 是区间()0,2上的增函数;③()f x 是奇函数; ④函数()f x在x =其中推断正确的个数是( ) A .0B .1C .2D .311.已知椭圆的标准方程为22154x y +=,12,F F 为椭圆的左右焦点,O 为原点,P 是椭圆在第一象限的点,则12PF PF -的取值范围( ) A .()0,2B .()1,6C.(D .()0,612.已知正方体1111ABCD A B C D -的棱长为1,E 为棱1CC 的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F 、B 、E 、G 、H 为面MBN 过三点B 、E 、F 的截面与正方体1111ABCD A B C D -在棱上的交点,则下列说法错误的是( ) A .HF //BE B.2BM =C .∠MBND .△MBN第Ⅱ卷本卷包括必考题和选考题两部分。

2019年最新(统考)全国卷高考押题卷文科数学(2)及答案解析

2019年最新(统考)全国卷高考押题卷文科数学(2)及答案解析
3.为了得到函数 的图像,可将函数 的图像()
A.向右平移 个单位长度B.向右平移 个单位长度
C.向左平移 个单位长度D.向左平移 个单位长度
4.某公司准备招聘了一批员工.有20人经过初试,其中有5人是与公司所需专业不对口,其余都是对口专业,在不知道面试者专业情况下,现依次选取2人进行第二次面试,第一个人已面试后,则第二次选到与公司所需专业不对口的概率是()
A. , B.1, C.1, D. ,
10.已知函数 ,关于 的性质,有以下四个推断:
① 的定义域是 ;
②函数 是区间 上的增函数;
③ 是奇函数;
④函数 在 上取得最小值.
其中推断正确的个数是()
A.0B.1C.2D.3
11.已知椭圆的标准方程为 , 为椭圆的左右焦点,O为原点,P是椭圆在第一象限的点,则 的取值范围()
A. B. C. D.
5.《九章算术》中“开立圆术”曰:“置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径”.“开立圆术”相当于给出了已知球的体积V,求其直径d,公式为 .如果球的半径为 ,根据“开立圆术”的方法求球的体积为()
A. B. C. D.
6.若变量 满足不等式组 ,则 的整数解 的棱长为1,E为棱 的中点,F为棱 上的点,且满足 ,点F、B、E、G、H为面MBN过三点B、E、F的截面与正方体 在棱上的交点,则下列说法错误的是()
A.HF//BE
B.
C.∠MBN的余弦值为
D.△MBN的面积是
第Ⅱ卷
本卷包括必考题和选考题两部分。第13~21题为必考题,每个试题考生都必须作答。第22~23题为选考题,考生根据要求作答。
2.【答案】D
【解析】设复数 , ,因为 ,所以 ,所以 ,所以可得 ,解得 ,所以 ,所以复数z在复平面内对应点 在虚轴上.故选D.

2019年高考文科数学(2卷)答案详解

2019年高考文科数学(2卷)答案详解
a2 2 a 1 2
a 2 1
图 A16 三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题,每个试题考
生都必须作答。第 22、23 题为选考题,考生根据要求作答。 (一)必考题:共 60 分。
17.(12 分)(立体几何) 如图,长方体 ABCD–A1B1C1D1 的底面 ABCD 是正方形,点 E 在棱 AA1 上,BE⊥EC1.
D.
5
【解析】从这 5 只兔子中随机取出 3 只的所有情况数为 C53 ,恰有 2 只测量过该指标的所有情况数为 C31C21 .
所以所求的概率为 P
C31C21 C52

3 5
.
第 1 页 共 11 页
PS:可以用列举法进行求解. 设 5 只兔子的编号为 1、2、3、A、B,其中 1、2、3 为测量过某项指
以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图 2 是一个棱数为 48 的半正多面体,
它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为 1.则该半正多面体共有________个面,
其棱长为_________.(本题第一空 2 分,第二空 3 分.)
第 5 页 共 11 页
【解析】由题意可知,该半正多面体所有顶点都在同一个正方体的表面上,由 18 个正方形面和 8 个三角形 面构成,所有该半正多面体共有 26 个面. 并且图中的一个八边形与正方体一个面的关系如图 A16 所示. 设该半正多面体的棱长 a,则有
A. 2
B.2
C. 5 2


【解析】∵ a b (1,1) ,∴|a b| 2 .
D.50
【答案】A
4.(概率统计)生物实验室有 5 只兔子,其中只有 3 只测量过某项指标,若从这 5 只兔子中随机取出 3 只,

全国通用-2019年最新高考数学文科第二次高考模拟试题及答案解析二

全国通用-2019年最新高考数学文科第二次高考模拟试题及答案解析二

A. —176.通过随机询问B. C. D.最新高三下学期第二次模拟考试数学试题(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|a—1 ExEa+2},B ={x|3<x <5},则使得A m B成立的实数a的取值范围是( )A.〔a|3;a£4)B. :a|3 :a::4)C. :a|3<a<4?D..一2.复数三1=A + Bi (A,B w R ),则A + B的值是()12iA. 6B. 0C. -- D -45 53.对于函数y = f (x),x W R, " y =|f (x)的图象关于y轴对称",是“ y = f (x )是奇函数”的()A.充分而不必有条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.根据下列算法语句:x = input ("x =" 'if x <= 50y =0.5* xelsey=25 +0.6*(x-50 ] endpr int(%io(2), y).当输入x为60时,输出的y的值为( )A.25B. 30C. 31D. 614 4 * * d 』5.已知a = (—3,2 ),b = (—1,0 ),向量入a+b与a—2b垂直,则实数人的值为( )100 10 30-20 4050 50 30 70参考上面附表得出的正确结论是()A.在犯错的概率不超过 5%的前提下,认为“是否爱好吃零食与性别有关”B.在犯错的概率不超过 5%的前提下,认为“是否爱好吃零食与性别无关C.有97.5%以上的把握认为“是否爱好吃零食与性别有关”D.有97.5%以上的把握认为“是否爱好吃零食与性别无关”1 ,, 7 .已知各项均为正数的数列 {4},其前n 项和为Sn , &,an, —且成等差数列,则数列1^口}的通项公2式为()A.2nB. 2n2 C. 2n' D"N 18 .某单位有职工750人,其中青年职工 350人,中年职工250人,老年职工150人,为了了解该单 位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为 7人,则样本容量为()A. 15B. 15人的身体健康状况C. 750人D.750人的身体健康状况一 ....1 39 .已知a =log 8 2,b =log 8 —,c =一,则三个数a,b,c 的大小关系正确的是()2 4A. a :: c :: bB. b :: a :: cC. a :: b :: cD. b :: c :: a10 .某几何体的三视图如图所示,当 xy 取最大值时,该几何体的体积为()A. 2、, 7B. 4.7C. 8,7D. 16.711 .已知抛物线y 2=4x 的焦点为F,抛物线白准线与 x 轴的交点为P,以坐标原点 。

2019届高考数学二轮复习(文科)_小题限时训练_5套含答案

2019届高考数学二轮复习(文科)_小题限时训练_5套含答案

则该刍童的表面积为()A.12 5 B.40x3y8.C约束条件所表示的平面区域如图所示:12.A由题可知△ABF为等边三角形,则输出的结果是()112.C 作出f (x )的图象如图所示:由图象可知,当f (x )=1时,方程有3个不同的实根, ∴x 1=1,x 2=2,x 3=0,∴x 21+x 22+x 23=5,故选C. 13.±2 解析:由题可得AB =25,AP =25, ∴|P A |:|AC |=2:1,∴x A =2,∴y A =3或7, ∴k l =5-33-2=2;k l =5-73-2=-2.14.27解析:f ′(x )=-3x 2+6x ≥0, ∴0≤x ≤2,∴P =27.15.60° 32解析:∵c -a cos B =b 2,∴sin C -sin A cos B =sin B2,∴sin(A +B )-sin A cos B =sin B2,∴cos A sin B =12sin B , ∵0<B <π,sin B ≠0,∴cos A =12,∴A =60°, 由a 2=b 2+c 2-2bc cos A , 得12=b 2+c 2-bc , ∴(b -c )2+bc =12,2.[2018·陕西渭南质量检测]已知一组数据的茎叶图如图所示,下列说法错误的是() ()ππ该几何体最长的棱长为()A.2 3 B.2 223311.C 如图所示,该几何体是三棱锥A -BCD , 22h (0)=-1e 0=-1,h ⎝ ⎛⎭⎪⎫π2=,h ⎝⎛⎭⎪⎫3π2=,h (2π)=-1e 2π,∴-1e 2π≤m <,故选A. 13.(-2,-6)x2y2()A.4 B.5的体积为()24∞)上恒成立,则实数m的取值范围是()二、填空题:本大题共4小题,每小题5分,共20分,把答案________.14.[2018·高考原创押题预测卷]已知函数f(x)=A sin(2x+分布直方图(如图),则成绩在[250,400)内的学生共有________人.16.[2018·内蒙古赤峰二中最后一模]已知函数f(x)=a·2x+b的图象,如图所示,有两个交点,∴y=f(x)-log|x|的零点有2个.6.C与AB共面也与CC共面的棱有BC,AA,CD,C D,BB310.C该几何体是一个四棱锥,如图所示f(x)的图象如图所示⎛⎫111得n≥11,∴使T n≥55成立的最小正整数n为11.。

2019年高考数学文科二轮复习练习 小题提速练2 含答案

2019年高考数学文科二轮复习练习 小题提速练2 含答案

小题提速练(二) “12选择+4填空”80分练 (时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |x ≥4},B ={x |-1≤2x -1≤0},则(∁R A )∩B =( )A .(4,+∞)B .⎣⎢⎡⎦⎥⎤0,12 C.⎝ ⎛⎭⎪⎫12,4 D .(1,4]B [因为A ={x |x ≥4},所以∁R A ={x |x <4},又B ={x |-1≤2x -1≤0}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0≤x ≤12,所以(∁R A )∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0≤x ≤12,故选B.] 2.复数5+3i4-i对应的点在复平面的( )A .第一象限B .第二象限C .第三象限D .第四象限 A [因为5+3i4-i =++-+=17+17i17=1+i ,所以该复数对应的点为(1,1),故选A.]3.已知命题p :x +y ≥2xy ,命题q :在△ABC 中,若sin A >sin B ,则A >B .则下列命题为真命题的是( ) A .p B .﹁q C .p ∨qD .p ∧qC [当x ,y 中至少有一个负数时,x +y ≥2xy 不成立,所以命题p 是假命题;由正弦定理和三角形中的边角关系知,命题q 是真命题.所以p ∨q 是真命题.] 4.已知向量a =(2,-1),b =(-1,3),则下列向量与2a +b 平行的是( ) A .(1,-2)B .(1,-3) C.⎝ ⎛⎭⎪⎫2,23 D .(0,2)C [因为a =(2,-1),b =(-1,3),所以2a +b =(3,1),而1×2-3×23=0,故选C.]5.若x ,y ∈R ,且⎩⎪⎨⎪⎧x ≥1,y ≥x ,x -2y +3≥0,则z =yx的最大值为( )【导学号:04024176】A .3B .2C .1D.12B [作出不等式组表示的平面区域,如图所示,yx的几何意义是区域内(包括边界)的点P (x ,y )与原点连线的斜率,由图可知,当P 移动到点B (1,2)时,yx取得最大值2.]6.已知函数f (x )=sin ⎝⎛⎭⎪⎫2x +π4,则下列结论中正确的是( ) A .函数f (x )的最小正周期为2πB .函数f (x )的图象关于点⎝ ⎛⎭⎪⎫π4,0对称 C .将函数f (x )的图象向右平移π8个单位长度可以得到函数y =sin 2x 的图象D .函数f (x )在区间⎝⎛⎭⎪⎫π8,5π8上单调递增C [由题知,函数f (x )的最小正周期为π,故A 不正确;令x =π4,求得f (x )=22,故函数f (x )的图象不关于点⎝ ⎛⎭⎪⎫π4,0对称,故排除B ;将f (x )的图象向右平移π8个单位长度,得到函数y =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π8+π4=sin 2x 的图象,故选C ;当x ∈⎝ ⎛⎭⎪⎫π8,5π8时,2x +π4∈⎝ ⎛⎭⎪⎫π2,3π2,函数f (x )单调递减,故排除D.]7.执行图1中的程序框图(其中[x ]表示不超过x 的最大整数),则输出的S 值为( )图1A .5B .7C .9D .12C [程序运行如下:(1)S =0+[]0=0,n =0<5;(2)S =0+[]1=1,n =1<5;(3)S =1+[2]=2,n =2<5;(4)S =2+[3]=3,n =3<5;(5)S =3+[4]=5,n =4<5;(6)S =5+[5]=7,n =5;(7)S =7+[6]=9,n =6>5,循环结束,故输出S =9.] 8.某几何体的三视图如图2所示,则该几何体的体积为( )【导学号:04024177】图2A.43B.52C.73D.53A [由三视图知,该几何体为一个由底面相同的三棱锥与三棱柱组成的组合体,其体积V =13×12×2×1×1+12×2×1×1=43.] 9.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙丁戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )A.54钱B.43钱C.32钱 D.53钱 B [设所成等差数列的首项为a 1,公差为d ,则依题意有 ⎩⎪⎨⎪⎧5a 1+5×42d =5,a 1+a 1+d =a 1+2d +a 1+3d +a 1+4d ,解得⎩⎪⎨⎪⎧a 1=43,d =-16.]10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a ,b ,c 成等比数列.若sin A sin C +sin 2C -sin 2A =12sinB sinC ,则sin A =( )A.14B.34C.114D.154D [由已知得b 2=ac ,ac +c 2-a 2=12bc ,所以b 2+c 2-a 2=12bc ,所以cos A =14,所以sin A=154.] 11.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左焦点F 作一条渐近线的垂线,与C 的右支交于点A .若|OF |=|OA |(O 为坐标原点),则C 的离心率e 为( )【导学号:04024178】A. 2 B .2 C. 5D .5C [不妨设一条渐近线为l :y =bxa,作FA ⊥l 于点B (图略),因为|OF |=|OA |,所以B 为线段FA 的中点.设双曲线的右焦点为F ′,连接F ′A ,因为O 为线段FF ′的中点,所以F ′A ⊥FA .易得直线FA ,F ′A 的方程分别为y =-a b (x +c ),y =b a(x -c ),解方程组可得点A 的坐标为⎝ ⎛⎭⎪⎫b 2-a 2c,-2ab c .因为该点在双曲线C 上,所以b 2-a 22a 2c 2-4a 2b 2b 2c2=1,结合c 2=a2+b 2,整理得5a 2=c 2,即5a =c ,所以e =c a= 5.]12.如图3所示,在等腰直角三角形ABC 中,∠A =π2,AC =1,BC 边在x 轴上,有一个半径为1的圆P 沿x 轴向△ABC 滚动,并沿△ABC 的表面滚过,则圆心P 的大致轨迹是(虚线为各段弧所在圆的半径)( )图3D [当圆在点B 的左侧滚动时,圆心P 的运动轨迹是一条线段;当圆在线段AB 上滚动时,圆心P 的运动轨迹也是一条线段;当圆与点A 接触并且绕过点A 时,圆心P 的轨迹是以点A 为圆心,1为半径的圆弧;当圆在线段AC 上和点C 右侧滚动时,与在线段AB 上和点B 的左侧滚动时的情况相同.结合各选项中的曲线知,选项D 正确.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.如图4所示是某青年歌手大奖赛上七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a 1,a 2,则a 1,a 2的大小关系是________.图4[解析] 由题意可知a 1=80+1+5+5+4+55=84,a 2=80+4+4+6+4+75=85,所以a 2>a 1.[答案] a 2>a 114.若直线l :x 4+y3=1与x 轴、y 轴分别相交于A ,B 两点,O 为坐标原点,则△OAB 的内切圆的方程为________.[解析] 由题意,设圆心为(a ,a ),则有|3a +4a -12|5=a ,解得a =1或a =6(舍去),所以所求圆的方程为(x -1)2+(y -1)2=1. [答案] (x -1)2+(y -1)2=115.已知函数f (x )=e x-mx +1的图象为曲线C ,若曲线C 不存在与直线y =-1ex 平行的切线,则实数m 的取值范围为________.【导学号:04024179】[解析] 由已知得f ′(x )=e x -m ,由曲线C 不存在与直线y =-1e x 平行的切线,知方程ex-m =-1e 无解,即方程m =e x +1e 无解.因为e x >0,所以e x+1e >1e,所以m 的取值范围是⎝ ⎛⎦⎥⎤-∞,1e .[答案] ⎝⎛⎦⎥⎤-∞,1e16.已知A ,B ,C ,D 是同一球面上的四个点,其中△ABC 是正三角形,AD ⊥平面ABC ,AD =4,AB =23,则该球的表面积为________.[解析] 依题意,把三棱锥D ­ABC 扩展为直三棱柱,则上、下底面中心的连线的中点O 与A 之间的距离为球的半径(图略).设△ABC 的中心为E ,因为AD =4,AB =23,△ABC 是正三角形,所以AE =2,OE =2,所以AO =22,所以该球表面积S =4π×(22)2=32π. [答案] 32π。

全国通用-2019年最新高考数学文科第二次诊断试题及答案解析

全国通用-2019年最新高考数学文科第二次诊断试题及答案解析

最新高考数学二诊试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣4x<0},B={x|﹣1≤x≤1},则A∪B=()A.[﹣1,1] B.[﹣1,4)C.(0,1] D.(0,4)2.函数f(x)=2x+x﹣2的零点所在区间是()A.(﹣∞,﹣1)B.(﹣l,0) C.(0,1)D.(1,2)3.复数z=(其中i为虚数单位)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限4.已知某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能为()A.B.C.D.5.将函数f(x)=cos(x+)图象上所有点的横坐标缩短为原来的倍,纵坐标不变,得到函数g(x)图象,则函数g(x)的解析式为()A.g(x)=cos(2x+)B.g(x)=cos(2x+)C.g(x)=cos(+)D.g(x)=cos(+)6.已知直线l:x+y=2与圆C:x2+y2﹣2y=3交于A,B两点,则|AB|=()A.B.2C.D.7.已知函数f(x)=,若f(f(﹣1))=2,在实数m的值为()A.1 B.1或﹣1 C.D.或﹣8.某校高三(1)班在一次单元测试中,每位同学的考试分数都在区间[100,128]内,将该班所有同学的考试分数分为七组:[100,104),[104,108),[108,112),[112,116),[116,120),[120,124),[124,128],绘制出频率分布直方图如图所示,已知分数低于112分的有18人,则分数不低于120分的人数为()A.10 B.12 C.20 D.409.在三棱锥P﹣ABC中,已知PA⊥底面ABC,AB⊥BC,E,F分别是线段PB,PC上的动点.则下列说法错误的是()A.当AE⊥PB时,△AEF﹣定为直角三角形B.当AF⊥PC时,△AEF﹣定为直角三角形C.当EF∥平面ABC时,△AEF﹣定为直角三角形D.当PC⊥平面AEF时,△AEF﹣定为直角三角形10.已知抛物线y=x2的焦点为F,过点(0,2)作直线l与抛物线交于A,B两点,点F关于直线OA的对称点为C,则四边形OCAB面积的最小值为()A.2B.C.D.3二、填空题:本大题共5小题,每小题5分,共25分.11.双曲线=l的一个焦点坐标为(3,0),则该双曲线的离心率为______.12.某单位有职工200人,其年龄分布如下表:年龄(岁)[20,30)[30,40)[40,60)人数70 90 40为了解该单位职工的身体健康状况,用分层抽样的方法抽取一个容量为40的样本进行调查,则年龄在[30,40)内的职工应抽取的人数为______.13.已知实数x,y满足,则x﹣2y的取值范围是______.14.执行如图所示的程序框图,输出的S的值为______15.已知函数f(x)=x+sin2x.给出以下四个命题:①函数f(x)的图象关于坐标原点对称;②∀x>0,不等式f(x)<3x恒成立;③∃k∈R,使方程f(x)=k没有的实数根;④若数列{a n}是公差为的等差数列,且f(a l)+f(a2)+f(a3)=3π,则a2=π.其中的正确命题有______.(写出所有正确命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.已知数列{a n}中,a1=1,又数列{}(n∈N*)是公差为1的等差数列.(1)求数列{a n}的通项公式a n;(2)求数列{a n}的前n项和S n.17.某商场举行购物抽奖活动,抽奖箱中放有编号分别为1,2,3,4,5的五个小球,小球除编号不同外,其余均相同.活动规则如下:从抽奖箱中随机抽取一球,若抽到的小球编号为3,则获得奖金100元;若抽到的小球编号为偶数,则获得奖金50元;若抽到其余编号的小球,则不中奖.现某顾客依次有放回的抽奖两次.(I)求该顾客两次抽奖后都没有中奖的概率;(Ⅱ)求该顾客两次抽奖后获得奖金之和为100元的概率.18.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a=,且b2+c2=3+bc.(I)求角A的大小;(Ⅱ)求bsinC的最大值.19.在三棱柱ABC﹣A1B l C1中,已知侧棱与底面垂直,∠CAB=90°,且AC=1,AB=2,E为BB1的中点,M为AC上一点,AM=AC.(I)若三棱锥A1﹣C1ME的体积为,求AA1的长;(Ⅱ)证明:CB1∥平面A1EM.20.已知椭圆C:=l(a>b>0)的左右焦点分别为F1,F2,抛物线y2=4x与椭圆C有相同的焦点,点P为抛物线与椭圆C在第一象限的交点,且|PF2|=.(I)求椭圆C的方程;(Ⅱ)过点F1作直线l与椭圆C交于A,B两点,设.若λ∈[1,2],求△ABF2面积的取值范围.21.设函数f(x)=lnx.(I)求函数g(x)=x﹣1﹣f(x)的极小值;(Ⅱ)证明:当x∈[1,+∞)时,不等式恒成立;(Ⅲ)已知a∈(0,),试比较f(tana)与2tan(a﹣)的大小,并说明理由.参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣4x<0},B={x|﹣1≤x≤1},则A∪B=()A.[﹣1,1] B.[﹣1,4)C.(0,1] D.(0,4)【考点】并集及其运算.【分析】先求出集合A,再利用并集的定义求出集合A∪B.【解答】解:∵集合A={x|x2﹣4x<0}={x|0<x<4},B={x|﹣1≤x≤1},∴A∪B={x|﹣1≤x<4}=[﹣1,4).故选:B.2.函数f(x)=2x+x﹣2的零点所在区间是()A.(﹣∞,﹣1)B.(﹣l,0) C.(0,1)D.(1,2)【考点】函数零点的判定定理.【分析】据函数零点的判定定理,判断f(﹣1),f(0),f(1),f(2)的符号,即可求得结论.【解答】解:f(﹣1)=2﹣1+1﹣2=﹣<0,f(0)=﹣1<0,f(1)=1>0,f(2)=4>0,故有f(0)•f(1)<0,由零点的存在性定理可知:函数f(x)=2x+x﹣2的零点所在的区间是(0,1)故选:C.3.复数z=(其中i为虚数单位)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算.【分析】直接利用复数的除法的运算法则化简求解即可.【解答】解:复数z====1+2i.复数对应点(1,2)在第一象限.故选:A.4.已知某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能为()A.B.C.D.【考点】简单空间图形的三视图.【分析】几何体为椎体与柱体的组合体,分四种情况进行判断.【解答】解:由主视图和侧视图可知几何体为椎体与柱体的组合体,(1)若几何体为圆柱与圆锥的组合体,则俯视图为A,(2)若几何体为棱柱与圆锥的组合体,则俯视图为B,(3)若几何体为棱柱与棱锥的组合体,则俯视图为C,(4)若几何体为圆柱与棱锥的组合体,则俯视图为故选:D.5.将函数f(x)=cos(x+)图象上所有点的横坐标缩短为原来的倍,纵坐标不变,得到函数g(x)图象,则函数g(x)的解析式为()A.g(x)=cos(2x+)B.g(x)=cos(2x+)C.g(x)=cos(+)D.g(x)=cos(+)【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据函数y=Asin(ωx+φ)的图象变换规律即可得到结论.【解答】解:函数y=sin(x+)的图象上所有点的横坐标缩短为原来的(纵坐标不变),得到g(x)=sin(2x+)的函数图象.故选:B.6.已知直线l:x+y=2与圆C:x2+y2﹣2y=3交于A,B两点,则|AB|=()A.B.2C.D.【考点】直线与圆的位置关系.【分析】根据圆的弦长公式|AB|=2,求出d与r,代入公式,可得答案.【解答】解:圆C:x2+y2﹣2y=3是以(0,1)为圆心,以r=2为半径的圆,圆心到直线l:x+y=2的距离d=,故|AB|=2=,故选:A.7.已知函数f(x)=,若f(f(﹣1))=2,在实数m的值为()A.1 B.1或﹣1 C.D.或﹣【考点】函数的值.【分析】根据分段函数的表达式,建立方程关系进行求解即可,【解答】解:由分段函数的表达式得f(﹣1)=1+m2≥1,则f(f(﹣1))=f(1+m2)=log2(1+m2)=2,则1+m2=4,得m2=3,得m=或﹣,故选:D.8.某校高三(1)班在一次单元测试中,每位同学的考试分数都在区间[100,128]内,将该班所有同学的考试分数分为七组:[100,104),[104,108),[108,112),[112,116),[116,120),[120,124),[124,128],绘制出频率分布直方图如图所示,已知分数低于112分的有18人,则分数不低于120分的人数为()A.10 B.12 C.20 D.40【考点】频率分布直方图.【分析】由频率分布直方图求出得分数低于112分的频率,从而求出高三(1)班总人数,再求出分数不低于120分的频率,由此能求出分数不低于120分的人数.【解答】解:由频率分布直方图得分数低于112分的频率为:(0.01+0.03+0.05)×4=0.36,∵分数低于112分的有18人,∴高三(1)班总人数为:n==50,∵分数不低于120分的频率为:(0.03+0.02)×4=0.2,∴分数不低于120分的人数为:50×0.2=10人.故选:A.9.在三棱锥P﹣ABC中,已知PA⊥底面ABC,AB⊥BC,E,F分别是线段PB,PC上的动点.则下列说法错误的是()A.当AE⊥PB时,△AEF﹣定为直角三角形B.当AF⊥PC时,△AEF﹣定为直角三角形C.当EF∥平面ABC时,△AEF﹣定为直角三角形D.当PC⊥平面AEF时,△AEF﹣定为直角三角形【考点】棱锥的结构特征.【分析】A.当AE⊥PB时,又PA⊥底面ABC,AB⊥BC,可得AE⊥BC,利用线面垂直的判定与性质定理可得AE⊥EF,即可判断出正误.B.当AF⊥PC时,无法得出△AEF﹣定为直角三角形,即可判断出正误;C.当EF∥平面ABC时,可得EF∥BC,利用线面垂直的判定与性质定理可得:BC⊥AE,EF ⊥AE,即可判断出正误;D.当PC⊥平面AEF时,可得PC⊥AE,由C可知:BC⊥AE利用线面垂直的判定与性质定理即可判断出正误.【解答】解:A.当AE⊥PB时,又PA⊥底面ABC,AB⊥BC,∴AE⊥BC,可得:AE⊥平面PBC,∴AE⊥EF,∴△AEF﹣定为直角三角形,正确.B.当AF⊥PC时,无法得出△AEF﹣定为直角三角形,因此不正确;C.当EF∥平面ABC时,平面PBC∩ABC=BC,可得EF∥BC,∵PA⊥底面ABC,AB⊥BC,∴BC⊥平面PAB,∴BC⊥AE,因此EF⊥AE,则△AEF﹣定为直角三角形,正确;D.当PC⊥平面AEF时,可得PC⊥AE,由C可知:BC⊥AE,∴AE⊥平面PBC,∴AE⊥EF,因此△AEF﹣定为直角三角形,正确.故选:B.10.已知抛物线y=x2的焦点为F,过点(0,2)作直线l与抛物线交于A,B两点,点F关于直线OA的对称点为C,则四边形OCAB面积的最小值为()A.2B.C.D.3【考点】抛物线的简单性质.【分析】设直线AB方程为y=kx+2,联立y=x2求解,设d1、d2分别为F到OA、O到AB的距离,利用四边形OCAB的面积S=S△OAC+S△OAB=(OA•d1+AB•d2),可得S关于k的函数,利用导数知识即可求解.【解答】解:不妨设位于第一象限的交点为A(x1,y1)、第二象限的交点为B(x2,y2),则x1>0,x2<0.OA的直线方程为y=x=x1x,F点的坐标为(0,).设直线AB方程为y=kx+2,联立y=x2求解,有x2﹣kx﹣2=0∴x1+x2=k,x1x2=﹣2,△=k2+8,x1=(k+)①;线段AB=②.设d1、d2分别为F到OA、O到AB的距离.∵C是F关于OA的对称点,∴C到OA的距离=d1.∴四边形OCAB的面积S=S△OAC+S△OAB=(OA•d1+AB•d2).根据点到直线距离公式,d1=③,d2=④.又线段OA=⑤,∴将①~⑤代入S,有S=(k+17).由S对k求导,令导函数=0,可得1+=0,解得k=﹣时,S最小,其值为3.故选:D.二、填空题:本大题共5小题,每小题5分,共25分.11.双曲线=l的一个焦点坐标为(3,0),则该双曲线的离心率为.【考点】双曲线的简单性质.【分析】根据双曲线的焦点坐标,建立a,b,c的关系进行求解即可.【解答】解:∵双曲线=l的一个焦点坐标为(3,0),∴c=3,则c2=a2+5=9,即a2=9﹣5=4,则a=2,则双曲线的离心率e==,故答案为:12.某单位有职工200人,其年龄分布如下表:年龄(岁)[20,30)[30,40)[40,60)人数70 90 40为了解该单位职工的身体健康状况,用分层抽样的方法抽取一个容量为40的样本进行调查,则年龄在[30,40)内的职工应抽取的人数为18 .【考点】分层抽样方法.【分析】利用分层抽样原理进行求解即可.【解答】解:由已知得,用分层抽样的方法抽取一个容量为40的样本进行调查,年龄在[30,40]内的职工应抽取的人数为:40×=18.故答案为:18.13.已知实数x,y满足,则x﹣2y的取值范围是[﹣4,1] .【考点】简单线性规划.【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,A(1,0),联立,解得B(2,3),令z=x﹣2y,化为y=,由图可知,当直线y=过A时,直线在y轴上的截距最小,z有最大值,为1;当直线y=过B时,直线在y轴上的截距最大,z有最小值,为2﹣2×3=﹣4.∴x﹣2y的取值范围是[﹣4,1].故答案为:[﹣4,1].14.执行如图所示的程序框图,输出的S的值为【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体,S=•(2﹣),不满足退出循环的条件,k=2,α=;第二次执行循环体,S=•(2﹣)•,不满足退出循环的条件,k=3,α=;第三次执行循环体,S=•(2﹣)••1,不满足退出循环的条件,k=4,α=;第四次执行循环体,S=•(2﹣)••1•,不满足退出循环的条件,k=4,α=;第五次执行循环体,S=•(2﹣)••1••(2+),满足退出循环的条件,故输出的S值为:S=•(2﹣)••1••(2+)=,故答案为:15.已知函数f(x)=x+sin2x.给出以下四个命题:①函数f(x)的图象关于坐标原点对称;②∀x>0,不等式f(x)<3x恒成立;③∃k∈R,使方程f(x)=k没有的实数根;④若数列{a n}是公差为的等差数列,且f(a l)+f(a2)+f(a3)=3π,则a2=π.其中的正确命题有①②④.(写出所有正确命题的序号)【考点】函数的图象.【分析】①根据奇函数的性质可直接判断;②构造函数,利用导函数判断函数的单调性,求出最值即可;③根据函数的连续性和值域可判断;④根据函数表达式和题意可判断.【解答】解:①函数f(x)为奇函数,故图象关于坐标原点对称,故正确;②∀x>0,f(x)﹣3x=sin2x﹣2,令g(x)=sin2x﹣2,g'(x)=2(cos2x﹣1)<0,∴g(x)递减,g(x)<g(0)=0,∴f(x)<3x恒成立,故正确;③由函数为奇函数,且值域为(﹣∞,+∞),故无论R为何值,方程f(x)=k都有实数根,故错误;④若数列{a n}是公差为的等差数列,且f(a l)+f(a2)+f(a3)=3π,∴a l+a2+a3=3π,sin2a l+sin2a2+sin2a3=0,解得a2=π,故正确.故答案为:①②④.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.已知数列{a n}中,a1=1,又数列{}(n∈N*)是公差为1的等差数列.(1)求数列{a n}的通项公式a n;(2)求数列{a n}的前n项和S n.【考点】数列的求和;等差数列的通项公式.【分析】(1)a1=1,又数列{}(n∈N*)是公差为1的等差数列.可得=2+(n﹣1),即可得出a n.(2)由a n==2.利用“裂项求和”即可得出.【解答】解:(1)∵a1=1,又数列{}(n∈N*)是公差为1的等差数列.∴=2+(n﹣1)=n+1,∴a n=.(2)∵a n==2.∴数列{a n}的前n项和S n=2+…+=2=.17.某商场举行购物抽奖活动,抽奖箱中放有编号分别为1,2,3,4,5的五个小球,小球除编号不同外,其余均相同.活动规则如下:从抽奖箱中随机抽取一球,若抽到的小球编号为3,则获得奖金100元;若抽到的小球编号为偶数,则获得奖金50元;若抽到其余编号的小球,则不中奖.现某顾客依次有放回的抽奖两次.(I)求该顾客两次抽奖后都没有中奖的概率;(Ⅱ)求该顾客两次抽奖后获得奖金之和为100元的概率.【考点】列举法计算基本事件数及事件发生的概率;互斥事件的概率加法公式.【分析】(Ⅰ)先列举所有的结果,两次都没有中奖的情况有(1,1),(1,5),(5,1),(5,5),共4种,根据概率公式计算即可,(Ⅱ)分类求出顾客两次抽奖后获得奖金之和为100元的概率,再根据概率公式计算即可.【解答】解:(Ⅰ)该顾客有放回的抽奖两次的所有的结果如下:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5);共有25种,两次都没有中奖的情况有(1,1),(1,5),(5,1),(5,5),共4种,∴两次都没有中奖的概率为P=,(Ⅱ)两次抽奖奖金之和为100元的情况有:①第一次获奖100元,第二次没有获奖,其结果有(3,1),(3,5),故概率为P1=,②两次获奖50元,其结果有(2,2),(2,4),(4,2),(4,4),故概率为P2=②第一次没有中奖,第二次获奖100元,其结果有13.53,故概率为P3=,∴所求概率P=P1+P2+P3=.18.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a=,且b2+c2=3+bc.(I)求角A的大小;(Ⅱ)求bsinC的最大值.【考点】余弦定理;正弦定理.【分析】(I)由余弦定理可得:cosA===,即可得出.(II)由正弦定理可得:可得b=,可得bsinC=2sinBsin=+,根据B∈即可得出.【解答】解:(I)由余弦定理可得:cosA===,∵A∈(0,π),∴A=.(II)由正弦定理可得:,可得b=,bsinC=•sinC=2sinBsin=2sinB=sin2B+=+,∵B∈,∴∈.∴∈.∴bsinC∈.19.在三棱柱ABC﹣A1B l C1中,已知侧棱与底面垂直,∠CAB=90°,且AC=1,AB=2,E为BB1的中点,M为AC上一点,AM=AC.(I)若三棱锥A1﹣C1ME的体积为,求AA1的长;(Ⅱ)证明:CB1∥平面A1EM.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(I)由A1A⊥AB,AC⊥AB可知AB⊥平面ACC1A1,故E到平面ACC1A1的距离等于AB,于是VV=V,根据体积列出方程解出A1A;(II)连结AB1交A1E于F,连结MF,由矩形知识可知AF=,故MF∥CB1,所以CB1∥平面A1EM.【解答】解:(I)∵A1A⊥平面ABC,AB⊂平面ABC,∴A1A⊥AB,又A1A⊥AC,A1A⊂平面ACC1A1,AC⊂平面ACC1A1,A1A∩AC=A,∴AB⊥平面ACC1A1,∵BB1∥平面ACC1A1,∴V=V====.∴A1A=.(II)连结AB1交A1E于F,连结MF,∵E是B1B的中点,∴AF=,又AM=,∴MF∥CB1,又MF⊂平面A1ME,CB1⊄平面A1ME∴CB1∥平面A1EM.20.已知椭圆C:=l(a>b>0)的左右焦点分别为F1,F2,抛物线y2=4x与椭圆C有相同的焦点,点P为抛物线与椭圆C在第一象限的交点,且|PF2|=.(I)求椭圆C的方程;(Ⅱ)过点F1作直线l与椭圆C交于A,B两点,设.若λ∈[1,2],求△ABF2面积的取值范围.【考点】椭圆的简单性质.【分析】(Ⅰ)由题意即可得出F1(﹣1,0),F2(1,0),根据抛物线的定义以及点P在抛物线上即可得出P点坐标,从而可以求出|PF1|,从而根据椭圆的定义可得出a=2,进而求出b2=3,这样即可得出椭圆的方程为;(Ⅱ)根据题意可设l:x=my﹣1,联立椭圆方程并消去x可得到(3m2+4)y2﹣6my﹣9=0,可设A(x1,y1),B(x2,y2),由韦达定理便可得到(1),而由可得到y1=﹣λy2,带入(1)并消去y1,y2可得.而由λ的范围便可求出的范围,从而得出,可以得到,根据m2的范围,换元即可求出△ABF2的面积的取值范围.【解答】解:(Ⅰ)由抛物线的定义,得点P到直线x=﹣1的距离为,且点P在抛物线y2=4x 上;∴;∴;∴由椭圆定义得,;∴a=2;又a2﹣b2=1,∴b2=3;∴椭圆的方程为;(Ⅱ)据题意知,直线l的斜率不为0,设直线l:x=my﹣1,代入椭圆方程,消去x得:(3m2+4)y2﹣6my﹣9=0;设A(x1,y1),B(x2,y2),则:(1);∵;∴﹣y1=λy2带入(1)消去y1,y2得:;∵λ∈[1,2];∴;∴;解得;∴==;令,则m2=t2﹣1;∴;∵;∴;∴△ABF2面积的取值范围为.21.设函数f(x)=lnx.(I)求函数g(x)=x﹣1﹣f(x)的极小值;(Ⅱ)证明:当x∈[1,+∞)时,不等式恒成立;(Ⅲ)已知a∈(0,),试比较f(tana)与2tan(a﹣)的大小,并说明理由.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(I)求导数,确定函数的单调性,即可求函数g(x)=x﹣1﹣f(x)的极小值;(Ⅱ)可化为(x+1)lnx﹣2(x﹣1)≥0,构造函数,确定函数的单调性,即可证明:当x∈[1,+∞)时,不等式恒成立;(Ⅲ)已知a∈(0,),证明<,分类讨论,即可比较f(tana)与2tan(a﹣)的大小.【解答】解:(I)函数g(x)=x﹣1﹣f(x)=x﹣1﹣lnx,g′(x)=(x>0),∴g(x)在(0,1)上单调递减,(1,+∞)上单调递增,∴x=1时,g(x)的极小值为0;证明:(Ⅱ)可化为(x+1)lnx﹣2(x﹣1)≥0,令h(x)=(x+1)lnx﹣2(x﹣1)(x≥1),则h′(x)=+lnx﹣1,令φ(x)=+lnx﹣1(x≥1),则φ′(x)=,∴φ(x)在[1,+∞)上单调递增,∴φ(x)≥φ(1)=0,即h′(x)≥0,∴h(x)在[1,+∞)上单调递增,∴h(x)≥h(1)=0,∴;解:(Ⅲ)由(Ⅱ)可知x>1,>.∵0<x<1,∴>1∴>,∴<,∵f(tana)=lntana,2tan(a﹣)=2•,∴0<a<,0<tana<1,f(tana)<2tan(a﹣),a=,tana﹣1,f(tana)=2tan(a﹣),<a<,tana>1,f(tana)>2tan(a﹣).2016年9月20日。

(完整版)2019年高考文科数学全国2卷含答案

(完整版)2019年高考文科数学全国2卷含答案

2019年普通高等学校招生全国统一考试(全国II 卷) 文科数学1.设集合{}1-|>=x x A ,{}2|<=x x B ,则=⋂B A ( ) A. ),1(+∞- B. )2,(-∞ C. )2,1(- D. φ2. 设(2)z i i =+,则z = ( ) A. 12i + B. 12i -+ C. 12i - D. 12i --3. 已知向量(2,3)=a , (3,2)=b ,则-=a b ( )B. 2C. D. 504. 生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A.23 B. 35C. 25D. 155. 在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( )A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙6. 设()f x 为奇函数,且当0≥x 时,()1=-xf x e ,则当0<x 时,()=f x ( ) A. 1--x e B. 1-+x e C. 1---x e D . 1--+x e7. 设,αβ为两个平面,则//αβ的充要条件是( ) A. α内有无数条直线与β平行 B. α内有两条相交直线与β平行 C. ,αβ平行于同一条直线 D. ,αβ垂直于同一平面8. 若123,44x x ππ==是函数()sin (0)f x x ωω=>两个相邻的极值点,则ω=A .2B. 32C. 1D.129.若抛物线)0(22>=p px y 的焦点是椭圆1322=+py p x 的一个焦点,则=p ( ) A.2 B.3 C.4 D.810. 曲线2sin cos y x x =+在点(,1)π-处的切线方程为( ) A. 10x y π---= B. 2210x y π---= C. 2210x y π+-+= D. 10x y π+-+=11. 已知(0,)2πα∈,2sin 2cos21αα=+,则sin α=( )A.15D.512.设F 为双曲线2222:1(0,0)x y C a b a b -=>>的右焦点,0为坐标原点,以OF 为直径的圆与圆222x y a +=交于,P Q 两点,若PQ OF =,则C 的离心率为:A.2B.3C.2D.5 二、填空题13. 若变量,x y 满足约束条件23603020x y x y y +-≥⎧⎪+-≤⎨⎪-≤⎩则3z x y =-的最大值是 .14. 我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站的高铁列车所有车次的平均正点率的估计值为 .15. ABC ∆的内角,,A B C 的对边分别为,,a b c .已知sin cos 0b A a B +=,则B = . 16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有 个面,其棱长为 .(本题第一空2分,第二空3分.)三、解答题17.如图,长方体1111ABCD A B C D -的底面ABCD 是正方形,点E 在棱1AA 上,1BE EC ⊥. (1)证明:BE ⊥平面11EB C(2)若1AE AE =,3AB =,求四棱锥11E BB C C -的体积.18.已知{}n a 是各项均为正数的等比数列,162,2231+==a a a . (1)求{}n a 的通项公式:(2)设n n a b 2log =,求数列{}n b 的前n 项和.19. 某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组[)0.20,0-[)0,0.20[)0.20,0.40 [)0.40,0.60 [)0.60,0.80企业数22453147(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例; (2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01) 748.602≈.20. 已知12,F F 是椭圆C :22221(0,0)x y a b a b+=>>的两个焦点,P 为C 上的点,O 为坐标原点.(1)若2POF ∆为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF ∆的面积等于16,求b 的值和a 的取值范围.21. 已知函数()(1)ln 1=---f x x x x .证明: (1)()f x 存在唯一的极值点;(2)()0=f x 有且仅有两个实根,且两个实根互为倒数.四、选做题(2选1)22.在极坐标系中,O 为极点,点00(,)M ρθ0(0)ρ>在曲线:=4sin C ρθ上,直线l 过点(4,0)A 且与OM 垂直,垂足为P .(1)当03πθ=时,求0ρ及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 23.[选修4-5:不等式选讲]已知 ()|||2|()f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集: (2)若(,1)x ∈-∞时,()0f x <,求a 得取值范围.2019年普通高等学校招生全国统一考试(全国II 卷 )文科数学答 案1. 答案:C 解析:{}1-|>=x x A ,{}2|<=x x B ,∴)(2,1-=⋂B A .2. 答案:D 解析:因为(2)12z i i i =+=-+,所以12z i =--. 3. 答案:A 解答:由题意知(1,1)-=-a b ,所以2-=a b .4. 答案:B 解答:计测量过的3只兔子为1、2、3,设测量过的2只兔子为A 、B 则3只兔子的种类有(1,2,3)(1,2,)A (1,2,)B (1,3,)A (1,3,)B (1,,)A B ()()()()2,3,2,3,2,,3,,A B A B A B ,则恰好有两只测量过的有6种,所以其概率为35.5.答案:A 解答:根据已知逻辑关系可知,甲的预测正确,乙丙的预测错误,从而可得结果. 6. 答案:D 解答:当0<x 时,0->x ,()1--=-xf x e ,又()f x 为奇函数,有()()1-=--=-+xf x f x e .7. 答案:B解析:根据面面平行的判定定理易得答案. 8.答案:A 解答:由题意可知32442T πππ=-=即T=π,所以=2ω. 9.答案:D 解析:抛物线)0(22>=p px y 的焦点是)0,2(p,椭圆1322=+p y p x 的焦点是)0,2(p ±, ∴p p22=,∴8=p . 10. 答案:C 解析:因为2cos sin y x x '=-,所以曲线2sin cos y x x =+在点(,1)π-处的切线斜率为2-, 故曲线2sin cos y x x =+在点(,1)π-处的切线方程为2210x y π+-+=. 11. 答案:B 解答:(0,)2πα∈,22sin 2cos 214sin cos 2cos ααααα=+⇒=,则12sin cos tan 2ααα=⇒=,所以cos α==,所以sin α==. 12. 答案:A解析:设F 点坐标为)0,2c (,则以OF 为直径的圆的方程为2222)2⎪⎭⎫⎝⎛=+-c y c x (-----①,圆的方程222a y x =+-----②,则①-②,化简得到c a x 2=,代入②式,求得caby ±=,则设P 点坐标为),2c ab c a (,Q 点坐标为),2c ab c a -(,故cab PQ 2=,又OF PQ =,则,2c cab=化简得到2222b a c ab +==,b a =∴,故2222==+==aaa b a a c e .故选A. 二、填空题 13. 答案:9 解答:根据不等式组约束条件可知目标函数3z x y =-在()3,0处取得最大值为9. 14.答案:0.98 解答:平均正点率的估计值0.97100.98200.99100.9840⨯+⨯+⨯==.15.答案:34π 解析:根据正弦定理可得sin sin sin cos 0B A A B +=,即()sin sin cos 0A B B +=,显然sin 0A ≠,所以sin cos 0B B +=,故34B π=.16.答案:1 解析:由图2结合空间想象即可得到该正多面体有26个面;将该半正多面体补成正方体后,根据对称性列方程求解. 三、解答题 17.答案: (1)看解析 (2)看解析 解答:(1)证明:因为11B C C ⊥面11A B BA ,BE ⊥面11A B BA∴11B C BE ⊥ 又1111C E B C C ⋂=,∴BE ⊥平面11EB C ;(2)设12AA a =则 229BE a =+,22118+a C E =,22194C B a =+ 因为22211=C B BE C E + ∴3a =,∴11111h 3E BB C C BB C C V S -=1363=183=⨯⨯⨯ 18.答案: (1)122-=n n a ; (2)2n解答:(1)已知162,2231+==a a a ,故162121+=q a q a ,求得4=q 或2-=q ,又0>q ,故4=q ,则12111242---=⋅==n n n n q a a .(2)把n a 代入n b ,求得12-=n b n ,故数列{}n b 的前n 项和为22)]12(1[n nn =-+.19. 答案: 详见解析 解答:(1)这类企业中产值增长率不低于40%的企业比例是14721100100+=, 这类企业中产值负增长的企业比例是2100. (2)这类企业产值增长率的平均数是()0.1020.10240.30530.50140.7071000.30-⨯+⨯+⨯+⨯+⨯÷=⎡⎤⎣⎦这类企业产值增长率的方差是()()()()()222220.100.3020.100.30240.300.30530.500.30140.700.3071000.0296⎡⎤--⨯+-⨯+-⨯+-⨯+-⨯÷=⎣⎦所以这类企业产值增长率的标准差是28.6020.172040.17100==⨯=≈. 20. 答案: 详见解析 解答:(1)若2POF ∆为等边三角形,则P 的坐标为,22c ⎛⎫± ⎪ ⎪⎝⎭,代入方程22221x y a b +=,可得22223144c c a b+=,解得24e =±1e =. (2)由题意可得122PF PF a +=,因为12PF PF ⊥,所以222124PF PF c +=, 所以()22121224PF PF PF PF c +-⋅=,所以222122444PF PF a c b ⋅=-=,所以2122PF PF b ⋅=,所以122121162PF F S PF PF b ∆=⋅==,解得4b =. 因为()212124PF PF PF PF +≥⋅,即()21224a PF PF ≥⋅,即212a PF PF ≥⋅,所以232a ≥,所以a ≥21. 答案:见解析解答:(1)1()ln (0)'=->f x x x x ,设1()ln =-g x x x ,211()0'=+>g x x x则()g x 在(0,)+∞上递增,(1)10=-<g ,11(2)ln 2ln 022=->=g , 所以存在唯一0(1,2)∈x ,使得00()()0'==f x g x ,当00<<x x 时,0()()0<=g x g x ,当0>x x 时,0()()0>=g x g x ,所以()f x 在0(0,)x 上递减,在0(,)+∞x 上递增,所以()f x 存在唯一的极值点.(2)由(1)知存在唯一0(1,2)∈x ,使得0()0'=f x ,即001ln =x x , 00000000011()(1)ln 1(1)1()0=---=---=-+<f x x x x x x x x x , 22221113()(1)(2)110=----=->f e e e e,2222()2(1)130=---=->f e e e e , 所以函数()f x 在0(0,)x 上,0(,)+∞x 上分别有一个零点.设12()()0==f x f x ,(1)20=-<f ,则1021<<<x x x ,有1111111(1)ln 10ln 1+---=⇒=-x x x x x x , 2222221(1)ln 10ln 1+---=⇒=-x x x x x x , 设1()ln 1+=--x h x x x ,当0,1<≠x x 时,恒有1()()0+=h x h x, 则12()()0+=h x h x 时,有121=x x .22.答案:(1)0ρ=l 的极坐标方程:sin()26πρθ+=;(2)P 点轨迹的极坐标方程为=4cos ρθ(,)42ππθ⎡⎤∈⎢⎥⎣⎦. 解析:(1)当03πθ=时,00=4sin 4sin 3πρθ==以O 为原点,极轴为x轴建立直角坐标系,在直角坐标系中有M ,(4,0)A,OM k =,则直线l的斜率3k =-,由点斜式可得直线l:(4)3y x =--,化成极坐标方程为sin()26πρθ+=;(2)∵l OM ⊥∴2OPA π∠=,则P 点的轨迹为以OA 为直径的圆,此时圆的直角坐标方程为22(2)4x y -+=,化成极坐标方程为=4cos ρθ,又P 在线段OM 上,由4sin 4cos ρθρθ=⎧⎨=⎩可得4πθ=,∴P 点轨迹的极坐标方程为=4cos ρθ(,)42ππθ⎡⎤∈⎢⎥⎣⎦. 23.答案(1)看解析(2)看解析解答:(1)当1a =时,22242(2),()12(1)22(12),242(1).x x x f x x x x x x x x x x ⎧-+≥⎪=-+--=-<<⎨⎪-+-≤⎩所以不等式()0f x <等价于224202x x x ⎧-+<⎨≥⎩或22012x x -<⎧⎨<<⎩或224201x x x ⎧-+-<⎨≤⎩解得不等式的解集为{}2x x <。

2019年高考数学真题及解析(全国卷Ⅱ文科)

2019年高考数学真题及解析(全国卷Ⅱ文科)

2019年高考数学真题(全国卷Ⅱ:文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B =( ) A .(-1,+∞) B .(-∞,2)C .(-1,2)D .∅2.设z =i(2+i),则z =( ) A .1+2i B .-1+2iC .1-2iD .-1-2i3.已知向量a =(2,3),b =(3,2),则|a -b |=( ) AB .2C .D .504.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A .23B .35C .25D .155.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( ) A .甲、乙、丙 B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙6.设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=( ) A .e 1x -- B .e 1x -+C .e 1x ---D .e 1x --+7.设α,β为两个平面,则α∥β的充要条件是( ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 8.若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω=( ) A .2B .32C .1D .129.若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p =( ) A .2 B .3C .4D .810.曲线y =2sin x +cos x 在点(π,-1)处的切线方程为( )A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=11.已知α∈(0,π2),2sin2α=cos2α+1,则sinα=()A.15BCD12.设F为双曲线C:22221x ya b-=(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为()ABC.2 D二、填空题:本题共4小题,每小题5分,共20分。

2019年广东省揭阳市高考数学二模试卷(文科)(解析版)

2019年广东省揭阳市高考数学二模试卷(文科)(解析版)

2019年广东省揭阳市高考数学二模试卷(文科)一、选择题(本大题共12小题,共60.0分)1. 已知集合M ={x |-1<x <1}, ,则M ∩N =( )A.B.C.D.2. 复数的共轭复数的虚部为( )A.B.C.D.3. 已知双曲线mx 2+y 2=1的一条渐近线方程为2x +y =0,则m 的值为( )A.B.C.D.4.由K 2=得K 2=≈8.333>7.879参照附表,得到的正确结论是( )A. 有 以上的把握认为“爱好该项运动与性别有关”B. 有 以上的把握认为“爱好该项运动与性别无关”C. 在犯错误的概率不超过 的前提下,认为“爱好该项运动与性别有关”D. 在犯错误的概率不超过 的前提下,认为“爱好该项运动与性别无关”5. 某公司2018年在各个项目中总投资500万元,如图是几类项目的投资占比情况,已知在1万元以上的项目投资中,少于3万元的项目投资占,那么不少于3万元的项目投资共有( ) A. 56万元 B. 65万元 C. 91万元 D. 147万元6. 已知,,若θ是第二象限角,则tanθ的值为( )A.B.C.D.7. 已知α,β是平面,m ,n 是直线.下列命题中不正确的是( )A. 若 , ,则B. 若 , ,则C. 若 , ,则D. 若 , ,则8. 已知函数则的是( ) A.B.C. eD. 39. 我国古代数学专著《九章算术》中有一个“两鼠穿墙题”,其内容为:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.问何日相逢?各穿几何?”如图的程序框图源于这个题目,执行该程序框图,若输入x =20,则输出的结果为( ) A. 3 B. 4 C. 5 D. 6 10. 设函数,则下列结论错误的是( )A. 为 的一个周期B. 的图象关于直线对称 C. 的一个零点为D. 的最大值为211. 设F 是椭圆 :> > 的右焦点,A 是椭圆E 的左顶点,P 为直线上一点,△APF是底角为30°的等腰三角形,则椭圆E 的离心率为( )A.B.C.D.12. 若函数f (x )=-x 2(x 2+ax +b )的图象关于直线x =-1对称,则f (x )的最大值是( )A. B. C. 0 D. 1 二、填空题(本大题共4小题,共20.0分)13. 若x ,y 满足约束条件,则z =3x -2y 的最小值为______. 14. 已知平面向量 ,, , ,且 ∥ ,则实数m 的值为______.15. 已知四棱锥S -ABCD 的底面是边长为 的正方形,且四棱锥S -ABCD 的顶点都在半径为2的球面上,则四棱锥S -ABCD 体积的最大值为______.16. 已知△ABC 中, ,D 是BC 边上的一点,且△ABD 为等边三角形,则△ACD 面积S 的最大值为______.三、解答题(本大题共7小题,共82.0分)17. 已知等差数列{a n }的前n 项和为S n ,公差d 不为零,若a 1,a 3,a 9成等比数列,且S4=10.(1)求数列{a n }的通项公式;(2)求证:< .18. 已知如图,长方体ABCD -A 1B 1C 1D 1中,AB =BC =4, ,点E ,F ,M 分别为C 1D 1,A 1D 1,B 1C 1的中点,过点M 的平面α与平面DEF 平行,且与长方体的面相交,交线围成一个几何图形.(1)在图中画出这个几何图形,并求这个几何图形的面积(画图说出作法,不用说明理由);(2)求证:D1B平面DEF.19.已知抛物线C:x2=4y的焦点为F,直线y=kx+m(m>0)与抛物线C交于不同的两点M,N.(1)若抛物线C在点M和N处的切线互相垂直,求m的值;(2)若m=2,求|MF|•|NF|的最小值.20.某快递公司收取快递费用的标准是:重量不超过1kg的包裹收费10元;重量超过1kg的包裹,除收费10元之外,超过1kg的部分,每超出1kg(不足1kg,按1kg计算)需要再收费5元.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).(1)求这60天每天包裹数量的平均值和中位数;(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.已知公司前台有工作人员3人,每人每天工资100元,以样本估计总体,试估计该公司每天的利润有多少元?(3)小明打算将A(0.9kg),B(1.3kg),C(1.8kg),D(2.5kg)四件礼物随机分成两个包裹寄出,且每个包裹重量都不超过5kg,求他支付的快递费为45元的概率.21.已知函数f(x)=x-a ln x-1.(1)若函数f(x)的极小值为0,求a的值;(2)∀t>0且a≤1,求证:>.22.在直角坐标系xOy中,直线:,圆:,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求C1,C2的极坐标方程;(2)若直线C3的极坐标方程为,设C1与C2的交点为O,A,圆C2与C3的交点为O,B,求△OAB的面积.23.已知正实数x,y满足x+y=1.(1)解关于x的不等式;(2)证明:.答案和解析1.【答案】A【解析】解:;∴.故选:A.可以求出集合N,然后进行交集的运算即可.考查描述法的定义,以及交集的运算.2.【答案】C【解析】解:设z====,所以z的共轭复数的虚部为-,故选:C.先求出复数的代数形式,即可得到的共轭复数的虚部本题考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.3.【答案】D【解析】解:双曲线mx2+y2=1的渐近线方程为:y±x=0,因为双曲线mx2+y2=1的一条渐近线方程为2x+y=0,可得,解得m=-4.故选:D.求出双曲线的渐近线方程与已知渐近线方程对比,即可求出m的值.本题考查双曲线的简单性质的应用,是基本知识的考查.4.【答案】A【解析】解:由题意知K2=≈8.333>7.879,对照临界值得出,有99.5%以上的把握认为“爱好该项运动与性别有关”.故选:A.由题意知观测值K2,对照临界值得出结论.本题考查了独立性检验原理的应用问题,是基础题.5.【答案】B【解析】解:由题意,因为在1万元以上的项目投资中,少于3万元的项目投资占,所以在1万元以上的项目投资中,不少于3万元的项目投资占比为,而1万元以上的项目投资占总投资的比例为1-46%-33%=21%,所以不少于3万元的项目投资共有500×21%×=65万元,故选:B.根据题意,在1万元以上的项目投资中,少于3万元的项目投资占,可得不少于3万元的项目投资占比为,而1万元以上的项目投资占总投资的比例为1-46%-33%=21%,即可得到那么不少于3万元的项目投资.本题考查了扇形图的读图识图能力,属于基础题.6.【答案】C【解析】解:∵,∴sin2θ+cos2θ=()2+(-)2=1,解得:a=0,或a=4,∵θ为第二象限角,∴sinθ>0,cosθ<0.∴a=4,∴可得:sinθ=,cosθ=-,tanθ=-.故选:C.利用sin2θ+cos2θ=1,解得a.由于θ为第二象限角,可得sinθ>0,cosθ<0.即可得出a的值,进而可求tanθ的值.本题考查了同角三角函数的基本关系式、三角函数值的符号,考查了推理能力与计算能力,属于基础题.7.【答案】B【解析】解:对于A,根据两条平行线中一条垂直某平面,另一条也垂直这平面可判定A正确;对于B,若m∥α,α∩β=n,则m∥n或异面,故错;对于C,根据线面垂直的性质、面面平行的判定,可知C正确;对于D,根据面面垂直的判定,可D正确;故选:B.A,根据两条平行线中一条垂直某平面,另一条也垂直这平面可判定;B,若m∥α,α∩β=n,则m∥n或异面,;C,根据线面垂直的性质、面面平行的判定判定;D,根据面面垂直的判定;本题考查了命题真假的判定,属于基础题.8.【答案】D【解析】解:根据题意,函数则f ()=ln=-ln3,则f[f ()]=f(-ln3)=e ln3=3;故选:D.根据题意,由函数的解析式求出f ()=-ln3,进而可得f[f ()]=f(-ln3),计算可得答案.本题考查函数值的计算,涉及分段函数的解析式,属于基础题.9.【答案】C【解析】解:若x=20,则T=1+1=2,S=0+2=2,S<20是,a=2,b=,n=2T=2+=,S=+2=,S<20是,a=4,b=,n=3,T=4+=,S=+=,S<20是,a=8,b=,n=4,T=8+=,S=+=,S<20是,a=16,b=,n=5,T=16+=,S=+=,S<20否,程序终止,输出,n=5,故选:C.根据程序框图进行模拟计算即可.本题主要考查程序框图的识别和判断,利用模拟运算法是解决本题的关键.考查学生的计算能力.10.【答案】D【解析】解:∵函数=cos2x+cos2x=(+1)cos2x,故它的周期为=π,故A正确;当x=,求得f(x)=-(+1),为最小值,故它的图象关于直线x=对称,故B正确;当x=,求得f(x)=0,故f(x)的一个零点为x=,故C正确;由于f(x)的最大值为+1,故D错误,故选:D.由题意利用诱导公式化简函数的解析式,再利用余弦函数的性质得出结论.本题主要考查诱导公式、余弦函数的性质,属于基础题.11.【答案】B【解析】解:设交x轴于点M,∵△FPA是底角为30°的等腰三角形∴∠PFA=120°,|PF|=|FA|,且|PF|=2|FM|∵P为直线上一点,∴2(-c)=a+c,解之得2a=3c∴椭圆E的离心率为e==故选:B.利用△FPA是底角为30°的等腰三角形,可得|PF|=|FA|,根据P为直线上一点建立方程,由此可求椭圆的离心率.本题给出与椭圆有关的等腰三角形,在已知三角形形状的情况下求椭圆的离心率.着重考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.12.【答案】C【解析】解:因为函数f(x)=-x2(x2+ax+b)的图象关于直线x=-1对称,则,即,解得,当a=b=4时,f(x)=f(-2-x)恒成立,即a=b=4满足题意,即f(x)=-x2(x+2)2=-[(x+1)2-1]2,当x=0时,f(x)取最大值0,故选:C.由函数的性质得:函数f(x)=-x2(x2+ax+b)的图象关于直线x=-1对称,则,即,解得,当a=b=4时,f(x)=f(-2-x)恒成立,即a=b=4满足题意,由二次函数的最值问题得:f(x)=-x2(x+2)2=-[(x+1)2-1]2,当x=0时,f(x)取最大值0,得解.本题考查了函数的性质及二次函数的最值问题,属中档题.13.【答案】0【解析】解:由z=3x-2y得y=x-,作出不等式组对应的平面区域如图(阴影部分):平移直线y=x-由图象可知当直线y=x-经过点A时,直线的截距最小,此时z也最小,由,解得O(0,0)将O(0,0)代入目标函数z=3x-2y,得z=0.故答案为:0.作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.14.【答案】【解析】解:平面向量,且∥,所以,2m+1-(-)•2m=0,解得m=-.故答案为:-.根据平面向量的共线定理与坐标表示,列方程求出m的值.本题考查了平面向量的共线定理与坐标运算问题,是基础题.15.【答案】6【解析】解:设M为正方形ABCD的中心,O为外接球的球心,则OM平面ABCD,∵正方形ABCD边长为,∴AM=,∴OM==1,当S,O,M在同一条直线上且O在四棱锥内部时,S到平面ABCD的距离取得最大值,最大距离为2+1=3.∴四棱锥的最大体积为()2×3=6.故答案为:6.计算球心到平面ABCD的距离,得出S到平面ABCD的最大距离,再根据体积公式计算最大体积.本题考查了棱锥与外接球的位置关系,棱锥的体积计算,属于中档题.16.【答案】【解析】解:△ABC 中,,且△ABD为等边三角形,如图所示;则∠ADC=120°,△ADC中,AC=2,由余弦定理得:AC2=CD2+AD2-2CD•AD•cos∠ADC,即12=CD2+AD2-2CD•AD•(-),又CD2+AD2≥2CD•AD,所以3CD•AD≤12,即CD•AD≤4,当且仅当CD=AD=2时取“=”;所以△ACD面积为S=AD•CD•sin∠ADC≤×4×=,即△ACD面积S的最大值为.故答案为:.利用余弦定理和基本不等式求得CD•AD的最大值,再求△ACD面积S的最大值.本题考查了余弦定理以及三角形面积的计算问题,也考查了利用基本不等式求最值的应用问题,是中档题.17.【答案】解:(1)由a1,a3,a9成等比数列,可得且d≠0,化简得a1=d-------------------------------(3分)由S4=10可得2a1+3d=5由上解得a1=d=1,∴a n=1+(n-1)•1=n------------------------------(6分)(2)由(1)知,-------------------------------(7分)-----------------------------(9分)∴<------------(12分)【解析】(1)利用等比数列以及等差数列,转化求解数列的首项与公差,得到数列的通项公式.(2)求出数列的和,利用裂项消项法求解数列的和即可.本题考查等差数列以及等比数列的应用,数列求和,考查计算能力.18.【答案】解:(1)设N为A1B1的中点,连结MN,AN、AC、CM,则四边形MNAC为所作图形.由题意知MN∥A1C1(或∥EF),四边形MNAC为梯形,且,过M作MP AC于点P,可得,,得,∴梯形MNAC的面积=.证明:(2)证法1:在长方体中ABCD-A1B1C1D1,设D1B1交EF于Q,连接DQ,则Q为EF的中点并且为D1B1的四等点,如图,,由DE=DF得DQ EF,又EF BB1,∴EF平面BB1D1D,∴EF D1B,,∴∠D1QD=∠BD1D,∴∠QD1B+∠D1QD=∠DD1B+∠BD1Q=90°,∴DQ D1B,∴D1B平面DEF.证法2:设D1B1交EF于Q,连接DQ,则Q为EF的中点,且为D1B1的四等分点,,由BB1平面A1B1C1D1可知BB1EF,又B1D1EF,BB1∩B1D1=B1,∴EF平面BB1D1D,∴EF D1B,由得tan∠QDD1=tan∠D1BD,得∠QDD1=∠D1BD,∴∠QDB+∠D1BD=∠QDB+∠QDD1=90°,∴DQ D1B,又DQ∩EF=Q,∴D1B平面DEF.【解析】(1)设N为A1B1的中点,连结MN,AN、AC、CM,则四边形MNAC为所作图形.推导出四边形MNAC为梯形,过M作MP AC于点P,由此能求出梯形MNAC的面积.(2)证法1:设D1B1交EF于Q,连接DQ,则Q为EF的中点并且为D1B1的四等点,推导出EF平面BB1D1D,从而EF D1B,推导出DQ D1B,由此能证明D1B平面DEF.证法2:设D1B1交EF于Q,连接DQ,则Q为EF的中点,且为D1B1的四等分点,推导出BB1EF,从而EF平面BB1D1D,EF D1B,推导出DQ D1B,由此能证明D1B平面DEF.本题考查几何图形面积的求法,考查空间中直线的位置关系的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理推论证能力、运算求解能力,是中档题.19.【答案】解:(1)设M(x1,y1),N(x2,y2),对求导得:,------------------------------------(1分)故抛物线C在点M和N处切线的斜率分别为和,又切线垂直,∴,即x1•x2=-4,-------------------------------------------------(3分)把y=kx+m代入C的方程得x2-4kx-4m=0.∴x1x2=-4m.-------------------------------(5分)故m=1.------------------------------------------------(6分)(2)解:设M(x1,y1),N(x2,y2),由抛物线定义可知|MF|=y1+1,|NF|=y2+1---------------(8分)由(1)和m=2知x1x2=-8,x1+x2=4k所以=4k2+9------(11分)所以当k=0时,|MF|•|NF|取得最小值,且最小值为9.-----------------------------------------------------(12分)【解析】(1)设M(x1,y1),N(x2,y2),对求导得:,故抛物线C在点M和N处切线的斜率分别为和,通过切线垂直,得到x1•x2=-4,把y=kx+m代入C的方程得x2-4kx-4m=0.利用韦达定理求解即可.(2)设M(x1,y1),N(x2,y2),由抛物线定义可知|MF|=y1+1,|NF|=y2+1,由(1)和m=2知x1x2=-8,x1+x2=4k,求出|MF|•|NF|的表达式,然后求解最小本题考查直线与抛物线的位置关系的应用,考查转化思想以及计算能力.20.【答案】解:(1)每天包裹数量的平均数为0.1×50+0.1×150+0.5×250+0.2×350+0.1×450=260;--------------------------------------------(2分)【或:由图可知每天揽50、150、250、350、450件的天数分别为6、6、30、12、6,所以每天包裹数量的平均数为】设中位数为x,易知x(200,300),则0.001×100×2+0.005×(x-200)=0.5,解得x=260.所以公司每天包裹的平均数和中位数都为260件.-----------------------------------------(4分)(2)由(1)可知平均每天的揽件数为260,利润为260×5-3×100=1000(元),所以该公司平均每天的利润有1000元.-------------------------------------------------(7分)(3)设四件礼物分为二个包裹E、F,因为礼物A、C、D共重0.9+1.8+2.5=5.2(千克),礼物B、C、D共重1.3+1.8+2.5=5.6(千克),都超过5千克,------------------(8分)故E和F的重量数分别有1.8和4.7,2.5和4.0,2.2和4.3,2.7和3.8,3.1和3.4共5种,对应的快递费分别为45、45、50,45,50(单位:元)------------------------------(10分)故所求概率为.----------------------------------------------------------------------------------(12分)【解析】(1)根据频率分布直方图,将每一组的中点作为改组数据的代表值,对应的频率作为权重,取加权平均即可.(2)根据(1)中得到的平均值,求出每天的费用,减去300元的前台工作人员工资即可.(3)将4件礼物分成2个包裹,且每个包裹重量都不超过5kg,共有5种分法,其中快递费用为45的有3种,可得概率.本题考查了用频率分布直方图估计平均值,考查频率公式,频率分布直方图的应用,古典概型的概率求法.属于基础题.21.【答案】解:(1)∵函数f(x)=x-a ln x-1,∴,当a≤0时,f (x)>0,函数f(x)在定义域上递增,不满足条件;当a>0时,函数f(x)在(0,a)上递减,在(a,+∞)上递增,故f(x)在x=a取得极小值0,∴f(a)=a-a lna-1=0,令p(a)=a-a lna-1,p'(a)=-ln a,所以p(a)在(0,1)单调递增,在(1,+∞)单调递减,故p(a)≤p(1)=0,∴f(a)=0的解为a=1,故a=1.证明:(2)证法1:由>>>,∵a≤1,所以只需证当t>0时,>恒成立,令,,由(1)可知x-ln x-1≥0,令x=e t得e t-t-1≥0,∴g(t)在(0,+∞)上递增,故g(t)>g(0)=0,故>.证法2:>>>,设(t>0),则g'(t)=e t-at-a,则g''(t)=e t-a,又e t>e0=1,a≤1,得g''(t)>0,∴g'(t)单调递增,得g'(t)>g(0)=1-a≥0,∴g(t)单调递增,得g(t)>g(0)=0,故>.【解析】(1)求出,当a≤0时,f′(x)>0,函数f(x)在定义域上递增,不满足条件;当a>0时,函数f(x)在(0,a)上递减,在(a,+∞)上递增,从而f(x)在x=a取得极小值0,由此能求出a.(2)法1:由,由a≤1,得只需证当t>0时,恒成立,令,x-lnx-1≥0,令x=e t得e t-t-1≥0,由此能证明.法2:,设(t>0),则g'(t)=e t-at-a,推导出g(t)单调递增,得g(t)>g(0)=0,由此能证明.本题考查实数值的求法,考查不等式的证明,考查导数性质、函数的单调性、最值等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.22.【答案】解:(1)因为x=ρcosθ,y=ρsinθ,-------------------------------------------------------(1分)所以C1的极坐标方程为,即(ρR),----------------------------(3分)C2的极坐标方程为ρ2-2ρcosθ-4ρsinθ=0.----------------------------------------------------(4分)即ρ-2cosθ-4sinθ=0----------------------------------------------------------------------------------(5分)(2)代入ρ-2cosθ-4sinθ=0,解得.------------------------------------(7分)代入ρ-2cosθ-4sinθ=0,解得.---------------------------------------------(8分)故△OAB的面积为.----------------------------------(10分)【解析】(1)利用x=ρcosθ,y=ρsinθ可把C1,C2化成极坐标方程;(2)联立极坐标方程并利用极径的几何意义和面积公式可得.本题考查了简单曲线的极坐标方程,属中档题.23.【答案】(1)解:∵x+y=1,且x>0,y>0,∴ <<<<<<,解得<,所以不等式的解集为,,证明:(2)方法一:∵x+y=1,且x>0,y>0,∴ ===.当且仅当时,取“=”.方法二:∵x+y=1,且x>0,y>0,∴ ====,当且仅当时,取“=”.【解析】(1)利用x的取值,去掉绝对值符号,求解绝对值不等式即可.(2)利用已知条件,通过“1”的代换以及基本不等式求解表达式的最小值,证明不等式即可.不等式选讲本小题考查绝对值不等式、基本不等式的解法与性质等基础知识,考查运算求解能力、推理论证能力,考查分类与整合思想、化归与转化思想等.。

2019年高考文数全国卷2含答案解析

2019年高考文数全国卷2含答案解析

徐老师2019年普通高等学校招生全国统一考试·全国Ⅱ卷文科数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合={|1}A x x >-,{|2}B x x =<,则A B =( )A .()1-+∞,B .()2-∞,C .()12-,D .∅ 2.设()2z i i =+,则=z( )A .12i +B .12i -+C .12i -D .12i --3.已知向量()23a =,,()32b =,,则a b -=( ) AB .2 C.D .504.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 ( )A .23B .35C .25D .155.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( )A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙6.设()f x 为奇函数,且当0x ≥ 时,()e 1x f x =-,则当0x <时,()f x = ( ) A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+7.设α,β为两个平面,则αβ∥的充要条件是( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面 8.若14x π=,24x 3π=是函数()sin f x x ω=()0ω>两个相邻的极值点,则ω=( ) A .2 B .32C .1D .129.若抛物线()220y px p =>的焦点是椭圆2213x y p p+=的一个焦点,则p = ( )A .2B .3C .4D .810.曲线2sin cos y x x =+在点()1π-,处的切线方程为( )A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=11.已知π20a ⎛⎫∈ ⎪⎝⎭,),2sin2cos2+1αα=,则sin α=( )A .15BC.3D.512.设F 为双曲线C :()2222001x y a ba b -=>>,的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P 、Q 两点.若PQ OF =,则C 的离心率为( )徐老师ABC .2D第Ⅱ卷(非选择题 共90分)二、填空题:本题共4小题,每小题5分,共20分。

2019届全国卷Ⅱ高考压轴卷 数学文(解析版)

2019届全国卷Ⅱ高考压轴卷 数学文(解析版)

2019全国卷Ⅱ高考压轴卷数学文科一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足11i 12z z -=+,则复数z 在复平面内对应点在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.已知集合{}06M x x =≤≤, {}232x N x =≤,则M N ⋃=( ) A. (],6-∞ B. (],5-∞ C. []0,6 D. []0,53.已知向量2=a ,1=b ,()22⋅-=a a b ,则a 与b 的夹角为( )A .30︒B .60︒C .90︒D .150︒4.《莱因德纸草书》是世界上最古老的数学著作之一,书中有这样一道题目:把100个面包分给5个人,使每个人所得面包成等差数列,且较大的三份之和的等于较小的两份之和,问最小的一份为( )A.65 B.611 C. 35 D. 3105.若n 是2和8的等比中项,则圆锥曲线221y x n+=的离心率是( )A B C D 【答案】D6. 《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的表面积为( )A .4B .6+C .4+D .27.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,若sin 1sin 2B C =, ()2213cos 2a b B BA BC -=⋅,则角C =( )A.6π B. 3π C. 2π D. 3π或2π8. 如图为函数()y f x =的图象,则该函数可能为( )A .sin xy x=B .cos xy x=C .sin ||xy x =D .|sin |x y x=9.执行如图所示程序框图,若输出的S 值为20-,在条件框内应填写( )A .3?i >B .4?i <C .4?i >D .5?i <10.已知抛物线()220y px p =>的焦点为F ,准线l 与x 轴交于点A ,点P 在抛物线上,点P 到准线l 的距离为d ,点O 关于准线l 的对称点为点B , BP 交y 轴于点M ,若B P a B M =, 23OM d =,则实数a 的值是( )A.34 B. 12 C. 23 D. 3211.已知不等式组20240x y x y y x y m-≥+≤≥⎧⎪+⎨≤⎪⎪⎪⎩表示的平面区域为M ,若m 是整数,且平面区域M 内的整点(),x y 恰有3个(其中整点是指横、纵坐标都是整数的点),则m 的值是( )A. 1B. 2C. 3D. 4 12.已知函数()f x 的导函数为()f x ',且满足()32123f x x ax bx =+++, ()()24f x f x +='-',若函数()6ln 2f x x x ≥+恒成立,则实数b 的取值范围为( )A. [)64ln3,++∞B. [)5ln5,++∞C. [)66ln6,++∞D. [)4ln2,++∞ 二、填空题:本大题共4小题,每小题5分.13.某学校选修网球课程的学生中,高一、高二、高三年级分别有50名、40名、40名.现用分层抽样的方法在这130名学生中抽取一个样本,已知在高二年级学生中抽取了8名,则在高一年级学生中应抽取的人数为_______.14.设P 为曲线2:23C y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为0,4⎡⎤⎢⎥⎣⎦π,则点P 横坐标的取值范围为 .15.已知正四棱锥P ABCD -内接于半径为94的球O 中(且球心O 在该棱锥内部),底面ABCD 的边长为2,则点A 到平面PBC 的距离是__________.16.若双曲线()222210,0x y a b a b-=>>上存在一点P 满足以OP 为边长的正三角形的内切圆的面积等于236c π(其中O 为坐标原点, c 为双曲线的半焦距),则双曲线的离心率的取值范围是 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小满分题12分)设数列{}n a 的前n 项和为n S ,1110,910n n a a S +==+. (1)求证:{lg }n a 是等差数列; (2)设n T 是数列13{}(lg )(lg )n n a a +的前n 项和,求使21(5)4n T m m >-对所有的*n N ∈都成立的最大正整数m 的值.18.(本小题满分12分)进入11月份,香港大学自主招生开始报名,“五校联盟”统一对五校高三学生进行综合素质测试,在所有参加测试的学生中随机抽取了部分学生的成绩,得到如图所示的成绩频率分布直方图:(1)估计五校学生综合素质成绩的平均值;(2)某校决定从本校综合素质成绩排名前6名同学中,推荐3人参加自主招生考试,若已知6名同学中有4名理科生,2名文科生,试求这2人中含文科生的概率.19.(本题满分12分)如图,在三棱锥P ADE -中, 4AD =, AP = AP ⊥底面ADE ,以AD 为直径的圆经过点E .(1)求证: DE ⊥平面PAE ;(2)若60DAE ∠=︒,过直线AD 作三棱锥P ADE -的截面ADF 交PE 于点F ,且45FAE ∠=︒,求截面ADF 分三棱锥P ADE -所成的两部分的体积之比.20. (本小题满分12分)已知椭圆C 的两个焦点分别为F 1(-10,0),F 2(10,0),且椭圆C 过点P (3,2). (1)求椭圆C 的标准方程;(2)与直线OP 平行的直线交椭圆C 于A ,B 两点,求△P AB 面积的最大值.21. (本小题满分12分)已知函数()e x f x ax =-(a 为常数)的图象与y 轴交于点A ,曲线()y f x =在点A 处的切线斜率为2-. (1)求a 的值及函数()f x 的单调区间;(2)设()231g x x x =-+,证明:当0x >时,()()f x g x >恒成立. 22.(本小题满分10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,以O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知曲线M 的参数方程为1cos 1sin x y ϕϕ=+=+⎧⎨⎩(ϕ为参数),过原点O 且倾斜角为α的直线l 交M 于A 、B 两点.(1)求l 和M 的极坐标方程;(2)当4π0,α⎛⎤∈ ⎥⎝⎦时,求OA OB +的取值范围.23.(本小题满分10分)【选修4-5:不等式选讲】 已知函数()121f x x x =++-. (1)解不等式()2f x x ≤+;(2)若()3231g x x m x =-+-,对1x ∀∈R ,2x ∃∈R ,使()()12f x g x =成立,求实数m 的取值范围.2019全国卷Ⅱ高考压轴卷数学文科答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】设复数i z a b =+,(),a b ∈R ,则i z a b =-,因为11i 12z z -=+,所以()()211i z z -=-,所以2(1)2i a b --()1i a b =+-,所以可得2221a b b a -=-⎧⎨-=+⎩,解得5343a b ⎧=⎪⎪⎨⎪=-⎪⎩,所以54i 33z =-,所以复数z 在复平面内对应点54,33⎛⎫-⎪⎝⎭在第四象限上.故选D . 2【答案】A【解析】 因为{}06M x x =≤≤, {}232{|5}x N x x x =≤=≤, 所以{|6}M N x x ⋃=≤,故选A. 3.【答案】B【解析】∵()222422⋅-=-⋅=-⋅=a a b a a b a b ,∴1⋅=a b .设a 与b 的夹角为θ,则1cos 2θ⋅==a b a b ,又0180θ︒≤≤︒,∴60θ=︒,即a 与b 的夹角为60︒.4.【答案】C【解析】分析:根据已知条件,设等差数列的公差为,将已知条件转化为等式,求出等差数列的首项和公差,再得出答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 log 2x ,x>1},B =⎨x ⎪y =⎬,则 A ∩B =( )A. 0,2⎪ B .(0,+∞)C. 2,1⎪ D . 2.[2018· 全国卷Ⅰ]设 z = +2i ,则|z|=( )⎪ ⎪ ⎩ ⎭⎪x a +log x (x >0) 4.[2018· 山东日照联考]已知向量 a =(-2,m ),b = 1, 2 ⎪,m 5.[2018· 江南十校二模]已知 a =40.4,b = 2⎪-0.6,c =-log 4 2 ,小题限时训练(二)一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2018· 江西重点中学协作体第二次联考 ]已知集合 A ={y|y =⎧ ⎪ ⎫ ⎪ ⎪ 1-2x ⎪ ⎛ 1⎫ ⎝ ⎭ ⎛1 ⎫ ⎝ ⎭1-i1+i1A .0 B.2 C .1 D. 2⎧⎪3-x+1(x ≤0)3.[2018· 重庆七校联考]已知函数 f(x)=⎨2,若 f(f(- 1))=18,那么实数 a 的值是( )A .0B .1C .2D .3⎛ m ⎫ ⎝ ⎭∈R ,则“a ⊥b ”是“m =2”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件⎛1⎫ 2 ⎝ ⎭1 则 a ,b ,c 的大小关系是( )2A .a <b <cB .c <a <bC .c <b <aD .b <c <a6.[2018· 河北景县月考]记 S n 为等差数列{a n }的前 n 项和.若 a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .87.[2018· 山东沂水期中]执行如图程序框图,若输入的 n 等于 5,B. 12,0⎪是 f(x)图象的一个对称中心 x则输出的结果是()1A .-3B .-21C.3 D .28.[2018· 浙江大学附属中学模拟]设 m ,n 是两条异面直线,下列命题中正确的是( )A .过 m 且与 n 平行的平面有且只有一个B .过 m 且与 n 垂直的平面有且只有一个C .过空间一点 P 与 m ,n 均相交的直线有且只有一条D .过空间一点 P 与 m ,n 均平行的平面有且只有一个9.[2018· 陕西吴起中学期中]已知函数 f(x)=2sin(2x +φ)(0<φ<π),π若将函数 f(x)的图象向右平移6个单位后关于 y 轴对称,则下列结论中不正确的是( )5πA .φ= 6⎛ π ⎫ ⎝⎭C .f(φ)=-2 πD .x =-6是 f(x)图象的一条对称轴10.[2018· 河南中原名校预测金卷 ]已知以圆 C :(x -1)2+y 2=4的圆心为焦点的抛物线 C 1 与圆 C 在第一象限交于 A 点,B 点是抛物 线 C 2:2=8y 上任意一点,BM 与直线 y =-2 垂直,垂足为 M ,则|BM| -|AB|的最大值为( )A .-1B .2C .1D .811.[2018· 福建适应性练习]已知 A ,B ,C ,D 四点均在以点 O⎧ 1 12.已知定义域为 R 的函数 f(x)=⎨|x -1| 若关于 x 为球心的球面上,且 AB ⊥平面 BCD ,BC =BD =2,AB =2CD =4 3, 则球 O 的表面积为( )A .16πB .32πC .60πD .64π(x ≠1),⎩1(x =1)的方程[f(x)]2+bf(x)+c =0 有 3 个不同的实根 x 1,x 2,x 3,则 x 21+x 2+ x 23=( )2b 2+2A .13 B. b 23c 2+2C .5 D. c 2二、填空题:本大题共 4 小题,每小题 5 分,共 20 分,把答案填在题中的横线上.13.[2018· 天津南开中学第五次月考]已知圆 C :(x -3)2+(y -5)2=5,过圆心 C 的直线 l 交圆 C 于 A ,B 两点,交 y 轴于点 P ,若 A 恰为 PB 的中点,则直线 l 的斜率为________.14.[2018· 辽宁重点高中第三次模拟]已知函数 f(x)=-x 3+3x 2,在区间(-2,5)上任取一个实数 x 0,则 f ′(x )≥0 的概率为________.15.[2018· 浙江大学附属中学模拟]在 △0ABC 中,内角 A ,B ,Cb的对边分别为 a ,b ,c.已知 c -acosB =2,则角 A 为________,若 b-c = 6,a =2 3,则 BC 边上的高为________.16.[2018· 名校联盟模拟]有一个数阵排列如下: 1 2 3 4 5 6 7 8…… 2 4 6 8 10 12 14…… 4 8 12 16 20…… 8 16 24 32…… 16 32 48 64…… 32 64 96…… 64……则第 10 行从左至右第 10 个数字为________.1 y = ⎬ = -∞, ⎪, ⎨ ⎪B = x1-2x ⎪⎭ ⎝ 2⎭⎪0,∴A ∩B = 2,故选 A.⎧⎪2a 1+7d =24⎫⎪ ⎛1⎫ 2.C z =+2i = 2 +2i =i , s ==-3,i =2; ⎪ ⎪小题限时训练(二)1.A A ={y|y =log 2x ,x>1}=(0,+∞),⎧ ⎪⎩ ⎪ ⎛ 1⎫ ⎝ ⎭ 1-i (1-i )21+i∴|z|=1,故选 C.3.C f(-1)=3+1=4,f(4)=4a +log 24=18, ∴a =2,故选 C.m4.B 由 a ⊥b ,得-2×1+ 2 2=0, ∴m =±2,∴“a ⊥b ”是“m =2”的必要不充分条件,故选 B. 5.C a =40.4=20.8,b =20.6,c =log 22 2= 2=20.5, ∴c <b <a ,故选 C. 6.C 由题可得⎨,∴d =4,故选 C. ⎪⎩6a 1+15d =487.D 由程序框图可得1+21-2 1-3 1s =1+3=-2,i =3;1 1-2 1s = 1=3,i =4;1+21 1+3s = 1=2,i =5,输出 2,故选 D.1-38.A 在 m 上任取一点 O ,过 O 作与 n 平行的直线有且只有一条,记为 a ,∴m ∩a =O ,f(x)=2sin 2x + 6 ⎪, f 12⎪=2sinπ=0,∴ 12,0⎪是 f(x)图象的一个对称中心,B 正确; f -6⎪=2sin2=2,f 6 ⎪=2sin 2 =2,C 错;π ⎝2x -3+φ⎭ ⎪ ⎩ ⎪⎩∴m 与 a 确定一个平面 α,m ⊂α,n ⊄α,n ∥a ,∴n ∥α,故 A 正确.π9.C f(x)的图象向右平移6个单位后,得到⎛ ⎫g (x)=2sin⎪, π πg (x)关于 y 轴对称,∴-3+φ=k π+2,k ∈Z ,5π 5π∴φ=k π+ 6 ,k ∈Z ,∵0<φ<π,∴φ= 6 ,A 正确;⎛ 5π⎫ ⎝⎭⎛ π ⎫ ⎝⎭ ⎛ π ⎫ ⎝⎭ ⎛ π⎫ π ⎝⎭π∴x =-6是 f(x)图象的一条对称轴,D 正确,⎛5π⎫ 5π ⎝⎭ 故选 C.10.C ∵抛物线 C 1 的焦点为(1,0), ∴抛物线的方程为 y 2=4x ,⎧(x -1)2+y 2=4 由⎨ ⎪y 2=4x ⎧x =1, 得⎨ A(1,2),⎪y =2设抛物线 C 2:x 2=8y 的焦点为 F(0,2),∴|AF|=1, ∴|BM|=|BF|,∴|BM|-|AB|=|BF|-|AB|≤|AF|=1,故选 C.11.D △BCD 中,BC =BD =2,CD =2 3, ∴∠BCD =30°,设△BCD 外接圆半径为 r ,2∴2r =sin30°=4,∴r =2,球心与△BCD 外接圆圆心连线垂直面 BCD , ∴AB ⊥平面 BCD ,AB =4 3,∴球心到面 BCD 的距离为 2 3, ∴球半径 R = r 2+(2 3)2=4,3-2 3-2 ∴P =2. 解析:∵c -acosB =2 ∴cosAsinB =1sinB ,3∴球 O 的表面积为 64π,故选 D.12.C 作出 f(x)的图象如图所示:由图象可知,当 f(x)=1 时,方程有 3 个不同的实根, ∴x 1=1,x 2=2,x 3=0, ∴x 21+x 2+x 2=5,故选 C.13.±2解析:由题可得 AB =2 5,AP =2 5,∴|PA :|AC|= :1,∴x =2,∴y =3 或 7,AA5-3 5-7 ∴k = =2;k = =-2.l l 2 14.7解析:f ′(x)=-3x 2+6x ≥0, ∴0≤x ≤2,7315.60° 2b ,∴sinC -sinAcosB =sinB,2∴sin(A +B)-sinAcosB =sinB,2 2∵0<B <π,sinB ≠0,∴cosA =1,∴A =60°,2由 a 2=b 2+c 2-2bccosA ,得 12=b 2+c 2-bc ,11由 bcsinA = a · h , 1 31即 ×6× = ×2 3· h ,3∴h = .∴(b -c)2+bc =12,∴bc =6,2 22 2 2216.5120解析:由数阵可知第一列中的数成等比数列, 则第 10 行的第 1 个数字为 1·29=512,第 10 行的数成等差数列,公差为 29,∴第 10 行第 10 个数字为 512+9×512=5120.。

相关文档
最新文档