山东省潍坊市昌乐县2019-2020学年八年级上学期期中数学试卷 (有解析)
2019-2020学年八年级数学上学期期中原创卷A卷(山东)(参考答案)
2019-2020学年上学期期中原创卷A 卷八年级数学·参考答案123456789101112BCDAACBDAC AB13.三角形的稳定性;不稳定性14.80︒15.4cm16.1517.一定18.3319.【解析】∵∠B =35°,∠C =65°,∴∠BAC =180°–∠B –∠C =180°–35°–65°=80°.∵AE 为∠BAC 的平分线,∴∠EAC =12∠BAC =12×80°=40°.(2分)∵AD ⊥BC ,∴∠ADC =90°,在△ADC 中,∠DAC =180°–∠ADC –∠C =180°–90°–65°=25°,(4分)∴∠DAE =∠EAC –∠DAC =40°–25°=15°.(6分)20.【解析】∵DA 平分∠EDC ,∴∠ADE =∠ADC ,在△AED 和△ACD 中,DE DCADE ADC AD AD ⎧⎪∠∠⎨⎪⎩===,(4分)∴△AED ≌△ACD (SAS ).(6分)21.【解析】(1)∵∠1=∠2,∴∠BAN =∠CAM ,又∵AB =AC ,AN =AM ,∴△ABN ≌△ACM (SAS ),∴∠M =∠N ,(3分)(2)∵△ABN ≌△ACM ,∴∠B =∠C ,又∵AB =AC ,∠1=∠2,∴△ABD ≌△ACE (ASA ),∴BD =CE .(6分)22.【解析】如图,(5分)A1(–3,4),B1(–1,2),C1(–5,1).(8分)23.【解析】如图,∵AC∥DE,∠E=50°,∠D=75°,∴∠ACB=∠E=50°,∠1=∠D=75°,(4分)又∵∠ABC=70°,∴∠A=180°–∠ABC–∠ACB=180°–70°–50°=60°,(6分)∠ABD=∠1–∠A=75°–60°=15°,∴∠A=60°,∠ABD=15°.(8分)24.【解析】(1)如图,点M为所作;(5分)(2)∵AB的垂直平分线交AC于M,∴AM=BM,∴∠ABM=∠A=40°,∴∠CMB=∠ABM+∠A=80°.(10分)25.【解析】(1)∵△ABE≌△ACD,∴BE=CD,∠BAE=∠CAD,又∵BE=6,DE=2,∴EC=DC–DE=BE–DE=4,∴BC=BE+EC=10;(5分)(2)∠CAD=∠BAC–∠BAD=75°–30°=45°,∴∠BAE=∠CAD=45°,∴∠DAE=∠BAE–∠BAD=45°–30°=15°.(10分)26.【解析】∵CE⊥AN,BD⊥AN,∴∠AEC=∠BDA=90°,∴∠BAD+∠ABD=90°,(2分)∵∠BAC=90°,即∠BAD+∠CAE=90°,∴∠ABD=∠CAE,(4分)在△ABD和△CAE中,ABD CAE ADB CEA AB CA∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△CAE(AAS),(10分)∴AD=CE,BD=AE,∴BD–CE=AE–AD=DE.(12分)27.【解析】(1)设AD=x,则BD=4–x,BF=4+x.当DF⊥AB时,∵∠B=60°,∴∠DFB=30°,∴BF=2BD,即4+x=2(4–x),解得x=43,故t=43;(2分)(2)DG=GF始终成立,理由如下:(3分)如图1,过点D作DH∥BC交AC于点H,则∠DHG=∠FCG.∵△ABC是等边三角形,∴△ADH是等边三角形,∴AD=DH.又AD=CF,∴DH=FC.(5分)∵在△DHG与△FCG中,DGH FGCDHG FCGDH FC∠∠⎧⎪∠∠⎨⎪⎩===,∴△DHG≌△FCG(AAS),∴DG=GF;(8分)(3)如图2,过点F作FH⊥AC,在△ADE和△CFH中,90 AED FHCA FCHAD CF∠∠︒⎧⎪∠∠⎨⎪⎩====,∴△ADE≌△CFH(AAS),∴DE=FH,AE=CH,∴AC=EH,(10分)在△GDE和△GFH中,DEG FHGDGE FGHDE FH∠∠⎧⎪∠∠⎨⎪⎩===∴△GDE≌△GFH(AAS),∴EG=GH,∴EG=12EH=12AC.(12分)。
2019-2020学年人教版八年级上学期期中考试数学试卷(解析版)
2019-2020学年人教版八年级上学期期中考试数学试卷一、选择题(每题3分,共36分)1.的平方根是()A.B.C.D.2.下列各数,3﹣,1.412,,0.1010010001…,,|﹣|中,无理数的个数有()A.2B.3C.4D.53.下列各组数中互为相反数的一组是()A.﹣3与B.﹣3与C.﹣3与D.|﹣3|与34.(x2y)3的结果是()A.x5y3B.x6y C.3x2y D.x6y35.下列各式中,正确的是()A.=±4B.=﹣5C.﹣=D.﹣=6.估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间7.下列计算正确的是()A.a6÷a3=a2B.(﹣3ab2)2=﹣9a2b4C.(﹣a+b)(﹣a﹣b)=b2﹣a2D.(3x2y)÷xy=3x8.下列说法正确的是()A.1的平方根是1B.﹣2没有立方根C.±6是36的算术平方根D.27的立方根是39.若,则a,b的值分别为()A.﹣,B.,C.﹣,﹣D.,10.已知a﹣b=3,ab=2,则a2+b2的值为()A.13B.7C.5D.1111.已知直角三角形的两条边的长为3和4,则第三条边的长为()A.5B.4C.D.5或12.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度hcm,则h的取值范围是()A.h≤17cm B.h≥8cmC.15cm≤h≤16cm D.7cm≤h≤16cm二、填空(每题3分,共18分)13.的算术平方根是.14.计算:35a7b3c÷7a4bc=.15.如图,小方格都是边长为1的正方形,四边形ABCD的面积为,周长是.16.的绝对值的相反数是.17.请你观察,思考下列计算过程:,由此猜想=.18.如图,有一个圆柱,它的高为5cm,底面半径为cm,在点A的一只蚂蚁想吃到点B的食物,爬行的最短路程为.三、计算(共27分,其中19,20每小题5分,21题7分)19.(1)(x+2)2﹣(x﹣2)2(2)(x+y﹣z)(x﹣y+z)20.(1)(a+b)(a2﹣ab+b2)(2)21.计算:a×(3a2b)3÷(﹣)×四、解答题(每题9分,共27分)22.因式分解(1)(x﹣3)2+18﹣6x(2)4x3+4x2y+xy223.已知:一个正数的两个平方根分别是2m﹣1和4﹣3m,试求5m﹣42的立方根.24.化简求值:[(x﹣y)2+(x+y)(x﹣y)]÷2x,其中x=3,y=﹣1.五、解答题(每题9分,共18分)25.如图,有一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A 重合,折痕为DE,求CD的长.26.如图,四边形ABCD中,AD=3,AB=4,BC=12,CD=13,∠BAD=90°,(1)试说明:BD⊥BC;(2)计算四边形ABCD的面积.六、解答题(每题12分,共24分)27.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;并写出你所画三角形的三边长.(2)在图2中,画一个等腰三角形,使它的一条边长为2,另两边长为无理数;并写出你所画的三角形的三边长.写出每题的计算过程28.如图,在矩形ABCD中,AB=5cm,在边CD上适当选定一点E,沿直线AE把△ADE折叠,使点D恰好落在边BC上一点F处,且量得BF=12cm.求:(1)AD的长;(2)DE的长.参考答案与试题解析一、选择题(每题3分,共36分)1.的平方根是()A.B.C.D.【分析】根据平方根的定义求出即可.【解答】解:的平方根为=,故选:C.【点评】本题考查了对平方根定义的应用,主要考查学生的理解能力和计算能力,注意:a(a≥0)的平方根为±.2.下列各数,3﹣,1.412,,0.1010010001…,,|﹣|中,无理数的个数有()A.2B.3C.4D.5【分析】根据无理数是无限不循环小数,可得无理数.【解答】解:3﹣,0.1010010001…,是无理数,故选:B.【点评】本题考查了无理数,无理数是无限不循环小数.3.下列各组数中互为相反数的一组是()A.﹣3与B.﹣3与C.﹣3与D.|﹣3|与3【分析】对每个选项进行计算,得出的结果直接用于选项正确性的判断.【解答】解:①=3,和﹣3互为相反数,故A正确;②=﹣3,不是﹣3的相反数,故B错误;③﹣3和﹣互为倒数,不互为相反数,故C错误;④|﹣3|和3相等,故D错误.综上可知只有A正确.故选:A.【点评】本题考查相反数定义,即相加为0的两个数互为相反数,要注意细心运算每个选项,属于基础题.4.(x2y)3的结果是()A.x5y3B.x6y C.3x2y D.x6y3【分析】直接利用积的乘方运算法则与幂的乘方运算法则化简求出答案.【解答】解:(x2y)3=x6y3.故选:D.【点评】此题主要考查了积的乘方运算与幂的乘方运算,正确掌握运算法则是解题关键.5.下列各式中,正确的是()A.=±4B.=﹣5C.﹣=D.﹣=【分析】A、根据算术平方根的定义即可判定B、根据算术平方根的性质化简即可判定;C,根据算术定义即可判定;D、根据立方根的概念计算后即可判定.【解答】解:A、结果应为4,故选项错误;B、结果应为5,故选项错误;C、无意义,故选项错误;D、﹣=,故选项正确.故选:D.【点评】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根是0.6.估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【分析】先估计的整数部分,然后即可判断﹣2的近似值.【解答】解:∵5<<6,∴3<﹣2<4.故选:C.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.7.下列计算正确的是()A.a6÷a3=a2B.(﹣3ab2)2=﹣9a2b4C.(﹣a+b)(﹣a﹣b)=b2﹣a2D.(3x2y)÷xy=3x【分析】直接利用整式的除法运算法则以及积的乘方和平方差公式分别判断得出即可.【解答】解:A、a6÷a3=a3,故此选项错误;B、(﹣3ab2)2=9a2b4,故此选项错误;C、(﹣a+b)(﹣a﹣b)=﹣b2+a2,故此选项错误;D、(3x2y)÷xy=3x,故此选项正确.故选:D.【点评】此题主要考查了整式的除法运算法则以及积的乘方和平方差公式等知识,正确应用运算法则是解题关键.8.下列说法正确的是()A.1的平方根是1B.﹣2没有立方根C.±6是36的算术平方根D.27的立方根是3【分析】A、根据平方根的定义即可判定;B、根据立方根的定义即可判定;C、根据算术平方根的定义即可判定;D、根据立方根的定义即可判定.【解答】解:A、1的平方根是±1,故选项错误;B、﹣2的立方根是,故选项错误;C、6是36的算术平方根,故选项错误;D、27的立方根是3,故选项正确.故选:D.【点评】本题主要考查了平方根和立方根的性质,并利用此性质解题.平方根的被开数不能是负数,开方的结果必须是非负数;立方根的符号与被开立方的数的符号相同.本题在符号的正负上弄错,要严格按照性质解题.9.若,则a,b的值分别为()A.﹣,B.,C.﹣,﹣D.,【分析】将原式配成两个完全平方式,从而根据完全平方的非负性即可得出答案.【解答】解:原式可化为:(a+b)2+(b﹣)2=0,故可得:a=﹣b,b=.故选:A.【点评】本题考查完全平方式的知识,比较简单,关键是将式子配方后运用非负性解答.10.已知a﹣b=3,ab=2,则a2+b2的值为()A.13B.7C.5D.11【分析】根据所求结果可知,需要将已知等式两边平方,构成完全平方公式,再变形求解.【解答】解:∵a﹣b=3,∴(a﹣b)2=32,即a2+b2﹣2ab=9,∵ab=2,∴a2+b2﹣4=9,∴a2+b2=13.故选:A.【点评】本题要熟记有关完全平方的几个变形公式,考查对完全平方公式的变形应用能力.11.已知直角三角形的两条边的长为3和4,则第三条边的长为()A.5B.4C.D.5或【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:设第三边为x(1)若4是直角边,则第三边x是斜边,由勾股定理,得32+42=x2,所以x=5.(2)若4是斜边,则第三边x为直角边,由勾股定理,得32+x2=42,所以x=,所以第三边的长为5或.故选:D.【点评】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.12.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度hcm,则h的取值范围是()A.h≤17cm B.h≥8cmC.15cm≤h≤16cm D.7cm≤h≤16cm【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【解答】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB==17,∴此时h=24﹣17=7cm,所以h的取值范围是7cm≤h≤16cm.故选:D.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.二、填空(每题3分,共18分)13.的算术平方根是.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵的平方为,∴的算术平方根为.故答案为.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.14.计算:35a7b3c÷7a4bc=5a3b2.【分析】根据单项式除以单项式的法则计算即可.【解答】解:35a7b3c÷7a4bc=5a3b2.故答案为:5a3b2.【点评】本题考查了单项式除以单项式的法则:单项式除以单项式,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.15.如图,小方格都是边长为1的正方形,四边形ABCD的面积为12.5,周长是3++3.【分析】直接利用四边形所在正方形面积减去周围三角形面积进而得出答案,再利用勾股定理求四边形周长.【解答】解:四边形ABCD的面积为:5×5﹣×1×2﹣×2×4﹣×3×3﹣×2×3=12.5;AD==,AB==3,BC==;DC==2,故四边形ABCD的周长是:+3++2=3++3.故答案为:12.5;3++3.【点评】此题主要考查了四边形面积求法以及勾股定理,正确应用勾股定理是解题关键.16.的绝对值的相反数是.【分析】根据a的相反数就是﹣a,以及绝对值的性质,正数的绝对值是它的本身,负数的绝对值是它的相反数,0的绝对值是0,即可求解.【解答】解:﹣||=﹣()=.故答案为:.【点评】本题主要考查了相反数与绝对值的性质,是一个基础的题目,需要熟练掌握.17.请你观察,思考下列计算过程:,由此猜想=111 111 111.【分析】观察给出的计算过程,可以看出被开方数中间每增加两位数结果就增加一个1,因为12345678987654321比121多出7个两位数,所以可得结果是111 111 111.【解答】解:∵,∴=111 111 111.故答案为:111 111 111.【点评】本题考查了信息获取能力,先利用已知的计算,认真观察是解决此类问题的关键.18.如图,有一个圆柱,它的高为5cm,底面半径为cm,在点A的一只蚂蚁想吃到点B的食物,爬行的最短路程为13cm.【分析】要求蚂蚁爬行的最短距离,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:将圆柱的侧面展开为矩形,A点在矩形长的中点上,B点在矩形的宽上,矩形长=2πR=2π×=24,根据勾股定理可得AB==13cm,故爬行的最短路程为13cm.故答案为:13cm.【点评】此题考查平面展开﹣最短路径问题,圆柱的侧面展开为矩形,关键是在矩形上找出A和B 两点的位置,“化曲面为平面”,用勾股定理解决.三、计算(共27分,其中19,20每小题5分,21题7分)19.(1)(x+2)2﹣(x﹣2)2(2)(x+y﹣z)(x﹣y+z)【分析】(1)直接使用平方差公式计算;(2)前后两个括号里x的符号相同,y、z的符号相反,可以把含y、z的项看作整体,使用平方差公式,再用完全平方公式展开.【解答】解:(1)原式=[(x+2)+(x﹣2)][(x+2)﹣(x﹣2)]=2x•4=8x;(2)原式=[x+(y﹣z)][x﹣(y﹣z)]=x2﹣(y﹣z)2=x2﹣y2+2yz﹣z2.【点评】本题考查了平方差公式、完全平方公式在整式混合运算中的运用,需要灵活掌握.20.(1)(a+b)(a2﹣ab+b2)(2)【分析】(1)利用立方和公式计算即可;(2)从左向右计算,利用单项式除以单项式计算即可.【解答】解:(1)原式=a3+b3;(2)原式=﹣x2y3z3÷xy=﹣xy2z3.【点评】本题考查了立方和公式、单项式除以单项式.a3+b3=(a+b)(a2﹣ab+b2),单项式相除,把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.21.计算:a×(3a2b)3÷(﹣)×【分析】首先确定运算顺序,然后按照运算法则依次计算.注意乘除是同级运算,按从左往右的顺序进行.【解答】解:a×(3a2b)3÷(﹣)×,=a×27a6b3÷(﹣)×b2,=﹣a2b3.【点评】本题考查的是整式的混合运算,包括同底数幂的乘法和除法、幂的乘方是整式乘除的基础,也是中考直接或间接的考点,所以掌握好此知识点非常重要.在中考时,与此相关的题目并不难求解,多数情况下都以考查应知应会的基本技能为主.四、解答题(每题9分,共27分)22.因式分解(1)(x﹣3)2+18﹣6x(2)4x3+4x2y+xy2【分析】(1)先对多项式进行变形,(x﹣3)2+18﹣6x=(x﹣3)2﹣6(x﹣3),然后再提取公因式即可.(2)先提取公因式x,然后套用因式分解的完全平方公式进行进一步分解即可.【解答】解:(1)(x﹣3)2+18﹣6x=(x﹣3)2﹣6(x﹣3)=(x﹣3)2﹣6(x﹣3)=(x﹣3)(x﹣9).(2)4x3+4x2y+xy2=x(4x2+4xy+y2)=x(2x+y)2.【点评】本题考查了用公式法进行因式分解的能力,进行因式分解时,若一个多项式有公因式首先提取公因式,然后再套用公式进行因式分解,同时因式分解要彻底,直到不能分解为止.23.已知:一个正数的两个平方根分别是2m﹣1和4﹣3m,试求5m﹣42的立方根.【分析】根据平方根的定义先求出m的值,然后代入5m﹣42求出其立方根即可.【解答】解:根据平方根的定义,2m﹣1+4﹣3m=0,解得:m=3,∴5m﹣42=﹣27.由立方根的定义得出:﹣27的立方根为﹣3.【点评】本题考查了立方根及平方根的知识,难度不大,关键是求出m的值.24.化简求值:[(x﹣y)2+(x+y)(x﹣y)]÷2x,其中x=3,y=﹣1.【分析】原式中括号中第一项利用完全平方公式展开,第二项利用平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=(x2﹣2xy+y2+x2﹣y2)÷2x=(2x2﹣2xy)÷2x=x﹣y,当x=3,y=﹣1时,原式=3﹣(﹣1)=3+1=4.【点评】此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.五、解答题(每题9分,共18分)25.如图,有一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A 重合,折痕为DE,求CD的长.【分析】由翻折易得DB=AD,利用直角三角形ACD,勾股定理即可求得CD长.【解答】解:由题意得DB=AD;设CD=xcm,则AD=DB=(8﹣x)cm,∵∠C=90°,∴在Rt△ACD中,根据勾股定理得:AD2﹣CD2=AC2,即(8﹣x)2﹣x2=36,解得x=;即CD=cm.【点评】翻折前后对应边相等,利用勾股定理求解即可.26.如图,四边形ABCD中,AD=3,AB=4,BC=12,CD=13,∠BAD=90°,(1)试说明:BD⊥BC;(2)计算四边形ABCD的面积.【分析】(1)先根据勾股定理求出BD的长度,然后根据勾股定理的逆定理,即可证明BD⊥BC;(2)根据两个直角三角形的面积即可求解.【解答】解:(1)∵AD=3,AB=4,∠BAD=90°,∴BD=5.又BC=12,CD=13,∴BD2+BC2=CD2.∴BD⊥BC.(2)四边形ABCD的面积=△ABD的面积+△BCD的面积=6+30=36.【点评】综合运用了勾股定理及其逆定理,是基础知识比较简单.六、解答题(每题12分,共24分)27.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;并写出你所画三角形的三边长3,4,5(答案不唯一).(2)在图2中,画一个等腰三角形,使它的一条边长为2,另两边长为无理数;并写出你所画的三角形的三边长,,2(答案不唯一).写出每题的计算过程【分析】(1)从常见的图形入手,譬如三边长为3,4,5的直角三角形;(2)三边均为无理数,2只能为底,2是直角边长为2,2的直角三角形的斜边长,三角形的第三个点在底边的垂直平分线上,画出其余两腰为无理数即可.【解答】解:(1)如图1所示:∵AB=3,BC=4,∴AC==5,故答案为:3,4,5(答案不唯一);(2)如图2所示:DF=DE==,EF==2,故答案为:,,2(答案不唯一).【点评】此题考查了作图﹣应用与设计作图,已知三角形的底边,注意利用等腰三角形三线合一性质得到三角形的两腰的交点28.如图,在矩形ABCD中,AB=5cm,在边CD上适当选定一点E,沿直线AE把△ADE折叠,使点D恰好落在边BC上一点F处,且量得BF=12cm.求:(1)AD的长;(2)DE的长.【分析】(1)根据折叠的性质,AD=AF.在△ABF中根据勾股定理易求AF得解;(2)AB=CD,DE=EF.设DE=x,则EC=5﹣x.由AD、BF的长可求FC的长.在△CEF中,运用勾股定理求解.【解答】解:(1)∵∠B=90°,∴AF==13(cm).∵∠C=90°,AD、AF关于AE轴对称,∴AD=AF=13cm.(2)由已知及对称性可得BC=AD=13cm,CD=AB=5cm,DE=EF.∴CF=BC﹣BF=1cm.设DE=EF=xcm,则CE=(5﹣x)cm,由勾股定理得:CE2+CF2=EF2∴(5﹣x)2+12=x2解得x=2.6.∴DE=2.6cm.【点评】此题通过折叠变换考查了勾股定理的应用.解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后边相等.。
2019-2020学年山东省潍坊市潍城区八年级(上)期中数学试卷 解析版
2019-2020学年山东省潍坊市潍城区八年级(上)期中数学试卷一、选择题(本大题共12小题,共36分在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分)1.(3分)下面是“北”“比”“鼎”“射”四个字的甲骨文,其中不是轴对称图形的是()A.B.C.D.2.(3分)下列代数式中,属于分式的是()A.﹣3B.C.D.3.(3分)与点A(﹣4,2)关于y轴成轴对称的点的坐标是()A.(4,2)B.(﹣4,﹣2)C.(﹣2,﹣4)D.(4,﹣2)4.(3分)若分式的值为0,则x的值为()A.0B.1C.﹣1D.±15.(3分)下列各式,从左到右变形正确的是()A.B.C.D.=a﹣b6.(3分)学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下:姓名读听写小莹928090若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为()A.86B.87C.88D.897.(3分)如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E.△ABC的周长为19,△ACE的周长为13,则AB的长为()A.3B.6C.12D.168.(3分)解分式方程+=1时,去分母变形后正确的是()A.2﹣(x+2)=1B.2﹣x+2=x﹣1C.2﹣(x+2)=x﹣1D.2+(x+2)=x﹣19.(3分)如图,BM是∠ABC的平分线,点D是BM上一点,点P为直线BC上的一个动点.若△ABD的面积为9,AB=6,则线段DP的长不可能是()A.2B.3C.4D.5.510.(3分)暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x套,由题意列方程正确的是()A.B.C.D.11.(3分)如图,在△ABC中,点D是AB边上的一点,若AC=DC=DB,∠ACB=102°,则∠B的度数是()A.24°B.26°C.28°D.30°12.(3分)如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于CD的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE③连接OE交CD于点M.下列结论中不一定正确的是A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S四边形OCED=CD•OE二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.(3分)若2a=3b,则a:b=.14.(3分)一组数据:1,﹣1,3,x,4,它有唯一的众数是4,则这组数据的中位数是.15.(3分)如图,在△ABC中,∠C=90°,取AC边上一点E,将△ABC沿BE折叠,若点C恰好落在AB的中点D上,则∠A的度数是.16.(3分)已知x:y:z=1:2:3,则=.17.(3分)如图,△ABC中,AB=8,AC=6,∠ABC与∠ACB的平分线交于点F,过点F 作DE∥BC,分别交AB、AC于点D、E,则△ADE的周长为.18.(3分)分式方程=有增根,则m的值为.三、解答题(本题共7小题,共66分解答应写出文字说明、证明过程或推演步骤)19.(12分)计算:(1);(2);(3)先化简再求值:(1),其中x是﹣2,1,2中的一个数值.20.(8分)解方程:(1)=2;(2)+1=0.21.(8分)如图所示,由边长相等的小正方形组成的网格中,△ABC的顶点都在格点上,按下列要求分别作图:(1)在网格中作出△ABC关于直线EF成轴对称的△A'B'C';(2)在直线MN上找一点P,使P A+PB的值最小(不写作法,保留作图痕迹).22.(8分)山青养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,统计了它们的质量(单位:kg),并绘制出如下的统计图1和图2.请根据以上信息解答下列问题:(1)图1中m的值为;(2)统计的这组数据的众数是;中位数是;(3)求出这组数据的平均数,并估计这2500只鸡的总质量约为多少kg?23.(9分)如图,在△ABC中,点D是边BC上的一点,点E是边AC上的一点,且AB=AC=DC,BD=CE,连接AD、DE.(1)求证:△ADE是等腰三角形;(2)若∠ADE=40°,请求出∠BAC的度数.24.(9分)某新建火车站站前广场需要绿化的面积为46000m2,施工队在绿化了22000m2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.该项绿化工程原计划每天完成多少m2?25.(12分)已知等边△ABC,D是BC上一点,E是平面上一点,且DE=AD,∠ADE=60°,连接CE.(1)当点D是线段BC的中点时,如图1.判断线段BD与CE的数量关系,并说明理由;(2)当点D是线段BC上任意一点时,如图2.请找出线段AB,CE,CD三者之间的数量关系,并说明理由;(3)当点D在线段BC的延长线上时,如图3,若△ABC边长为6,设CD=x,则线段CE=(用含x的代数式表示).2019-2020学年山东省潍坊市潍城区八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,共36分在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分)1.(3分)下面是“北”“比”“鼎”“射”四个字的甲骨文,其中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项不合题意.故选:B.2.(3分)下列代数式中,属于分式的是()A.﹣3B.C.D.【分析】根据分式的定义即可求出答案.【解答】解:是分式;故选:D.3.(3分)与点A(﹣4,2)关于y轴成轴对称的点的坐标是()A.(4,2)B.(﹣4,﹣2)C.(﹣2,﹣4)D.(4,﹣2)【分析】利用“关于y轴对称的点,纵坐标相同,横坐标互为相反数”即可得解.【解答】解:与点A(﹣4,2)关于y轴成轴对称的点的坐标是(4,2),故选:A.4.(3分)若分式的值为0,则x的值为()A.0B.1C.﹣1D.±1【分析】直接利用分式的值为0,则分子为0,进而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,且x﹣1≠0,解得:x=﹣1.故选:C.5.(3分)下列各式,从左到右变形正确的是()A.B.C.D.=a﹣b【分析】根据分式的基本性质,依次分析各个选项,选出正确的选项即可.【解答】解:A.分式的分子和分母同时加上一个数,与原分式不相等,即A项不合题意,B.=,即B项不合题意,C.=﹣,即C项不合题意,D.==ab,即D项符合题意,故选:D.6.(3分)学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下:姓名读听写小莹928090若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为()A.86B.87C.88D.89【分析】利用加权平均数按照比例求得小莹的个人总分即可.【解答】解:根据题意得:=88(分),答:小莹的个人总分为88分;故选:C.7.(3分)如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E.△ABC的周长为19,△ACE的周长为13,则AB的长为()A.3B.6C.12D.16【分析】根据线段垂直平分线的性质和等腰三角形的性质即可得到结论.【解答】解:∵AB的垂直平分线交AB于点D,∴AE=BE,∵△ACE的周长=AC+AE+CE=AC+BC=13,△ABC的周长=AC+BC+AB=19,∴AB=△ABC的周长﹣△ACE的周长=19﹣13=6,故选:B.8.(3分)解分式方程+=1时,去分母变形后正确的是()A.2﹣(x+2)=1B.2﹣x+2=x﹣1C.2﹣(x+2)=x﹣1D.2+(x+2)=x﹣1【分析】分式方程变形后,乘以x﹣1去分母得到结果,即可作出判断.【解答】解:分式方程两边同乘(x﹣1),去分母得:2﹣(x+2)=x﹣1,故选:C.9.(3分)如图,BM是∠ABC的平分线,点D是BM上一点,点P为直线BC上的一个动点.若△ABD的面积为9,AB=6,则线段DP的长不可能是()A.2B.3C.4D.5.5【分析】根据三角形的面积得出DE的长,进而利用角平分线的性质解答即可.【解答】解:过点D作DE⊥AB于E,DF⊥BC于F,∵△ABD的面积为9,AB=6,∴DE=,∵BM是∠ABC的平分线,∴DE=3,∴DP≥3,故选:A.10.(3分)暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x套,由题意列方程正确的是()A.B.C.D.【分析】根据第一次进书的总钱数÷第一次购进套数=第二次进书的总钱数÷第二次购进套数列方程可得.【解答】解:若设书店第一次购进该科幻小说x套,由题意列方程正确的是,故选:C.11.(3分)如图,在△ABC中,点D是AB边上的一点,若AC=DC=DB,∠ACB=102°,则∠B的度数是()A.24°B.26°C.28°D.30°【分析】根据边相等的角相等,用∠B表示出∠CDA,然后就可以表示出∠ACB,求解方程即可.【解答】解:设∠B=x∵AC=DC=DB∴∠CAD=∠CDA=2x∴∠ACB=(180°﹣4x)+x=102°解得x=26°.∴∠B=26°,故选:B.12.(3分)如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于CD的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE③连接OE交CD于点M.下列结论中不一定正确的是A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S四边形OCED=CD•OE【分析】利用基本作图得出角平分线的作图,进而解答即可.【解答】解:由作图步骤可得:OE是∠AOB的角平分线,∴∠CEO=∠DEO,CM=MD,S四边形OCED=CD•OE,但不能得出∠OCD=∠ECD,故选:C.二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.(3分)若2a=3b,则a:b=3:2.【分析】根据比例的性质,两内项之积等于两外项之积整理即可.【解答】解:∵2a=3b,∴a:b=3:2.故答案为:3:2.14.(3分)一组数据:1,﹣1,3,x,4,它有唯一的众数是4,则这组数据的中位数是3.【分析】先根据数据:1,﹣1,3,x,4,有唯一的众数是4,求得x的值,再根据中位数的定义即可求解.【解答】解:数据:1,﹣1,3,x,4有唯一的众数是4,∴x=4,∴这组数据按大小排序后为:﹣1,1,3,4,4,∴这组数据的中位数为3.故答案为:3.15.(3分)如图,在△ABC中,∠C=90°,取AC边上一点E,将△ABC沿BE折叠,若点C恰好落在AB的中点D上,则∠A的度数是30°.【分析】根据题意可知∠CBE=∠DBE,DE⊥AB,点D为AB的中点,由线段垂直平分线的性质得出EA=EB,得出∠EAD=∠DBE,根据三角形内角和定理列出算式,计算得到答案.【解答】解:由折叠的性质可知:∠CBE=∠DBE,∠BDE=∠C=90°,∴DE⊥AB,∵点D为AB的中点,∴EA=EB,∴∠EAD=∠DBE,∴∠CBE=∠DBE=∠EAD,∠CBE+∠DBE+∠EAD=90°,∠A=30°,故答案为:30°.16.(3分)已知x:y:z=1:2:3,则=.【分析】根据x:y:z=1:2:3,可以得出y=2x,z=3x代入所求式子,即可求解.【解答】解:∵x:y:z=1:2:3,∴y=2x,z=3x,∴==;故答案为:.17.(3分)如图,△ABC中,AB=8,AC=6,∠ABC与∠ACB的平分线交于点F,过点F 作DE∥BC,分别交AB、AC于点D、E,则△ADE的周长为14.【分析】先根据角平分线的定义及平行线的性质证明△BDF和△CEF是等腰三角形,再由等腰三角形的性质得BD=DF,CE=EF,则△ADE的周长=AB+AC=14.【解答】解:∵BF平分∠ABC,∴∠DBF=∠CBF,∵DE∥BC,∴∠CBF=∠DFB,∴∠DBF=∠DFB,∴BD=DF,同理FE=EC,∴△AED的周长=AD+AE+ED=AB+AC=8+6=14.故答案为:14.18.(3分)分式方程=有增根,则m的值为3.【分析】方程两边都乘以最简公分母(x﹣1)(x+2)把分式方程化为整式方程,再根据分式方程的增根是使最简公分母等于0的未知数的值,求出增根,然后代入进行计算即可得解.【解答】解:方程两边都乘以(x﹣1)(x+2)得,x(x+2)﹣(x﹣1)(x+2)=m,x2+2x﹣x2﹣x+2=m,m=x+2,∵分式方程有增根,∴(x﹣1)(x+2)=0,∴x﹣1=0,x+2=0,解得x1=1,x2=﹣2,当x1=1时,m=x+2=1+2=3,此时原方程化为﹣1=,方程确实有增根,当x2=﹣2时,m=x+2=﹣2+2=0,此时原方程化为﹣1=0,所以x﹣(x﹣1)=0,此方程无解,所以m=0不符合题意,所以m的值为3.故答案为:3.三、解答题(本题共7小题,共66分解答应写出文字说明、证明过程或推演步骤)19.(12分)计算:(1);(2);(3)先化简再求值:(1),其中x是﹣2,1,2中的一个数值.【分析】(1)先约分,再相加即可求解;(2)先因式分解,将除法变为乘法约分,再通分,相减即可求解;(3)先计算括号里面的减法,再因式分解,将除法变为乘法约分化简,再把x=2代入计算即可求解.【解答】解:(1)=+==1;(2)=﹣×=﹣==;(3)(1)=×=x﹣1,∵x+2≠0,x﹣1≠0,∴x≠﹣2,x≠1,当x=2时,原式=2﹣1=1.20.(8分)解方程:(1)=2;(2)+1=0.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得到:10﹣5=4x﹣2,解得:x=,经检验x=是分式方程的解;(2)去分母得:16﹣(x+2)2+x2﹣4=0,解得:x=2,经检验x=2是增根,分式方程无解.21.(8分)如图所示,由边长相等的小正方形组成的网格中,△ABC的顶点都在格点上,按下列要求分别作图:(1)在网格中作出△ABC关于直线EF成轴对称的△A'B'C';(2)在直线MN上找一点P,使P A+PB的值最小(不写作法,保留作图痕迹).【分析】(1)首先确定A、B、C三点关于EF轴对称的对称点位置,再连接即可;(2)连接BA″与MN相交得出点P即可.【解答】解:(1)如图所示:△A'B'C'即为所求(2)如图所示:点P即为所求.22.(8分)山青养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,统计了它们的质量(单位:kg),并绘制出如下的统计图1和图2.请根据以上信息解答下列问题:(1)图1中m的值为28;(2)统计的这组数据的众数是 1.8kg;中位数是 1.5kg;(3)求出这组数据的平均数,并估计这2500只鸡的总质量约为多少kg?【分析】(1)根据各种质量的百分比之和为1可得m的值;(2)根据众数、中位数、加权平均数的定义计算即可;(3)根据平均数的计算公式求出这组数据的平均数,再乘以总只数即可得出鸡的总质量.【解答】解:(1)图①中m的值为100﹣(32+8+10+22)=28,故答案为:28;(2)∵1.8kg出现的次数最多,∴众数为1.8kg,把这些数从小到大排列,则中位数为=1.5(kg);故答案为:1.8kg,1.5kg;(3)这组数据的平均数是:×(5×1+11×1.2+14×1.5+16×1.8+4×2)=(5+13.2+21+28.8+8)=1.52(kg)2500只鸡的总质量约为:1.52×2500=3800(kg),所以这组数据的平均数是1.52kg,2500只鸡的总质量约为3800kg.23.(9分)如图,在△ABC中,点D是边BC上的一点,点E是边AC上的一点,且AB=AC=DC,BD=CE,连接AD、DE.(1)求证:△ADE是等腰三角形;(2)若∠ADE=40°,请求出∠BAC的度数.【分析】(1)由“SAS”可证△ABD≌△DCE,可得AD=AE,即△ADE是等腰三角形;(2)由全等三角形的性质可得∠BAD=∠EDC,由三角形内角和定理可求解.【解答】证明:(1)∵AB=AC,∴∠B=∠C,在△ABD和△DCE中.∴△ABD≌△DCE(SAS),∴AD=DE∴△ADE是等腰三角形;(2)∵△ABD≌△DCE,∴∠BAD=∠EDC,∴∠BAD+∠BDA=∠BDA+∠EDC=180°﹣∠ADE=140°,∴在△ABD中,∠B=180°﹣140°=40°,∴∠C=∠B=40°,∴∠BAC=180°﹣40°﹣40°=100°.24.(9分)某新建火车站站前广场需要绿化的面积为46000m2,施工队在绿化了22000m2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.该项绿化工程原计划每天完成多少m2?【分析】可设该项绿化工程原计划每天完成x米2,利用原工作时间﹣现工作时间=4这一等量关系列出分式方程求解即可【解答】解:设该项绿化工程原计划每天完成x米2,根据题意得:﹣=4,解得:x=2000,经检验,x=2000是原方程的解.答:该绿化项目原计划每天完成2000平方米.25.(12分)已知等边△ABC,D是BC上一点,E是平面上一点,且DE=AD,∠ADE=60°,连接CE.(1)当点D是线段BC的中点时,如图1.判断线段BD与CE的数量关系,并说明理由;(2)当点D是线段BC上任意一点时,如图2.请找出线段AB,CE,CD三者之间的数量关系,并说明理由;(3)当点D在线段BC的延长线上时,如图3,若△ABC边长为6,设CD=x,则线段CE=x+6(用含x的代数式表示).【分析】(1)连接AE,根据等边三角形的判定定理得到△ADE是等边三角形,根据等腰三角形的性质得到AD平分∠BAC,得到AC垂直平分DE,根据线段垂直平分线的定义证明结论;(2)连接AE,证明△ABD≌△ACE,根据全等三角形的对应边相等解答;(3)连接AE,证明△ABD≌△ACE,根据全等三角形的对应边相等得到BD=CE,代入计算得到答案.【解答】解:(1)BD=CE,证明:如图1,连接AE,∵DE=AD,∠ADE=60°,∴△ADE是等边三角形,∴∠DAE=60°,∵△ABC是等边三角形,D是BC的中点,∴AD平分∠BAC,∴∠DAC=30°,∵∠DAE=60°,∴AC平分∠DAE,∵△ADE是等边三角形,∴AC垂直平分DE,∴CE=CD,∵BD=CD,∴CE=BD;(2)AB=CE+CD,证明:如图2,连接AE,∵DE=AD,∠ADE=60°,∴△ADE是等边三角形,∴AD=AE,∠DAE=60°,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS)∴BD=CE,∴AB=BC=BD+CD=CE+CD;(3)如图3,连接AE,∵DE=AD,∠ADE=60°,∴△ADE是等边三角形,∴AD=AE,∠DAE=60°,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS)∴BD=CE,∴CE=BD=BC+CD=x+6,故答案为:x+6.。
2019-2020年八年级数学上学期期中学业质量检测试题答案
2019-2020年八年级数学上学期期中学业质量检测试题答案一、选择题(每小题3分,共30分)C B A B A CD D A D二、填空(每小题4分,共16分)11.5 12.1,3 13.(-2,-5)14.三、解答题(共54分)15.(每小题4分,共16分)(1)解:原式……………………3分;……………………1分(2)解:原式= ……………………3分=;……………………1分(3)解:原式……………………3分;……………………1分(4)解:原式……………………3分;……………………1分16. (每小题5分,共10分)(1)解:①-②得:③……………………3分将代入②,得……………………1分原方程组的解为:……………………1分(2)解:由①得……………………1分代入②,得……………………2分将代入①,得……………………1分原方程组的解为:……………………1分17.(6分)解:方程组消去n得,4x+3y=3,……………………2分联立得:,解得:,……………………2分把x=-15,y=21代入方程组,n=-4.……………………2分18.(共6分)……………………3分(1)做图,每个点1分……………………3分(2)19.(共8分)解:设该列车一等车厢有x节,二等车厢有y节.……………………1分由题意,得,……………………3分解得. ……………………3分答:该列车一等车厢有2节,二等车厢有4节. ……………………1分20.(共8分)解:连接AC∵∠ABC=90°,AB=8,BC=6,∴AC,……………………2分在△ACD 中,∵=676576100241022=+=+……………………1分……………………1分 ∴……………………1分 ∴△ACD 是直角三角形,……………………1分 ∴AC AD BC AB S ABCD ⋅+⋅=2121四边形……………………1分 即四边形ABCD 的面积为144……………………1分B 卷(50分)一、填空题(每小题4分,共30分)21.27 22. 23. 24. 25. 12二、解答题(共30分)26.(每小题5分,共10分)(1)解:……………………2分 原式……………………2分……………………1分 (2) 解:由已知方程组含有z 的项看作常数项,整理得, 解得, 13{ 23x z y z ==, ……………………3分 代入原式=2222112321633351233z z z z z z ⎛⎫⨯+⨯⨯+ ⎪⎝⎭=⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭. ……………………2分27.(共10分)(1)解:设购买1台电脑和1台打印机各需X 元,Y 元。
2019-2020学年八年级数学上学期期中原创卷A卷(山东)(全解全析)
2019–2020 学年上学期期中原创卷A 卷八年级数学·全解全析1.【答案】B【解析】A 不是轴对称图形,故错误;B、是轴对称图形,故正确;C、不是轴对称图形,故错误;D、不是轴对称图形,故错误.故选B.2.【答案】C【解析】根据三角形的三边关系,知A、2+2=4,不能组成三角形;B、3+2=5<6,不能组成三角形;C、3+6>8,能够组成三角形;D、4+6<11,不能组成三角形.故选C.3.【答案】D【解析】由图可得,线段BD 是△ABC 的高的图是D 选项.故选D.4.【答案】A【解析】因为以a,b,c 为边的三角形满足(a–b)(b–c)=0,所以a–b=0 或b–c=0,得到a=b 或b=c,所以三角形一定为等腰三角形,故选A.5.【答案】A【解析】点P(m,n)关于y 轴对称点的坐标P′(–m,n),所以点P(1,2)关于y 轴对称的点的坐标为(–1,2).故选A.6.【答案】C【解析】设这个多边形的边数为n,由n 边形的内角和等于180°(n–2),即可得方程180(n–2)=1080,解此方程即可求得答案:n=8.故选C.7.【答案】B【解析】①若 3 是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3 是底,则腰是6,6.3+6>6,符合条件.成立.∴这个等腰三角形的周长为3+6+6=15.故选B.8.【答案】D【解析】∵图中的两个三角形全等,∴∠α=50°,故选D.9.【答案】A【解析】∵108÷12=9,∴小林从P 点出发又回到点P 正好走了一个9 边形,∴α=360°÷9=40°.故选A.10.【答案】C【解析】∵∠ABC 和∠ACB 的平分线相交于点F,∴∠DBF=∠FBC,∠ECF=∠BCF,∵DF∥BC,交AB 于点D,交AC 于点E.∴∠DFB=∠DBF,∠CFE=∠BCF,∴BD=DF=4,FE=CE,∴CE=DE–DF=9–4=5.故选C.11.【答案】A【解析】∵AB=CD,∴AC=DB,又AE=DF,∠A=∠D,∴△AEC≌△DFB,故选A.12.【答案】B【解析】∵点P 关于OA 的对称点Q 恰好落在线段MN 上,∴OA 垂直平分PQ,∴QM=PM=3cm,∴ QN=MN–QM=4.5cm–3cm=1.5cm,∵点P关于OB的对称点R落在MN的延长线上,∴OB垂直平分PR,∴RN=PN=4cm,∴QR=QN+RN=1.5cm+4cm=5.5cm.故选B.13.【答案】三角形的稳定性;不稳定性【解析】造房子时,屋顶常用三角形结构,从数学角度来看,是应用了三角形的稳定性,而活动挂架则用了四边形的不稳定性.故答案为:三角形的稳定性,不稳定性.14.【答案】80【解析】∵等腰三角形底角相等,∴180°–50°×2=80°,∴顶角为80°.故答案为:80°.15.【答案】4cm【解析】∵OC 平分∠AOB,D 为OC 上任一点,且DE⊥OB,DE=4cm,∴D 到OA 的距离等于DE 的长,即为4cm.故答案为:4cm.16.【答案】151【解析】∵AB=AC,∠A=50°,∴∠ACB=∠ABC=(180°–50°)=65°.∵将△ABC 折叠,使点A 落在2点B 处,折痕为DE,∠A=50°,∴∠ABE=∠A=50°.∴∠CBE=∠ABC–∠ABE=65°–50°=15°.故答案为:15°.17.【答案】一定【解析】在Rt△ABE 和Rt△DCF 中,∵AB=CD,BE=CF,∴Rt△ABE≌Rt△DCF,故答案为:一定.18.【答案】33【解析】连接OA,∵OB、OC 分别平分∠ABC 和∠ACB,∴点O 到AB、AC、BC 的距离都相等,⎨ ⎩⎪ 1 ∵△ABC 的周长是 22,OD ⊥BC 于 D ,且 OD =3,∴S △ABC =2×22×3=33.故答案为:33.19.【解析】∵∠B =35°,∠C =65°,∴∠BAC =180°–∠B –∠C =180°–35°–65°=80°.1∵AE 为∠BAC 的平分线,∴∠EAC = 2∵AD ⊥BC ,∴∠ADC =90°,1 ∠BAC = 2×80°=40°.(2 分)在△ADC 中,∠DAC =180°–∠ADC –∠C =180°–90°–65°=25°,(4 分)∴∠DAE =∠EAC –∠DAC =40°–25°=15°.(6 分)20.【解析】∵DA 平分∠EDC ,∴∠ADE =∠ADC ,⎧DE =DC在△AED 和△ACD 中, ∠ADE =∠ADC ,(4 分) ⎪ AD =AD ∴△AED ≌△ACD (SAS ).(6 分)21.【解析】(1)∵∠1=∠2,∴∠BAN =∠CAM ,又∵AB =AC ,AN =AM ,∴△ABN ≌△ACM (SAS ),∴∠M =∠N ,(3 分)(2)∵△ABN ≌△ACM ,∴∠B =∠C , 又∵AB =AC ,∠1=∠2,∴△ABD ≌△ACE (ASA ),∴BD =CE .(6 分)22. 【解析】如图,(5 分)A 1(–3,4),B 1(–1,2),C 1(–5,1).(8 分)23. 【解析】如图,⎨ ⎩⎪∵AC ∥DE ,∠E =50°,∠D =75°,∴∠ACB =∠E =50°,∠1=∠D =75°,(4 分)又∵∠ABC =70°,∴∠A =180°–∠ABC –∠ACB =180°–70°–50°=60°,(6 分)∠ABD =∠1–∠A =75°–60°=15°,∴∠A =60°,∠ABD =15°.(8 分)24. 【解析】(1)如图,点 M 为所作;(5 分)(2)∵AB 的垂直平分线交 AC 于 M ,∴AM =BM ,∴∠ABM =∠A =40°,∴∠CMB =∠ABM +∠A =80°.(10 分)25. 【解析】(1)∵△ABE ≌△ACD ,∴BE =CD ,∠BAE =∠CAD ,又∵BE =6,DE =2,∴EC =DC –DE =BE –DE =4,∴BC =BE +EC =10;(5 分)(2)∠CAD =∠BAC –∠BAD =75°–30°=45°,∴∠BAE =∠CAD =45°,∴∠DAE =∠BAE –∠BAD =45°–30°=15°.(10 分)26. 【解析】∵CE ⊥AN ,BD ⊥AN ,∴∠AEC =∠BDA =90°,∴∠BAD +∠ABD =90°,(2 分)∵∠BAC =90°,即∠BAD +∠CAE =90°,∴∠ABD =∠CAE ,(4 分)⎧∠ABD =∠CAE在△ABD 和△CAE 中, ∠ADB =∠CEA ,⎪ AB =CA⎨⎨ ⎩⎩⎪ ∴△ABD ≌△CAE (AAS ),(10 分)∴AD =CE ,BD =AE ,∴BD –CE =AE –AD =DE .(12 分)27. 【解析】(1)设 AD =x ,则 BD =4–x ,BF =4+x .当 DF ⊥AB 时,∵∠B =60°,∴∠DFB =30°,∴BF =2BD ,即 4+x =2(4–x ), 4 解得 x = 34 ,故 t = 3;(2 分)(2) DG =GF 始终成立,理由如下:(3 分)如图 1,过点 D 作 DH ∥BC 交 AC 于点 H ,则∠DHG =∠FCG .∵△ABC 是等边三角形,∴△ADH 是等边三角形,∴AD =DH .又 AD =CF ,∴DH =FC .(5 分)⎧∠DGH =∠FGC∵在△DHG 与△FCG 中, ∠DHG =∠FCG, ⎪ DH =FC∴△DHG ≌△FCG (AAS ),∴DG =GF ;(8 分)(3) 如图 2,过点 F 作 FH ⊥AC ,⎧∠AED =∠FHC =90︒ 在△ADE 和△CFH 中, ⎪∠A =∠FCH, ⎪ AD =CF ∴△ADE ≌△CFH (AAS ),∴DE =FH ,AE =CH ,∴AC =EH ,(10 分)⎨ ⎩ ⎧∠DEG =∠FHG 在△GDE 和△GFH 中, ⎪∠DGE =∠FGH ∴△GDE ≌△GFH (AAS ),⎪DE =FH 1 ∴EG =GH ,∴EG = 2 1 EH = 2AC .(12 分)。
2019-2020学年八年级上期中数学试题(有答案)
2019-2020学年度第一学期初二数学期中试卷(卷面分值:100分,考试时长:120分钟)一.选择题(3分×10=30分)1.如图,羊字象征吉祥和美满,下图的图案与羊有关,其中是轴对称的有() A .1个 B .2个 C .3个 D .4个2.下列线段能构成三角形的是( )A .2,2,4B .3,4,5C .1,2,3D .2,3,6 3如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A. B. C. D.4.在△ABC ,AB=AC,若AB 边上的高CD 与底边BC 所夹得角为30°,且BD=3,则△ABC 的周长为( )A.18B.9C.6D.4.55.已知点M (3,a )和N(b,4)关于x 轴对称,则(a+b )2015的值为( )A.1B.-1C.72015D.-72015如图,在△ABC 内有一点D ,且DA =DB =DC ,若∠DAB =25°,∠DAC =35°,则∠BDC 的度数为( )A .100°B .80°C .120°D .50°7.如图,∠EAF=20°,AB=BC=CD=DE=EF ,则∠DEF 等于( )A 、90°B 、 20°C 、70°D 、 60°第6题 第7题 第8题8.如图,AB=AC ,∠BAC=110°,AB 的垂直平分线交BC 于点D ,那么∠DAC 的度数为( )A.90°B.80°C.75°D.60°9.已知,如图,△ABC 中,AB=AC ,AD 是角平分线,BE=CF ,则下列说法正确的有几个 ( )(1)AD 平分∠EDF ;(2)△EBD ≌△FCD ; (3)BD=CD ;(4)AD ⊥BC .(A )1个 (B )2个 (C )3个 (D )4个10.如图,直线a 、b 、c 表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A 、一处B 、两处C 、三处D 、四处F ED C B A第9题第10题第12题二.填空题(3分×6=18分)11.一个八边形的内角和是.12.如图,△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,那么点M到线段AB的距离是. 13.如果等腰三角形的一个角为50°,那么它的顶角为.14.如图,在△ABC中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角形对.15.如图,AB∥CD,O是∠BAC和∠ACD的平分线的交点,OE⊥AC与E,OE=3,则AB与CD之间的距离为.16.如图,∠A=75°,∠B=65°,将纸片的一角折叠,使点C•落在△ABC外,若∠2=35°,则∠1的度数为度.14题15题16题三.解答题(共52分)17.(6分)如图,已知点A、E、F、C在同一直线上,∠1=∠2,AE=CF,AD=CB.请你判断BE和DF的关系,并证明你的结论.18.(6分)在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)将△ABC沿y轴正方向平移2个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.19. (6分)求证:如果三角形一个外角的平行线平行于三角形的一边,那么这个三角形是等腰三角形。
2019-2020学年八年级上学期期中测试数学试卷(解析版)
2019-2020学年八年级上学期期中测试数学试卷一、选择题:(每小题4分,共60分)1.(4分)的值等于()A.3B.﹣3C.±3D.2.(4分)在﹣,﹣1.414,﹣5,3.212112111,2+,,,中,无理数的个数是()A.1个B.2个C.3个D.4个3.(4分)下列说法中:①+1在3和4之间;②二次根式中x的取值范围是x≥1;③的平方根是3;④﹣=﹣5;⑤=﹣3.正确的有()A.1个B.2个C.3个D.4个4.(4分)下列各式计算正确的是()A.+=B.2+=2C.3﹣=2D.=﹣5.(4分)若+|b+2|=0,则点M(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限6.(4分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)7.(4分)在平面直角坐标系中,点A关于x轴的对称点是点B,点B关于y轴的对称点是点C,若点C的坐标是(﹣2,3),则点A的坐标为()A.(﹣2,3)B.(﹣2,﹣3)C.(2,﹣3)D.(2,3)8.(4分)若函数y=(m﹣1)x|m|﹣5是一次函数,则m的值为()A.±1B.﹣1C.1D.29.(4分)下列关于一次函数y=﹣2x+4的说法错误的是()A.y随x的增大而减小B.直线不经过第三象限C.向下平移三个单位得直线y=﹣2x+1D.与x轴交点坐标为(0,4)10.(4分)已知直线y=﹣0.5x+b与直线y=x相交于(2,m),则b的值为()A.2B.3C.﹣0.5D.﹣211.(4分)甲乙两人同时沿着一条笔直的公路朝同一方向前行,开始时,乙在甲前2千米处,甲、乙两人行走的路程y(千米)与时间x(时)的函数图象如图所示,下列说法正确的是()①乙的速度为4千米/时②经过1小时,甲追上乙;③经过0.5小时,乙行走的路程约为2千米;④经过1.5小时,乙在甲的前面.A.①②③B.①②C.②③D.②12.(4分)两个一次函数y1=ax+b与y2=bx+a,它们在一直角坐标系中的图象可能是()A.B.C.D.13.(4分)如果是二元一次方程组的解,那么a,b的值是()A.B.C.D.14.(4分)如果方程组的解中的x与y互为相反数,那么k的值是()A.1B.﹣1C.D.﹣15.(4分)某商家在一次买卖中,同时卖出两只型号不同的计算器,每只都以60元出售,其中一只盈利25%,另一只亏本25%,则在这次买卖中,该商家的盈亏情况是()A.不亏不赚B.赚了8元C.亏了8元D.赚了15元二、填空题(每小题4分,共24分)16.(4分)﹣2的相反数是,绝对值是,倒数是.17.(4分)点A在直线y=2x﹣4上运动,当线段OA最短时,OA的长度为.18.(4分)已知A(﹣2,1),B(3,4),点P在x轴上,若P A与PB的和最小,则点P 的坐标为.19.(4分)一次函数y=kx+b的图象经过点A(1,﹣2)并且与正比例函数y=2x的图象平行,则k=,b=.20.(4分)定义运算“※”,规定x※y=ax2+by,其中a,b为常数,且1※2=5,2※1=6,则2※3=.21.(4分)已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),规定“把正方形ABCD先关于x轴对称,再向右平移1个单位”为一次交换,如此这样,连续经过2017次变换后,正方形ABCD的顶点D的坐标变为.三、解答题(本大题共7个小题,满分76分)22.(16分)计算:(1)(﹣2)×﹣6(2)(5﹣6+)÷.23.(8分)解下列方程组:(1)(2).24.(8分)观察下列等式(1)=(2)=2(3)=3(4)=4…(1)根据你发现的规律写出第5个等式;(2)根据你发现的规律写出第n个等式;(3)验证(2)等式的正确性.25.(8分)在当地农业技术部门指导下,小明家增加种植菠萝的投资,使今年的菠萝喜获丰收.下面是小明爸爸、妈妈的一段对话.请你用学过的知识帮助小明算出他家今年种植菠萝的投资和收入(收入﹣投资=净赚)26.(8分)小文家与学校相距1000米.某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.下图是小文与家的距离y(米)关于时间x(分钟)的函数图象.请你根据图象中给出的信息,解答下列问题:(1)小文走了多远才返回家拿书?(2)求线段AB所在直线的函数解析式;(3)当x=8分钟时,求小文与家的距离.27.(8分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A (4,2),动点M沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△OMC的面积是△OAC的面积的时,求出这时点M的坐标.28.(9分)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B 品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器超出5个的部分按原价的七折销售,设购买x个A 品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x 的函数关系式;(3)当需要购买50个计算器时,买哪种品牌的计算器更合算?29.(11分)如图,平面直角坐标系中,直线AB:交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D 的上方,设P(1,n).(1)求直线AB的解析式和点B的坐标;(2)求△ABP的面积(用含n的代数式表示);(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.参考答案与试题解析一、选择题:(每小题4分,共60分)1.【解答】解:∵=3,故选:A.2.【解答】解:﹣1.414,﹣5,3.212112111,是有理数,﹣,2+,是无理数,故选:C.3.【解答】解:∵3<<4,∴4<+1<5,故①错误;②二次根式中x的取值范围是x≥1,正确;③=9,9的平方根是±3,故③错误;④=5,故④错误;⑤=3,故⑤错误;正确的有1个,故选:A.4.【解答】解:A、与不是同类项,不能合并,故本选项错误;B、2与不是同类项,不能合并,故本选项错误;C、3﹣=(3﹣1)=2,故本选项正确;D、与不是同类项,不能合并,故本选项错误.故选:C.5.【解答】解:由题意得,a﹣3=0,b+2=0,解得a=3,b=﹣2,所以,点M的坐标为(3,﹣2),点M在第四象限.故选:D.6.【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.7.【解答】解:点A关于x轴的对称点为点B,点B关于y轴的对称点为点C,由点C坐标为(﹣2,3),则点B的坐标为(2,3),故点A的坐标为(2,﹣3).故选:C.8.【解答】解:根据题意得,|m|=1且m﹣1≠0,解得m=±1且m≠1,所以,m=﹣1.故选:B.9.【解答】解:A、由k=﹣2知y随x的增大而减小,此选项正确;B、直线过第一、二、四象限,不过第三象限,此选项正确;C、向下平移三个单位得直线y=﹣2x+1,此选项正确;D、与x轴交点坐标为(2,0),此选项错误;故选:D.10.【解答】解:因为直线y=﹣0.5x+b与直线y=x相交于(2,m),把x=2,y=m代入y=x,可得:m=2,把x=2,y=2代入y=﹣0.5x+b,可得:2=﹣1+b,解得:b=3,故选:B.11.【解答】解:①乙的速度为:(4﹣2)÷1=2千米/时,故①错误;②经过1小时,甲追上乙;故②正确;③根据题意得:乙的解析式为:y=2x+2,当x=0.5时,y=3,即乙行走的路程约为3﹣2=1(千米);故③错误;④由图象得:当x甲=x乙=1.5(h)时,y甲>y乙,即经过1.5小时,乙在甲的后面,故④错误.∴正确的只有②.故选:D.12.【解答】解:A、∵一次函数y1=ax+b的图象经过一三四象限,∴a>0,b<0;由一次函数y2=bx+a图象可知,b<0,a<0,两结论矛盾,故错误;B、∵一次函数y1=ax+b的图象经过一二三象限,∴a>0,b>0;由y2的图象可知,a>0,b<0,两结论相矛盾,故错误;C、∵一次函数y1=ax+b的图象经过一三四象限,∴a>0,b<0;由y2的图象可知,a>0,b<0,两结论不矛盾,故正确;D、∵一次函数y1=ax+b的图象经过一二三象限,∴a>0,b>0;由y2的图象可知,a<0,b<0,两结论相矛盾,故错误.故选:C.13.【解答】解:将x=1,y=2代入方程组得:,①×2﹣②得:3b=3,即b=0,将b=1代入①得:a=1,则.故选:B.14.【解答】解:由题意可知:x+y=0从而可知:解得:∴k=2x+3y=2﹣3=﹣1故选:B.15.【解答】解:设在这次买卖中原价都是x,则可列方程:(1+25%)x=60,解得:x=48,比较可知,第一件赚了12元;第二件可列方程:(1﹣25%)x=60,解得:x=80,比较可知亏了20元,两件相比则一共亏了12﹣20=﹣8元.故选:C.二、填空题(每小题4分,共24分)16.【解答】解:﹣2的相反数是2﹣,绝对值是2﹣,倒数是﹣﹣2,故答案为:2﹣,2﹣,﹣2﹣.17.【解答】解:当线段OA⊥直线y=2x﹣4时,线段OA最短,则直线OA的解析式为:y=﹣x,解得:,∴点A的坐标为(,﹣),∴OA的长度==,故答案为:.18.【解答】解:∵A(﹣2,1),∴点A关于x轴的对称点A′(﹣2,﹣1),设直线A′B的解析式为y=kx+b,∴,解得k=1,b=1,∴直线A′B的解析式为y=x+1,令y=0,解得,x=﹣1,∴P(﹣1,0).故答案为:(﹣1,0).19.【解答】解:∵一次函数y=kx+b的图象与正比例函数y=2x的图象平行,∴k=2,∴y=2x+b,把点A(1,﹣2)代入y=2x+b,得2+b=﹣2,解得b=﹣4;故答案为:2,﹣4.20.【解答】解:根据题意得:,解得:,则2※3=4+6=10.故答案为:1021.【解答】解:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴点D的坐标为(3,3),根据题意得:第1次变换后的点D的对应点的坐标为(3+1,﹣3),即(4,﹣3),第2次变换后的点D的对应点的坐标为:(4+1,3),即(5,3),第3次变换后的点D的对应点的坐标为(5+1,﹣3),即(6,﹣3),第n次变换后的点D的对应点的为:当n为奇数时为(3+n,﹣3),当n为偶数时为(3+n,3),∴连续经过2017次变换后,点D的坐标变为(2020,﹣3).故故答案为:(2020,﹣3).三、解答题(本大题共7个小题,满分76分)22.【解答】解:(1)(﹣2)×﹣6=3﹣6﹣6×=﹣6;(2)(5﹣6+)÷=(20﹣6×3+2)÷=4÷=4.23.【解答】解:(1),由①得:x=y+4③,把③代入②得:4y+16+2y=1,解得:y=﹣,把y=﹣代入③得:x=,则方程组的解为;(2),①×3+②×2得:13x=26,解得:x=2,把x=2代入①得:y=1,则方程组的解为.24.【解答】解:(1)第5个等式为=5;(2)第n个等式为=n;(3)等式左边===n=右边.25.【解答】解:设小明家去年种植菠萝的投资x元,收入y元,则小明家今年种植菠萝的投资(1+10%)x元,收入(1+35%)y元,依题意,得:,解得:,∴(1+10%)x=4400,(1+35%)y=16200.答:小明家今年种植菠萝的投资4400元,收入16200元.26.【解答】解:(1)200米(1分);(2)设直线AB的解析式为:y=kx+b(2分)由图可知:A(5,0),B(10,1000)∴(4分)解得(6分)∴直线AB的解析式为:y=200x﹣1000(7分);(3)当x=8时,y=200×8﹣1000=600(米)即x=8分钟时,小文离家600米.(9分)27.【解答】解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=,则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).28.【解答】解:(1)设A、B两种品牌的计算器的单价分别为x元、y元,根据题意得,,解得.答:A种品牌计算器30元/个,B种品牌计算器32元/个;(2)A品牌:y1=30x•0.8=24x;B品牌:0≤x≤5,y2=32x,x>5时,y2=5×32+32×(x﹣5)×0.7=22.4x+48,所以y1=24x,y2=;(3)当y1=y2时,24x=22.4x+48,解得x=30,购买30个计算器时,两种品牌都一样,购买超过30个计算器时,B品牌更合算,购买不足30个计算器时,A品牌更合算,∵需要购买50个计算器,∴买B种品牌的计算器更合算.29.【解答】解:(1)∵经过A(0,1),∴b=1,∴直线AB的解析式是.当y=0时,,解得x=3,∴点B(3,0).(2)过点A作AM⊥PD,垂足为M,则有AM=1,∵x=1时,=,P 在点D的上方,∴PD=n﹣,由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,∴,∴;(3)当S△ABP=2时,,解得n=2,∴点P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1种情况,如图1,∠CPB=90°,BP=PC,过点C作CN⊥直线x=1于点N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2种情况,如图2∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).第3种情况,如图3,∠PCB=90°,CP=EB,∴∠CPB=∠EBP=45°,在△PCB和△PEB中,∴△PCB≌△PEB(SAS),∴PC=CB=PE=EB=2,∴C(3,2).∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(3,4)或(5,2)或(3,2).。
山东省潍坊市 八年级(上)期中数学试卷-(含答案)
八年级(上)期中数学试卷一、选择题(本大题共12小题,共36.0分)1.下列代数式不是分式的是()A. B. C. D.2.大自然中存在很多对称现象,下列植物叶子的图案中不是..轴对称图形的是()A. B. C. D.3.在平面直角坐标系中,点P(2,-3)关于x轴的对称点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.分式:①,②,③,④中,最简分式有()A. 1个B. 2个C. 3个D. 4个5.如图,OP平分∠MON,PA⊥ON,垂足为A,OA=8,PA=6,Q是射线OM上的一个动点,则线段PQ的最小值是()A. 10B. 8C. 4D. 66.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是()A. POB. PQC. MOD. MQ7.下列各式中,不能约分的分式是()A. B. C. D.8.如图,线段AD,BC相交于点O,若OA=OB,为了用“ASA”判定△AOC≌△BOD,则应补充条件()A.B.C.D.9.小马虎在下面的计算中只做对了一道题,他做对的题目是()A. B. C. D.10.用尺规作∠AOB平分线的方法如下:①以点O为圆心,任意长为半径作弧交OA,OB于点C,点D;②分别以点C,点D为圆心,以大于CD长为半径作弧,两弧交于点P;③作射线OP,则OP平分∠AOB,由作法得△OCP≌△ODP,其判定的依据是()A. ASAB. SASC. AASD. SSS11.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.B.C.D.12.如图,在△ABC中,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是()A. 7B. 6C. 5D. 4二、填空题(本大题共6小题,共18.0分)13.若分式无意义,则x的值为______.14.已知=,则的值为______.15.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P有______个.16.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为______cm2.17.如图,已知点A、D、C、F在同一条直线上,AB=DE,∠B=∠E,要使△ABC≌△DEF,还需要添加一个条件是______.18.分式,,的最简公分母是______.三、计算题(本大题共1小题,共8.0分)19.如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC的度数.四、解答题(本大题共5小题,共58.0分)20.先化简,再求值(1)已知x=4,求(-)•值;(2)已知x+y=xy,求代数式+-(1-x)(1-y)的值;(3)化简:(-)÷;并从-2、0、1、2四个数中选一个合适的数代入求值.21.如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上,∠A=50°,∠F=40°.(1)求△DBE各内角的度数;(2)若AD=16,BC=10,求AB的长.22.如图,在△ABC中,点D、E分别在AB、AC上,AB=AC,BD=CE,BE与CD交于O.求证:△ABE≌△ACD.23.如图所示,在边长为1的小正方形组成的网格中,△ABC的三个顶点分别在格点上,请在网格中按要求作出下列图形,并标注相应的字母.(1)作△A1B1C1,使得△A1B1C1与△ABC关于直线l对称;(2)求△A1B1C1得面积(直接写出结果).24.如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.(1)求证:CD=BF;(2)求证:AD⊥CF;(3)连接AF,试判断△ACF的形状.答案和解析1.【答案】B【解析】解:,,的分母中均含有字母,因此它们是分式;-xy2是单项式,不是分式.故选:B.判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.2.【答案】C【解析】解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意.故选C.根据轴对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【答案】A【解析】解:点P(2,-3)满足点在第四象限的条件.关于x轴的对称点的横坐标与P点的横坐标相同是2;纵坐标互为相反数是3,则P关于x轴的对称点是(2,3),在第一象限.故选A.应先判断出所求的点的横纵坐标,进而判断所在的象限.本题主要考查平面直角坐标系中各象限内点的坐标的符号,掌握关于x轴的对称点横坐标相同,纵坐标互为相反数是解题关键.4.【答案】B【解析】解:①④中分子分母没有公因式,是最简分式;②中有公因式(a-b);③中有公约数4;故①和④是最简分式.故选:B.最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.最简分式就是分式的分子和分母没有公因式,也可理解为分式的分子和分母的最大公因式为1.所以判断一个分式是否为最简分式,关键是要看分式的分子和分母的最大公因式是否为1.5.【答案】D【解析】解:当PQ⊥OM时,PQ的值最小,∵OP平分∠MON,PA⊥ON,PA=6,∴PQ=PA=6,故选D.根据垂线段最短得出当PQ⊥OM时,PQ的值最小,根据角平分线性质得出PQ=PA,求出即可.本题考查了角平分线性质,垂线段最短的应用,能得出要使PQ最小时Q的位置是解此题的关键.6.【答案】B【解析】解:要想利用△PQO≌△NMO求得MN的长,只需求得线段PQ的长,故选:B.利用全等三角形对应边相等可知要想求得MN的长,只需求得其对应边PQ 的长,据此可以得到答案.本题考查了全等三角形的应用,解题的关键是如何将实际问题与数学知识有机的结合在一起.7.【答案】B【解析】解:A、=,故本选项错误;B、,不能约分,故本选项正确;C、=,故本选项错误;D、==,故本选项错误;故选B.根据最简分式的定义即当一个分式的分子和分母没有公因式时叫最简分式,对每个选项进行分析,看其分子和分母有没有公因式,进而得出正确答.本题考查了分式的约分,判断一个分式是否最简分式的关键是确定其分子和分母有没有公因式.8.【答案】A【解析】解:∵OA=OB,∠AOC=∠BOD,∴用“ASA”判定△AOC≌△BOD要补充∠A=∠B.故选A.要用“ASA”判定△AOC≌△BOD,而OA=OB,∠AOC=∠BOD,则要有∠A=∠B.本题考查了全等三角形的判定:判定三角形的方法有“SSS”、“SAS”、“AAS”.9.【答案】C【解析】解:A、原式=,不符合题意;B、原式==,不符合题意;C、原式=•=,符合题意;D、原式=-,不符合题意,故选C各项判断得到结果,即可作出判断.此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.10.【答案】D【解析】解:根据作法得到OC=OD,CP=DP,而OP=OP,所以利用“SSS”可判断△OCP≌△ODP.故选D.利用基本作图和三角形全等的判定方法可得到正确选项.本题考查了作图-基本作图:掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定方法.11.【答案】C【解析】解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°-50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D-∠B=50°-40°=10°.故选C.由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D-∠B,又由于折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°-∠A=40°,从而求出∠A′DB的度数.本题考查图形的折叠变化及三角形的外角性质.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.解答此题的关键是要明白图形折叠后与折叠前所对应的角相等.12.【答案】D【解析】解:在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,∴∠BAC=90°∵EF垂直平分BC,∴B、C关于EF对称,AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,由勾股定理得:AC==4.故选D.根据题意知点B关于直线EF的对称点为点C,故当点P与点D重合时,AP+BP的最小值,求出AC长度即可.本题考查了勾股定理的逆定理,勾股定理,轴对称-最短路线问题的应用,解此题的关键是找出P的位置.13.【答案】±3【解析】解:根据题意得:|x|-3=0,解得x=±3.故答案是:±3.分母为零,分式无意义;分母不为零,分式有意义.本题主要考查了分式有意义的条件是分母不等于0,无意义的条件是分母等于0.14.【答案】-【解析】解:∵=,∴设x=k,y=3k,∴==-,故答案为:-.根据已知设x=k,y=3k,代入求出即可.本题考查了比例的性质的应用,能选择适当的方法求出结果是解此题的关键,难度不大.15.【答案】4【解析】解:(1)当点P在x轴正半轴上,①以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=2,∴P的坐标是(4,0)或(2,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA=2,∴OA=AP=2,∴P的坐标是(-2,0).综上所述:P的坐标是(2,0)或(4,0)或(2,0)或(-2,0).故答案为:4.没有指明点P在正半轴还是在负半轴,也没有说明哪个底哪个是腰,故应该分情况进行分析,从而求解.此题主要考查了坐标与图形的性质,等腰三角形的判定,关键是掌握等腰三角形的判定:有两边相等的三角形是等腰三角形,再分情况讨论.16.【答案】8【解析】=×4×4=8cm2.解:依题意有S阴影故答案为:8.正方形为轴对称图形,一条对称轴为其对角线;由图形条件可以看出阴影部分的面积为正方形面积的一半.本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.17.【答案】BC=EF【解析】解:添加条件:BC=EF.∵,∴△ABC≌△DEF(SAS),∴BC=EF.故答案为:BC=EF.已知AB=DE,∠B=∠E,再加上条件BC=EF,可根据SAS判定△ABC≌△DEF.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.【答案】2x(x+1)(x-1)【解析】解:∵2x-2=2(x-1),x2+x=x(x+1),x2-1=(x+1)(x-1),∴分式,,的最简公分母是2x(x+1)(x-1),故答案为2x(x+1)(x-1).先把分母因式分解,再找出最简分母即可.本题考查了最简公分母,掌握因式分解是解题的关键.19.【答案】解:∵AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵BD是∠ABC的平分线,∴∠DBC=∠ABC=35°,∴∠BDC=180°-∠DBC-∠C=75°.【解析】首先由AB=AC,利用等边对等角和∠A的度数求出∠ABC和∠C的度数,然后由BD是∠ABC的平分线,利用角平分线的定义求出∠DBC的度数,再根据三角形的内角和定理即可求出∠BDC的度数.本题考查了等腰三角形的性质,角平分线的定义,三角形内角和定理等知识,解答本题的关键是正确识图,利用等腰三角形的性质:等边对等角求出∠ABC 与∠C的度数.20.【答案】解:(1)(-)•=•=x+2,当x=4时,原式=6;(2)∵x+y=xy,∴+-(1-x)(1-y)=+-1+x+y-xy=-1+(x+y)-xy=1-1+xy-xy=0;(3)(-)÷=(-)•=•-•=3(x+2)-(x-2)=2x+8,取x=1时,原式=10.【解析】(1)先算括号内的减法,再根据分式的乘法法则求出即可;(2)先通分和根据多项式乘以多项式法则进行计算,再整体代入求出即可;(3)先把除法变成乘法,合并后代入求出即可.本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.21.【答案】解:(1)∵△ACF≌△DBE,∠A=50°,∠F=40°,∴∠D=∠A=50°,∠E=∠F=40°,∴∠EBD=180°-∠D-∠E=90°;(2)∵△ACF≌△DBE,∴AC=BD,∴AC-BC=DB-BC,∴AB=CD,∵AD=16,BC=10,∴AB=CD=(AD-BC)=3.【解析】(1)根据全等三角形的性质求出∠D、∠E,根据三角形内角和定理求出∠EBD 即可;(2)根据全等三角形的性质得出AC=BD,求出AB=CD,即可求出答案.本题考查了全等三角形的性质的应用,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应角相等,对应边相等.22.【答案】证明:如图,∵AB=AC,BD=CE,∴AB-BD=AC-CE,即AD=AE.在△ABE与△ACD中,,∴△ABE≌△ACD(SAS).【解析】结合已知条件和图形可以推知AE=AD,再加上条件“AB=AC”、“公共角∠A”,利用全等三角形的判定SAS证得结论即可.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23.【答案】解:(1)如图所示:(2)△A1B1C1得面积:3×4-×2×3-×1×2-×2×4=12-3-1-4=4.【解析】(1)根据网格确定A、B、C三点的对称点,然后再连接即可;(2)利用矩形的面积减去周围多余三角形的面积即可.此题主要考查了作图--轴对称变换,关键是正确确定对称点位置.24.【答案】(1)证明:∵AC∥BF,且∠ACB=90°,∴∠CBF=90°,又AC=BC,∴∠DBA=45°,∵DE⊥AB,∴∠DEB=∠BEF=∠DBF=90°,∴∠BDE=∠BFE=45°,∴BD=BF,又D为BC中点,∴CD=BD,∴CD=BF;(2)证明:由(1)可知CD=BF,且CA=CB,∠ACB=∠CBF=90°,在△ACD和△CBF中∴△ACD≌△CFB(SAS),∴∠CAD=∠BCF,∵∠ACB=90°,∴∠CAD+∠CDA=90°,∴∠BCF+∠CDA=90°,∴∠CGD=90°,∴AD⊥CF;(3)解:由(2)可知△ACD≌△CBF,∴AD=CF,由(1)可知AB垂直平分DF,∴AD=AF,∴AF=CF,∴△ACF为等腰三角形.【解析】(1)由平行可求得∠CBF=90°,再结合等腰三角形的判定和性质可求得BF=BD,可得BF=CD;(2)结合(1)的结论,可证明△ACD≌△CBF,可得∠DCG=∠CAD,可证明∠CGD=90°,可得结论;(3)由(2)可得CF=AD,又AB垂直平分DF,可得AD=AF,可证明CF=AF,可知△ACF为等腰三角形.本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(SSS、SAS、ASA、AAS和HL)和性质(全等三角形的对应边、对应角相等)是解题的关键.。
2019-2020学年八年级上学期期中考试数学试卷含解析
2019-2020学年八年级上学期期中考试数学试卷一.选择题(共10小题)1.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A.B.C.D.2.下列长度的三条线段能组成三角形的是()A.1 cm,2 cm,3.5 cm B.4 cm,5 cm,9 cmC.5 cm,8 cm,15 cm D.6 cm,8 cm,9 cm3.使分式有意义,则x满足条件()A.x>0 B.x≠0 C.x>1 D.x≠14.如图,已知∠BAD=∠CAD,则下列条件中不一定能使△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.AB=AC D.BD=CD5.如图,∠C=90°,AB的垂直平分线交BC于D,连接AD,若∠CAD=20°,则∠B=()A.20°B.30°C.35°D.40°6.计算(x4+1)(x2+1)(x+1)(x﹣1)的结果是()A.x8+1 B.x8﹣1 C.(x+1)8D.(x﹣1)87.已知x2﹣8x+a可以写成一个完全平方式,则a可为()A.4 B.8 C.16 D.﹣168.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)9.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为()A.130°B.120°C.110°D.100°10.在平面直角坐标系xOy中,以原点O为圆心,任意长为半径作弧,分别交x轴的负半轴和y轴的正半轴于A点,B点.分别以点A,点B为圆心,AB的长为半径作弧,两弧交于P点.若点P的坐标为(a,b),则()A.a=2b B.2a=b C.a=b D.a=﹣b二.填空题(共6小题)11.如图,一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是.12.化简:(1)=;(2)(﹣a)3(﹣a)4=;(3)=;(4)a5÷a3•a2=.13.当x=时,分式的值为零.14.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.15.若a+b=3,则a2﹣b2+6b=;若2x+5y﹣3=0,则4x•32y=.16.我们知道,672可以写成6×102+7×10+2,对于多项式而言,关于某一字母的多项式都可以按这个字母的降幂排列比如7x+2+6x2可以写成6x2+7x+2.在解决多项式相除的问题时,我们通过对比发现,可以类比多位数的除法,用竖式进行计算,例如:(7x+2+6x2)÷(2x+1),仿照672÷21计算如图,因此:(7x+2+6x2)÷(2x+1)=3x+2.根据阅读材料,(1)试判断:x3﹣x2﹣5x﹣3能否被x+1整除,(请用“能”或“不能”填空)(2)多项式2x5+3x3+5x2﹣2x+10除以x2+1的商式是,余式是.三.解答题(共9小题)17.计算:(Ⅰ);(Ⅱ)(﹣2a)2•b3+12a2b2.18.计算:(Ⅰ)(2x)2﹣4x2÷(x﹣1)0;(Ⅱ)﹣2x2y(3x2﹣2x﹣3).19.如图,AB=AD,∠BAC=∠DAC,∠B=32°,求∠D的度数.20.解方程:﹣1=.21.因式分解:(Ⅰ)m(a﹣3)+2(3﹣a)(Ⅱ)(a﹣2b)2﹣b222.如图,在平面直角坐标系xOy中,△ABC的三个顶点分别落在边长为1的正方形格上,(Ⅰ)分别写出A、B、C三点坐标;(Ⅱ)△DEF可以看作是△ABC经过若干次的图形变化(轴对称、平移)得到的,写出一种由△ABC得到△DEF的过程,并体现在坐标系中.23.先化简,再求值:,请从﹣3,﹣2,﹣1,0中选择一个你喜欢的数作为m的值.24.如图,△ABC是边长为3的等边三角形,P是AB边上的一个动点,由A向B运动(P不与A、B重合),Q是BC延长线上一动点,与点P同时以相同的速度由C向BC延长线方向运动(Q不与C重合),(1)当∠BPQ=90°时,求AP的长;(2)过P作PE⊥AC于点E,连结PQ交AC于D,在点P、Q的运动过程中,线段DE的长是否发生变化?若不变,求出DE的长度;若变化,求出变化范围.25.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,△ABC是等腰锐角三角形,AB=AC(AB>BC),若∠ABC的角平分线BD交AC于点D,且BD是△ABC的一条特异线,则∠BDC=度;(2)如图2,△ABC中,∠B=2∠C,线段AC的垂直平分线交AC于点D,交BC于点E.求证:AE是△ABC的一条特异线;(3)如图3,已知△ABC是特异三角形,且∠A=30°,∠B为钝角,求出所有可能的∠B的度数(如有需要,可在答题卡相应位置另外画图).参考答案与试题解析一.选择题(共10小题)1.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.2.下列长度的三条线段能组成三角形的是()A.1 cm,2 cm,3.5 cm B.4 cm,5 cm,9 cmC.5 cm,8 cm,15 cm D.6 cm,8 cm,9 cm【分析】根据三角形的三边关系对各选项进行逐一判断即可.【解答】解:A、∵1+2=3<3.5,∴不能构成三角形,故本选项错误;B、∵4+5=9,∴不能构成三角形,故本选项错误;C、∵8<15﹣5=10,∴不能构成三角形,故本选项错误;D、∵9﹣6<8<9+6,∴能构成三角形,故本选项正确.故选:D.3.使分式有意义,则x满足条件()A.x>0 B.x≠0 C.x>1 D.x≠1【分析】分式有意义时,分母x﹣1≠0.【解答】解:依题意得:x﹣1≠0.解得x≠1.故选:D.4.如图,已知∠BAD=∠CAD,则下列条件中不一定能使△ABD≌△ACD的是()A.∠B=∠C B.∠BDA=∠CDA C.AB=AC D.BD=CD【分析】利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.【解答】解:A、∵∠BAD=∠CAD,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);B、∵∠BAD=∠CAD,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);C、∵∠BAD=∠CAD,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);D、∵∠BAD=∠CAD,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故选:D.5.如图,∠C=90°,AB的垂直平分线交BC于D,连接AD,若∠CAD=20°,则∠B=()A.20°B.30°C.35°D.40°【分析】由已知条件,根据线段垂直平分线的性质得到线段及角相等,再利用直角三角形两锐角互余得到∠B=(180°﹣∠ADB)÷2答案可得.【解答】解:∵DE垂直平分AB,∴AD=DB∴∠B=∠DAB∵∠C=90°,∠CAD=20°∴∠B=(180°﹣∠C﹣∠CAD)÷2=35°故选:C.6.计算(x4+1)(x2+1)(x+1)(x﹣1)的结果是()A.x8+1 B.x8﹣1 C.(x+1)8D.(x﹣1)8【分析】根据题目的特点多次使用平方差公式即可求出结果.【解答】解:(x4+1)(x2+1)(x+1)(x﹣1),=(x4+1)(x2+1)(x2﹣1),=(x4+1)(x4﹣1),=x8﹣1.故选:B.7.已知x2﹣8x+a可以写成一个完全平方式,则a可为()A.4 B.8 C.16 D.﹣16【分析】根据完全平方式的结构是:a2+2ab+b2和a2﹣2ab+b2两种,据此即可求解.【解答】解:∵x2﹣8x+a可以写成一个完全平方式,∴则a可为:16.故选:C.8.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)【分析】分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式.【解答】解:由图1将小正方形一边向两方延长,得到两个梯形的高,两条高的和为a ﹣b,即平行四边形的高为a﹣b,∵两个图中的阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).故选:D.9.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为()A.130°B.120°C.110°D.100°【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠DAB=120°,∴∠AA′M+∠A″=60°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,故选:B.10.在平面直角坐标系xOy中,以原点O为圆心,任意长为半径作弧,分别交x轴的负半轴和y轴的正半轴于A点,B点.分别以点A,点B为圆心,AB的长为半径作弧,两弧交于P点.若点P的坐标为(a,b),则()A.a=2b B.2a=b C.a=b D.a=﹣b【分析】根据作图知OA=OB、PA=PB,据此得OP垂直平分AB,即点P是第二、四象限的平分线,从而得出答案.【解答】解:由“以原点O为圆心,任意长为半径作弧,分别交x轴的负半轴和y轴的正半轴于A点,B点”知OA=OB,即△OAB是以OA、OB为腰的等腰直角三角形,根据“分别以点A,点B为圆心,AB的长为半径作弧,两弧交于P点”知点P在AB的中垂线上,则OP垂直平分AB,即点P是第二、四象限的平分线,若点P的坐标为(a,b),则a=﹣b,故选:D.二.填空题(共6小题)11.如图,一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是三角形的稳定性.【分析】由图可得,固定窗钩BC即,是组成三角形,故可用三角形的稳定性解释.【解答】解:一扇窗户打开后,用窗钩BC可将其固定,这里所运用的几何原理是三角形的稳定性.故应填:三角形的稳定性.12.化简:(1)=a8b3;(2)(﹣a)3(﹣a)4=﹣a7;(3)=;(4)a5÷a3•a2=a4.【分析】(1)直接利用积的乘方运算法则计算得出答案;(2)直接利用同底数幂的乘法运算法则计算即可;(3)直接约掉分子与分母中的公因式进而得出答案;(4)直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:(1)=a8b3;(2)(﹣a)3(﹣a)4=﹣a7;(3)=;(4)a5÷a3•a2=a4.故答案为:a8b3;﹣a7;;a4.13.当x= 1 时,分式的值为零.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:x2﹣1=0,解得:x=±1,当x=﹣1时,x+1=0,因而应该舍去.故x=1.故答案是:1.14.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是 5 .【分析】要求△ABD的面积,有AB=5,可为三角形的底,只求出底边上的高即可,利用角的平分线上的点到角的两边的距离相等可知△ABD的高就是CD的长度,所以高是2,则可求得面积.【解答】解:∵∠C=90°,AD平分∠BAC,∴点D到AB的距离=CD=2,∴△ABD的面积是5×2÷2=5.故答案为:5.15.若a+b=3,则a2﹣b2+6b=9 ;若2x+5y﹣3=0,则4x•32y=8 .【分析】把a2﹣b2+6b写成(a+b)(a﹣b)+6b=3(a﹣b)+6b=3(a+b),再把a+b=3代入即可求解;4x•32y=22x•25y=22x+5y,再把2x+5y=3代入即可求解.【解答】解:∵a+b=3,∴a2﹣b2+6b=(a+b)(a﹣b)+6b=3(a﹣b)+6b=3(a+b)=3×3=9;∵2x+5y﹣3=0,∴2x+5y=3,∴4x•32y=22x•25y=22x+5y=23=8.故答案为:9,8.16.我们知道,672可以写成6×102+7×10+2,对于多项式而言,关于某一字母的多项式都可以按这个字母的降幂排列比如7x+2+6x2可以写成6x2+7x+2.在解决多项式相除的问题时,我们通过对比发现,可以类比多位数的除法,用竖式进行计算,例如:(7x+2+6x2)÷(2x+1),仿照672÷21计算如图,因此:(7x+2+6x2)÷(2x+1)=3x+2.根据阅读材料,(1)试判断:x3﹣x2﹣5x﹣3能否被x+1整除能,(请用“能”或“不能”填空)(2)多项式2x5+3x3+5x2﹣2x+10除以x2+1的商式是2x3+x+5 ,余式是﹣3x+5 .【分析】(1)根据阅读材料进行多项式除以多项式即可求解;(2)根据阅读材料进行多项式除以多项式得商和余式.【解答】解:(1)x3﹣x2﹣5x﹣3能被x+1整除.故答案为:能.(2)多项式2x5+3x3+5x2﹣2x+10除以x2+1的商式是2x3+x+5,余式是﹣3x+5.故答案为:2x3+x+5、﹣3x+5.三.解答题(共9小题)17.计算:(Ⅰ);(Ⅱ)(﹣2a)2•b3+12a2b2.【分析】(I)根据零指数幂的意义以及乘方的运算法则即可求出答案;(II)根据整式的运算法则即可求出答案.【解答】解:(Ⅰ)原式=1﹣()2017×+1=1﹣+1=2﹣=;(Ⅱ)原式=4a2b3+12a2b2.18.计算:(Ⅰ)(2x)2﹣4x2÷(x﹣1)0;(Ⅱ)﹣2x2y(3x2﹣2x﹣3).【分析】(Ⅰ)直接利用积的乘方运算法则以及整式的混合运算法则计算得出答案;(Ⅱ)直接利用单项式乘以多项式计算得出答案.【解答】解:(Ⅰ)(2x)2﹣4x2÷(x﹣1)0=4x2﹣4x2=0;(Ⅱ)﹣2x2y(3x2﹣2x﹣3)=﹣6x4y+4x3y+6x2y.19.如图,AB=AD,∠BAC=∠DAC,∠B=32°,求∠D的度数.【分析】由“SAS”可证△ABC≌△ADC,可得∠B=∠D=32°.【解答】解:∵AB=AD,∠BAC=∠DAC,AC=AC,∴△ABC≌△ADC(SAS)∴∠B=∠D=32°.20.解方程:﹣1=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边乘x(x﹣2),得x2﹣x2+2x=3,解:x=1.5,经检验x=1.5是分式方程的解.21.因式分解:(Ⅰ)m(a﹣3)+2(3﹣a)(Ⅱ)(a﹣2b)2﹣b2【分析】(Ⅰ)原式变形后,提取公因式即可;(Ⅱ)原式利用平方差公式分解即可.【解答】解:(Ⅰ)原式=m(a﹣3)﹣2(a﹣3)=(a﹣3)(m﹣2);(Ⅱ)原式=(a﹣2b+b)(a﹣2b﹣b)=(a﹣b)(a﹣3b).22.如图,在平面直角坐标系xOy中,△ABC的三个顶点分别落在边长为1的正方形格上,(Ⅰ)分别写出A、B、C三点坐标;(Ⅱ)△DEF可以看作是△ABC经过若干次的图形变化(轴对称、平移)得到的,写出一种由△ABC得到△DEF的过程,并体现在坐标系中.【分析】(Ⅰ)由图象可得;(Ⅱ)由轴对称和平移的性质可得.【解答】解:(Ⅰ)由图象可得:点A(0,﹣1),点B(2,﹣1),点C(2,﹣2);(Ⅱ)先将△ABC沿y轴翻折,得到△AB'C',再将△AB'C'向上平移3个单位可得△DEF.23.先化简,再求值:,请从﹣3,﹣2,﹣1,0中选择一个你喜欢的数作为m的值.【分析】根据分式的混合运算法则把原式化简,代入计算即可.【解答】解:原式=•=m(m+2),当m=﹣1时,原式=﹣1.24.如图,△ABC是边长为3的等边三角形,P是AB边上的一个动点,由A向B运动(P不与A、B重合),Q是BC延长线上一动点,与点P同时以相同的速度由C向BC延长线方向运动(Q不与C重合),(1)当∠BPQ=90°时,求AP的长;(2)过P作PE⊥AC于点E,连结PQ交AC于D,在点P、Q的运动过程中,线段DE的长是否发生变化?若不变,求出DE的长度;若变化,求出变化范围.【分析】(1)作PF∥BC交AC于F,由等边三角形的性质就可以得出△APF是等边三角形,△PFD≌△QCD,由直角三角形的性质就可以得出结论;(2)作QF⊥AC,交直线AC的延长线于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=CQ,再根据全等三角形的判定定理得出△APE≌△CQF,再由AE=CF,PE=QF且PE∥QF,可知四边形PEQF是平行四边形,进而可得出EC+AE=CE+CF=AC,DE =AC,由等边△ABC的边长为3可得出DE=1.5即可.【解答】解:(1)作PF∥BC交AC于F,如图1所示:∴∠APF=∠B,∠AFP=∠ACB,∠FPD=∠CQD,∠PFD=∠QCD.∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°,AB=BC=AC.∴∠APF=∠AFP=∠A=60°,∴△APF是等边三角形,∴AP=AF=PF.在△PFD和△QCD中,,∴△PFD≌△QCD(ASA),∴FD=CD.∵∠APD=90°,且∠A=60°,∴∠PDA=30°,∴AD=2AP,∴AD=2AF.∵AF+FD=2AF,∴FD=AF.∴AF=FD=CD.∴AF=AC.∵AC=3,AP=AF=1:(2)当点P、Q同时运动且速度相同时,线段DE的长度不会改变.理由如下:作QF⊥AC,交直线AC的延长线于点F,连接QE,PF,如图2所示:又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度相同,∴AP=CQ,∵△ABC是等边三角形,∴∠A=∠ABC=∠FCQ=60°,在△APE和△CQF中,∵∠AEP=∠CFQ=90°,∴∠APE=∠CQF,在△APE和△CQF中,,∴△APE≌△CQF(AAS),∴AE=CF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF,∵EC+AE=CE+CF=AC,∴DE=AC,又∵AC=3,∴DE=1.5,∴点P、Q同时运动且速度相同时,线段DE的长度不会改变.25.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,△ABC是等腰锐角三角形,AB=AC(AB>BC),若∠ABC的角平分线BD交AC于点D,且BD是△ABC的一条特异线,则∠BDC=72 度;(2)如图2,△ABC中,∠B=2∠C,线段AC的垂直平分线交AC于点D,交BC于点E.求证:AE是△ABC的一条特异线;(3)如图3,已知△ABC是特异三角形,且∠A=30°,∠B为钝角,求出所有可能的∠B的度数(如有需要,可在答题卡相应位置另外画图).【分析】(1)由等腰三角形的性质得出∠ABC=∠C=∠BDC=2∠A,设∠A=x,则∠C=∠ABC=∠BDC=2x,在△ABC中,由三角形内角和定理得出方程,解方程即可;(2)只要证明△ABE,△AEC是等腰三角形即可.(3)如图2中,当BD是特异线时,分三种情形讨论,如图3中,当AD是特异线时,AB =BD,AD=DC根据等腰三角形性质即可解决问题,当CD为特异线时,不合题意.【解答】(1)解:∵AB=AC,∴∠ABC=∠C,∵BD平分∠ABC,∴∠ABD=∠CBD=ABC,∵BD是△ABC的一条特异线,∴△ABD和△BCD是等腰三角形,当AD=BD=BC,∴∠A=∠ABD,∠C=∠BDC,∴∠ABC=∠C=∠BDC,∵∠BDC=∠A+∠ABD=2∠A,设∠A=x,则∠C=∠ABC=∠BDC=2x,在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,∴∠BDC=72°,故答案为:72;(2)证明:∵DE是线段AC的垂直平分线,∴EA=EC,即△EAC是等腰三角形,∴∠EAC=∠C,∴∠AEB=∠EAC+∠C=2∠C,∵∠B=2∠C,∴∠AEB=∠B,即△EAB是等腰三角形,∴AE是△ABC是一条特异线.(3)解:如图3,当BD是特异线时如果AB=BD=DC,则∠ABC=∠ABD+∠DBC=120°=15°=135°,如果AD=AB,DB=DC,则∠ABC=∠ABD+∠DBC=75°+37.5°=112.5°,如果AD=DB,DC=DB,则ABC=∠ABD+∠DBC=30°+60°=90°(不合题意舍弃),如图4中,当AD是特异线时,AB=BD,AD=DC,则∠ABC=180°﹣20°﹣20°=140°,当CD为特异线时,不合题意.综上所述,符合条件的∠ABC的度数为135°或112.5°或140°.。
2019-2020学年八年级上学期期中考试数学试卷含解析
2019-2020学年八年级上学期期中考试数学试卷一.选择题(共8小题)1.下列图案中,属于轴对称图形的是()A.B.C.D.2.16的平方根是()A.4 B.±4 C.D.±3.如图,在数轴上,与表示的点最接近的点是()A.点A B.点B C.点C D.点D4.满足下列条件的△ABC不是直角三角形的是()A.BC=1,AC=2,AB=B.BC=1,AC=2,AB=C.BC:AC:AB=3:4:5 D.∠A:∠B:∠C=3:4:55.如图,工人师傅常用“卡钳”这种工具测定工件内槽的宽.卡钳由两根钢条AA′、BB′组成,O为AA′、BB′的中点.只要量出A′B′的长度,由三角形全等就可以知道工件内槽AB的长度.那么判定△OAB≌△OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS6.如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′.则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺7.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的中垂线,E、N在BC 上,则∠EAN=()A.58°B.32°C.36°D.34°8.如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD上,若∠BAD=100°,则∠ACB的度数为()A.40°B.45°C.60°D.80°二.填空题(共10小题)9.比较大小: 2.10.下列五个数,2π,,,3.1415926中,是无理数的有.11.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积为249900m2,请将249900精确到万位,并用科学记数法表示为.12.如图,在△ABC中,∠B=∠C,AD平分∠BAC,AB=5,BC=6,则AD=.13.如图,已知点A、D、B、F在一条直线上,AC=EF,AB=DF,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.(只需填一个即可)14.如图,在Rt△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC、AB 于点M、N,再分别以M、N为圆心,任意长为半径画弧,两弧交于点O,作射线AO交BC 于点D,若CD=2,P为AB上一动点,则PD的最小值为.15.如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作MN∥BC,分别交AB、AC于点M、N.若△ABC的周长为15,BC=6,则△AMN的周长为.16.如图,∠ABC=90°,AD∥BC,以B为圆心,BC长为半径画弧,与射线AD相交于点E,连接BE,过点C作CF⊥BE,垂足为F.若AB=6,BC=10,则EF的长为.17.如图,两块完全一样的含30°角的直角三角板,将它们重叠在一起并绕其较长直角边的中点M转动,使上面一块三角板的斜边刚好过下面一块三角板的直角顶点C.已知AC =4,则这两块直角三角板顶点A、A′之间的距离等于.18.在△ABC中,∠B=30°,点D在BC边上,点E在AC边上,AD=BD,DE=CE,若△ADE 为等腰三角形,则∠C的度数为°.三.解答题(共8小题)19.求下列各式中的x的值:(1)4x2=9;(2)(x+1)3=﹣27.20.已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC.21.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.求证:∠ABC=∠ACB=∠DEF.22.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求证:CF⊥DE于点F.23.如图,在△ABC中,∠B=90°,AB=4,BC=8.(1)在BC上求作一点P,使PA+PB=BC;(尺规作图,不写作法,保留作图痕迹)(2)求BP的长.24.如图,在四边形ABCD中,∠ABC=∠ADC=90°,AB=AD,E是AC的中点.(1)求证:∠EBD=∠EDB.(2)若∠BED=120°,试判断△BDC的形状.25.(1)如图①,分别以△ABC的边AB、AC为一边向形外作正方形ABDE和正方形ACGF.求证S△AEF=S△ABC.(2)如图②,分别以△ABC的边AB、AC、BC为边向形外作正方形ABDE、ACGF、BCHI,可得六边形DEFGHI,若S正方形ABDE=17,S正方形ACGF=25,S正方形BCHI=16,求S六边形DEFGHI.26.“面积法”是指利用图形面积间的等量关系寻求线段间等量关系的一种方法.例如:在△ABC中,AB=AC,点P是BC所在直线上一个动点,过P点作PD⊥AB、PE⊥AC,垂足分别为D、E,BF为腰AC上的高.如图①,当点P在边BC上时,我们可得如下推理:∵S△ABC=S△ABP+S△ACP∴AC▪BF=AB▪PD+AC▪PE∵AB=AC∴AC▪BF=AC▪(PD+PE)∴BF=PD+PE(1)【变式】如图②,在上例的条件下,当点P运动到BC的延长线上时,试探究BF、PD、PE之间的关系,并说明理由.(2)【迁移】如图③,点P是等边△ABC内部一点,作PD⊥AB、PE⊥BC、PF⊥AC,垂足分别为D、E、F,若PD=1,PE=2,PF=4.求△ABC的边长.(3)【拓展】若点P是等边△ABC所在平面内一点,且点P到三边所在直线的距离分别为2、3、6.请直接写出等边△ABC的高的所有可能参考答案与试题解析一.选择题(共8小题)1.下列图案中,属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义求解可得.【解答】解:A,此图案不是轴对称图形,此选项不符合题意;B、此图案不是轴对称图形,此选项不符合题意;C、此图案是轴对称图形,符合题意;D、此图案不是轴对称图形,不符合题意;故选:C.2.16的平方根是()A.4 B.±4 C.D.±【分析】直接利用平方根的定义计算即可.【解答】解:∵±4的平方是16,∴16的平方根是±4.故选:B.3.如图,在数轴上,与表示的点最接近的点是()A.点A B.点B C.点C D.点D 【分析】依据被开方数越大,对应的算术平方根越大进行比较即可.【解答】解:∵12=1,22=4,∴12<3<22,∴1<<2.∴与表示的点最接近的点是D.故选:D.4.满足下列条件的△ABC不是直角三角形的是()A.BC=1,AC=2,AB=B.BC=1,AC=2,AB=C.BC:AC:AB=3:4:5 D.∠A:∠B:∠C=3:4:5 【分析】先求出两小边的平方和和最长边的平方,看看是否相等即可.【解答】解:A、∵12+()2=22,∴△ABC是直角三角形,故本选项不符合题意;B、∵12+22=()2,∴△ABC是直角三角形,故本选项不符合题意;C、∵32+42=52,∴△ABC是直角三角形,故本选项不符合题意;D、∵∠A+∠B+∠C=180°,∠A:∠B:∠C=3:4:5,∴∠A=45°,∠5=60°,∠C=75°,∴△ABC不是直角三角形,故本选项符合题意;故选:D.5.如图,工人师傅常用“卡钳”这种工具测定工件内槽的宽.卡钳由两根钢条AA′、BB′组成,O为AA′、BB′的中点.只要量出A′B′的长度,由三角形全等就可以知道工件内槽AB的长度.那么判定△OAB≌△OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS【分析】根据SAS证明△AOB≌△A′OB′(SAS)即可;【解答】解:∵O是AA′,BB′的中点,∴AO=A′O,BO=B′O,又∵∠AOB与∠A′OB′是对顶角,∴∠AOB=∠A′OB′,在△AOB和△A′OB′中,∵,∴△AOB≌△A′OB′(SAS),∴A′B′=AB,∴只要量出A′B′的长度,就可以知道工作的内径AB是否符合标准,∴判定△OAB≌△OA′B′的理由是SAS.故选:A.6.如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′.则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【分析】我们可以将其转化为数学几何图形,可知边长为10尺的正方形,则B'C=5尺,设出AB=AB'=x尺,表示出水深AC,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长和水深.【解答】解:设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,因为边长为10尺的正方形,所以B'C=5尺在Rt△AB'C中,52+(x﹣1)2=x2,解之得x=13,即水深12尺,芦苇长13尺.故选:D.7.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的中垂线,E、N在BC 上,则∠EAN=()A.58°B.32°C.36°D.34°【分析】先由∠BAC=106°及三角形内角和定理求出∠B+∠C的度数,再根据线段垂直平分线的性质求出∠B=∠BAE,∠C=∠CAN,即∠B+∠C=∠BAE+∠CAN,由∠EAN=∠BAC ﹣(∠BAE+∠CAN)解答即可.【解答】解:∵△ABC中,∠BAC=106°,∴∠B+∠C=180°﹣∠BAC=180°﹣106°=74°,∵EF、MN分别是AB、AC的中垂线,∴∠B=∠BAE,∠C=∠CAN,即∠B+∠C=∠BAE+∠CAN=74°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=106°﹣74°=32°.故选:B.8.如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD上,若∠BAD=100°,则∠ACB的度数为()A.40°B.45°C.60°D.80°【分析】连接AB',BB',过A作AE⊥CD于E,依据∠BAC=∠B'AC,∠DAE=∠B'AE,即可得出∠CAE=∠BAD,再根据四边形内角和以及三角形外角性质,即可得到∠ACB=∠ACB'=90°﹣∠BAD.【解答】解:如图,连接AB',BB',过A作AE⊥CD于E,∵点B关于AC的对称点B'恰好落在CD上,∴AC垂直平分BB',∴AB=AB',∴∠BAC=∠B'AC,∵AB=AD,∴AD=AB',又∵AE⊥CD,∴∠DAE=∠B'AE,∴∠CAE=∠BAD=50°,又∵∠AEC=90°,∴∠ACB=∠ACB'=40°,故选:A.二.填空题(共10小题)9.比较大小:> 2.【分析】首先分别求出、2的立方的值各是多少;然后根据实数大小比较的方法:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,判断出、2的立方的大小关系,即可推得、2的大小关系.【解答】解:=9,23=8,∵9>8,∴>2.故答案为:>.10.下列五个数,2π,,,3.1415926中,是无理数的有2π,.【分析】根据无理数的定义逐个判断即可.【解答】解:无理数有2π,,故答案为:2π,.11.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积为249900m2,请将249900精确到万位,并用科学记数法表示为 2.5×105.【分析】根据四舍五入,可得精确到万位的数,根据科学记数法表示的方法,可得答案.【解答】解:将249900精确到万位,并用科学记数法表示为2.5×105,故答案为:2.5×105.12.如图,在△ABC中,∠B=∠C,AD平分∠BAC,AB=5,BC=6,则AD= 4 .【分析】证明△ADB≌△ADC,根据全等三角形的性质得到BD=CD=BC=3,∠ADB=∠ADC=90°,根据勾股定理计算.【解答】解:在△ADB和△ADC中,,∴△ADB≌△ADC(AAS)∴BD=CD=BC=3,∠ADB=∠ADC=90°,由勾股定理得,AD==4,故答案为;4.13.如图,已知点A、D、B、F在一条直线上,AC=EF,AB=DF,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是∠A=∠F或AC∥EF或BC=DE(答案不唯一)..(只需填一个即可)【分析】要判定△ABC≌△FDE,已知AC=FE,AB=DF,则AB=CF,具备了两组边对应相等,故添加∠A=∠F,利用SAS可证全等.(也可添加其它条件).【解答】解:增加一个条件:∠A=∠F,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等(答案不唯一).故答案为:∠A=∠F或AC∥EF或BC=DE(答案不唯一).14.如图,在Rt△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC、AB 于点M、N,再分别以M、N为圆心,任意长为半径画弧,两弧交于点O,作射线AO交BC 于点D,若CD=2,P为AB上一动点,则PD的最小值为 2 .【分析】作DP′⊥AB于P′,根据垂线段最短得到此时PD最小,根据角平分线的性质解答.【解答】解:如图,作DP′⊥AB于P′,则此时PD=P′D最小,由尺规作图可知,AD平分∠CAB,又∠C=90°,DP′⊥AB,∴DP′=CD=2,∴PD的最小值为2,故答案为:2.15.如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作MN∥BC,分别交AB、AC于点M、N.若△ABC的周长为15,BC=6,则△AMN的周长为9 .【分析】先根据角平分线的性质和平行线判断出OM=BM、ON=CN,也就得到三角形的周长就等于AB与AC的长度之和.【解答】解:如图,∵OB、OC分别是∠ABC与∠ACB的平分线,∴∠1=∠5,∠3=∠6,又∵MN∥BC,∴∠2=∠5,∠6=∠4,∴BM=MO,NO=CN,∴△AMN的周长=AM+AN+MN=MA+AN+MO+ON=AB+AC,又∵AB+AC+BC=15,BC=6,∴AB+AC=9,∴△AMN的周长=9,故答案为9.16.如图,∠ABC=90°,AD∥BC,以B为圆心,BC长为半径画弧,与射线AD相交于点E,连接BE,过点C作CF⊥BE,垂足为F.若AB=6,BC=10,则EF的长为 2 .【分析】由勾股定理的AE==8,证明△AEB≌△FBC(AAS),得出BF=AE =8,即可得出EF=BE﹣BF=10﹣8=2.【解答】解:∵∠ABC=90°,AD∥BC,∴∠A=180°﹣∠ABC=90°,∴∠AEB=∠FBC,∵BE=BC=10,∴AE===8,∵CF⊥BE,∴∠A=∠BFC=90°,在△AEB和△FBC中,,∴△AEB≌△FBC(AAS),∴BF=AE=8,∴EF=BE﹣BF=10﹣8=2;故答案为:2.17.如图,两块完全一样的含30°角的直角三角板,将它们重叠在一起并绕其较长直角边的中点M转动,使上面一块三角板的斜边刚好过下面一块三角板的直角顶点C.已知AC =4,则这两块直角三角板顶点A、A′之间的距离等于 2 .【分析】连接AA',由旋转的性质可得CM=C'M=2,AM=A'M=2,可证△AMA'是等边三角形,即可求AA'的长.【解答】解:如图,连接AA',∵点M是AC中点,∴AM=CM=AC=2,∵旋转,∴CM=C'M,AM=A'M∴A'M=MC=AM=2,∴∠C'A'B'=∠A'CM=30°∴∠AMA'=∠C'A'B'+∠MCA'=60°,且AM=A'M∴△AMA'是等边三角形∴A'A=AM=2故答案为:218.在△ABC中,∠B=30°,点D在BC边上,点E在AC边上,AD=BD,DE=CE,若△ADE 为等腰三角形,则∠C的度数为40或20 °.【分析】先根据三角形外角性质,得出∠ADC=60°,则设∠C=∠EDC=α,进而得到∠ADE=60°﹣α,∠AED=2α,∠DAE=120°﹣α,最后根据△ADE为等腰三角形,进行分类讨论即可.【解答】解:如图所示,∵AD=BD,∠B=30°,∴∠ADC=60°,∵DE=CE,∴可设∠C=∠EDC=α,则∠ADE=60°﹣α,∠AED=2α,根据三角形内角和定理可得,∠DAE=120°﹣α,分三种情况:①当AE=AD时,有60°﹣α=2α,解得α=20°;②当DA=DE时,有120°﹣α=2α,解得α=40°;③当EA=ED时,有120°﹣α=60°﹣α,方程无解,综上所述,∠C的度数为20°或40°,故答案为:20或40.三.解答题(共8小题)19.求下列各式中的x的值:(1)4x2=9;(2)(x+1)3=﹣27.【分析】(1)将x的系数化为1,然后两边同时直接开平方求解;(2)方程两边同时开立方即可求解.【解答】解:(1)∵x2=,∴x=±;(2)∵(x+1)3=﹣27,∴x+1=﹣3,x=﹣4.20.已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC.【分析】根据角平分线性质和已知求出∠ACB=∠DBC,根据ASA推出△ABC≌△DCB,根据全等三角形的性质推出即可.【解答】证明:∵AC平分∠BCD,BD平分∠ABC,∴∠DBC=∠ABC,∠ACB=∠DCB,∵∠ABC=∠DCB,∴∠ACB=∠DBC,∵在△ABC与△DCB中,,∴△ABC≌△DCB(ASA),∴AB=DC.21.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.求证:∠ABC=∠ACB=∠DEF.【分析】只要证明△DBE≌△CEF(SAS),可得∠BDE=∠CEF,由∠ABC+∠BDE+∠BED=∠BED+∠DEGF+∠CEF=180°,推出∠ABC=∠DEF即可解决问题;【解答】证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE和△CEF中,∴△DBE≌△CEF(SAS),∴∠BDE=∠CEF,∵∠ABC+∠BDE+∠BED=∠BED+∠DEGF+∠CEF=180°,∴∠ABC=∠DEF,∴∠ABC=∠ACB=∠DEF.22.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求证:CF⊥DE于点F.【分析】根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【解答】证明:∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,∴△ACD≌△BEC(SAS),∴DC=CE,∵CF平分∠DCE,∴CF⊥DE.23.如图,在△ABC中,∠B=90°,AB=4,BC=8.(1)在BC上求作一点P,使PA+PB=BC;(尺规作图,不写作法,保留作图痕迹)(2)求BP的长.【分析】(1)作线段AC的中垂线,其与BC的交点即为所求;(2)设BP=x,则PA=CP=8﹣x,根据AB2+BP2=AP2求解可得.【解答】解:(1)如图所示,点P即为所求.(2)设BP=x,则CP=8﹣x,由(1)中作图知AP=CP=8﹣x,在Rt△ABP中,由AB2+BP2=AP2可得42+x2=(8﹣x)2,解得:x=3,所以BP=3.24.如图,在四边形ABCD中,∠ABC=∠ADC=90°,AB=AD,E是AC的中点.(1)求证:∠EBD=∠EDB.(2)若∠BED=120°,试判断△BDC的形状.【分析】(1)根据直角三角形的性质解答即可;(2)根据等边三角形的性质和判定、以及线段平分线的性质解答即可.【解答】证明:(1)在Rt△ABC中,∠ABC=90°,∵E是AC的中点,∴BE=EC=AC,同理可得:DE=EC=AC,∴BE=DE,∴∠EBD=∠EDB,(2)△DBC为等边三角形,∵BE=DE,∴点E在BD的中垂线上,∵AB=AD,∴点A在BD的中垂线上,∴AE垂直平分DB,∴BC=DC,在△DEB中,DE=BE,∵AE垂直平分BD,∴∠AEB=∠BED=60°,∴∠DBE=90°﹣∠BED=30°,∵BE=EC,∴∠EBC=∠ECB=30°,∴∠DBC=60°,∴△DBC为等边三角形.25.(1)如图①,分别以△ABC的边AB、AC为一边向形外作正方形ABDE和正方形ACGF.求证S△AEF=S△ABC.(2)如图②,分别以△ABC的边AB、AC、BC为边向形外作正方形ABDE、ACGF、BCHI,可得六边形DEFGHI,若S正方形ABDE=17,S正方形ACGF=25,S正方形BCHI=16,求S六边形DEFGHI.【分析】(1)作辅助线,证明△AMC≌△ANF(AAS),得CM=FN根据三角形面积公式可得结论;(2)同理得:S△AEF=S△ABC=S△BDI=S△CHG,设BO=x,则CO=4﹣x,根据勾股定理列方程得:17﹣x2=25﹣(4﹣x)2,解得:x=1,根据面积和可得S六边形DEFGHI.【解答】证明:(1)如图①,过点C作CM⊥AB,过F作FN⊥EA与EA的延长线交于点N,∴∠CMA=∠ANF=90°,∵四边形ABDE和四边形ACGF是正方形,∴AB=AE,AC=AF,∠BAE=∠CAF=90°,∴∠CAM+∠CAN=∠FAN+∠CAN=90°,∴∠CAM=∠FAN,在△AMC和△ANF中,∵,∴△AMC≌△ANF(AAS),∴CM=FN,∴AE•FN=,∴S△AEF=S△ABC.(2)由上题结论得:S△AEF=S△ABC=S△BDI=S△CHG,由题意得:AB=,AC=5,BC=4,过点O作AO⊥BC,设BO=x,则CO=4﹣x,在Rt△ABO和Rt△ACO中,AO2=AB2﹣BO2=AC2﹣CO2,即17﹣x2=25﹣(4﹣x)2,解得:x=1,∴AO=4,S六边形DEFGHI=S正方形ABDE+S正方形BCHI+S正方形ACGF+S△AEF+S△BDI+S△CHG+S△ABC,=17+25+16+4××4×4,=90.26.“面积法”是指利用图形面积间的等量关系寻求线段间等量关系的一种方法.例如:在△ABC中,AB=AC,点P是BC所在直线上一个动点,过P点作PD⊥AB、PE⊥AC,垂足分别为D、E,BF为腰AC上的高.如图①,当点P在边BC上时,我们可得如下推理:∵S△ABC=S△ABP+S△ACP∴AC▪BF=AB▪PD+AC▪PE∵AB=AC∴AC▪BF=AC▪(PD+PE)∴BF=PD+PE(1)【变式】如图②,在上例的条件下,当点P运动到BC的延长线上时,试探究BF、PD、PE之间的关系,并说明理由.(2)【迁移】如图③,点P是等边△ABC内部一点,作PD⊥AB、PE⊥BC、PF⊥AC,垂足分别为D、E、F,若PD=1,PE=2,PF=4.求△ABC的边长.(3)【拓展】若点P是等边△ABC所在平面内一点,且点P到三边所在直线的距离分别为2、3、6.请直接写出等边△ABC的高的所有可能【分析】(1)如图②,连接AP,根据三角形的面积公式列方程即可得到结论;(2)如图③,过A作AH⊥BC于H,连接PA,PB,PC,根据三角形的面积公式列方程得到AH=PD+PE+PF=7,根据等腰三角形的性质得到CH=BC=AC,根据勾股定理即可得到结论;(3)如图④,设等边△ABC的高为h,点P到△ABC的三边的距离为h1=2,h2=3,h3=6,分三种情况讨论即可得到结论.【解答】解:(1)BF=PD﹣PE,如图②,连接AP,∵S△ABC=S△ABP﹣S△ACP,∴AC•BF=AB•PD﹣AC•PE,∵AB=AC,∴BF=PD﹣PE;(2)如图③,过A作AH⊥BC于H,连接PA,PB,PC,∵S△ABC=S△ABP+S△ACP+S△BCP,AH•BC=PD•AB+PF•AC+PE•BC,∵△ABC是等边三角形,∴AB=AC=BC,∴AH=PD+PE+PF=7,∵AB=AC,AH⊥BC,∴CH=BC=AC,在Rt△AHC中,∠AHC=90°,∴AH2+CH2=AC2,∴AH=AC,∴AC=7,∴AC==;(3)如图④,设等边△ABC的高为h,点P到△ABC的三边的距离为h1=2,h2=3,h3=6,如图,当P在i区域时,h=h1+h2+h3=2+3+6=11;当P在ii区域时,h=h1+h3﹣h2=2+6﹣3=5,或h=h2+h3﹣h1=3+6﹣2=7,当P在iii区域时,h=h3﹣h2﹣h1=1,综上所述,等边△ABC的高的所有可能的值为11,7,5,1.。
2019-2020学年潍坊市潍城区八年级上期中数学试卷含答案解析
2019-2020学年潍坊市潍城区八年级上期中数学试卷含答案解析一、选择题(共12小题,每小题3分,满分36分)1.下列说法中正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形是指面积相等的两个三角形C.全等三角形是指周长相等的两个三角形D.全等三角形的面积,周长分别相等2.如图,小华书上的三角形被墨水弄污了一部分,他能在作业本上作一个完成一样的三角形,其根据为()A.SSS B.ASA C.SAS D.AAS3.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.4.若分式的值为零,则x的值为()A.0 B.1 C.﹣1 D.±15.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40° B.45°C.60°D.70°6.如图,DE是线段AB的垂直平分线,如果BD+CD=,那么AC的长度是()A.B.C.D.7.下列计算错误的是()A.B.C.D.8.若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的一个底角为()A.32.5°B.57.5°C.65°或57.5°D.32.5°或57.5°9.化简的结果是()A.x+1 B.C.x﹣1 D.10.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有()A.5个B.4个C.3个D.2个11.若关于x的方程+=2的解为正数,则m的取值范围是()A.m<6 B.m>6 C.m<6且m≠0 D.m>6且m≠812.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是()A.B. C.D.二、填空题(共8小题,每小题3分,满分24分)13.点A(﹣3,2)关于x轴的对称点A′的坐标为.14.如图,在正三角形ABC中,AD⊥BC于点D,则∠BAD=°.15.如图所示,△ABC和△A′B′C′是两个全等的三角形,其中某些边的长度及某些角已知,则x=.16.如图,四边形ABCD中,CB=CD,∠B=∠D=90°,∠BAD=60°,则∠ACB的度数为.17.若关于x的方程+=2有增根,则m的值是.18.已知≠0,则的值为.19.如图,在△ABC中,∠C=90°,AD平分∠CAB,交BC于点D,CD=15cm,则点D 到AB的距离是cm.20.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为cm2.三、解答题(共6小题,满分60分)21.计算与化简(1)化简(1+).(2)解方程:.22.如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.23.在“母亲节”前夕,某花店用16000元购进第一批礼盒鲜花,上市后很快预售一空.根据市场需求情况,该花店又用7500元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?24.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.25.将四张形状,大小相同的长方形纸片分别折叠成如图所示的图形,请仔细观察重叠部分的图形特征,并解决下列问题:(1)观察图①,②,③,④,∠1和∠2有怎样的关系?并说明你的依据.(2)猜想图③中重叠部分图形△MBD的形状(按边),验证你的猜想.(3)若图④中∠1=60°,猜想重叠部分图形△MEF的形状(按边),验证你的猜想.26.如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?-学年八年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列说法中正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形是指面积相等的两个三角形C.全等三角形是指周长相等的两个三角形D.全等三角形的面积,周长分别相等【考点】全等图形.【分析】要判断选项的正误,要根据全等三角形的概念和特点逐个验证,与之相符合是正确的,反之,是错误的,如选项D就是正确的,其它是错误的.【解答】解:A、全等三角形必须是完全相同的两个三角形,错;B、两个三角形面积相等,但不一定能完全重合,故不能说是全等三角形,错;C、两三角形的周长相等,但不一定能完全重合,错;D、全等三角形一定重合,则面积、周长一定相等,正确.故选D.【点评】本题考查了全等形的概念和特点,做题时要根据定义,逐个仔细思考.2.如图,小华书上的三角形被墨水弄污了一部分,他能在作业本上作一个完成一样的三角形,其根据为()A.SSS B.ASA C.SAS D.AAS【考点】全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:B.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.3.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.若分式的值为零,则x的值为()A.0 B.1 C.﹣1 D.±1【考点】分式的值为零的条件.【专题】计算题.【分析】分式的值是0的条件是:分子为0,分母不为0,由此条件解出x.【解答】解:由x2﹣1=0,得x=±1.①当x=1时,x﹣1=0,∴x=1不合题意;②当x=﹣1时,x﹣1=﹣2≠0,∴x=﹣1时分式的值为0.故选:C.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.5.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40° B.45°C.60°D.70°【考点】等腰三角形的性质;平行线的性质.【分析】根据平行线的性质可得∠CBD的度数,根据角平分线的性质可得∠CBA的度数,根据等腰三角形的性质可得∠C的度数,根据三角形内角和定理可得∠BAC的度数.【解答】解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选:A.【点评】考查了平行线的性质,角平分线的性质,等腰三角形的性质和三角形内角和定理.关键是得到∠C=∠CBA=70°.6.如图,DE是线段AB的垂直平分线,如果BD+CD=,那么AC的长度是()A.B.C.D.【考点】线段垂直平分线的性质.【分析】先根据线段垂直平分线的性质得出AD=BD,进而可得出结论.【解答】解:∵DE是线段AB的垂直平分线,BD+CD=,∴AD=BD.∴AC=AD+CD=BD+CD=.故选C.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.7.下列计算错误的是()A.B.C.D.【考点】分式的混合运算.【分析】利用分式的加减运算法则与约分的性质,即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、,故本选项错误;B、,故本选项正确;C、=﹣1,故本选项正确;D、,故本选项正确.故选A.【点评】此题考查了分式的加减运算与分式的约分.此题比较简单,注意运算要细心,注意掌握分式的基本性质.8.若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的一个底角为()A.32.5°B.57.5°C.65°或57.5°D.32.5°或57.5°【考点】等腰三角形的性质;三角形内角和定理.【专题】分类讨论.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成立,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时底角是57.5°,当高在三角形外部时底角是32.5度,故选D.【点评】熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出75°一种情况,把三角形简单的化成锐角三角形.9.化简的结果是()A.x+1 B.C.x﹣1 D.【考点】分式的加减法.【专题】计算题.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣===x+1.故选A【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.10.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有()A.5个B.4个C.3个D.2个【考点】等腰三角形的判定;三角形内角和定理.【专题】证明题.【分析】根据已知条件和等腰三角形的判定定理,对图中的三角形进行分析,即可得出答案.【解答】解:共有5个.(1)∵AB=AC∴△ABC是等腰三角形;(2)∵BD、CE分别是∠ABC、∠BCD的角平分线∴∠EBC=∠ABC,∠ECB=∠BCD,∵△ABC是等腰三角形,∴∠EBC=∠ECB,∴△BCE是等腰三角形;(3)∵∠A=36°,AB=AC,∴∠ABC=∠ACB=(180°﹣36°)=72°,又BD是∠ABC的角平分线,∴∠ABD=∠ABC=36°=∠A,∴△ABD是等腰三角形;同理可证△CDE和△BCD是等腰三角形.故选:A.【点评】此题主要考查学生对等腰三角形判定和三角形内角和定理的理解和掌握,属于中档题.11.若关于x的方程+=2的解为正数,则m的取值范围是()A.m<6 B.m>6 C.m<6且m≠0 D.m>6且m≠8【考点】分式方程的解.【分析】先得出分式方程的解,再得出关于m的不等式,解答即可.【解答】解:原方程化为整式方程得:2﹣x﹣m=2(x﹣2),解得:x=2﹣,因为关于x的方程+=2的解为正数,可得:,解得:m<6,因为x=2时原方程无解,所以可得,解得:m≠0.故选C.【点评】此题考查分式方程,关键是根据分式方程的解法进行分析.12.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是()A.B. C.D.【考点】由实际问题抽象出分式方程.【分析】题中等量关系:甲车行驶30千米与乙车行驶40千米所用时间相同,据此列出关系式.【解答】解:设甲车的速度为x千米/时,则乙车的速度为(x+15)千米/时,根据题意,得=.故选C.【点评】本题考查了由实际问题抽象出分式方程,理解题意,找到等量关系是解决问题的关键.本题用到的等量关系为:时间=路程÷速度.二、填空题(共8小题,每小题3分,满分24分)13.点A(﹣3,2)关于x轴的对称点A′的坐标为(﹣3,﹣2).【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点A(﹣3,2)关于x轴对称的点的坐标为(﹣3,﹣2).故答案为:(﹣3,﹣2).【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.14.如图,在正三角形ABC中,AD⊥BC于点D,则∠BAD=30°°.【考点】等边三角形的性质.【分析】根据正三角形ABC得到∠BAC=60°,因为AD⊥BC,根据等腰三角形的三线合一得到∠BAD的度数.【解答】解:∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC,AD⊥BC,∴∠BAD=∠BAC=30°,故答案为:30°.【点评】本题考查的是等边三角形的性质,掌握等边三角形的三个内角都是60°和等腰三角形的三线合一是解题的关键.15.如图所示,△ABC和△A′B′C′是两个全等的三角形,其中某些边的长度及某些角已知,则x=60°.【考点】全等三角形的性质.【分析】首先利用三角形内角和计算出∠C的度数,再根据全等三角形对应角相等可得x 的值.【解答】解:∵∠A=65°,∠B=55°,∴∠C=180°﹣65°﹣55°=60°,∵△ABC和△A′B′C′是两个全等的三角形,∴∠C=∠B′=60°,∴x=60°,故答案为:60°.【点评】此题主要考查了全等三角形的性质,关键是找准对应角.16.如图,四边形ABCD中,CB=CD,∠B=∠D=90°,∠BAD=60°,则∠ACB的度数为60°.【考点】全等三角形的判定与性质.【分析】利用HL判定△ABC≌△A DC,得出∠BAC=∠DAC,利用已知求得∠BAC=30°,根据三角形的内角和即可得到结论.【解答】解:∵∠B=∠D=90°,在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC,∴∠BAC=∠DAC,∵∠BAD=60°,∴∠BAC=30°,∴∠ACB=90°﹣∠BAC=60°.故答案为:60°.【点评】此题主要考查全等三角形的判定与性质.全等三角形的判定常用的方法有AAS、ASA、SSS、SAS、HL,做题时注意灵活运用.17.若关于x的方程+=2有增根,则m的值是0.【考点】分式方程的增根.【专题】计算题;压轴题.【分析】方程两边都乘以最简公分母(x﹣2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.【解答】解:方程两边都乘以(x﹣2)得,2﹣x﹣m=2(x﹣2),∵分式方程有增根,∴x﹣2=0,解得x=2,∴2﹣2﹣m=2(2﹣2),解得m=0.故答案为:0.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.18.已知≠0,则的值为.【考点】比例的性质.【分析】根据比例的性质,可用a表示b、c,根据分式的性质,可得答案.【解答】解:由比例的性质,得c=a,b=a.===.故答案为:.【点评】本题考查了比例的性质,利用比例的性质得出a表示b、c是解题关键,又利用了分式的性质.19.如图,在△ABC中,∠C=90°,AD平分∠CAB,交BC于点D,CD=15cm,则点D 到AB的距离是15cm.【考点】角平分线的性质.【分析】作DE⊥AB于E,根据角平分线的性质得到DE=CD,得到答案.【解答】解:作DE⊥AB于E,∵AD平分∠CAB,DE⊥AB,∠C=90°,∴DE=CD=15cm,故答案为:15.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.20.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为8cm2.【考点】轴对称的性质.【分析】正方形为轴对称图形,一条对称轴为其对角线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【解答】解:依题意有S阴影=×4×4=8cm2.故答案为:8.【点评】本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.三、解答题(共6小题,满分60分)21.计算与化简(1)化简(1+).(2)解方程:.【考点】分式的混合运算;解分式方程.【分析】(1)根据有括号先算括号内的,分式的除法法则进行计算即可;(2)根据解分式方程的方法进行计算即可.【解答】解:(1)(1+)=×==x﹣1;(2)方程两边都乘以(x+1)(x﹣1),得x(x﹣1)﹣4=(x+1)(x﹣1)化简,得x+3=0解得,x=﹣3检验:x=﹣3时,(x+1)(x﹣1)≠0.故原分式方程的根是x=﹣3.【点评】本题考查分式的混合运算和解分式方程,解题的关键是注意解分式方程要检验.22.如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.【考点】作图—复杂作图;线段垂直平分线的性质.【专题】作图题.【分析】(1)利用线段垂直平分线的作法得出D点坐标即可;(2)利用线段垂直平分线的性质得出,∠BAD=∠B=37°,进而求出即可.【解答】解:(1)如图所示:点D即为所求;(2)在Rt△ABC中,∠B=37°,∴∠CAB=53°,又∵AD=BD,∴∠BAD=∠B=37°,∴∠CAD=53°﹣37°=16°.【点评】此题主要考查了复杂作图以及线段垂直平分线的性质,正确利用线段垂直平分线的性质得出∠BAD=∠B=37°是解题关键.23.在“母亲节”前夕,某花店用16000元购进第一批礼盒鲜花,上市后很快预售一空.根据市场需求情况,该花店又用7500元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?【考点】分式方程的应用.【分析】可设第二批鲜花每盒的进价是x元,根据等量关系:第二批所购鲜花的盒数是第一批所购鲜花的,列出方程求解即可.【解答】解:设第二批鲜花每盒的进价是x元,依题意有=×,解得x=150,经检验:x=150是原方程的解.故第二批鲜花每盒的进价是150元.【点评】考查了分式方程的应用,列方程解应用题的关键是正确确定题目中的相等关系,根据相等关系确定所设的未知数,列方程.24.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.【考点】作图-轴对称变换.【分析】(1)利用长方形的面积剪去周围多余三角形的面积即可;(2)首先找出A、B、C三点关于y轴的对称点,再顺次连接即可;(3)根据坐标系写出各点坐标即可.【解答】解:(1)如图所示:△ABC的面积:3×5﹣﹣﹣=6;(2)如图所示:(3)A1(2,5),B1(1,0),C1(4,3).【点评】此题主要考查了作图﹣﹣轴对称变换,关键是找出对称点的位置,再顺次连接即可.25.将四张形状,大小相同的长方形纸片分别折叠成如图所示的图形,请仔细观察重叠部分的图形特征,并解决下列问题:(1)观察图①,②,③,④,∠1和∠2有怎样的关系?并说明你的依据.(2)猜想图③中重叠部分图形△MBD的形状(按边),验证你的猜想.(3)若图④中∠1=60°,猜想重叠部分图形△MEF的形状(按边),验证你的猜想.【考点】翻折变换(折叠问题).【分析】(1)由折叠的性质容易得出结论;(2)由折叠的性质得出∠1=∠2,由平行线的性质得出∠MDB=∠1,得出∠MDB=∠2,由等角对等边得出MB=MD即可;(3)由折叠的性质得出∠2=∠1=60°,由(2)得出△MEF是等腰三角形,即可得出结论.【解答】解:(1)图①,②,③,④中∠1=∠2;理由如下:由折叠的性质得:∠1=∠2;(2)△MBD是等腰三角形;理由如下:由折叠的性质得:∠1=∠2,∵AD∥BC,∴∠MDB=∠1,∴∠MDB=∠2,∴MB=MD,∴△MBD是等腰三角形;(3)△MEF是等边三角形,理由如下:由折叠的性质得:∠2=∠1=60°,由(2)得:△MEF是等腰三角形,故△MEF是等边三角形.【点评】本题考查了翻折变换的性质、等腰三角形的判定、平行线的性质、等边三角形的判定;熟练掌握翻折变换的性质,弄清角之间的数量关系是解决问题的关键.26.如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?【考点】全等三角形的判定与性质;等腰三角形的判定与性质;等腰直角三角形.【专题】计算题;证明题.【分析】(1)由SAS可得△BDE≌△CEF,得出DE=EF,第一问可求解;(2)由(1)中的全等得出∠BDE=∠CEF,再由角之间的转化,从而可求解∠DEF的大小;(3)由于AB=AC,∴∠B=∠C≠90°=∠DEF,所以其不可能是等腰直角三角形.【解答】(1)证明:∵AB=AC∴∠B=∠C,在△BDE与△CEF中∴△BDE≌△CEF.∴DE=EF,即△DEF是等腰三角形.(2)解:由(1)知△BDE≌△CEF,∴∠BDE=∠CEF∵∠CEF+∠DEF=∠BDE+∠B∴∠DEF=∠B(9分)∵AB=AC,∠A=40°∴∠DEF=∠B=.(3)解:△DEF不可能是等腰直角三角形.∵AB=AC,∴∠B=∠C≠90°∴∠DEF=∠B≠90°,∴△DEF不可能是等腰直角三角形.【点评】本题主要考查了全等三角形的判定及性质以及等腰三角形的判定和性质问题,能够熟练掌握三角形的性质求解一些简单的计算、证明等问题.。
2019~2020学年度八年级数学上册期中试卷及答案
2019~2020学年度第一学期期中考试八年级数学试题(考试时间∶120分钟 试卷总分∶150分 )第Ⅰ卷 (本卷满分100分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.现有长度为4cm 和7cm 的两根小棒,请你再找一根小棒,并以这三根小棒为边围成一个三角形,则下列长度的小棒可选的是A .2cmB .3cmC .5cmD .12cm 2.下列多边形中,对角线是5条的多边形是A .四边形B .五边形C .六边形D .七边形 3.下列运算中,正确的是 A .236a a a ⋅=B .()325a a = C .()3326a a =D .()23a a a -⋅=4.图中两个三角形全等,则1∠等于A .40︒B .50︒C .60︒D .80︒第4题图 第5题图5.如图,AD 是ABC ∆的高,AD 也是ABC ∆的中线,则下列结论不一定成立.....的是 A .AB =AC B .AD =BC C .B C ∠=∠ D .BAD CAD ∠=∠ 6.如图,已知A ,D ,B ,E 在同一条直线上,且AD =BE ,AC =DF ,补充下列其中一个条件后,不一定...能得到△ABC ≌△DEF 的是A .BC EF =B .AC ∥DF C .C F ∠=∠D .BAC EDF ∠=∠DCBA1656560°80°FEDC BA第6题图7.下列条件中能判断△ABC 为直角三角形的是A .ABC ∠+∠=∠ B .A B C ∠=∠=∠ C .90A B ∠-∠=︒D .23A B C ∠=∠=∠ 8.若x 2+kx +4是一个完全平方式,则k 的值是A .4B .4±C .8D .8±9.计算210011004996-⨯=A .2017-B .2017C .2019-D .201910.如图1,将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若该纸盒的容积为24a b ,则图2中纸盒底部长方形的周长为 A .4ab B .8ab C .4a b + D .82a b +二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答题卷指定的位置. 11.计算:()21233a a a -÷= .12.一个多边形的内角和比它的外角和多180°,则这个多边形的边数是 .第13题图 第14题图 第15题图13.如图,已知B 处在A 处的南偏西44°方向,C 处在A 处的正南方向,B 处在C 处的南偏西80°方向,则ABC ∠的度数为 .14.如图,点E ,F 分别是四边形AB ,AD 上的点,已知△EBC ≌△DFC ,且80A ∠=︒,则B C F∠的度数是 .15.如图,△ABC 的边BC 上有一点D ,取AD 的中点E ,连接BE ,CE ,如果△ABC 的面积为2,则图中阴影部分的面积为 .图2图1第10题图16.如图,边长为n 的正方形纸片剪出一个边长为3n -的正方形之后,剩余部分可剪拼成一个长方形,若该长方形一边的长为3,则另一边的长为 .三、解答题(共5小题.第17至20题,每小题10分,第21题12分,共52分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形. 17.(本题10分)(1)计算:()()2341a a a a --÷;(2)解不等式:()()()()2311x x x x +->+-.18.(本题10分)如图,BD 是△ABC 的角平分线,AE ⊥BD 交BD 的延长线于点E ,72ABC ∠=︒,C ∠:ADB ∠=2:3,求∠BAC 和∠DAE 的度数.19.(本题10分)已知5xy =,()216x y -=,求22x y +和x y +的值.20.(本题10分)如图,点B 为AC 上一点,AD ∥CE ,ADB CBE ∠=∠,BD =EB . 求证:(1)△ABD ≌△CEB ;(2)AC= AD+CE .nn -33第16题图EDCBA第18题图EDCBA已知等腰三角形的周长是13. (1)如果腰长是底边长的45,求底边的长; (2)若该三角形其中两边的长为3x 和25x +,求底边的长.第Ⅱ卷(本卷满分50分)四、填空题(共4小题,每小题4分,共16分)下列各题不需要写出解答过程,请将结果直接填在答题卷指定的位置.22.已知2n a =,3n b =,n 是正整数,则用含有a ,b 的式子表示26n 的值为 . 23.如图,四边形ABCD 中,=90A B ∠∠=︒,AB 边上有一点E ,CE 、DE 分别是BCD ∠和ADC∠的角平分线,如果△CDE 的面积是12,CD =8,那么AB 的长度为 .第23题图 第25题图24.在△ABC 中,AD 是高,AE 是角平分线,已知70ACB ∠=︒,15EAD ∠=︒,则ABC ∠的度数为 .25.如图,AB ⊥CD 于点E ,且AB CD AC ==,若点I 是△ACE 的角平分线的交点,点F 是BD 的中点.下列结论:①135AIC ∠=︒;②BD BI =;③AIC BID S S ∆∆=;④IF ⊥AC .其中正确的是 (填序号).五、解答题(共3小题.第26题10分,第27题12分,第28题12分共34分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形.EDCBA FIEDCBA如图,已知()0,A a ,(),0B b ,(),0C c 是平面直角坐标系中三点,且a ,b 满足2690a b a a -+-+=,3c <.(1)求A 、B 两点的坐标; (2)若△ABC 的面积为6.①在图中画出△ABC ;②若△ABP 与△ABC 全等,直接写出所有符合条件的P 点的坐标;(3)已知MAB ABC ∠=∠,BM AC =,若满足条件的M 点有且只有两个,直接写出此时c 的取值范围.27.(本题12分)以下关于x 的各个多项式中,a ,b ,c ,m ,n 均为常数. (1)根据计算结果填写下表:(2)已知()()223x x mx n +++既不含二次项,也不含一次项,求m n +的值.(3)多项式M 与多项式231x x -+的乘积为43223x ax bx cx +++-,则2a b c ++的值为 .第26题图已知,点(),1A t 是平面直角坐标系中第一象限的点,点B ,C 分别是y 轴负半轴和x 轴正半轴上的点,连接AB ,AC ,BC .(1)如图1,若1OB =,32OC =,且A ,B ,C 在同一条直线上,求t 的值; (2)如图2,当1t =,180ACO ACB ∠+∠=︒时,求BC OC OB +-的值;(3)如图3,点(),H m n 是AB 上一点,90A OHA ∠=∠=︒,若OB OC =,求m n +的值.图1 图2 图32019~2020学年度第一学期期中考试 八年级数学参考答案及评分标准卷I :一、选择题:1.C 2.B 3.D 4.A 5.C 6.C 7.A 8.B 9.B 10.D 二、填空题:11.41a - 12.5 13.36︒ 14.100︒ 15.1 16.23n - 三、解答题:17.(1)解:原式= 22a a a -- ……………………………… 4分= a - ……………………………… 5分(2)解:2261x x x -->- ……………………………… 4分5x <- ……………………………… 5分18.解:∵C ∠:ADB ∠=2:3∴32ADB C ∠=∠ ………………………………1分 在BCD ∆中,3122DBC ADB C C C C ∠=∠-∠=∠-∠=∠ ……… 2分∵BD 是△ABC 中的角平分线 ∴11723622ABD DBC ABC ∠=∠=∠=⨯︒=︒ ……………………… 3分 ∴223672C DBC ∠=∠=⨯︒=︒ ……………………………… 4分在ABC ∆中,18036BAC ABC ACB ∠=︒-∠-∠=︒ ……………………… 6分∵AE ⊥BD ,∴90AEB ∠=︒ ……………………… 7分∴9054BAE ABE ∠=︒-∠=︒ ……………………… 8分 ∴18DAE BAE BAC ∠=∠-∠=︒ ……………………… 10分19.解:∵()2222x y x y xy -=+-∴221625x y =+-⨯∴2226x y += ………………………………5分 又∵()2222261036x y x y xy +=++=+=∴6x y +=± ……………………………… 10分20.(1)证明:∵AD ∥CE∴A C ∠=∠ ………………………………2分 在ABD ∆和CEB ∆中A CADB CBE BD EB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABD CEB ∆≅∆ ………………………………7分 (2)证明:∵ABD CEB ∆≅∆∴AD CB =,AB CE = ………………………………9分 ∴AB CB AD CE +=+即AC= AD+CE . ………………………………10分 21.(1)解:设底边长为x ,则腰长为45x 441355x x x ++= 解得 5x = 答:底边长为5. ……………………………… 3分 (2)解:①当325x x =+,即这两边都为腰时5x =∴31513x =>(不合题意,舍去) ………………………………6分 ②当3x 为底边时∵()322513x x ++= 解得37x = ∴937x =……………………………… 9分 ③当25x +为底时∵232513x x ⋅++= 解得1x = ∴257x +=,33x =∵337+<(不合题意,舍去) ∴该等腰三角形的底边为97. ……………………………… 12分 卷II :四、填空题:22.22a b 23.6 24.40︒或100︒ 25.①③④ 五、解答题:26.解:(1)∵2690a b a a -+-+=∴()230a b a -+-= ………………2分 又∵0a b -≥,()230a -≥ ∴()230a b a -=-= ∴3a b ==即()0,3A ,()3,0B ………………4分(2)①()1,0C - ………………5分 ②()4,3或()0,1-或()3,4 ………………8分 (3)0c =或3c ≤- ………………10分 27.(1)………………3分(2)∵()()()()2222369x x mx n x x x mx n+++=++++∴二次项系数为:69m n ++,一次项系数为:96m n + …………5分 ∵该多项式不含二次项和一次项∴690960m n m n ++=⎧⎨+=⎩ ………………7分 解得:23m n =-⎧⎨=⎩∴1m n += ………………9分 (3)4- ………………12分28.(1)解:作AH ⊥x 轴于H ,则90AHC BOC ∠=∠=︒,1AH BO ==在AHC ∆和BOC ∆中ACH BCO AHC BOC AH BO ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AHC BOC ∆≅∆ ………………………………2分∴32HC OC ==∴3t = (3)(2)作AM ⊥y 轴,AN ⊥x 轴,AH ⊥BC ,垂足分别是M ,N ,H ,则1AM AN OM ON ====∵180ACO ACB ACB ACH ∠+∠=︒=∠+∠∴ACO ACH ∠=∠∴AN AH AM == ……………………4分 可证ABM ABH ∆≅∆,得BM BH = …………5分 可证AHC ANC ∆≅∆,得CN CH = …………6分∴BC OC OB BC ON CN OB BC CH OB ON +-=++-=+-+2BH OB ON BM OB ON OM ON =-+=-+=+= ……………………7分 (3)作AQ ⊥CA 交CA 的延长线于Q ,EH ⊥y 轴于E ,AF ⊥x 轴交EH 于点F证OHB OQC ∆≅∆得OH=OQ 又∵OH ⊥AB ,OQ ⊥CA∴45OAH OAQ ∠=∠=︒ ……………………9分 再证OEH HFA ∆≅∆ ……………………11分 ∴EH FA = ∴1m n =-即1m n += ……………………12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省潍坊市昌乐县2019-2020学年八年级上学期期中数学试卷一、选择题(本大题共12小题,共36.0分)1.下列式子:①y2x ;②2a+b;③−x4−a;④xy−y22.其中是分式的有()A. 2个B. 3个C. 4个D. 5个2.下列四个中文字中,不是轴对称图形的是()A. 一B. 日C. 千D. 里3.下列各组中是全等形的是()A. 两个周长相等的等腰三角形B. 两个面积相等的长方形C. 两个面积相等的直角三角形D. 两个周长相等的圆4.尺规作图的画图工具是()A. 刻度尺、量角器B. 三角板、量角器C. 直尺、量角器D. 没有刻度的直尺和圆规5.若分式1a−1有意义,则a的取值范围是()A. a≠1B. a≠0C. a≠1且a≠0D. 一切实数6.角的平分线是到角两边距离相等的点的集合。
()A. 正确B. 错误7.下列分式约分,正确的是().A. a6a3=a2 B. 2ab26a2b2=13C. m+nm2+mn=1mD. x+yx+y=08.在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是()A. BC=EFB. AC=DFC. ∠B=∠ED. ∠C=∠F9.如图,△ABC和△A′B′C′关于直线对称,下列结论中:①△ABC≌△A′B′C′;②∠BAC′=∠B′AC;③l垂直平分CC′;④直线BC和B′C′的交点不一定在l上,正确的有()A. 4个B. 3个C. 2个D. 1个10.如图,AB=AC,若要使△ABE≌△ACD,则添加的一个条件不能是()A. ∠B=∠CB. BE=CDC. BD=CED. ∠ADC=∠AEB11.如图,AC平分∠BAD,∠B=∠D,AB=8cm,则AD=()A. 6cmB. 8cmC. 10cmD. 4cm12.某工程限期完成,甲队独做可提前1天完成,乙队独做要误期6天,现两队合作4天,余下工程由乙队独做,正好如期完成,若设该工程的期限为x天,则根据题意可列方程()A. 4x−1+xx+6=1 B. 4x−1=xx+6C. 4x+1+xx−6=1 D. 4x−1+xx+6=x二、填空题(本大题共6小题,共18.0分)13.在比例尺为1:2000的地图上,测得A、B两地间的图上距离为4.5厘米,则其实际距离为______米.14.已知a2=b3=c4,则2a−b+3c3a−2b+c=______.15.如图,△ABC的周长为19cm,AC的垂直平分线DE交AC于点E,E为垂足,AE=3cm,则△ABD的周长为______ .16.等腰三角形一个内角的大小为50°,则其顶角的大小为______.17.若△ABC≌△DEF,且AB=8cm,BC=6cm,AC=7cm,那么DF的长为____cm.18.若关于x的方程x+2x−1=2+m+11−x有增根,那么m=________.三、计算题(本大题共1小题,共15.0分)19.解下列方程(1)1x−1=1x2−1(2)23+x3x−1=19x−3(3)先化简,再求值(aa2−b2−1a+b)÷bb−a,其中a=1,b=2.四、解答题(本大题共5小题,共51.0分)20.如图,在△ABC中,AB=AC,BD⊥AC于D,若∠ABC=72°,求∠ABD的度数.21.如图,已知△ABC,∠BAC=90°(1)尺规作图:作BC边的高AD(保留作图痕迹,不写作法);(2)求证:∠C=∠BAD22.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,线段BD,CE有怎样的数量关系和位置关系?请说明理由.23.如图,在平面直角坐标系中,△ABC顶点的坐标分别是A(−1,3),B(−5,1),C(−2,−2).(1)画出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′各顶点的坐标;(2)求出△A′B′C′的面积..小丽家去年12月份的水费是15 24.某市从今年1月1日起调整居民用水价格,每立方米水费上涨13元,而今年7月份的水费是30元.已知小丽家今年7月份的用水量比去年12月份的用水量多5m3.求:(1)小丽家去年12月份的用水量;(2)求该市今年居民用水的价格.-------- 答案与解析 --------1.答案:A解析:本题主要考查分式的定义,分母中含有字母则是分式,如果不含有字母则不是分式.判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.据此解答即可.解:分式有①y2x ;③−x4−a,共有2个.故选A2.答案:C解析:本题考查轴对称图形.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;这时,我们也说这两个图形关于这条直线对称.利用轴对称图形的概念即可解答.解:A,B,D选项中的图形都是轴对称图形.故选C.3.答案:D解析:此题主要考查了全等图形,关键是掌握全等图形的概念.根据能够完全重合的两个图形叫做全等形进行分析即可.解:A、不一定是全等形,故此选项错误;B、不一定是全等形,故此选项错误;C、不一定是全等形,故此选项错误;D、是全等形,故此选项正确;故选D.4.答案:D解析:解:尺规作图的画图工具是没有刻度的直尺和圆规.故选D.根据尺规作图的定义可知.本题主要考查了尺规作图的画图工具,即没有刻度的直尺和圆规.5.答案:A解析:解:若分式1a−1有意义,则a−1≠0,即a≠1,故选:A.分式有意义的条件是分母不等于零,据此可得.本题主要考查分式有意义的条件,解题的关键是掌握分式有意义的条件是分母不等于零.6.答案:A解析:本题考查了角平分线的性质,即到角的两边距离相等的点在角的平分线上.解:由角平分线的性质即到角的两边距离相等的点在角的平分线上,故选A.7.答案:C解析:本题考查分式的约分,在约分时要注意约掉的是分子、分母的公因式.根据分式的基本性质分别进行化简,即可得出答案.解:A.a6a3=a3,故A错误;B.2ab26a2b2=13a,故B错误;C.m+nm2+mn =1m,故C正确;D.x+yx+y=1,故D错误.故选C.8.答案:A解析:解:三角形全等判定中“SSA”不成立,由图可知BC和EF是∠A和∠D的对边;加B,C,D分别符合SAS,ASA,AAS都能得到两三角形全等;故选A.题目中给出了一边一角分别对应相等,不能判断△ABC与△DEF全等的应该是添加一边与之构成SSA,选择时要注意不能是给出角的对边,故答案选A,而B、C、D都可以使△ABC与△DEF全等.本题重点考查了三角形全等的判定方法.但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.9.答案:B解析:根据关于某直线成轴对称的两个图形能够完全重合对各小题分析判断即可得解.本题考查轴对称的性质与运用,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.解:∵△ABC和△A′B′C′关于直线l对称,∴①△ABC≌△A′B′C′,正确;②∠BAC=∠B′AC′,∴∠BAC+∠CAC′=∠B′AC′+∠CAC′,即∠BAC′=∠B′AC,正确;③l垂直平分CC′,正确;④应为:直线BC和B′C′的交点一定在l上,故本选项错误.综上所述,结论正确的是①②③共3个.故选B.10.答案:B解析:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.已知条件AB=AC,还有公共角∠A,然后再结合选项所给条件和全等三角形的判定定理进行分析即可.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.解:A、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此选项不合题意;B、添加BE=CD不能判定△ABE≌△ACD,故此选项符合题意;C、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;D、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;故选B.11.答案:B解析:解:∵AC平分∠BAD,∴∠DAC=∠BAC,在△ADC和△ABC中,{∠B=∠D ∠DAC=∠BAC AC=AC ,∴△ADC≌△ABC(AAS),∴AD=AB=8cm.故选:B.根据AAS证明△ADC≌△ABC,即可得出AD=AB.本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键.12.答案:A解析:本题考查了分式方程的应用.根据工作量为1得到相应的等量关系是解决本题的关键;易错点是得到两人各自的工作时间.关键描述语为:“由甲、乙两队合作4天,余下的工程由乙队单独做正好按期完成”;本题的等量关系为:甲4天的工作量+乙规定日期的工作量=1,把相应数值代入即可得到方程求解.解:设规定日期为x天,则甲工程队单独完成要(x−1)天,乙工程队单独完成要(x+6)天,根据题意得:4 x−1+xx+6=1.故选A.13.答案:90解析:解:设A,B两地的实际距离为xcm,则:1:2000=4.5:x,解得x=9000.9000cm=90m.故答案为:90;根据比例尺=图上距离:实际距离,依题意列出比例式,即可求得实际距离.本题考查了比例尺的定义.要求能够根据比例尺由图上距离正确计算实际距离,注意单位的换算.14.答案:134解析:解:设a2=b3=c4=k.则根据比例的性质,得a=2k,b=3k,c=4k,∴2a−b+3c 3a−2b+c=2×2k−3k+3×4k 3×2k−2×3k+4k=134;故答案为:134.根据比例的性质进行解答.本题是基础题,考查了比例的基本性质,比较简单.15.答案:13cm解析:解:∵AC的垂直平分线DE交BC于D,E为垂足∴AD=DC,AC=2AE=6cm,∵△ABC的周长为19cm,∴AB+BC=13cm∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC=13cm.故答案为:13cm.根据垂直平分线的性质计算.△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC.本题考查了线段垂直平分线的性质;解决本题的关键是利用线段的垂直平分线性质得到相应线段相等.16.答案:50°或80°解析:解:如图所示,△ABC中,AB=AC.有两种情况:①顶角∠A=50°;②当底角是50°时,∵AB=AC,∴∠B=∠C=50°,∵∠A+∠B+∠C=180°,∴∠A=180°−50°−50°=80°,∴这个等腰三角形的顶角为50°和80°.故答案为:50°和80°.可知有两种情况(顶角是50°和底角是50°时),由等边对等角求出底角的度数,用三角形的内角和定理即可求出顶角的度数.本题考查了等腰三角形的性质和三角形的内角和定理的理解和掌握,能对有的问题正确地进行分类讨论是解答此题的关键.17.答案:7解析:解:∵△ABC≌△DEF,∴DF=AC=7cm,故答案为:7.根据全等三角形的对应边相等解答即可.本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.18.答案:−4解析:本题考查了分式方程的增根及解分式方程,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,可求增根,再将方程两边都乘(x−1)化为整式方程,再把增根1代入求解即可.解:∵原方程有增根,∴最简公分母x−1=0,解得x=1,原方程两边都乘x−1,得x+2=2(x−1)−(m+1),把x=1代入方程,得3=−(m+1),解得m=−4.故答案为−4.19.答案:解:(1)去分母得:x+1=1,解得:x=0,经检验x=0是分式方程的解;(2)去分母得:6x−2+3x=1,解得:x=13,经检验x=13是增根,分式方程无解;(3)原式=a−(a−b)(a+b)(a−b)⋅−(a−b)b=−b(a+b)(a−b)⋅a−bb=−1a+b,当a=1,b=2时,原式=−13.解析:(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(3)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代入计算即可求出值.此题考查了解分式方程,以及分式的化简求值,熟练掌握运算法则是解本题的关键.20.答案:解:∵BD⊥AC于D,∴∠BDC=90°,∵∠B=72°,AB=AC,∴∠A=36°,∴∠ABD=90°−∠A=54°.解析:由BD⊥AC于D,得到∠BDC=90°,根据等腰三角形的性质得到∠A=36°,由三角形的内角和即可得到结论.本题考查的是等腰三角形的性质及三角形的内角和定理,解答此题的关键是熟知三角形的内角和为180°.21.答案:(1)解:如图所示:AD即为所求;(2)证明:∵∠BAC=90°,∴∠BAD=∠CAD=90°,∵AD是△ABC的高,AD⊥BC,∴∠CDA=90°,在Rt△CAD中,∠C+∠CAD=90°,∴∠C=∠BAD.解析:(1)直接利用过直线外一点作已知垂线的作法得出答案;(2)利用直角三角形的性质结合垂线的定义得出答案.此题主要考查了基本作图以及直角三角形的性质,正确掌握基本作图方法是解题关键.22.答案:解:BD=CE且BD⊥CE;延长BD与EC交于点F,在△ACE和△ADB中,{AE=AD∠EAC=∠DAB AC=AB,∴△ACE≌△ABD(SAS),∴BD=CE,∠AEC=∠ADB,∵∠ADB+∠ABD=90°∴∠ABD+∠AEC=90°∴∠BFE=90°,∴BD⊥CE.解析:延长BD与EC交于点F,可以证明△ACE≌△ABD,可得BD=CE,且∠BFE=90°,即可解题.本题考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,本题中求证△ACE≌△ABD是解题的关键.23.答案:解:如图,A′(1,3),B′(5,1),C′(2,−2).(2)S △A′B′C′=4×5−12×2×4−12×3×3−12×1×5 =20−4−4.5−2.5=9.解析:本题主要考查对作图−轴对称变换,点的坐标的确定,三角形的面积.能根据变换后点的坐标画出图形是解此题的关键.(1)关于y 轴对称的点的坐标特点:横坐标互为相反数,纵坐标不变.根据此作图即可;(2)用△A′B′C′所在的矩形的面积减去三个小三角形的面积即可.24.答案:解:(1)设小丽家去年12月份的用水量为xm 3,依题意得(1+13)⋅15x =30x+5, 解得x =10,经检验,x =10是原方程的解,答:小丽家去年12月份的用水量为10m 3.(2)3010+5=2(元/m3),答:该市今年居民用水的价格为2元/m3.解析:本题考查了分式方程的应用,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.求的是单价,总价明显,一定是根据数量来列等量关系,本题的关键描述语是:今年7月份的用水量比去年12月份的用水量多5m 3,等量关系为:7月份的用水量−12月份的用水量=5m 3.。