七年级数学一元一次方程组复习
人教版七年级数学上册第三章《一元一次方程》知识点复习练习
人教版七年级数学上册第三章《一元一次方程》知识点复习练习3.1 从算式到方程3.1.1 一元一次方程基础题知识点1 方程的概念含有未知数的等式叫做方程.1.下列各式中,是方程的是(A ) A .7x -3=3x +5B .4x -7C .22+3=7D .2x <52.下列各式中,不是方程的是(C ) A .2x +3y =1B .-x +y =4C .3π+4≠5D .x =8知识点2 一元一次方程只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程.3.(昆明月考)下列关于x 的方程中,是一元一次方程的是(B )A .ax =5B .x =0C .3x -2=yD .-2x =3 4.如果方程(m -1)x +2=0是关于x 的一元一次方程,那么m 的取值范围是(B )A .m≠0B .m≠1C .m =-1D .m =0 5.若方程2x a -2-3=0是关于x 的一元一次方程,则a =3.知识点3 方程的解6.(临沧期中)方程1-3y =7的解是(C )A .y =-12B .y =12C .y =-2D .y =27.在0,1,2,3中,0是方程13x -12=-12的解. 8.x =3是方程①3x =6;②2(x -3)=0;③x -2=0;④x +3=5中②的解.(填序号)知识点4 列方程9.设某数是x ,若比它的2倍大3的数是8,可列方程为(B )A .2x -3=8B .2x +3=8 C.12x -3=8 D.12x +3=8 10.(杭州中考)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为(C )A .518=2(106+x )B .518-x =2×106C .518-x =2(106+x )D .518+x =2(106-x )11.李红买了8个莲蓬,付50元,找回38元.设每个莲蓬的价格为x 元,根据题意,列出方程为50-8x =38. 易错点 对一元一次方程概念理解不透而致错12.(昆明月考)若方程(a -1)x |a|-2=3是关于x 的一元一次方程,则a 的值为-1.中档题13.(民大附中月考)下列是一元一次方程的有(A )①23-x =23-y ;②2x -4=x -1;③x +1-3;④3x -2x =3;⑤2x -4>5.A.2个B.3个C.4个D.5个14.以x=-3为解的方程是(C)A.3x-7=5-x B.6x+7=1-12xC.2-8x=20-2x D.11x+2=5(1+2x)15.检验下列各题括号内的值是否为相应方程的解:(1)2x-3=5(x-3){x=6,x=4};(2)4x+5=8x-3{x=3,x=2}.解:(1)x=4是方程的解.(2)x=2是方程的解.16.已知y=1是方程my=y+2的解,求m2-3m+1的值.解:把y=1代入方程my=y+2中,得m=3,当m=3时,m2-3m+1=1.17.(教材P80练习变式)根据下列问题,设未知数,列出方程:(1)《文摘报》每份0.5元,《信息报》每份0.4元,小刚用7元钱买了两种报纸共15份,他买的两种报纸各多少份?(2)水上公园某一天共售出门票128张,收入912元,门票价格为成人每张10元,学生可享受六折优惠.这一天出售的成人票与学生票各多少张?解:(1)设买《文摘报》x份,则买《信息报》(15-x)份,根据题意列方程,得0.5x+0.4(15-x)=7.(2)设出售成人票x张,则出售学生票(128-x)张,根据题意列方程,得10x+60%×10(128-x)=912.综合题18.在一次植树活动中,甲班植树的株数比乙班多20%,乙班植树的株数比甲班的一半多10株.设乙班植树x株.(1)列两个不同的含x的式子,分别表示甲班植树的株数;(2)根据题意列出含未知数x的方程;(3)检验乙班、甲班植树的株数是不是分别为25株和35株.解:(1)根据甲班植树的株树比乙班多20%,得甲班植树的株数为(1+20%)x;根据乙班植树的株数比甲班的一半多10株,得甲班植树的株数为2(x-10).(2)(1+20%)x=2(x-10).(3)把x=25分别代入方程的左边和右边,得左边=(1+20%)×25=30,右边=2×(25-10)=30.因为左边=右边,所以x=25是方程(1+20%)x=2(x-10)的解.这就是说乙班植树的株数是25株,从上面检验过程可得甲班植树的株数是30株,而不是35株.3.1.2 等式的性质基础题知识点1 等式的性质等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等.即:如果a =b ,那么a±c =b±c.等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果a =b ,那么ac =bc ;如果a =b (c ≠0),那么a c =b c . 1.下列等式变形中,错误的是(D )A .由a =b ,得a +5=b +5B .由a =b ,得a -3=b -3C .由x +2=y +2,得x =yD .由-3x =-3y ,得x =-y2.若x =y ,且a≠0,则下面各式中不一定正确的是(D )A .ax =ayB .x +a =y +a C.x a =y a D.a x =a y3.已知m +a =n +b ,根据等式的性质变形为m =n ,那么a ,b 必须符合的条件是(C )A .a =-bB .-a =bC .a =bD .a ,b 可以是任意有理数或整式4.在下列各题的横线上填上适当的数或整式,使所得结果仍是等式,并说明根据的是等式的哪一条性质以及是怎样变形的.(1)如果-x 10=y 5,那么x =-2y ,根据等式的性质2,两边乘-10; (2)如果-2x =2y ,那么x =-y ,根据等式的性质2,两边除以-2;(3)如果23x =4,那么x =6,根据等式的性质2,两边乘32; (4)如果x =3x +2,那么x -3x =2,根据等式的性质1,两边减3x .知识点2 利用等式的性质解方程解以x 为未知数的方程,就是把方程逐步转化为x =a (常数)的形式,等式的性质是转化的重要依据.5.解方程-23x =32时,应在方程两边(C ) A .同乘-23B .同除以23C .同乘-32D .同除以326.利用等式的性质解方程x 2+1=2的结果是(A ) A .x =2B .x =-2C .x =4D .x =-47.(梧州中考)方程x -5=0的解是x =5.8.由2x -1=0得到x =12,可分两步,按步骤完成下列填空: 第一步:根据等式的性质1,等式两边加1,得到2x =1;第二步:根据等式的性质2,等式两边除以2,得到x =12. 9.(教材P83习题T4变式)利用等式的性质解方程:(1)8+x =-5;解:两边减8,得x =-13.(2)4x =16;解:两边除以4,得x =4.(3)3x -4=11.解:两边加4,得3x =15.两边除以3,得x =5.易错点 对等式性质理解不透致错10.有两种等式变形:①若ax =b ,则x =b a ;②若x =b a,则ax =b.其中(B ) A .只有①对B .只有②对C .①②都对D .①②都错中档题11.下列是等式2x +13-1=x 的变形,其中根据等式的性质2变形的是(D ) A.2x +13=x +1 B.2x +13-x =1 C.2x 3+13-1=x D .2x +1-3=3x 12.(贵阳中考)方程3x +1=7的解是x =2.13.若x =1是关于x 的方程3n -x 2=1的解,则n =12. 14.利用等式的性质解下列方程:(1)-3x +7=1;解:两边减7,得-3x =-6.两边除以-3,得x =2.(2)-y 2-3=9; 解:两边加3,得-y 2=12. 两边乘-2,得y =-24.(3)512x -13=14; 解:两边加13,得512x =712. 两边乘125,得x =75.(4)3x +7=2-2x.解:两边减7,得3x =2-2x -7.两边加2x ,得5x =-5.两边除以5,得x =-1.15.有只狡猾的狐狸,它平时总喜欢戏弄人,有一天它遇见了老虎,狐狸说:“我发现2和5是可以一样大的,我这里有一个方程5x -2=2x -2.等式两边同时加上2,得5x -2+2=2x -2+2, ①即5x =2x.等式两边同时除以x ,得5=2.” ②老虎瞪大了眼睛,听傻了.你认为狐狸的说法正确吗?如果正确,请说明上述①、②步的理由;如果不正确,请指出错在哪里?并加以改正. 解:不正确.①正确,运用了等式的性质1.②不正确,由5x =2x ,两边同时减去2x ,得5x -2x =0,即3x =0,所以x =0.综合题16.能不能从(a +3)x =b -1得到x =b -1a +3,为什么?反之,能不能从x =b -1a +3得到等式(a +3)x =b -1,为什么?解:当a =-3时,从(a +3)x =b -1不能得到x =b -1a +3,因为0不能为除数. 从x =b -1a +3可知,a +3≠0.根据等式的性质2可知,从x =b -1a +3可以得到等式(a +3)x =b -1.3.2解一元一次方程(一)——合并同类项与移项第1课时合并同类项基础题知识点1利用合并同类项解简单的一元一次方程将方程中的同类项进行合并,把以x为未知数的一元一次方程变形为ax=b(a≠0,a、b为已知数)的形式,.然后利用等式的性质2,方程两边同时除以a,从而得到x=ba如:(1)合并同类项:x-2x+4x=3x;4y-2.5y-3.5y=-2y.(2)解方程-7x+2x=9-4的步骤是:①合并同类项,得-5x=5;②系数化为1,得x=-1.1.对于方程8x+6x-10x=8,合并同类项正确的是(B)A.3x=8 B.4x=8C.-4x=8 D.2x=82.方程x+2x=-6的解是(D)A.x=0 B.x=1C.x=2 D.x=-23.下列是小明同学做的四道解方程题,其中错误的是(B)A.5x+4x=9→x=1B.-2x-3x=5→x=1C.3x-x=-1+3→x=1D.-4x+6x=-2-8→x=-54.解下列方程:(1)6x-5x=3;解:合并同类项,得x=3.(2)-x+3x=7-1;解:合并同类项,得2x=6. 系数化为1,得x=3.(3)x2+5x2=9;解:合并同类项,得3x=9.系数化为1,得x=3.(4)6y+12y-9y=10+2+6.解:合并同类项,得9y=18.系数化为1,得y=2.知识点2列方程解决“总量=各部分量之和”问题5.某数的3倍与这个数的2倍的和是30,这个数为(C)A.4 B.5C.6 D.76.一个两位数,个位上的数字是十位上数字的3倍,且它们的和为12,则这个两位数是39.7.三个连续奇数的和为27,则这三个数分别为7、9、11.8.一条长1 210 m的水渠,由甲、乙两队从两头同时施工.甲队每天挖130 m,乙队每天挖90 m,则挖好水渠需要几天?解:设需要x天才能挖好水渠,则130x+90x=1 210.解得x =5.5.答:挖好水渠需要5.5天.9.(教材P88练习T2变式)麻商集团三个季度共销售冰箱2 800台,第一季度销售量是第二季度的2倍,第三季度销售量是第一季度的2倍,试问麻商集团第二季度销售冰箱多少台?解:设麻商集团第二季度销售冰箱x 台,则第一季度销售量为2x 台,第三季度销售量为4x 台.根据总量等于各部分量的和,得x +2x +4x =2 800.解得x =400.答:麻商集团第二季度销售冰箱400台.中档题10.如果x =m 是关于x 的方程12x -m =1的解,那么m 的值是(C ) A .0B .2C .-2D .-611.已知某三角形的周长为60 cm ,三边长之比为3∶4∶5,则最短边的长为15cm.12.在一张普通的日历中,相邻三行里同一列的三个日期之和为30,这三个日期分别为3、10、17.13.解下列方程:(1)0.3x -0.4x =0.6;解:合并同类项,得-0.1x =0.6.系数化为1,得x =-6.(2)5x -2.5x +3.5x =-10;解:合并同类项,得6x =-10.系数化为1,得x =-53.(3)x-25x=3+6;解:合并同类项,得35x=9.系数化为1,得x=15.(4)16x-3.5x-6.5x=7-(-5).解:合并同类项,得6x=12.系数化为1,得x=2.14.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3∶5,一个足球表面一共有32块皮,黑色皮块和白色皮块各有多少?解:设黑色皮有3x块,白色皮有5x块.根据“足球表面一共有32块皮”,可得3x+5x=32.解得x=4.所以3x=3×4=12,5x=5×4=20.答:黑色皮有12块,白色皮有20块.15.(苏州中考)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡,中、美两国人均淡水资源占有量之和为13 800 m3,问中、美两国人均淡水资源占有量各为多少水资源占有量的15(单位:m3)?解:设中国人均淡水资源占有量为x m3,则美国人均淡水资源占有量为5x m3.根据题意,得x+5x=13 800,解得x=2 300.则5x=11 500.答:中国人均淡水资源占有量为2 300 m3,美国人均淡水资源占有量为11 500 m3.综合题16.(教材P87例2变式)有这样一列数,按一定规律排列成-1,2,-4,8,-16,…,其中某三个相邻数的和是768,则这三个数各是多少?解:设所求三个数分别为-x,2x,-4x,由题意,得-x+2x+(-4x)=768.解得x=-256.所以-x=256,2x=2×(-256)=-512,-4x=-4×(-256)=1 024.答:这三个数分别是256、-512、1 024.第2课时 移项基础题知识点1 利用移项解一元一次方程把等式一边的某项变号后移到另一边,叫做移项.1.下列变形中属于移项的是(C )A .由2x =2,得x =1B .由x 2=-1,得x =-2 C .由3x -72=0,得3x =72D .由2x -1=3,得2x =3-12.解方程2x -5=3x -9时,移项正确的是(B )A .2x +3x =9+5B .2x -3x =-9+5C .2x -3x =9+5D .2x -3x =9-53.关于x 的方程3x =4x +5的解是(C )A .x =5B .x =-3C .x =-5D .x =3 4.解方程6x +90=15-10x +70的步骤是:①移项,得6x +10x =15+70-90;②合并同类项,得16x =-5;③系数化为1,得x =-516. 5.解下列方程:(1)4x =9+x ;解:移项,得4x-x=9.合并同类项,得3x=9.系数化为1,得x=3.(2)4-35m=7;解:移项,得-35m=7-4.合并同类项,得-35m=3.系数化为1,得m=-5.(3)8y-3=5y+3;解:移项,得8y-5y=3+3.合并同类项,得3y=6.系数化为1,得y=2.(4)4x+5=3x+3-2x.解:移项,得4x-3x+2x=-5+3.合并同类项,得3x=-2.系数化为1,得x=-23.知识点2根据“表示同一个量的两个不同的式子相等”列方程6.某部队开展植树活动,甲队35人,乙队27人,现另调28人去支援,使甲队人数与乙队人数相等,则应调往甲队的人数是10,调往乙队的人数是18.7.(教材P91习题T5变式)小华的妈妈在25岁时生了小华,现在小华妈妈的年龄是小华的3倍多5岁,求小华现在的年龄.解:设小华现在的年龄为x岁,则妈妈现在的年龄为(x+25)岁.根据题意,得x+25=3x+5.解得x=10.答:小华现在的年龄为10岁.易错点 解方程时,移项不变号或误将不移动的项也变号8.解方程:x -3=-12x -4. 解:移项,得x +12x =-4+3. 合并同类项,得32x =-1. 系数化为1,得x =-23.中档题9.某同学在解方程5x -1=■x +3时,把■处的数字看错了,解得x =-43,则该同学把■看成了(D ) A .3B .-1289C .-8D .810.(昆明期末)若方程2x -kx +1=5x -2的解为-1,则k 的值为-6.11.如果5m +14与m +14互为相反数,那么m 的值为-112. 12.“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树.请你仔细数,鸦树各几何?”在这一问题中,若设树有x 棵,通过分析题意,鸦的只数不变,则可列方程:3x +5=5(x -1).13.对于有理数a ,b ,规定运算※的意义是:a ※b =a +2b ,则方程3x ※x =2-x 的解是x =13. 14.解下列方程:(1)2x -19=7x +6;解:移项,得2x -7x =19+6.合并同类项,得-5x =25.系数化为1,得x =-5.(2)x -2=13x +43.解:移项,得x -13x =2+43. 合并同类项,得23x =103. 系数化为1,得x =5.15.(教材P88问题2变式)(天门中考改编)清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈,若每小组7人,则余下3人;若每小组8人,则少5人.该班共有多少名同学?解:设一共分为x 个小组.由题意,得7x +3=8x -5.解得x =8.则7x +3=7×8+3=59.答:该班共有59名同学.16.小明到书店帮同学买书,售货员告诉他,如果用20元钱办理“购书会员卡”,将享受八折优惠.(1)请问在这次买书中,小明在什么情况下办会员卡与不办会员卡一样?(2)当小明买标价为200元的书时,怎样做合算,能省多少钱?解:(1)设小明在买x 元的书的情况下办会员卡与不办会员卡一样.则x =20+80%x.解得x =100.答:小明在买100元的书的情况下办会员卡与不办会员卡一样.(2)20+200×80%=180(元).200-180=20(元).答:当小明买标价为200元的书时,应办理会员卡,能省20元钱.综合题17.当m 为何值时,关于x 的方程4x -2m =3x +1的解是x =2x -3m 的解的2倍?解:因为关于x 的方程x =2x -3m 的解为x =3m ,所以关于x的方程4x-2m=3x+1的解是x=6m. 将x=6m代入4x-2m=3x+1中,得24m-2m=18m+1.移项、合并同类项,得4m=1.所以m=14.3.3 解一元一次方程(二)——去括号与去分母第1课时 去括号基础题知识点1 利用去括号解一元一次方程解方程时的去括号和有理数运算中的去括号类似,都是利用乘法分配律,其方法:括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同;括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.1.将方程2x -3(4-2x )=5去括号,正确的是(C )A .2x -12-6x =5B .2x -12-2x =5C .2x -12+6x =5D .2x -3+6x =52.方程2(x -3)+5=9的解是(B )A .x =4B .x =5C .x =6D .x =73.解方程4(x -1)-x =2(x +12)的步骤如下:①去括号,得4x -1-x =2x +1;②移项,得4x -2x -x =1+1;③合并同类项,得x =2,其中做错的一步是(A )A .①B .②C .③D .①②4.解方程:5(x -4)-3(2x +1)=2(1-2x )-1.解:去括号,得5x -20-6x -3=2-4x -1.移项,得5x -6x +4x =2-1+20+3.合并同类项,得3x =24.系数化为1,得x =8.5.解下列方程:(1)3(x +4)=x ;解:去括号,得3x +12=x.移项,得3x -x =-12.合并同类项,得2x =-12.系数化为1,得x =-6.(2)1-(2x +3)=6;解:去括号,得1-2x -3=6.移项,得-2x =6-1+3.合并同类项,得-2x =8.系数化为1,得x =-4.(3)12(x -2)=3-12(x -2). 解:去括号,得12x -1=3-12x +1. 移项,得12x +12x =3+1+1. 合并同类项,得x =5.知识点2 去括号解方程的应用6.甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时相遇,若乙每小时比甲少骑2.5千米,则乙每小时骑(C )A .20千米B .17.5千米C .15千米D .12.5千米7.父亲今年30岁,儿子今年4岁,9年后父亲的年龄是儿子年龄的3倍.易错点 去括号时漏乘某些项或弄错符号导致错解8.解方程:2(3-4x )=1-3(2x -1).解:去括号,得6-4x =1-6x -1.(第一步)移项,得-4x +6x =1-1-6.(第二步)合并同类项,得2x =-6.(第三步)系数化为1,得x =-3.(第四步)以上解方程正确吗?若不正确,请指出错误的步骤,并给出正确的解答过程.解:第一步错误.正确的解答过程如下:去括号,得6-8x =1-6x +3.移项,得-8x +6x =1+3-6.合并同类项,得-2x =-2.系数化为1,得x =1.中档题9.下列是四个同学解方程2(x -2)-3(4x -1)=9的去括号的过程,其中正确的是(A )A .2x -4-12x +3=9B .2x -4-12x -3=9C .2x -4-12x +1=9D .2x -2-12x +1=910.对于非零的两个有理数a ,b ,规定a ⊗b =2b -3a ,若1⊗(x +1)=1,则x 的值为(B )A .-1B .1 C.12 D .-1211.若式子4-3(x -1)与式子x +12的值相等,则x =-54. 12.解下列方程:(1)3x -2(10-x )=5;解:去括号,得3x -20+2x =5.移项,得3x +2x =20+5.合并同类项,得5x =25.系数化为1,得x =5.(2)3(2y +1)=2(1+y )+3(y +3);解:去括号,得6y +3=2+2y +3y +9.移项,得6y -2y -3y =-3+2+9.合并同类项,得y =8.(3)12x +2(54x +1)=8+x. 解:去括号,得12x +52x +2=8+x. 移项、合并同类项,得2x =6.系数化为1,得x =3.13.若方程3(2x -2)=2-3x 的解与方程6-2k =2(x +3)的解相同,求k 的值.解:由3(2x -2)=2-3x ,解得x =89. 把x =89代入方程6-2k =2(x +3),得 6-2k =2×(89+3).解得k =-89.14.(教材P94例2变式)一架飞机在两城市之间飞行,风速为24 km/h ,顺风飞行需要2 h 50 min ,逆风飞行需要3 h .求无风时飞机的飞行速度和两城之间的航程.解:设无风时飞机的飞行速度为x km/h ,则顺风时飞行的速度为(x +24) km/h ,逆风飞行的速度为(x -24) km/h.根据题意,得176(x +24)=3(x -24).解得x =840. 则3(x -24)=2 448.答:无风时飞机的飞行速度为840 km/h,两城之间的航程为2 448 km.综合题15.某次义务劳动,有甲、乙两个工地,甲工地有27人在劳动,乙工地有19人在劳动.现在又有20人来参加义务劳动,要使甲工地人数为乙工地人数的2倍,问应分别调往甲、乙两工地各多少人?解:设应调往甲工地x人,则调往乙工地(20-x)人.根据题意,得27+x=2[19+(20-x)].解得x=17.则20-x=3.答:应调往甲工地17人,调往乙工地3人.第2课时 去分母基础题知识点1 利用去分母解一元一次方程(1)去分母的方法:依据等式的性质2,方程两边各项都乘所有分母的最小公倍数,将分母去掉.(2)解一元一次方程的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.1.解方程3y -14-1=2y +76去分母时,方程两边都乘(B ) A .10 B .12 C .24 D .62.(曲靖期末)解方程x -14=3-1+2x 8去分母正确的是(A ) A .2(x -1)=24-1-2xB .2(x -1)=24-1+2xC .2(x -1)=3-1-2xD .2(x -1)=3-1+2x3.解方程13-x -12=1的结果是(D ) A .x =12 B .x =-12C .x =13D .x =-134.(济南中考)若式子4x -5与2x -12的值相等,则x 的值是(B ) A .1 B.32 C.23D .2 5.(滨州中考)依据下列解方程0.3x +0.50.2=2x -13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x +52=2x -13.(分数的基本性质) 去分母,得3(3x +5)=2(2x -1).(等式的基本性质2)去括号,得9x +15=4x -2.(去括号法则或乘法分配律)(移项),得9x -4x =-15-2.(等式的基本性质1)合并同类项,得5x =-17.(系数化为1),得x =-175.(等式的基本性质2)6.解下列方程:(1)2x -13=x +24; 解:去分母,得4(2x -1)=3(x +2).去括号,得8x -4=3x +6.移项,得8x -3x =4+6.合并同类项,得5x =10.系数化为1,得x =2.(2)x -32-4x +15=1; 解:去分母,得5(x -3)-2(4x +1)=10.去括号,得5x -15-8x -2=10.移项,得5x -8x =15+2+10.合并同类项,得-3x =27.系数化为1,得x =-9.(3)2x +13=1-x -15. 解:去分母,得5(2x +1)=15-3(x -1).去括号,得10x +5=15-3x +3.移项,得10x +3x =-5+15+3.合并同类项,得13x =13.系数化为1,得x =1.知识点2 去分母解方程的应用7.某工厂计划每天烧煤5吨,实际每天比计划少烧2吨,若m 吨煤多烧了20天,则m =150.8.王强参加了一场3 000米的赛跑,他以6米/秒的速度跑了一段路程,又以4米/秒的速度跑完了其余的路程,一共花了10分钟,问王强以6米/秒的速度跑了多少米?解:设王强以6米/秒的速度跑了x 米,则王强以4米/秒的速度跑了(3 000-x )米.根据题意,得x 6+3 000-x 4=10×60. 解得x =1 800.答:王强以6米/秒的速度跑了1 800米.易错点 去分母时,漏乘不含分母的项9.(株洲中考改编)在解方程x -13+x =3x +12时,方程两边同时乘6,去分母后,得2(x -1)+6x =3(3x +1).中档题10.若关于x 的一元一次方程2x -k 3-x -3k 2=1的解是x =-1,则k 的值是(B ) A .27B .1C .-1311D .011.(民大附中月考)式子x +24的值比2x -36的值大1,则x 的值是0. 12.(昆明月考)轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3 h ,若静水时船速为26 km/h ,水速为2 km/h ,则A 港和B 港相距504km.13.解下列方程:(1)x -13-x +26=4-x 2; 解:去分母,得2(x -1)-(x +2)=3(4-x ).去括号,得2x -2-x -2=12-3x.移项,得2x -x +3x =2+2+12.合并同类项,得4x =16.系数化为1,得x =4.(2)x -x -12=2-x +25; 解:去分母,得10x -5(x -1)=20-2(x +2). 去括号,得10x -5x +5=20-2x -4.移项,得10x -5x +2x =-5+20-4.合并同类项,得7x =11.系数化为1,得x =117.(3)x +12=6-2x -13; 解:去分母,得3(x +1)=36-2(2x -1). 去括号,得3x +3=36-4x +2.移项,得3x +4x =-3+36+2.合并同类项,得7x =35.系数化为1,得x =5.(4)x 0.7-0.17-0.2x 0.03=1. 解:原方程可化为10x 7-17-20x 3=1. 去分母,得30x -7(17-20x )=21.去括号,得30x -119+140x =21.移项、合并同类项,得170x =140.系数化为1,得x =1417.14.小明以每小时8千米的速度从甲地到达乙地,回来时走的路程比去时多3千米,已知速度为9千米/时,这样回来时比去时多用18小时,求去时甲、乙两地路长. 解:设去时甲、乙两地的路长为x 千米,则 x 8+18=x +39.解得x =15. 答:去时甲、乙两地的路长为15千米.综合题15.某同学在解方程2x -13=x +a 3-2去分母时,方程右边的-2没有乘3,因而求得的方程的解为x =2,试求a 的值,并求出原方程的解.解:根据该同学的做法,去分母,得2x -1=x +a -2.解得x =a -1.因为x =2是方程的解,所以a =3.把a =3代入原方程,得2x -13=x +33-2,解得x =-2.小专题5 一元一次方程的解法题组1 移项、合并同类项解一元一次方程1.解下列方程:(1)56-8x =11+x ;解:-8x -x =11-56,-9x =-45,x =5.(2)43x +1=5+13x. 解:43x -13x =5-1, x =4.题组2 去括号解一元一次方程2.解下列方程:(1)4x -3(20-2x )=10;解:4x -60+6x =10,4x +6x =60+10,10x =70,x =7.(2)4y -3(20-y )=6y -7(9-y ); 解:4y -60+3y =6y -63+7y , 4y +3y -6y -7y =60-63,-6y =-3,y =12.(3)4x -8(x +1)=4-2(x +3). 解:4x -8x -8=4-2x -6, 4x -8x +2x =4-6+8,-2x =6,x =-3.题组3 去分母解一元一次方程3.解下列方程:(1)2x -13-2x -34=1; 解:4(2x -1)-3(2x -3)=12, 8x -4-6x +9=12,8x -6x =4-9+12,2x =7,x =72.(2)16(3x -6)=25x -3; 解:5(3x -6)=12x -90, 15x -30=12x -90,15x -12x =-90+30,3x =-60,x =-20.(3)2(x +3)5=32x -2(x -7)3;解:12(x +3)=45x -20(x -7),12x +36=45x -20x +140,12x -45x +20x =-36+140,-13x =104,x =-8.(4)2x -13-10x +16=2x +12-1; 解:2(2x -1)-(10x +1)=3(2x +1)-6,4x -2-10x -1=6x +3-6,4x -10x -6x =3-6+2+1,-12x =0,x =0.(5)0.1-2x 0.3=1+x 0.15. 解:原方程整理,得1-20x 3=1+100x 15. 去分母,得5(1-20x )=15+100x.去括号,得5-100x =15+100x.移项,得-100x -100x =15-5.合并同类项,得-200x =10.系数化为1,得x =-0.05.周周练(3.1~3.3)(时间:45分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列方程中是一元一次方程的是(B )A.2x +2=3B.3x -12+4=3x C .y 2+3y =0D .9x -y =2 2.方程3x +6=2x -8移项后,正确的是(C )A .3x +2x =6-8B .3x -2x =-8+6C .3x -2x =-6-8D .3x -2x =8-63.解方程2(x -3)-3(x -4)=5时,下列去括号正确的是(D )A .2x -3-3x +4=5B .2x -6-3x -4=5C .2x -3-3x -12=5D .2x -6-3x +12=54.下列说法中,正确的是(D )A .若a =b ,则a c =b dB .若a =b ,则ac =bdC .若ac =bc ,则a =bD .若a =b ,则ac =bc5.方程2-2x -43=-x -76去分母,得(C ) A .2-2(2x -4)=-(x -7)B .12-2(2x -4)=-x -7C .12-2(2x -4)=-(x -7)D .12-(2x -4)=-(x -7)6.(咸宁中考)方程2x -1=3的解是(D )A .x =-1B .x =-2C .x =1D .x =27.小马虎在计算16-13x 时,不慎将“-”看成了“+”,计算的结果是17,那么正确的计算结果应该是(A ) A .15B .13C .7D .-18.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x 月后他能捐出100元,则下列方程中能正确计算出x 的是(A )A .10x +20=100B .10x -20=100C .20-10x =100D .20x +10=100二、填空题(每小题4分,共24分)9.已知x =-2是方程3(x +a )=15的解,则a =7.10.若式子2-k 3-1的值是1,则k =-4. 11.(临沧期中)如果5x +3与-2x +9互为相反数,那么x 的值是-4.12.(文山期中)已知(x -2)2+|3y -2x|=0,则x =2,y =43. 13.轮船从甲地顺流而行9小时到达乙地,原路返回11小时才能到达甲地,已知水流速度为2千米/时,则轮船在静水中的速度是20千米/时.14.已知a 、b 、c 、d 为4个数,现规定一种新的运算,⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,那么当⎪⎪⎪⎪⎪⎪ 2 4(1-x ) 5=18时,x =3.三、解答题(共44分)15.(24分)解方程:(1)(曲靖期末)x +12-1=43x ; 解:3(x +1)-6=8x ,3x +3-6=8x ,3x -8x =-3+6,-5x =3,x =-35.(2)3x -2(20-x )=6x -4(9+x );解:3x -40+2x =6x -36-4x ,3x =4,x =43.(3)2-2x +13=1+x 2; 解:12-2(2x +1)=3(1+x ),12-4x -2=3+3x ,-7x =-7,x =1.(4)x -10.3-x +20.5=1.2. 解:10x -103-10x +205=1.2, 5(10x -10)-3(10x +20)=1.2×15,50x -50-30x -60=18,20x =128,x =325.16.(8分)学校分配学生住宿,如果每室住8人,那么还少12个床位;如果每室住9人,那么空出两个房间.求房间的个数和学生的人数.解:设房间数为x,由题意,得8x+12=9(x-2).解得x=30.则学生人数为8×30+12=252.答:房间的个数为30,学生的人数为252.17.(12分)有一叠卡片,自上而下按规律分别标有6,12,18,24,30,…这些数.(1)你能发现这些卡片上的数有什么规律吗?请将它用一个含有n(n≥1)的式子表示出来;(2)小明从中抽取相邻的3张,发现其和是342,你能知道他抽出的卡片是哪三张吗?(3)你能拿出相邻的3张卡片,使得这些卡片上的数字之和是86吗?为什么?解:(1)6n.(2)设中间一张标有数字6n,那么前一张为6(n-1)=6n-6,后一张为6(n+1)=6n+6.根据题意,得6n-6+6n+6n+6=342.解得n=19.则6(n-1)=6×18=108,6n=6×19=114,6(n+1)=6×20=120.答:所抽的卡片为标有108、114、120数字的三张卡片.(3)不能,因为当6n-6+6n+6n+6=86时,n=43,不是整数,所以不可能抽到相邻3张卡片,使得这些卡片9上的数字之和为86.3.4 实际问题与一元一次方程第1课时 产品配套问题与工程问题基础题知识点1 产品配套问题解决配套问题时,关键是明确题目中的相等关系,它是列方程的依据.一般来说,题目中有两个等量关系,根据其中一个等量关系设未知数,根据另一个等量关系列方程. 1.有一个专项加工茶杯的车间,一个工人每小时平均可以加工杯身12个,或者加工杯盖15个,车间共有90人.安排加工杯身的人数为多少时,才能使生产的杯身和杯盖正好配套?设安排加工杯身的人数为x ,则加工杯盖的为(90-x )人,每小时加工杯身12x 个,杯盖15(90-x )个,则可列方程为12x =15(90-x ),解得x =50.间接设法:设共生产杯身x 个,共生产杯盖x 个.则生产杯身的工人为x 12个,生产杯盖的工人为x 15个,则可列方程为x 12+x 15=90.解得x =600.x 12=60012=50,x 15=60015=40. 2.(教材P101练习T1变式)(曲靖中考)某种仪器由1个A 部件和1个B 部件配套构成.每个工人每天可以加工A 部件1 000个或者加工B 部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A 部件和B 部件配套?解:安排x 人生产A 部件,安排(16-x )人生产B 部件.由题意,得1 000x =600(16-x ).解得x =6.所以16-x =10.答:安排6人生产A 部件,安排10人生产B 部件,才能使每天生产的A 部件和B 部件配套.知识点2 工程问题(1)解决工程问题时,常把总工作量看作1,并利用“工作量=人均效率×人数×时间”的关系考虑问题.(2)用一元一次方程分析和解决实际问题的基本步骤是:①设未知数;②分析问题中的数量关系,找出其中的等量关系,并由此列出方程;③解方程;④检验解的正确性与合理性,并写出答案.3.(教材P101练习T2变式)一件工作,甲单独做需要10小时完成,乙单独做需要15小时完成,甲、乙合作需要x 小时完成,则可列方程为x 10+x 15=1,解得x =6. 4.一批文稿,若由甲抄30小时可以抄完,若由乙抄20小时可以抄完,现由甲抄3小时后改由乙抄余下部分,则乙还需抄18小时.5.(昆明月考)整理一批图书,如果由一个人单独做要用30 h ,现先安排一部分人用1 h 整理,随后又增加6人和他们一起又做了2 h ,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少? 解:设先安排整理的人员有x 人,由题意,得130x +130(x +6)×2=1, 解得x =6.答:先安排整理的人员有6人.中档题6.某工程,甲独做需12天完成,乙独做需8天完成,现由甲先做3天,乙再参加合作,求完成这项工程共用的时间.若设完成此项工程共用x 天,则下列方程正确的是(D )A.x +312+x 8=1 B.x +312+x -38=1 C.x 12+x 8=1 D.x 12+x -38=1 7.某服装厂有工人54人,每人每天可加工上衣8件,或裤子10条,应怎样分配人数,才能使每天生产的上衣和裤子配套?设x 人做上衣,则做裤子的人数为(54-x )人,根据题意,可列方程为8x =10(54-x ),解得x =30.8.某瓷器厂共有120个工人,每个工人一天能做200只茶杯或50只茶壶.若8只茶杯和1只茶壶为一套,则安排40人生产茶壶可使每天生产的瓷器配套.9.学校图书管理员整理一批图书,由一个人做要80小时完成,现在计划由一部分人先做8小时,再增加2人和他们一起做16小时完成这项工作.假设这些人的工作效率相同,具体应该先安排多少人工作8小时?解:设应先安排x 人工作8小时,根据题意,得8x 80+16(x +2)80=1. 解得x =2.答:应先安排2人工作8小时.10.(民大附中月考)某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?解:设分配x 名工人生产螺母,则(22-x )名工人生产螺钉,由题意,得2 000x =2×1 200(22-x ),解得x =12.则22-x =10.答:应安排生产螺钉和螺母的工人分别为10名,12名.综合题11.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1 000元,甲、乙两人经商量后签订了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合作了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些?为什么?解:(1)能履行合同.设甲、乙合作x 天完成,则(130+120)x =1,解得x =12. 因为12<15,所以两人能履行合同.(2)调走甲更合适.由(1)知,两人合作完成这项工程的75%需要的时间为12×75%=9(天).剩下6天必须由某人做完余下的工程,故他的工作效率为25%÷6=124,因为130<124<120,故调走甲合适.。
苏科版七年级上册数学第四章《一元一次方程》复习卷及答案
第四章《一元一次方程》复习卷(满分:100分时间:90分钟)一、选择题(每题2分,共16分)1.下列结论不能由a+b=0得到的是( )A.a2=-a b B.a=b C.a =0,b =0 D.a2=b22.若代数式x+4的值是2,则x等于( )A.2 B.-2 C.6 D.-6 3.若关于x的方程2 x-a-5=0的解是x=-2,则a的值为( ) A.1 B.-1 C.9 D.-94.在解方程12x--233x+=1时,去分母正确的是( )A.3(x-1)-2(2+3x)=1 B.3(x-1)+2(2x+3)=1C.3(x-1)+2(2+3x)=6 D.3(x-1)-2(2x+3)=65.小明在做解方程作业时,不小心将方程中的一个常数污染了,看不清楚,被污染的方程是2y-12=12y-怎么办呢? 小明想了一想,便翻看书后答案,此方程的解是y=-53,于是很快就补好了这个常数,你能补出这个常数吗? 它应是( )A.4 B.3 C.2 D.16.小明在日历的某月上圈出五个数,呈十字框形,若它们的和是55,则中间的数是( )A.9 B.10 C.11 D.127.小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍.小郑今年的年龄是( )A.7岁B.8岁C.9岁D.10岁8.已知面包店的面包一个15元,小明去此店买面包,结账时店员告诉小明:“如果你再多买一个面包就可以打九折,价钱会比现在便宜45元.”小明说:“我买这些就好了,谢谢.”根据两人的对话,判断结账时小明买的面包个数是( )A.38 B.39 C.40 D.41二、填空题(每题2分,共20分)9.若3x-5=0,则5x-3= .10.当m= 时,方程2x+m=x+l的解为x=-4.11.若4x2m-1 y n与-13xy2是同类项,则m+n= .12.当y= 时,代数式2(3y+4)的值比5 (2y-7) 的值大3.13.在如图所示的运算程序中,若输出的数y=7,则输入的数x= .14.湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人.如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,那么正好送完.设敬老院有x位老人,依题意可列方程为.15.甲种电影票每张20元,乙种电影票每张15元,若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了张.16.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20 m3,则每立方米收费2元;若用水超过20 m3,则超过部分每立方米加收1元.若小明家5月份交水费64元,则他家该月用水m3.17.图1是边长为30 cm的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是cm3.18.某公路一侧原有路灯106盏,相邻两盏灯的距离为36 m,为节约用电,现计划全部更换为新型节能灯,且相邻两盏灯的距离变为54 m,则需更换新型节能灯盏.三、解答题(共64分)19.(本题8分) 解下列方程:(1) 5-15x+=x;(2)13(x-1)=17(2x-3);(3)0.60.4x-+x=0.110.3x+;(4)13(2x-5)=14( x-3)-112.20.(本题5分) 设a:b,c,d为有理数,现规定一种新的运算:a bc d=ad-b c,求满足等式13221xx+=1的x的值.21.(本题5分) 当m为何值时,关于x的方程5m+3x=1+x的解比关于x的方程2x+m=3m的解大2 ?22.(本题5分) 如果代数式34a+的值比237a-的值多1,求a-2的值.23.(本题5分) 若关于x的方程23kx a+=2+6x bk-无论k为何值,方程的解总是x=1,求a,b的值.24.(本题6分) 把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.这个班有多少名学生?25.(本题8分) 某一天,一蔬菜经营户用114元从蔬菜批发市场购进黄瓜和土豆共40 kg 到菜市场去卖.黄瓜和土豆这一天的批发价和零售价(单位:元/kg)如下表所示:(1) 他当天购进了黄瓜和土豆各多少千克?(2) 如果黄瓜和土豆全部卖完,他能赚多少钱?26.(本题8分) 李华早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15 min,如果他骑自行车的平均速度是每分钟250 m,推车步行的平均速度是每分钟80 m,他家离学校的路程是2900 m,求他推车步行的时间.27.(本题12分) 某景区内的环形路是边长为800 m的正方形ABCD,如图1和图2所示.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车逆时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200 m/min.[探究]设行驶时间为t min.(1) 当0≤t≤8时,分别用含t的代数式表示1号车、2号车在左半环线离出口A的路程y1,y2 (m),并求出当两车相距的路程是400 m时t的值;(2) 求当t 为何值时,1号车第三次恰好经过景点C ,并直接写出这一段时间内它与2号车相遇过的次数.[发现] 如图2,游客甲在BC 上的一点K (不与点B ,C 重合) 处候车,准备乘车到出口A . 设CK =x m .情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多.(含候车时间)参考答案一、选择题1.C 2.B 3.D 4.D 5.B 6.C 7.A 8.B二、填空题9.16310.5 11.3 12.10 13.27或28 14.2x +16=3x 15.20 16.28 17.1000 18.71三、解答题19.(1) x =4 (2) x =-2 (3) x =2919(4) x =2 20.由题意得2x -13x +×2=1,则x =-10 21.方程5m +3x =1+x 的解是x =152m -,方程2x +m =3m 的解是x =m .由题意可知152m --m =2,解得m =-37,即当m =-37时,关于x 的方程5m +3x =1+x 的解比关于x 的方程2x +m =3m 的解大222.由题意得34a +-237a -=1,解得a =5,则a -2的值为3 23.方程两边同时乘以6得4kx +2a =12+x -bk ,即(4k -1) x +2a +bk -12=0 ①.因为无论k 为何值时,它的解总是1,所以把x =1代入①,得4k -1+2a +bk -12=k (4+b )-13+2a =0,所以4+b =0,-13+2a =0,即b =-4,a =13224.设这个班有x 名学生,根据题意得3x +20=4x -25,解得x =45.答:这个班共有45名学生25.(1) 设购进黄瓜x kg ,则购进土豆(40-x ) kg ,根据题意得2.4x +3(40-x )=114,解得x =10,则40-x =30.答:他购进黄瓜10 kg ,购进土豆30 kg (2) 他能赚10×(4-2.4)+30×(5-3)=76 (元)26.设他推车步行了x min ,依题意得80x +250(15-x )=2900,解得x =5.答:他推车步行了5 min27.(1) y 1=200t (0≤t ≤8) y 2=1600-200t (0≤t ≤8) 当两车相距路程为400 m 时,应分两种情况:①当未相遇前,两车相距路程为400 m ,则有200t +200t +400=2×800,解得t =3.即当t =3时,两车相距的路程为400 m. ②当相遇之后,两车相距路程为400 m ,则有200t +200t =2×800+400,解得t =5.即当t =5时,两车相距的路程为400 m 综上所得,当t =3或5时,两车相距的路程为400 m (2) 当1号车第三次恰好经过景点C 时,它已经从A 点开始绕正方形2圈半,则可知2×800×4+800×2=200t ,解得t =40.即t =40时,1号车第三次恰好经过景点C ,且这段时间内它与2号车相遇了5次.[发现]情况一:若他刚好错过2号车,便搭乘即将到来的1号车时,从开始等车到到达出口A ,所用时间为 (16002200x -+1600200x +) min ,即(16-200x ) min ;情况二:若他刚好错过1号车,便搭乘即将到来的2号车时,从开始等车到到达出口A ,所用时间为 (16002200x ++1600200x -) min .即(16+200x ) min 因为16-200x <16+200x ( x >0),所以情况二用时较多。
人教版 七年级数学上册 第3章 一元一次方程 综合复习题(含答案)
人教版 七年级数学上册 第3章 一元一次方程综合复习题一、选择题1. 某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这批服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的标价是( ) A .350元 B .400元 C .450元D .500元2. 解方程4x -2=3-x 的正确顺序是( )①合并同类项,得5x =5;②移项,得4x +x =3+2;③系数化为1,得x =1. A .①②③ B .③②① C .②①③D .③①②3. 下列方程是一元一次方程的是()A .2237x x x +=+B .3435322x x -+=+C .22(2)3y y y y +=--D .3813x y -=4. 下列变形中,不正确的是()A .若25x x =,则5x =.B .若77,x -=则1x =-.C .若10.2x x -=,则1012x x -=. D .若x y aa=,则ax ay =.5. 2019·阜新某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;如果按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( ) A .160元 B .180元 C .200元 D .220元6. 如图,在长为a 厘米的木条上钻4个圆孔,每个圆孔的直径为2厘米,则x等于( )A.a -85厘米 B.a +85厘米 C.a -45厘米D.a -165厘米7. 《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少.设合伙人数为x 人,所列方程正确的是( ) A .5x -45=7x -3 B .5x +45=7x +3 C.x +455=x +37D.x -455=x -378. 某中学去年中学生共有4200人,今年初中生增加了8%,高中生增加了11%,使得中学生总数增加了10%.如果设去年初中生有x 人,那么下面所列方程正确的是( )A .(1+8%)x +(1+11%)(4200-x )=4200×10%B .8%x +11%(4200-x )=4200×(1+10%)C .8%x +(1+11%)(4200-x )=4200×10%D .8%x +11%(4200-x )=4200×10%9. 2019·荆门欣欣服装店某天用相同的价格a (a >0)元卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是( ) A .盈利 B .亏损C .不盈不亏D .与售价a 有关10. 程大位是我国明朝商人,珠算发明家.他60岁时完成的《算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?下列求解结果正确的是( ) A .大和尚25人,小和尚75人B .大和尚75人,小和尚25人C .大和尚50人,小和尚50人D .大、小和尚各100人二、填空题11. 甲、乙两架飞机同时从相距750 km 的两个机场相向飞行,飞了12 h 到达中途同一机场,如果甲飞机的速度是乙飞机速度的 1.5倍,则乙飞机的速度是________.12. 已知方程1(2)40a a x--+=是一元一次方程,则a = ;x = .13. 在“地球停电一小时”活动的某地区烛光晚餐中,设座位有x 排,若每排坐30人,则有8人无座位;若每排坐31人,则空26个座位,依题意可列方程为__________________.14. 某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A ,B 两个贫困地区,其中发往A 地区的物资比发往B 地区的物资的1.5倍少1000件,则发往A 地区的生活物资为________件.15. 甲骑自行车从A 地到B 地,乙骑自行车从B 地到A 地,两人都沿同一公路匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距35 km ,到中午12时,两人又相距35 km ,则A ,B 两地的距离为________km.16. 2018·呼和浩特文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元.”小华说:“那就多买一个吧,谢谢!”根据两人的对话可知,小华结账时实际付款________元.17. 在有理数范围内定义运算“☆”,其规则是a ☆b =a3-b .若x ☆2与4☆x 的值相等,则x 的值是________.18. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之.”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走________步才能追到速度慢的人.三、解答题19. 解方程:0.130.4120 0.20.5x x+--=20. 甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润率定价,乙服装按40%的利润率定价.在实际出售时,应顾客要求,两件服装均按九折出售,这样商店共获利157元.求甲、乙两件服装的成本各是多少元.21. 有某种三色冰激凌50克,咖啡色、红色和白色配料的比是2∶3∶5,这种三色冰激凌中咖啡色、红色和白色配料分别是多少克?22. 求解题为“李白沽酒”的诗:李白无事街上走,提壶去打酒.遇店加一倍,见花喝一斗.三遇店与花,喝光壶中酒.试问壶中原有多少酒.诗的大意是李白提着没装满酒的酒壶在街上走,遇见酒店就把壶中的酒增加一倍,遇见桃花就喝一斗酒.这样三次先后遇见酒店和桃花,恰好把壶中的酒喝完.则壶中原有多少斗酒?人教版七年级数学上册第3章一元一次方程综合复习题-答案一、选择题1. 【答案】B2. 【答案】C3. 【答案】C4. 【答案】A5. 【答案】C6. 【答案】A7. 【答案】B8. 【答案】D9. 【答案】B 10. 【答案】A二、填空题11. 【答案】600 km/h 12. 【答案】2a =-,1x =13. 【答案】30x +8=31x -26 14. 【答案】320015. 【答案】105 则x -352=x +354, 解得x =105.故A ,B 两地的距离为105 km. 解法二:设两人的速度之和为x km/h , 则2x +35=4x -35,解得x =35.所以A ,B 两地的距离为2x +35=105(km).16. 【答案】486设小华购买了x 个笔袋,根据题意,得18(x -1)-18×0.9x =36, 解得x =30.则18×0.9x =18×0.9×30=486. 故小华结账时实际付款486元.17. 【答案】5218. 【答案】250 三、解答题19. 【答案】-1020. 【答案】解:设甲服装的成本是x元,则乙服装的成本是(500-x)元,依题意可列方程0.9[(1+50%)x+(1+40%)(500-x)]=500+157.解得x=300,于是500-x=200.答:甲、乙两件服装的成本分别是300元和200元.21. 【答案】解:设这种三色冰激凌中咖啡色配料为2x克,那么红色和白色配料分别为3x 克和5x克.根据题意,得2x+3x+5x=50,解这个方程,得x=5.于是2x=10,3x=15,5x=25.答:这种三色冰激凌中咖啡色、红色和白色配料分别是10克,15克,25克.22. 【答案】解:设李白壶中原有x斗酒,依题意可得下表:由此可列方程2[2(2x-1)-1]-1=0.解得x=0.875.答:壶中原有0.875斗酒.。
兴和县师院附中七年级数学上册 第三章 一元一次方程单元复习课件 新版新人教版
单元复习(三) 一元一次方程
考点一 一元一次方程及其解的概念
1.下列方程中是一元一次方程的是( C )
A.1-x2 =3y-2 B.1y -2=y
C.3x+1=2x
D.3x2+1=0
2.以下方程中 , 以x=-2为解的方程是〔 C〕
A.5x-3=6x-2 B.3x-2=2x C.2x-1=3x+1 D.2x+3=4x-2
=6(天),即需要 6 天完成
16.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生 产3种差别型号的电视机 , 出厂价分别为A种每台1500元 , B种每台2100元 , C种每台2500元. (1)假设家电商场计划用9万元同时购进两种差别型号的电视机共50台 , 请 你研究一下商场的进货方案 ; (2)假设商场销售一台A种电视机可获利150元 , 销售一台B种电视机可获利 200元 , 销售一台C种电视机可获利250元 , 那么为了使销售时获利最多 , 在 (1)中所求得的方案中 , 你选择哪种方案 ?
思考 : (4)中能把〞1.80”后面的〞0”去掉吗 ?
当堂练习
1.用四舍五入法按要求取近似值 : 〔1〕75 436〔精确到百位〕 75 436≈7.54×104 〔2〕0.785〔精确到百分位〕 0.785≈0.79 2、以下由四舍五入ห้องสมุดไป่ตู้到的近似数 , 各精确到哪一位 ?
〔1〕 600万 ; 〔2〕 7.03万 ;
解:x=11013
x-1 (4) 2
=1-x+4 3
;
解 : x=1
4-6x (5) 0.01
-6.5=0.002.-024x
-7.5.
解 : x=1
10.已知 y=3 是方程 6+14 (m-y)=2y 的解,求关于 x 的方程 2m(x -1)=(m+1)(3x-4)的解.
七年级数学上册第三章《一元一次方程》综合复习练习题(含答案)
七年级数学上册第三章《一元一次方程》综合复习练习题(含答案)一、单选题1.已知下列方程:①22x x -=;②0.31x =;③512xx =+;④243x x -=;⑤6x =;⑥20.x y +=其中一元一次方程的个数是( ) A .2B .3C .4D .52.若使方程(2)1m x +=是关于x 的一元一次方程,则m 的值是( ) A .2m ≠-B .0m ≠C .2m ≠D .2m >-3.一支球队参加比赛,开局9场保持不败,共积21分,比赛规定胜一场得3分,平一场得1分,则该队共胜的场数为( ) A .6场B .7场C .8场D .9场4.关于x 的方程4231x m x -=-的解是23x x m =-的解的2倍,则m 的值为( ) A .12B .14C .14-D .12-5.在做科学实验时,老师将第一个量筒中的水全部倒入第二个量筒中,如图所示,根据图中给出的信息,得到的正确方程是( ).A .π×(92)2×x =π×(52)2×(x+4)B .π×92×x =π×92×(x+4)C .π×(92)2×x =π×(52)2×(x-4)D .π×92×x =π×92×(x-4)6.古埃及人的“纸草书”中记载了一个数学问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,若设这个数是x ,则所列方程为( ) A .213337x x x ++=B .21133327x x x ++=C .21133327x x x x +++=D .21133372x x x x ++-=7.我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( )A .()()8374x x -=+B .8374x x +=-C .3487y y -+= D .3487y y +-= 8.中国古代数学著作《算法统宗》中有这样一段记载,“三百七十八里关;初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是;有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一和第六这两天共走了( ) A .102里 B .126里C .192里D .198里9.小明解方程12123x x +--=的步骤如下: 解:方程两边同乘6,得()()31122x x +-=-① 去括号,得33122x x +-=-② 移项,得32231x x -=--+③ 合并同类项,得4x =-④以上解题步骤中,开始出错的一步是( ) A .①B .②C .③D .④10.疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的25,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1916元,求其他两个年级的捐款数若设七年级捐款数为x 元,则可列方程为( )A .65191652x x x ++=B .21191653x x x ++=C .2191635x x x ++= D .25191652x x x ++= 11.把19-这9个数填入33⨯方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x 的值为:( )A .1B .3C .4D .612.《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车:若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,可列方程( ) A .2932x x+=- B .9232x x -+=C .9232x x +-=D .2932x x-=+ 二、填空题13.《九章算术》是我国古代数学名著,书中记载:“今有人合伙买羊,每人出5钱,还差45钱;每人出7钱,还差3钱,问合伙人数、羊价各是多少?”设合伙人数为x 人,根据题意可列一元一次方程为__________________.14.如将()x y -看成一个整体,则化简多项式22()5()4()3()x y x y x y x y -----+-=__. 15.有一个一元一次方程:11623x x -=-■,其中“■”表示一个被污染的常数.答案注明方程的解是32x =-,于是这个被污染的常数是___ ___.16.已知2230m x -+=是关于x 的一元一次方程,则m =________________.17.22年冬奥会开幕式上,烟台莱州武校的健儿们参演的立春节目让全世界人民惊艳和动容,小明想知道这震撼人心的队伍的总人数.张老师说你可以自己算算:若调配55座大巴若干辆接送他们,则有8人没有座位;若调配44座大巴接送,则用车数量将增加两辆,并空出3个座位,你能帮小明算出一共去了_______名健儿参演节目吗?18.关于x 的方程5m +3x =1+x 的解比方程2x =6的解小2,则m =___ __. 19.已知x =1是方程31322x k x -=-的解,则23k +的值是_________ _____ 20.已知数轴上的点A ,B 表示的数分别为2-,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 ___ __. 三、解决问题 21.解方程:(1)43(23)12(4)x x x +-=--; (2)121146x x +--=.22.解方程(1)2(x +8)=3(x -1) (2)121124x x --=-23.以下是圆圆解方程1323+--x x =1的解答过程. 解:去分母,得3(x +1)﹣2(x ﹣3)=1. 去括号,得3x +1﹣2x +3=1. 移项,合并同类项,得x =﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.24.根据市场调查,某厂某种消毒液的大瓶装(500g) 和小瓶装(250g) 两种产品的销售数量(按瓶计算)比为2:5.该厂每天生产这种消毒液22.5吨,这些消毒液应分装大、小瓶两种产品各多少瓶?25.某市有甲、乙两个工程队,现有-小区需要进行小区改造,甲工程队单独完成这项工程.需要20天,乙工程队单独完成这项工程所需的时间比甲工程队多12(1)求乙工程队单独完成这项工程需要多少天?(2)现在若甲工程队先做5天,剩余部分再由甲、乙两工程队合作,还需要多少天才能完成?(3)已知甲工程队每天施工费用为4000元,乙工程队每天施工费用为2000元,若该工程总费用政府拨款70000元(全部用完),则甲、乙两个工程队各需要施工多少天?26.对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如:数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“联盟点”.(1)若点A表示数﹣2,点B表示的数4,下列各数,3,2,0所对应的点分别C1,C2,C3,其中是点A,B的“联盟点”的是;(2)点A表示数﹣10,点B表示的数30,P在为数轴上一个动点:①若点P在点B的左侧,且点P是点A,B的“联盟点”,求此时点P表示的数;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“联盟点”,直接写出此时点P表示的数为.27.对数轴上的点P进行如下操作:将点P沿数轴水平方向,以每秒m个单位长度的速度,向右平移n 秒,得到点P ',称这样的操作为点P 的“m 速移”点P '称为点P 的“m 速移”点. (1)点A 、B 在数轴上对应的数分别是a 、b ,且()25150a b ++-=. ①若点A 向右平移n 秒的“5速移”点A '与点B 重合,求n ;②若点A 向右平移n 秒的“2速移”点A '与点B 向右平移n 秒的“1速移”点B '重合,求n ; (2)数轴上点M 表示的数为1,点C 向右平移3秒的“2速移”点为点C ',如果C 、M 、C '三点中有一点是另外两点连线的中点,求点C 表示的数;(3)数轴上E ,F 两点间的距高为3,且点E 在点F 的左侧,点E 向右平移2秒的“x 速移”点为点E ',点F 向右平移2秒的“y 速移”点为点F ',如果3E F EF ''=,请直接用等式表示x ,y 的数量关系。
期末复习重要考点03 《一元一次方程》十大考点题型(热点题型+限时测评)(解析版)-七年级数学上册
(人教版)七年级上册数学期末复习重要考点03《一元一次方程》十大重要考点题型【题型1方程的有关概念】1.(2022秋•新城区校级期末)下列各式中:①x=0;②2x>3;③x2+x﹣2=0;④1+2=0;⑤3x﹣2;⑥x﹣y=0;是方程的有()A.3个B.4个C.5个D.6个【分析】含有未知数的等式叫方程,根据方程的定义逐项判断即可得出答案.【解答】解:根据方程的定义可得:①③④⑥是方程,②2x>3是不等式,⑤3x﹣2,不是等式,不是方程,故方程有4个,故选:B.【点评】本题考查了方程的定义,熟练掌握方程的定义是解此题的关键.2.(2023秋•贵州期末)下列各式中是一元一次方程的是()A.x+y=6B.x2+2x=5C.+1=0D.2+3=0【分析】由一元一次方程的概念可知:①含有一个未知数,②未知数的次数为1,③整式方程,据此进行判断即可.【解答】解:A.x+y=6,含有两个未知数,不是一元一次方,不符合题意;B.x2+2x=5,未知数的次数为2,不是一元一次方,不符合题意;C.+1=0,分母含有未知数,是分式方程,不是一元一次方,不符合题意;D.2+3=0,含有一个未知数,且未知数的次数为1,为整式方程,符合题意.故选:D.【点评】本题考查了一元一次方程的判断,熟练掌握一元一次方程的定义是解题的关键.3.(2022秋•古冶区期末)方程:①2x﹣1=x﹣7,②12=13−1,③2(x+5)=x﹣4,④23=+2,其中解为x=﹣6的方程的个数为()A.1B.2C.3D.4【分析】分别计算各一元一次方程的解,然后判断作答即可.【解答】解:①2x﹣1=x﹣7,移项合并得,x=﹣6,符合要求;②12=13−1,去分母得,3x=2x﹣6,移项合并得,x=﹣6,符合要求;③2(x+5)=x﹣4,去括号得,2x+10=x﹣4,移项合并得,x=﹣14,不符合要求;④23=+2,去分母得,2x=3x+6,移项合并得,﹣x=6,系数化为1得,x=﹣6,符合要求;综上分析可知,解为x=﹣6的方程有3个,故选:C.【点评】本题考查了解一元一次方程.解题的关键在于正确的解方程.4.(2022秋•琼海期末)已知方程(m﹣3)x|m|﹣2=18是关于x的一元一次方程,则m的值是()A.2B.3C.±3D.﹣3【分析】根据一元一次方程的定义,只含有一个未知数,并且未知数的最高次数是1的整式方程,进行计算即可解答.【解答】解:由题意得:|m|﹣2=1且m﹣3≠0,∴m=﹣3,故选:D.【点评】本题考查了绝对值,一元一次方程的定义,熟练掌握一元一次方程的定义是解题的关键.5.(2022秋•花山区期末)当m=时,方程(m﹣3)x|m﹣2|+m﹣3=0是一元一次方程.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,据此可得结论.【解答】解:∵方程(m﹣3)x|m﹣2|+m﹣3=0是一元一次方程,∴|m﹣2|=1,且m﹣3≠0,解得m=1,故答案为:1.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.6.(2023秋•曾都区期中)若方程(m2﹣1)x2﹣(m﹣1)x+2=0是关于x的一元一次方程,则代数式|m ﹣1|的值为.【分析】利用一元一次方程的定义,可列出关于m的一元二次方程及一元一次不等式,解之可得出m的值,再将其代入|m﹣1|中,即可求出结论.【解答】解:∵方程(m2﹣1)x2﹣(m﹣1)x+2=0是关于x的一元一次方程,∴2−1=0−(−1)≠0,解得:m=﹣1,∴|m﹣1|=|﹣1﹣1|=2.故答案为:2.【点评】本题考查了一元一次方程的定义以及绝对值,牢记“只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程”是解题的关键.7.(2023春•黄浦区期中)已知:(a +2b )y 2−13K 13=3是关于y 的一元一次方程.(1)求a 、b 的值;(2)若x =a 是方程r26−K12+3=x −K 3的解,求|a ﹣b ﹣2|﹣|b ﹣m |的值.【分析】(1)先根据一元一次方程的定义列出关于a ,b 的方程组,求出a ,b 的值即可;(2)把x =a 代入方程求出m 的值,再代入代数式求解即可.【解答】解:(1)∵(a +2b )y 2−13K 13=3是关于y 的一元一次方程,2=0−13=1,解得=4=−2;(2)∵a =4,x =a 是方程r26−K12+3=x −K 3的解,∴1−32+3=4−4−3,解得m =−12,∴|a ﹣b ﹣2|﹣|b ﹣m |=|4+2﹣2|﹣|﹣2+12|=52.【点评】本题考查的是一元一次方程的定义,熟知只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程是解答此题的关键.【题型2等式的基本性质】1.(2023秋•洮北区期末)将等式m =n 变形错误的是()A .m +5=n +5B .−7=−7C .m −12=n −12D .﹣2m =2n【分析】根据等式的性质可得答案.【解答】解:A 、若m =n ,则m +5=n +5,原变形正确,故此选项不符合题意;B 、若m =n ,则−7=−7,原变形正确,故此选项不符合题意;C 、若m =n ,则m −12=n −12,原变形正确,故此选项不符合题意;D 、若m =n ,则﹣2m =﹣2n ,原变形错误,故此选项符合题意.故选:D .【点评】本题考查了等式的性质,解题的关键是掌握等式的性质:等式的两边都乘以(或除以)同一个不为零的整式,结果不变,等式的两边都加(或减)同一个数(或整式),结果不变.2.(2022秋•琼海期末)下列运用等式的性质,变形不正确的是()A.若x=y,则x+5=y+5B.若a=b,则ac=bcC.若x=y,则=D.若=(c≠0),则a=b【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个数(除数不为零),等式仍成立.【解答】解:A、若x=y,则x+5=y+5,此选项正确;B、若a=b,则ac=bc,此选项正确;C、若x=y,当a≠0时=,此选项错误;D、若=(c≠0),则a=b,此选项正确;故选:C.【点评】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个数(除数不为零),等式仍成立.3.(2023秋•新民市校级月考)下列等式变形不正确的是()A.由x=y,得到x+3=y+3B.由3a=b,得到2a=b﹣aC.由m=n,得到4m=4n D.由bm=bn,得到m=n【分析】根据等式的性质进行判断即可.【解答】解:A.将等式x=y的两边都加上3得到的仍是等式,即x+3=y+3,因此选项A不符合题意;B.将3a=b的两边都减去a得到的仍是等式,即3a﹣a=b﹣a,也就是2a=b﹣a,因此选项B不符合题意;C.将m=n的两边都乘以4仍是等式,即4m=4n,因此选项C不符合题意;D.将bm=bn的两边都除以b,当b=0时就不能得到m=n,因此选项D符合题意.故选:D.【点评】本题考查等式的性质,理解等式的基本性质是正确判断的关键.4.(2022秋•五华县期末)下列等式变形中,结果正确的是()A.如果a=b,那么a﹣m=b+mB.由﹣3x=2得x=−32D.如果=,那么a=b【分析】根据等式性质1对A选项进行判断;根据等式性质2对B、D选项进行判断;根据绝对值的意义对C选项进行判断.【解答】解:A.如果a=b,那么a﹣m=b﹣m,所以A选项不符合题意;B.由﹣3x=2,则x=−23,所以B选项不符合题意;C.如果|a|=|b|,那么a=b或a=﹣b,所以C选项不符合题意;D.如果=,则a=b,所以D选项符合题意.故选:D.【点评】本题考查了等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.也考查了绝对值.5.(2022秋•保亭县期末)下列式子变形中,正确的是()A.由6+x=10得x=10+6B.由3x+5=4x得3x﹣4x=﹣5C.由5x=5得x=5D.由2(x﹣1)=3得2x﹣1=3【分析】根据等式的性质,逐项分析判断即可求解.【解答】解:A.由6+x=10得x=10﹣6,故该选项不正确,不符合题意;B.由3x+5=4x得3x﹣4x=﹣5,故该选项正确,符合题意;C.由5x=5得x=1,故该选项不正确,不符合题意;D.由2(x﹣1)=3得−1=32,故该选项不正确,不符合题意;故选:B.【点评】本题考查了等式的性质,熟练等式的性质是解题的关键.等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数(或式子),结果仍相等.6.(2022秋•广平县期末)等式就像平衡的天平,能与如图的事实具有相同性质的是()B.如果a=b,那么=(c≠0)C.如果a=b,那么a+c=b+cD.如果a=b,那么a2=b2【分析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:观察图形,是等式a=b的两边都加c,得到a+c=b+c,利用等式性质1,所以成立.故选:C.【点评】本题考查了等式的基本性质,解题的关键是掌握等式的基本性质:等式性质:1、等式两边加同一个数(或式子)结果仍得等式;2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.7.(2022秋•颍州区期末)若a=b,则下列等式:①﹣a=﹣b;②2﹣a=2﹣b;③=;④a2=b2;⑤=1.其中正确的有.(填序号)【分析】根据等式的基本性质,解答即可.【解答】解:若a=b,则下列等式:①﹣a=﹣b;②2﹣a=2﹣b;③=,当m=0时,分式不成立;④a2=b2;⑤=1,当b=0时,分式不成立其中正确的有①②④.故答案为:①②④.【点评】本题考查了等式的基本性质,掌握等式的基本性质是解题的关键,【题型3一元一次方程的解法】1.(2023春•蒸湘区校级期末)解方程3=1−K15时,去分母正确的是()A.5x=1﹣3(x﹣1)B.x=1﹣(3x﹣1)C.5x=15﹣3(x﹣1)D.5x=3﹣3(x﹣1)【分析】按照解一元一次方程的步骤进行计算即可解答.【解答】解:3=1−K15,去分母,方程两边同乘15得:5x=15﹣3(x﹣1),故选:C.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.2.(2022秋•唐县期末)下列解方程的步骤中正确的是()A.由x﹣5=7,可得x=7﹣5B.由8﹣2(3x+1)=x,可得8﹣6x﹣2=xC.由16x=﹣1,可得x=−16D.由K12=4−3,可得2(x﹣1)=x﹣3【分析】各项方程变形得到结果,即可作出判断.【解答】解:A、由x﹣5=7,可得x=7+5,不符合题意;B、由8﹣2(3x+1)=x,可得8﹣6x﹣2=x,符合题意;C、由16x=﹣1,可得x=﹣6,不符合题意;D、由K12=4−3,可得2(x﹣1)=x﹣12,不符合题意,故选:B.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.3.(2022秋•广州期末)将方程0.3=1+1.2−0.30.2中分母化为整数,正确的是()A.103=10+12−32B.3=10+1.2−0.30.2C.103=1+12−32D.3=1+1.2−0.32【分析】方程各项分子分母扩大相应的倍数,使其小数化为整数得到结果,即可作出判断.【解答】解:方程整理得:103=1+12−32.故选:C.【点评】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.4.(2022秋•丹阳市期末)关于x的一元一次方程2021−2022=2023的解为x=2,那么关于y的一元一次方程K20212021+2023(2021−p=2022的解为.【分析】将关于y的一元一次方程变形,然后根据一元一次方程解的定义得到y﹣2021=2,进而可得y 的值.【解答】解:将关于y的一元一次方程K20212021+2023(2021−p=2022变形为K20212021−2022=2023(−2021),∵关于x的一元一次方程2021−2022=2023的解为x=2,∴y﹣2021=2,∴y=2023,故答案为:2023.【点评】本题考查了解一元一次方程,一元一次方程的解,熟练掌握整体思想的应用是解题的关键.5.(2022秋•张湾区期末)解方程:(1)1−2K16=2r13;(2)3x﹣7(x﹣1)=3﹣2(x﹣1).【分析】(1)方程去分母,去括号,移项合并,将x系数化为1,即可求出解;(2)方程去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)去分母得:6﹣(2x﹣1)=2(2x+1),去括号得:6﹣2x+1=4x+2,移项合并得:﹣6x=﹣5,解得:=56;(2)去括号得:3x﹣7x+7=3﹣2x+2,移项合并得:﹣2x=﹣2,解得:x=1.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是关键.6.(2023秋•鼓楼区校级月考)解方程:(1)4x+1=﹣5x+10;(2)K12=r76+1.【分析】(1)直接移项、合并同类项,进而解方程得出答案;(2)直接去分母,再移项、合并同类项,进而解方程得出答案.【解答】解:(1)4x+1=﹣5x+104x+5x=10﹣1,合并同类项得:9x=9,解得:x=1;(2)K12=r76+1去分母得:6(x﹣1)=2(x+7)+12,去括号得:6x﹣6=2x+14+12,移项、合并同类项得:4x=32,解得:x=8.【点评】此题主要考查了解一元一次方程,正确掌握解方程的方法是解题关键.7.(2023秋•姑苏区校级月考)解方程:(1)2(x+3)=5x;(2)K30.5−r40.2=1.6.【分析】(1)按去括号,移项,合并同类项,系数化为1的步骤求解即可;(2)按去分母,去括号,移项,合并同类项,系数化为1的步骤求解即可.【解答】解:(1)2(x+3)=5x,去括号得:2x+6=5x,移项合并同类项得:﹣3x=﹣6,系数化为1得:x=2;(2)K30.5−r40.2=1.6,化简得:10K305−10r402=1.6,2x﹣6﹣5x﹣20=1.6,移项合并同类项得:﹣3x=27.6,系数化为1得:x=﹣9.2.【点评】本题考查解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题的关键.8.(2022秋•中宁县期末)解方程:2K15−r12=1解:去分母,得2(2x﹣1)﹣5(x+1)=10……①去括号,得4x﹣2﹣5x+5=10……②移项,合并同类项,得﹣x=13……③系数化为1,得x=﹣13……④(1)步骤①去分母的依据是;(2)上面计算步骤出错的是第步,错误的原因是;(3)请你写出这个方程正确的解法.【分析】(1)利用等式的基本性质判断即可;(2)找出出错的步骤,分析其原因即可;(3)写出正确的解答过程即可.【解答】解:(1)步骤①去分母的依据是等式的基本性质;故答案为:等式的基本性质;(2)上面计算步骤出错的是第二步,错误的原因是去第二个括号时,括号中第二项没有变号;故答案为:二,去第二个括号时,括号中第二项没有变号;(3)去分母得:2(2x﹣1)﹣5(x+1)=10,去括号得:4x﹣2﹣5x﹣5=10,移项得:4x﹣5x=10+2+5,合并同类项得:﹣x=17,解得:x=﹣17.【点评】此题考查了解一元一次方程,熟练掌握一元一次方程的解法是解本题的关键.【题型4方程解中的遮挡问题】1.有一方程=﹣1,其中一个数字被污渍盖住了.已知该方程的解为x=﹣1,那么处的数字应是()A.5B.﹣5C.12D.−12【分析】根据方程的解的定义(使得方程成立的未知数的值)解决此题.【解答】解:设处的数字是a.∴2−3=−1.∴a=5.故选:A.【点评】本题主要考查方程的解,熟练掌握方程的解的定义是解决本题的关键.2.(2023秋•洮北区期末)方程﹣3(★﹣9)=5x﹣1,★处被盖住了一个数字,已知方程的解是x=5,那么★处的数字是()A.1B.2C.3D.4【分析】把x=5代入已知方程,可以列出关于★的方程,通过解该方程可以求得★处的数字.【解答】解:将x=5代入方程,得:﹣3(★﹣9)=25﹣1,解得:★=1,即★处的数字是1,故选:A.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.3.(2022秋•太原期末)方程2x+▲=3x,▲处是被墨水盖住的常数,已知方程的解是x=2,那么▲处的常数是.【分析】把x=2代入已知方程,可以列出关于▲的方程,通过解该方程可以求得▲处的数字.【解答】解:把x=2代入方程,得4+▲=6,解得▲=2.故答案为:2.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.4.(2022秋•馆陶县期末)方程5y﹣7=2y﹣中被阴影盖住的是一个常数,此方程的解是y=﹣1.这个常数应是()A.10B.4C.﹣4D.﹣10【分析】将y=﹣1代入方程计算可求解这个常数.【解答】解:将y=﹣1代入方程5y﹣7=2y﹣中,5×(﹣1)﹣7=2×(﹣1)﹣,解得=10,故选:A.【点评】本题主要考查一元一次方程的解,理解一元一次方程解的概念是解题的关键.5.(2022秋•隆化县期末)小马虎在做作业,不小心将方程2(x﹣3)﹣■=x+1中的一个常数污染了.怎么办?他翻开书后的答案,发现方程的解是x=9.请问这个被污染的常数是()A.1B.2C.3D.4【分析】设被污染的数字为y,将x=9代入,得到关于y的方程,从而可求得y的值.【解答】解:设被污染的数字为y.将x=9代入得:2×6﹣y=10.解得:y=2.故选:B.【点评】本题主要考查的是一元一次方程的解得定义以及一元一次方程的解法,掌握方程的解得定义是解题的关键.6.(2022秋•临猗县期末)小明在解方程时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是2y−12=12y﹣■,怎么办呢?小明想了一想,便翻了书后的答案,此方程的解为y=3,他很快便补好了这个常数,你能补出这个常数吗?它应是()A.﹣2B.3C.﹣4D.5【分析】设这个常数为x,已知此方程的解是y=3,将之代入二元一次方程2y−12=12y﹣x,即可得这个常数的值.【解答】解:能,设被污染的常数为a,则2y−12=12y﹣a,∵此方程的解是y=3,∴将此解代入方程,方程成立,∴2×3−12=12×3﹣a,解得a=﹣4,故选:C.【点评】本题主要考查了一元一次方程的应用以及它的解的意义.知道一元一次方程的解,求方程中的常数项,可把方程的解代入方程求得常数项的值.(把■作为一个未知数来看即可).7.(2022秋•威县期末)嘉淇在解关于x的一元二次方程2K13+■=r34时,发现常数■被污染了;(1)嘉淇猜■是﹣1,请解一元一次方程2K13−1=r34.(2)老师告诉嘉淇这个方程的解为x=﹣7,求被污染的常数.【分析】(1)利用去分母,移项,合并同类项,系数化1,可得答案;(2)设被污染的正整数为m,则有2×(−7)−13+=−7+34,求解可得答案.【解答】解:(1)2K13−1=r34,去分母得:4(2x﹣1)﹣12=3(x+3),去括号得:8x﹣4﹣12=3x+9,移项合并得:5x=25,系数化为1得:x=5;(2)设“■”的常数为m,由于x=﹣7是方程的解,则2×(−7)−13+=−7+34,解之得,m=4,所以被污染的常数是4.【点评】此题考查的是一元一次方程的解,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.8.(2022春•西峡县期中)同学们在做解方程的练习时,卷子上有一个方程“2x−12=18x+□”中“□”没印清晰,小梅问老师,老师只说:“□是一个常数;该方程的解与当y=3时代数式5(y﹣1)﹣2(y﹣2)﹣4的值相同”.聪明的小梅很快补上了这个常数.求小梅补上的这个常数是多少?【分析】把y=3代入代数式5(y﹣1)﹣2(y﹣2)﹣4中进行计算,然后设小梅补上的这个常数是a,再把x=4代入2x−12=18x+a中得:2×4−12=18×4+a,最后进行计算即可解答.【解答】解:当y=3时,5(y﹣1)﹣2(y﹣2)﹣4=5×(3﹣1)﹣2×(3﹣2)﹣4=5×2﹣2×1﹣4=10﹣2﹣4=4,设小梅补上的这个常数是a,由题意得:把x=4代入2x−12=18x+a中得:2×4−12=18×4+a,8−12=12+a,a=8−12−12=7,∴小梅补上的这个常数是7.【点评】本题考查了一元一次方程的解,熟练掌握一元一次方程的解的意义是解题的关键.【题型5求一元一次方程含参问题】1.(2022秋•洪山区校级期末)已知关于x的方程2x+a﹣5=0的解是x=2,则a的值为()A.a=3B.a=1C.a=2D.a=﹣1【分析】将x=2代入原方程即可求出答案.【解答】解:将x=2代入2x+a﹣5=0,∴2×2+a﹣5=0,∴a=1,故选:B.【点评】本题考查一元一次方程的解,解题的关键是将x=2代入原方程,本题属于基础题型.2.(2022秋•庆阳期末)小磊在解关于x的方程r43−r4=2时,求得的解为x=﹣1,则k的值为()A.﹣1B.﹣3C.1D.5【分析】把x=﹣1代入方程r43−r4=2,解关于k的方程即可.【解答】解:把x=﹣1代入方程r43−r4=2得,−1+43−−1+4=2,方程两边都乘以12得,4(﹣1+4)﹣3(﹣1+k)=24,解得:k=﹣3,故选:B.【点评】此题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.3.(2022春•镇平县期中)若关于x的方程3(x+4)=2a+5的解大于关于x的方程(4r1)4=o3K4)3的解,试确定a的取值范围.【分析】先求出两个方程的解,即可得出不等式,求出不等式的解集即可.【解答】解:∵3(x+4)=2a+5,∴x=2K73,∵(4r1)4=o3K4)3,∴x=−163a,∴2K73>−163a,解得a>718.【点评】本题考查了解一元一次方程和解一元一次不等式,能得出关于a的不等式是解此题的关键.4.(2023秋•椒江区校级期中)若不论k取什么实数,关于x的方程2B+3=2+KB6(m,n是常数)的解总是x=1,求m+n的值.【分析】把x=1代入方程计算,求出m与n的值,即可求出m+n的值.【解答】解:把x=1代入方程得:2r3=2+1−B6,去分母得:2(2k+m)=12+1﹣nk,整理得:(4+n)k=13﹣2m,∵不论k取什么实数,关于x的方程2B+3=2+KB6(m,n是常数)的解总是x=1,∴4+n=0,13﹣2m=0,解得:n=﹣4,m=6.5,则m+n=2.5.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.(2022秋•秦都区校级期末)若方程2(3x+1)=1+2x的解与关于x的方程6−23=2(x+3)的解互为倒数,求k的值.【分析】解方程2(3x+1)=1+2x得出x的值,根据方程的解互为倒数知另一方程的解,代入可得关于k的方程,解之可得.【解答】解:2(3x+1)=1+2x,去括号,得6x+2=1+2x,移项、合并同类项,得4x=﹣1,化系数为1,得=−14.∵−14的倒数是﹣4,∴将x=﹣4代入方程6−23=2(+3),则6−23=−2,∴6﹣2k=﹣6.解得k=6.【点评】本题考查了方程的解的定义,就是能够使方程左右两边相等的未知数的值.解题的关键是正确解一元一次方程.6.(2022秋•游仙区校级月考)如果关于x的方程2(x﹣4)﹣48=﹣3(x+2)的解与方程4x﹣(3a+1)=6x+2a﹣1的解互为相反数,求2a2﹣a的值.【分析】求出第一个方程的解,根据两方程解互为相反数得出关于a的一元一次方程,求出a的值,然后代入2a2﹣a计算即可.【解答】解:解方程2(x﹣4)﹣48=﹣3(x+2),得x=10,∵关于x的方程2(x﹣4)﹣48=﹣3(x+2)的解与方程4x﹣(3a+1)=6x+2a﹣1的解互为相反数,∴方程4x﹣(3a+1)=6x+2a﹣1的解为x=﹣10,把x=﹣10代入得,﹣40﹣(3a+1)=﹣60+2a﹣1,解得,a=4,∴2a2﹣a=2×42﹣4=2×16﹣4=32﹣4=28.【点评】本题考查了解一元一次方程和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.7.(2022秋•如东县期中)已知关于x的方程12(1﹣x)=1﹣k的解与3r4−5K18=1的解相同,求k的值.【分析】根据同解方程的定义可得出关于x与k的方程组,再求解即可.【解答】解:∵关于x的方程12(1﹣x)=1﹣k的解与3r4−5K18=1的解相同,∴x=2k﹣1,把x=2k﹣1代入3r4−5K18=1,得2k﹣1+2k=7,解得k=2,∴k的值为2.【点评】本题考查了同解方程的定义,掌握同解方程的定义,得出k的值是解题的关键.8.(2022秋•石景山区校级期末)已知关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1,求a的值.【分析】分别解出关于x的方程12x﹣a=0的解和方程a+8x=2+4x的解,然后根据已知条件“关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1”列出关于a的一元一次方程,解方程即可.【解答】解:由方程12x﹣a=0,得x=12,由方程a+8x=2+4x,得x=2−4,又∵关于x的方程中,12x﹣a=0的解比a+8x=2+4x的解大1,∴12−2−4=1,去分母,得a﹣3(2﹣a)=12,去括号,得a﹣6+3a=12,移项,得a+3a=6+12,合并同类项,得4a=18,化系数为1,得a=4.5.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.【题型6利用一元一次方程解决错解问题】1.(2023春•叙州区期末)小红在解关于x的方程:﹣3x+1=3a﹣2时,误将方程中的“﹣3”看成了“3”,求得方程的解为x=1,则原方程的解为.【分析】把x=1代入3x+1=3a﹣2,求出a的值,再把a的值代入原方程求解即可.【解答】解:把x=1代入3x+1=3a﹣2,得3+1=3a﹣2,解得a=2,故原方程为﹣3x+1=6﹣2,﹣3x=3,解得x=﹣1.故答案为:x=﹣1.【点评】本题考查了一元一次方程的解的定义.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.2.(2022秋•献县期末)小马虎在解关于x的方程2a﹣5x=21时,误将“﹣5x”看成了“+5x”,得方程的解为x=3,则原方程的解为.【分析】把x=3代入2a+5x=21得出方程2a+15=21,求出a=3,得出原方程为6﹣5x=21,求出方程的解即可.【解答】解:∵小马虎在解关于x的方程2﹣5x=21时,误将“﹣5x”看成了“+5x”,得方程的解为x =3,∴把x=3代入2a+5x=21得出方程2a+15=21,解得:a=3,即原方程为6﹣5x=21,解得x=﹣3.故答案为:x=﹣3.【点评】本题考查了一元一次方程的解的定义.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.3.(2022秋•陇县期末)小明在解方程2K13=r3−1去分母时,方程右边的﹣1没有乘3,因而求得的解为x=2,则原方程的解为()A.x=0B.x=﹣1C.x=2D.x=﹣2【分析】已知小明在解方程去分母时,方程右边的﹣1这个项没有乘3,则所得的式子是:2x﹣1=x+a ﹣1,把x=2代入方程即可得到一个关于a的方程,求得a的值,然后把a的值代入原方程,解这个方程即可求得方程的解.【解答】解:根据题意,得:2x﹣1=x+a﹣1,把x=2代入这个方程,得:3=2+a﹣1,解得:a=2,代入原方程,得:2K13=r23−1,去分母,得:2x﹣1=x+2﹣3,移项、合并同类项,得:x=0,故选:A.【点评】此题考查了一元一次方程的解法以及方程的解的定义.熟练掌握解一元一次方程的方法和步骤是解题的关键.4.(2023秋•道里区校级期中)某同学在解方程2K13=r2−1去分母时,方程右边的﹣1没有乘以6,因而求得方程的解为x=2,求a的值和方程正确的解.【分析】把x=2代入看错的方程求出a的值,确定出所求方程,求出解即可.【解答】解:把x=2代入4x﹣2=3x+3a﹣1得:a=13,∴原方程为2K13=r132−1,去分母得2(2x﹣1)=3(x+13)﹣6,去括号得4x﹣2=3x+1﹣6,移项得4x﹣3x=1+2﹣6,合并同类项得x=﹣3.【点评】此题考查了一元一次方程的解,熟练掌握运算法则是解本题的关键.5.(2022秋•丰顺县校级月考)(1)已知关于x的方程2(x﹣1)=﹣3a﹣6的解与方程2x+3=﹣1的解互为倒数,求a2020的值.(2)小马虎在解关于x的方程2x=ax﹣21时,出现了一个失误:“在将ax移到方程的左边时,忘记了变号.”结果他得到方程的解为x=﹣3,求a的值和原方程的解.【分析】(1)根据方程的解互为倒数,可得关于a的方程,根据解方程,可得a的值,再根据乘方的性质,可得答案;(2)根据解方程,可得答案.【解答】解:(1)∵2x+3=﹣1,∴x=﹣2,∵方程2(x﹣1)=﹣3a﹣6的解与方程2x+3=﹣1的解互为倒数,∴2(x﹣1)=﹣3a﹣6的解为−12,∴2(−12−1)=−3−6,解得,a=﹣1,∴a2020=(﹣1)2020=1.(2)由题意得2x+ax=﹣21,x=﹣3为此方程的解,∴﹣6﹣3a=﹣21,∴a=5,∴原方程为2x=5x﹣21,∴x=7,原方程的解是7.【点评】本题考查了一元一次方程的解,利用方程的解满足方程得出关于a的方程是解题关键.6.小王在解关于x的方程3a﹣2x=15时,误将﹣2x看作2x,得方程的解x=3,(1)求a的值;(2)求此方程正确的解;(3)若当y=a时,代数式my3+ny+1的值为5,求当y=﹣a时,代数式my3+ny+1的值.【分析】(1)把x=3代入方程即可得到关于a的方程,求得a的值;(2)把a的值代入方程,然后解方程求解;(3)把y=a代入my3+ny+1得到m和n的式子,然后把y=﹣a代入my3+ny+1,利用前边的式子即可代入求解.【解答】解:(1)把x=3代入3a+2x=15得3a+6=15,解得:a=3;(2)把a=3代入方程得:9﹣2x=15,解得:x=﹣3;(3)把y=a代入my3+ny+1得27m+3n+1=5,则27m+3n=4,当y=﹣a时,my3+ny+1=﹣27m﹣3n+1=﹣(27m+3n)+1=﹣4+1=﹣3.【点评】本题考查了方程的解的定义,以及代数式的求值,正确理解方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,是关键.【题型7一元一次方程的整数解问题】1.(2023秋•西城区校级期中)若关于x的一元一次方程kx=x+3的解为正整数,则整数k的值为()A.2B.4C.0或2D.2或4【分析】先求出方程的解,再根据关于x的一元一次方程kx=x+3的解为正整数和k为整数得出k﹣1=1或k﹣1=3,再求出k即可.【解答】解:解方程kx=x+3得:x=3K1,∵关于x的一元一次方程kx=x+3的解为正整数,k为整数,∴k﹣1=1或k﹣1=3,∴k=2或4.故选:D.【点评】本题考查了一元一次方程的解,能根据题意得出关于k的方程是解此题的关键.2.(2022秋•南充期末)已知a为自然数,关于x的一元一次方程6x=ax+6的解也是自然数,则满足条件的自然数a共有()A.3个B.4个C.5个D.6个【分析】解此题可先将一元一次方程进行移项、合并同类项等转换,得出x的解,再根据题意判断a的值.【解答】解:6x=ax+6,6x﹣ax=6,(6﹣a)x=6,x=66−,因为x和a均为自然数,所以6﹣a可以被6整除,且6﹣a不等于0,分解质因数得6=1×2×3,所以6﹣a只可能等于1、2、3、6,即a可能等于5、4、3、0,故只有选项B符合题意,故选:B.【点评】此题考查了自然数的定义,以及一元一次方程的解法,熟练掌握即可解答.3.(2022秋•九龙坡区校级期末)若关于x的方程−2−B6=r13的解是整数解,m是整数,则所有m的值加起来为()A.﹣5B.﹣16C.﹣24D.18【分析】根据解一元一次方程的一般步骤表示出x的代数式,分析解答即可.【解答】解:解方程−2−B6=r13,得:=44+,根据题意可知=44+为整数,m是整数,当m的值为0,﹣2,﹣3,﹣5,﹣6,﹣8时,44+为整数,∴0+(﹣2)+(﹣3)+(﹣5)+(﹣6)+(﹣8)=﹣24,故选:C.【点评】本题考查了根据一元一次方程解的情况求参数,熟练掌握解一元一次方程的一半步骤是解本题的关键.4.(2022秋•九龙坡区校级期末)已知关于x的方程a(x+1)=a﹣2(x﹣2)的解都是正整数,则整数a 的所有可能的取值的积为()A.﹣12B.1C.8D.0【分析】根据一元一次方程的解法求出x的表达式,然后根据题该方程的解都是正整数即可求出a的值.【解答】解:a(x+1)=a﹣2(x﹣2),ax+a=a﹣2x+4,ax=﹣2x+4,(a+2)x=4,由于x是正整数,故a+2=1或2或4,。
苏科版七年级数学第一学期期末复习三 :一元一次方程(有答案)
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯苏科版七年级数学第一学期期末复习三一元一次方程一、选择题1. 在①2x+1;②1+7=15-8+1;③1- x=x-1;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个2. 下列方程是一元一次方程的是()A.-2=0B.2x=1C.x+2y=5D.-1=2x3.某制衣店现购买蓝色、黑色两种布料共138m,共花费540元.其中蓝色布料每米3元,黑色布料每米5元,两种布料各买多少米?设买蓝色布料x米,则依题意可列方程()A.3x+5(138-x)=540B.5x+3(138-x)=540C.3x+5(138+x)=540D.5x+3(138+x)=5404. 若关于x的一元一次方程m(x+4)-3m-x=5的解为x=3,则m的值是()A.-2B.2C.D.-5. 如果与互为倒数,那么x的值为()A.x=B.x=10C.x=-6D.x=6.若方程3x+6=12的解也是方程6x+3a=24的解,则a的值为()A. B.4 C.12 D.27. 方程|2x+1|=7的解是()A.x=3B.x=3或x=-3C.x=3或x=-4D.x=-48. 下列解方程过程正确的是()A.2x=1系数化为1,得x=2B.x-2=0解得x=2C.3x-2=2x-3移项得3x-2x=-3-2D.x-(3-2x)=2(x+1)去括号得x-3-2x=2x+19.解一元一次方程-2= - ,去分母正确的是()A.5(3x+1)-2=(3x-2)-2(2x+3)B.5(3x+1)-20=(3x-2)-2(2x+3)C.5(3x+1)-20=(3x-2)-(2x+3)D.5(3x+1)-20=3x-2-4x+610.某组织去乡村慰问留守儿童,为他们送去一些图书,每人分8本图书,还少5本,每人分7本图书,还多6本,则该村留守儿童有()A.10名B.11名C.12名D.13名11.一艘轮船在A、B两港口之间匀速行驶,顺水航行需要6h,逆水航行需要8h,水流速度为5km/h,则A、B两地之间的路程是()A.200kmB.240kmC.300kmD.320km12.一项工作,甲单独做要20天完成,乙独做要12天完成.若先由甲做若干天,然后由乙继续做完,从开始到完成共用14天,则这项工作由甲先做()天.A. B.5 C.4 D.613. 某市出租车收费标准是:起步价8元(即行驶距离不超过3km,付8元车费),超过3km,每增加1km收1.6元(不足1km按1km计),小梅从家到图书馆的路程为xkm,出租车车费为24元,那么x的值可能是()A.10B.13C.16D.18二、填空题14. 已知5+3=1是关于x的一元一次方程,则m=_____.15.x的3倍与4的和等于x的5倍与2的差,方程可列为_____.16. 某件商品,以原价的出售,现售价是300元,则原价是_____元.17. 有一列数,按一定的规律排列成,-1,3,-9,27,-81,….若其中某三个相邻数的和是-567,则这三个数中第一个数是_____.18. 由3x=2x-1得3x-2x=-1,在此变形中,方程两边同时_____.19. 当x=_____时,代数式2x+1与5x-6的值互为相反数.20.已知关于x的方程2x+a=x-1的解和方程2x+4=x+1的解相同,则a=_____.21.若x=2是方程3x-4=-a的解,则+的值是_____.22.已知方程|2x-1|=2-x,那么方程的解是_____.23.某项工程,甲单独完成要12天,乙单独完成要18天,甲先做了7天后乙来支援,由甲乙合作完成剩下的工程,则甲共做了_____天.24.小张有三种邮票共18枚,它们的数量之比为1:2:3,则最多的一种邮票有_____枚.三、解答题25. 解方程:(1)2x+3=11-6x;(2)(3x-6)=x-3.26. 已知代数式M=3(a-2b)-(b+2a).(1)化简M;(2)如果(a+1)+4-3=0是关于x的一元一次方程,求M的值.27.列方程解应用题:某商场第一季度销售甲、乙两种冰箱若干台,其中乙种冰箱的数量比甲种冰箱多销售40台,第二季度甲种冰箱的销量比第一季度增加10%,乙种冰箱的销量比第一季度增加20%,且两种冰箱的总销量达到554台.求:(1)该商场第一季度销售甲种冰箱多少台?(2)若每台甲种冰箱的利润为200元,每台乙种冰箱的利润为300元,则该商场第二季度销售冰箱的总利润是多少元?28. 列方程解应用题:为参加学校运动会,七年级一班和七年级二班准备购买运动服.下面是某服装厂给出的运动服价格表:购买服装数量(套)1~3536~6061及61以上每套服装价格(元)605040已知两班共有学生67人(每班学生人数都不超过60人),如果两班单独购买服装,每人只买一套,那么一共应付3650元.问七年级一班和七年级二班各有学生多少人?29. (2分)已知点A在数轴上对应的数为a,点B对应的数为b,且(a+4+|b-11|=0,G为线段AB上一点,M,N两点分别从G,B点沿BA方向同时运动,设M点的运动速度为1cm/s,N点的运动速度为2cm/s,运动时间为ts.(1)A点对应的数为_____,B点对应的数为_____;(2)若AB=2AG,试求t为多少s时,M,N两点的距离为2.5cm;(3)若AB=mAG,点H为数轴上任意一点,且AH-BH=GH,请直接写出的值.期末复习三答案1、B2、B3、A4、B5、B6、B7、C8、 B9、B10、B11、B12、B13、B14、-115、3x+4=5x-216、37517、设这三个数中的第⼀个数为x,则另外两个数分别为-3x,9x,依题意,得:x-3x+9x=-567,解得:x=-8118、减2X519、720、2x+4=x+1, 2x-x=1-4, x=-3,把x=-3代入解得:a=1021、-222、解:由|2x-1|=2-x,可得:2-x=±(2x-1),当2-x=2x-1,解得:x=1,当2-x=-2x+1,解得:x=-1,所以方程的解为x=±123、1024、解:设数量最少的邮票有x枚,则另两种分别有2x枚和3x枚,依题意,得:x+2x+3x=18,解得:x=3,∴3x=9故答案为:925、(1)2x+3=11-6x,移项,得2x+6x=11-3,合并同类项,得8x=8,系数化1,得x=127、(1)设第⼀季度甲种冰箱销量为x台,根据题意得:(1+10%)x+(1+20%)(x+40)=554解之得:x=220答:第⼀季度甲种冰箱的销量为220台.(2)第⼀季度甲种冰箱的利润为:220×(1+10%)×200=48400(元)第⼀季度⼀种冰箱的利润为:(220+40)×(1+20%)×300=93600(元)所以第⼀季度的总利润为48400+93600=142000(元)28、解:∵67×60=4020(元),4020>3650,∴⼀定有⼀个班的人数大于35人.设大于35人的班有学生x人,则另⼀班有学生(67-x)⼀,依题意,得:50x+60(67-x)=3650,解得:x=37,∴67-x=3029、解:(1)∵(a+4)2+|b-11|=0,∴a+4=0,b-11=0,∴a=-4,b=11,故答案为:-4;11;∴M点对应的数为:3.5-t,N点对应的数为11-2t,∴MN=|(3.5-t)-(11-2t)|=|t-7.5|=2.5,∴t=5或10,答:t为5或10s时,M,N两点的距离为2.5cm(3)①当H在A与B之间时,若H点不在G点左边,如图,∵AH-BH=GH,∴AG+GH-BG+GH=GH,∴AG-BG+GH=0,∴AG-AB+AG+GH=0,∵AB=mAG,∴GH=(m-2)AG若H点在G点左边,如图,∵AH-BH=GH,∴AG-GH-BG-GH=GH,∴AG-BG-3GH=0,∴AG-AB+AG-3GH=0,∵AB=mAG,②当H与B重合时,则BH=0,∵AH-BH=GH,∴AH=GH,即A与G重合,∵AB=mAG=0,与已知AB=15相⼀盾,不合题意,应舍去;③当H在AB的延长线上时,∵AH-BH=GH,∴AB=GH,此时G与B重合一天,毕达哥拉斯应邀到朋友家做客。
人教版初中七年级数学上册第三单元《一元一次方程》经典复习题(含答案解析)
一、选择题1.若│x -2│+(3y+2)2=0,则x+6y 的值是( ) A .-1B .-2C .-3D .322.已知,每本练习本比每根水性笔便宜2元,小刚买了6本练习本和4根水性笔正好用去18元,设水性笔的单价为x 元,下列方程正确的是( ) A .6(x+2)+4x =18 B .6(x ﹣2)+4x =18 C .6x+4(x+2)=18 D .6x+4(x ﹣2)=183.如图,相同形状的物体的重量是相等的,其中最左边天平是平衡的,则右边三个天平中仍然平衡的是( )A .①②③B .①③C .①②D .②③4.如果x =2是方程12x +a =﹣1的解,那么a 的值是( ) A .0 B .2 C .﹣2 D .﹣6 5.方程2424x x -=-+的解是 ( )A .x =2B .x =−2C .x =1D .x =06.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中一支的长度是另一支的一半,则停电时间为( ) A .2小时B .3小时C .125小时D .52小时7.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( ) A .120元 B .100元C .80元D .60元8.若“△”是新规定的某种运算符号,设x △y=xy+x+y ,则2△m=﹣16中,m 的值为( ) A .8B .﹣8C .6D .﹣69.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x 人,则下列方程正确的是( ) A .3x ﹣20=24x +25 B .3x +20=4x ﹣25 C .3x ﹣20=4x ﹣25D .3x +20=4x +2510.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从北海和南海同时起飞,经过x 天相遇,可列方程为( ) A .(9﹣7)x=1B .(9+7)x=1C .11()179x -=D .11()179x +=11.若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系是( ) A .m>n>kB .n>k>mC .k>m>nD .m> k> n12.已知代数式2x-6与3+4x 的值互为相反数,那么x 的值等于( ) A .2B .12C .-2D .1-213.甲、乙两个工程队,甲队32人,乙队28人,现在从乙队抽调x 人到甲队,使甲队人数为乙队人数的2倍.则根据题意列出的方程是( ) A .32+x =2(28−x) B .32−x =2(28−x) C .32+x =2(28+x) D .2(32+x)=28−x 14.下列方程中,以x =-1为解的方程是( )A . 3x +12=x2−2 B .7(x -1)=0C .4x -7=5x +7D .13x =-315.四位同学解方程x−13−x+26=4−x 2,去分母分别得到下面四个方程:①2x −2−x +2=12−3x ;②2x −2−x −2=12−3x ;③2(x −1)−(x +2)=3(4−x);④2(x −1)−2(x +2)=3(4−x).其中错误的是( ) A .②B .③C .②③D .①④二、填空题16.已知三个数的比是2:4:7,这三个数的和是169,这三个数分别是____,____,____ 17.请阅读下面的诗句:“栖树一群鸦,鸦树不知数,四只栖一树,五只没处去,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗中谈到的鸦为_____只,树为_____棵. 18.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.19.某信用卡上的号码由17位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,则x+y 的值等于______.20.自来水公司为鼓励节约用水,对水费按以下方式收取:用水不超过10吨,每吨按2元收费;用水超过10吨,超过10吨的部分按每吨3元收费.王老师家三月份水费为50元,则王老师家三月份用水________吨. 21.5个人用5天完成了某项工程的14,如果再增加工作效率相同的10个人,那么完成这项工作前后共用_____天.22.小明说小红的年龄比他大两岁,他们的年龄和为18岁,两人年龄各是多少岁?若设小明x 岁,则小红的年龄为__________岁.根据题意,列出的方程是______________________. 23.在某张月历表上,若前三个星期日的数字之和是42,则第一个星期_______号.24.已知21535a x y -和2547a x y +是同类项,则可得关于a 的方程为________. 25.要使代数式154t +与15()4t -的值互为相反数,则t 的值是_________. 26.有一位工人师傅要锻造底面直径为40cm 的“矮胖”形圆柱,可他手上只有底面直径是10cm 、高为80cm 的“瘦长”形圆柱,若不计损耗,则锻造出的“矮胖”形圆柱的高为________.三、解答题27.程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?28.市百货商场元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元按总价优惠10%;超过500元的其中500元按9折优惠,超过部分按8折优惠.某人两次购物分别用了134元和466元.问:(1)此人两次购物其物品如果不打折,两次购物价值_____元和_____元. (2)在此活动中,通过打折他节省了多少钱?(3)若此人将两次购物的钱合起来购相同的商品与两次分别购买是更节省还是亏损?说明你的理由. 29.解方程:(1)5(8)6(27)22m m m +--=-+(2)2(3)7636x x x --+=- 30.解下列方程:(1)51784a -=; (2)22146y y +--=1; (3)2131683x x x-+-= -1。
人教版七年级数学上册 第五章 一元一次方程知识归纳与题型突破(单元复习 8类题型清单)
1第五章一元一次方程知识归纳与题型突破(题型清单)01思维导图02知识速记一、基本概念1、等式的概念:含有等号,表示相等关系的式子2、方程的概念:含有未知数的等式3、一元一次方程的概念:(1)只含有1个未知数;(2)未知数的最高次数为1次;(3)等式两边都是整式.二、等式的性质若b a =,则c b c a +=+、c b c a -=-、bc ac =、cbc a =.特别注意:等式两边须同时乘以或除以一个不为0的数.三、解一元一次方程1、去分母(不漏乘不含分母的项,去分母应加括号)2、去括号(带着符号计算,不要漏乘)3、移项(移项要变号;未知数移到左边,常数移到右边;先后顺序不重要)4、合并同类项5、系数化为1(系数不能为0,若未知数的系数含有字母则需要讨论)四、列方程解应用题的步骤①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为x )③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)五、一元一次方程的应用(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度).03题型归纳题型一判断是否是一元一次方程例题:(24-25七年级上·全国·单元测试)下列各式:①236x y -=;②2430x x --=;③()2353x x +=-;④310x+=;⑤()3425x x --.其中,一元一次方程有()A .1个B .2个C .3个D .4个巩固训练1.(23-24七年级下·全国·期中)下列各式中,属于一元一次方程的是()A .6518x y -=B .242715x x =+-C .438x x+=D .94x x-=2.(23-24七年级上·全国·单元测试)在方程①231325x +=,②=0,③235x y +=,④3120x+=中,一元一次方程共有()A .1个B .2个C .3个D .4个3.(23-24七年级上·全国·单元测试)①12x x -=;②0.31x ≤;③243x x -=;④512x x =-;⑤6x =;⑥20x y +=.其中一元一次方程的个数是()A .2B .3C .4D .5题型二根据一元一次方程的定义求参数的值例题:(24-25七年级上·黑龙江哈尔滨·阶段练习)已知1320m x --=是关于x 的一元一次方程,则m 的值是.巩固训练1.(23-24七年级上·全国·单元测试)若()1246a a x--+=-是关于x 的一元一次方程,则a =.2.(23-24七年级上·河南漯河·期中)已知关于x 的方程()||233m m x m --+=是一元一次方程,则m 的值为.3.(23-24七年级上·全国·单元测试)若关于x 的方程()21120m mx m x -+--=是一元一次方程,则m 的值为.题型三已知一元一次方程的解求参数的值例题:(23-24七年级下·全国·期中)关于x 的一元一次方程213mx x -=-有解,则m 的值为.巩固训练1.(23-24七年级上·浙江金华·期末)已知3x =是方程26ax a -=-+的解,则a =.2.(23-24七年级下·四川宜宾·期中)整式ax b +的值随着x 的取值的变化而变化,下表是当x 取不同的值时对应的整式的值:x 1-0123ax b+8-4-048则关于x 的方程8ax b +=的解是.3.(23-24七年级上·浙江·期末)若关于x 的方程30ax +=的解为2x =,则方程()130a x -+=的解为.题型四列一元一次方程例题:(23-24六年级下·全国·单元测试)设某数为x ,如果某数的2倍比它的相反数大1,那么列方程是.巩固训练1.(23-24七年级上·福建福州·期末)“x 的5倍与2的和等于x 的13与4的差”,用等式表示为2.(2024·湖南益阳·模拟预测)《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人车各几何?译文为:今有若干人乘车,每3人共乘一车,刚好每车坐满后还剩余2辆车没人坐;若每2人共乘一车,最终剩余9个人无车可乘只能步行,问共有多少人,多少辆车?设共有x 辆车,则可列方程.3.(2023·吉林长春·模拟预测)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空,其大意为:今有若干人住店,若每间住7人,则余下7人无房可住:若每间住9人,则余下一间无人住,设店中共有x 间房,可列方程为.题型五等式的基本性质例题:(23-24七年级上·天津·期中)下列说法错误的是()A .若22x y -=-,则x y =B .若25x x =,则5x =C .若a b =,则66a b -=-D .若2211a bc c =++,则a b =巩固训练1.(23-24七年级下·广西南宁·开学考试)下列是根据等式的性质进行变形,正确的是()A .若x y =,则33x y -=+B .若a b =,则32a b =C .若22x y=,则x y =D .若ax ay =,则x y=2.(23-24七年级上·安徽·单元测试)下列运用等式的性质变形中正确的是()A .如果a b =,则a c b c +=-B .如果23x x =,则3x =C .如果a b =,则22a bc c =D .如果22a b c c =,则a b =3.(22-23七年级上·山东济南·阶段练习)下列变形正确的是()A .4532x x -=+变形得4325x x -=-+B .211332x x -=+变形得4633x x -=+C .3(1)2(3)x x -=+变形得3126x x -=+D .32x =变形得23x =4.(2024·贵州贵阳·一模)用“□”“△”“○”表示三种不同的物体,现用天平称了两次,情况如图所示.设a ,b ,c 均为正数,则能正确表示天平从左到右变化过程的等式变形为()A .如果a c b c +=+,那么a b =B .如果a b =,那么a c b c +=+C .如果22a b =,那么a b=D .如果a b =,那么22a b=题型六解一元一次方程巩固训练题型七解一元一次方程中的错解复原问题巩固训练(2)仿照上例解方程:0.2 0.3x+题型八用一元一次方程解决实际问题例题:(2024上·辽宁大连·七年级统考期末)某车间生产一批螺钉和螺母,由一个人操作机器做需要200h完成.现计划由一部分人先做4h,然后增加5人与他们一起做6h,完成这项工作.假设这些人的工作效率相同.(1)求具体应先安排多少人工作?(2)在增加5人一起工作后,若每人每天使用机器可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母成为一个完整的产品,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?(3)若该车间有10台A型和11台B型机器可以生产这种产品,每台A型机器比B型机器一天多生产1个产品.已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,且每箱装的产品数相同.某天有6台A型机器和m台B型机器同时开工,请问一天生产的产品能否恰好装满29箱.若能,请计算出m的值;若不能,请说明理由.巩固训练1.(2024上·甘肃酒泉·七年级统考期末)合肥庐阳区实验学校七(6)班为迎接学校秋季运动会计划购买30支签字笔,若干本笔记本(笔记本数量超过签字笔数量),用来奖励运动会中表现出色的运动员和志愿者,甲、乙两家文具店的标价都是签字笔8元/支、笔记本2元/本,甲店的优惠方式是签字笔打九折,笔记本打八折;乙店的优惠方式是每买5支签字笔送1本笔记本,签字笔不打折,购买的笔记本打七五折.(1)请用含x的代数式分别表示学校在甲、乙两家店购物所付的费用;(2)如果购买笔记本数量为60本,并且只在一家店购买的话,请通过计算说明,到哪家店购买更合算?(2)小亮家—年缴纳水费1180元,则小亮家这一年用水多少立方米?(3)小红家去年和今年共用水520立方米,共缴纳水费2950元,并且今年的用水量超过去年的用水量,则小红家今年和去年各用水多少立方米?第五章一元一次方程知识归纳与题型突破(题型清单)01思维导图02知识速记一、基本概念1、等式的概念:含有等号,表示相等关系的式子2、方程的概念:含有未知数的等式3、一元一次方程的概念:(1)只含有1个未知数;(2)未知数的最高次数为1次;(3)等式两边都是整式.二、等式的性质若b a =,则c b c a +=+、c b c a -=-、bc ac =、cbc a =.特别注意:等式两边须同时乘以或除以一个不为0的数.三、解一元一次方程1、去分母(不漏乘不含分母的项,去分母应加括号)2、去括号(带着符号计算,不要漏乘)3、移项(移项要变号;未知数移到左边,常数移到右边;先后顺序不重要)4、合并同类项5、系数化为1(系数不能为0,若未知数的系数含有字母则需要讨论)四、列方程解应用题的步骤①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为x )③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)五、一元一次方程的应用(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度).03题型归纳题型一判断是否是一元一次方程例题:(24-25七年级上·全国·单元测试)下列各式:①236x y -=;②2430x x --=;③()2353x x +=-;④310x+=;⑤()3425x x --.其中,一元一次方程有()A .1个B .2个C .3个D .4个【答案】A【知识点】一元一次方程的定义【分析】本题考查的是一元一次方程的定义,掌握一元一次方程的定义是解题的关键.根据一元一次方程的定义进行判定.【详解】解:①是二元一次方程,不符合题意;②是一元二次方程,不符合题意;③是一元一次方程,符合题意;④是分式方程,不符合题意;⑤是代数式,不是方程,不符合题意.故选:A .巩固训练1.(23-24七年级下·全国·期中)下列各式中,属于一元一次方程的是()A .6518x y -=B .242715x x =+-C .438x x+=D .94x x-=2.(23-24七年级上·全国·单元测试)在方程①231325x +=,②=0,③235x y +=,④120x+=中,一元一次方程共有()A .1个B .2个C .3个D .4个【答案】A【知识点】一元一次方程的定义3.(23-24七年级上·全国·单元测试)①2x x -=;②0.31x ≤;③243x x -=;④512x x =-;⑤6x =;⑥20x y +=.其中一元一次方程的个数是()A .2B .3C .4D .5题型二根据一元一次方程的定义求参数的值例题:(24-25七年级上·黑龙江哈尔滨·阶段练习)已知1320m x --=是关于x 的一元一次方程,则m 的值是.【答案】2【知识点】一元一次方程的定义【分析】本题考查了一元一次方程的概念,根据一元一次方程的定义得到11m -=,求出m 即可.【详解】解:根据题意得:11m -=,解得:2m =,故答案为:2.巩固训练1.(23-24七年级上·全国·单元测试)若()1246a a x --+=-是关于x 的一元一次方程,则a =.2.(23-24七年级上·河南漯河·期中)已知关于x 的方程()||233m m x m --+=是一元一次方程,则m 的值为.故答案为:13.(23-24七年级上·全国·单元测试)若关于x 的方程()21120m mx m x -+--=是一元一次方程,则m 的值为.【答案】1或0【知识点】一元一次方程的定义【分析】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.根据一元一次方程的一般形式即可判定有3种情况,分别讨论①当0m ≠且10m -≠时,②当0m =且10m -≠时,③当10m -=时是否满足该方程为一元一次方程即可.【详解】解: 关于x 的方程()21120m mxm x -+--=是一元一次方程,可考虑三种情况,①当0m ≠且10m -≠时,即0m ≠且1m ≠,则211m -=,解得:1m =,此时1m ≠,故排除;②当0m =且10m -≠时,即0m =且1m ≠,∴0m =,符合条件;③当10m -=即1m =时,211m -=,符合条件;综上:m 的值为1或0,故答案为:1或0.题型三已知一元一次方程的解求参数的值例题:(23-24七年级下·全国·期中)关于x 的一元一次方程213mx x -=-有解,则m 的值为.1.(23-24七年级上·浙江金华·期末)已知3x =是方程26ax a -=-+的解,则a =.【答案】2【知识点】方程的解【分析】本题考查了方程解的定义,使方程的左右两边相等的未知数的值,叫做方程的解.将3x =代入原方程,可得出关于a 的一元一次方程,解之即可得出a 的值.【详解】解:将3x =代入原方程得326a a -=-+,解得:2a =,∴a 的值为2.故答案为:2.2.(23-24七年级下·四川宜宾·期中)整式ax b +的值随着x 的取值的变化而变化,下表是当x 取不同的值时对应的整式的值:x 1-0123ax b+8-4-048则关于x 的方程8ax b +=的解是.【答案】3x =【知识点】方程的解【分析】此题考查了方程的解,根据表格中的数据求解即可.【详解】根据题意可得,当3x =时,8ax b +=∴关于x 的方程8ax b +=的解是3x =.故答案为:3x =.3.(23-24七年级上·浙江·期末)若关于x 的方程30ax +=的解为2x =,则方程()130a x -+=的解为.题型四列一元一次方程例题:(23-24六年级下·全国·单元测试)设某数为x ,如果某数的2倍比它的相反数大1,那么列方程是.【答案】21x x =-+【知识点】列方程【分析】本题主要考查了一元一次方程的应用,数x 的2倍为2x ,相反数为x -,据此根据题意列出方程即可.【详解】解:由题意得,21x x =-+,故答案为:21x x =-+.巩固训练1.(23-24七年级上·福建福州·期末)“x 的5倍与2的和等于x 的13与4的差”,用等式表示为2.(2024·湖南益阳·模拟预测)《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人车各几何?译文为:今有若干人乘车,每3人共乘一车,刚好每车坐满后还剩余2辆车没人坐;若每2人共乘一车,最终剩余9个人无车可乘只能步行,问共有多少人,多少辆车?设共有x 辆车,则可列方程.【答案】()3229x x -=+【知识点】古代问题(一元一次方程的应用)【分析】本题考查了由实际问题抽象出一元一次方程.根据人数不变,即可得出关于x 的一元一次方程,此题得解.【详解】解:依题意,得:()3229x x -=+.故答案为:()3229x x -=+.3.(2023·吉林长春·模拟预测)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空,其大意为:今有若干人住店,若每间住7人,则余下7人无房可住:若每间住9人,则余下一间无人住,设店中共有x 间房,可列方程为.【答案】()7791x x +=-【知识点】古代问题(一元一次方程的应用)【分析】本题考查一元一次方程的应用,理清题中的等量关系是解题的关键.由等量关系“一房七客多七客,一房九客一房空”,即可列出一元一次方程即可.【详解】解: 每间住7人,则余下7人无房可住:若每间住9人,则余下一间无人住,∴客人可表示为()77x +个,也可表示为()91x -个,()7791x x ∴+=-,故答案为:()7791x x +=-.题型五等式的基本性质例题:(23-24七年级上·天津·期中)下列说法错误的是()A .若22x y -=-,则x y =B .若25x x =,则5x =C .若a b =,则66a b -=-D .若2211a bc c =++,则a b =【答案】B1.(23-24七年级下·广西南宁·开学考试)下列是根据等式的性质进行变形,正确的是()A .若x y =,则33x y -=+B .若a b =,则32a b =C .若22x y=,则x y =D .若ax ay =,则x y=2.(23-24七年级上·安徽·单元测试)下列运用等式的性质变形中正确的是()A .如果a b =,则a c b c+=-B .如果23x x =,则3x =C .如果a b =,则22a b c c =D .如果22a b c c =,则a b =3.(22-23七年级上·山东济南·阶段练习)下列变形正确的是()A .4532x x -=+变形得4325x x -=-+B .211332x x -=+变形得4633x x -=+C .3(1)2(3)x x -=+变形得3126x x -=+D .32x =变形得23x =4.(2024·贵州贵阳·一模)用“□”“△”“○”表示三种不同的物体,现用天平称了两次,情况如图所示.设a ,b ,c 均为正数,则能正确表示天平从左到右变化过程的等式变形为()A .如果a c b c +=+,那么a b=B .如果a b =,那么a c b c +=+C .如果22a b =,那么a b=D .如果a b =,那么22a b=【答案】A【知识点】等式的性质【分析】本题考查等式的性质,根据天平两端相等即可求得答案.【详解】解:由图形可得如果a c b c +=+,那么a b =,故选:A .题型六解一元一次方程例题1:解方程:(1)25433x x -=-;(2)576132x x -=-+.【答案】(1)35x =(2)415x =【分析】()1方程移项合并,把x 系数化为1,即可求解;()2方程移项合并,把x 系数化为1,即可求解.【详解】(1)移项,得24353x x -+=-,合并同类项,得1023x -=-,系数化为1,得35x =.(2)移项,得756123x x -+=-,合并同类项,得5223x -=-,系数化为1,得415x =.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.例题2:解方程:(1)5(1)2(31)41---=-x x x ;(2)23(1)12(10.5)-+=-+x x .题型七解一元一次方程中的错解复原问题巩固训练(2)仿照上例解方程:0.2 0.3x+【答案】(1)③④①②(2)3x=-题型八用一元一次方程解决实际问题1.(2024上·甘肃酒泉·七年级统考期末)合肥庐阳区实验学校七(6)班为迎接学校秋季运动会计划购买30支签字笔,若干本笔记本(笔记本数量超过签字笔数量),用来奖励运动会中表现出色的运动员和志愿者,甲、乙两家文具店的标价都是签字笔8元/支、笔记本2元/本,甲店的优惠方式是签字笔打九折,笔记本打八折;乙店的优惠方式是每买5支签字笔送1本笔记本,签字笔不打折,购买的笔记本打七五折.答:小红家去年和今年用水分别为245立方米、275立方米.。
第五章 一元一次方程复习小结 (第1课时 知识结构)(复习课件)七年级数学上册
利润
售价−进价
利润率 =
× 100% =
×
进价
进价
100%
基础练习
1
3
1.已知下列方程:①x-2= ;②0.2x=1; =x-3;④x-y=6;⑤x=0.其中一元
x
x
一次方程有(
A.2个
A )
B.3个
C.4个
2.下列各种变形中,不正确的是( C )
40
(2) = −
27
(3) 2x-5+3-x=1.
(3) x=13.
2x 1
10 x 1
(4)
1 x
4
12
(4) x=2.
6
4
拓展练习
1.. 当 x 为何值时,式子 2(x2-1)-x2 的值比式子x2+3x-2 的值大 6.
解:依题意得 2(x2-1)-x2-(x2+3x-2)=6,
x=a
依据:等式的性质2
四、实际问题与一元一次方程
(一) 列方程解决实际问题的一般步骤:
审:审清题意,分清题中的已知量、未知量.
设:设未知数,设其中某个未知量为x.
列:根据题意寻找等量关系列方程.
解:解方程.
验:检验方程的解是否符合题意.
答:写出答案 (包括单位).
四、实际问题与一元一次方程
D.1 000(26-x)=800x
6.某商店以每件120元的价格出售两件上衣,一件盈利20%,另一件亏损
20%,那么商店卖出这两件衣服总计( A )
A.亏损10元
B.不盈不亏
C.亏损16元
D.盈利10元
7.解下列方程:
苏科版七年级数学上册第四章 一元一次方程章节知识点归纳复习
1.定义:方程与一元一次方程
含有未知数的叫方程,方程必须具备两个条件:第一是等式,第二是含有未知数。
方程中只含有一个未知数,且未知数的次数都是1的整式方程叫做一元一次方程。
题判断一元一次方程,确定一元一次方程中字母的值。
2.方程的解与解方程
使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!
(2)画图分析法: ………… 多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.
(6)按比例分配问题
甲:乙:丙=a:b:c,则设一份为x,甲为ax,乙为bx,丙为cx
全部的数量=各个份数之和
(7)若干应用问题等量关系的规律
(1)和、差、倍、分问题此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。增长量=原有量×增长率现在量=原有量+增长量
当分母是小数时,要先利用分母的基本性质把小数转化成整数,然后再去分母。
(4)一元一次方程解法的一般步骤:
化简方程----------分数基本性质
去 分母----------同乘(不漏乘)最简公分母
去 括号----------注意符号变化
移 项----------变号
合并同类项--------合并后注意符号
等量关系_________________________
(4)行程问题
人教版七年级上册数学 第三章 一元一次方程 单元复习试卷(含答案解析)
人教版七年级上册数学第三章一元一次方程单元复习试卷一.选择题1.施大叔在一次买卖中均以120元卖出两件衣服,一件赚20%,一件赔20%,在这次交易中施大叔()A.赔了10元B.赚了10元C.不赔不赚D.赔了8元2.某商品的价格标签已丢失,售货员只知道它的进价为80元,打七折售出后,仍可获利5%,你认为标签上的价格为()元.A.110B.120C.130D.1403.某商店在某一时间以每件90元的价格出售两件商品,其中一件盈利25%,另一件亏损25%,则在这次买卖中,商家()A.亏损8元B.赚了12元C.亏损了12元D.不亏不损4.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是()A.B.C.D.5.“双十一”期间,某电商决定对网上销售的某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件服装仍可获利21元,则这种服装每件的成本是()A.160元B.165元C.170元D.175元6.中国总理李克强2020年6月1日考察山东时表示,地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机.市场、企业、个体工商户活起来,生存下去,再发展起来,国家才能更好!为了响应党中央、国务院的号召,各地有序开放了“地摊经济”、“马路经济”,长沙某地摊摊主将进价为10元的小商品提价100%后再6折销售,该小商品的利润率()A.40%B.20%C.60%D.30%7.某便利店的咖啡单价为10元/杯,为了吸引顾客,该店共推出了三种会员卡,如表:会员卡类型办卡费用/元有效期优惠方式A类401年每杯打九折B类801年每杯打八折C类1301年一次性购买2杯,第二杯半价例如,购买A类会员卡,1年内购买50次咖啡,每次购买2杯,则消费40+2×50×(0.9×10)=940元.若小玲1年内在该便利店购买咖啡的次数介于75~85次之间,且每次购买2杯,则最省钱的方式为()A.购买A类会员卡B.购买B类会员卡C.购买C类会员卡D.不购买会员卡8.商店将进价2400元的彩电标价3600元出售,为了吸引顾客进行打折出售,售后核算仍可获利20%,则折扣为()A.九折B.八五折C.八折D.七五折二.填空题9.如图所示,甲、乙两人沿着边长为10m的正方形,按A→B→C→D→A…的方向行走,甲从A点以5m/分钟的速度,乙从B点以8m/分钟的速度行走,两人同时出发,当甲、乙第20次相遇时,它们在边上.10.一件服装标价200元,以6折销售,可获利20%,这件服装的进价是元.11.一艘货轮往返于上下游两个码头之间,逆流而上需要6小时,顺流而下需要4小时,若船在静水中的速度为20千米/时,则水流的速度是千米/时.12.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距千米.13.如图,点A、O、B都在直线MN上,射线OA绕点O按顺时针方向以每秒4°的速度旋转,同时射线OB绕点O按逆时针方向以每秒6°的速度旋转(当其中一条射线与直线MN叠合时,两条射线停止旋转).经过秒,∠AOB的大小恰好是60°.14.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲,乙一起做,则需天完成.三.解答题15.以下是两张不同类型火车的车票(“DXXXX次”表示动车,“DXXXX次”表示高铁):(1)根据车票中的信息填空:该列动车和高铁是向而行(填“相”或“同”).(2)已知该动车和高铁的平均速度分别为200km/h,300km/h,两列火车的长度不计.经过测算,如果两列火车直达终点(即中途都不停靠任何站点),高铁比动车将早到2h.求A、B两地之间的距离.。
人教版七年级数学上册第三章一元一次方程单元测试复习题(含答案) (113)
人教版七年级数学上册第三章一元一次方程单元测试复习题(含答案)如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为80 cm 2、100 cm 2,且甲容器装满水,乙容器是空的.若将甲中的水全部倒入乙中,则乙中的水位高度比原来甲的水位高度低8 cm ,则原来甲的水位高度为( )A .16 cmB .32 cmC .40 cmD .50 cm【答案】C【解析】 设原来甲的水位高度为xcm ,则乙的水位高度为(x-8)cm ,根据题意可得,80x=100(x-8),解得x=40,即原来甲的水位高度为40xcm ,故选C.22.已知方程3x -m =+32m x 与方程2(x +2)=4(x +3)的解相同,则m 的值为( )A .-18B .18C .-4D .-12 【答案】C【解析】解方程2(x +2)=4(x +3)可得x=-4,把x=-4代入方程3x -m =+32m x 可得-12-m=122m ,解得m=-4,故选C.二、解答题23.已知(2x ﹣1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x+a 0对于任意的x 都成立.求:(1)a 0的值;(2)a 0﹣a 1+a 2﹣a 3+a 4﹣a 5的值;(3)a 2+a 4的值.【答案】(1)-1; (2)-243; (3)-120【解析】试题分析:(1)由原式对于任意的x 都成立,令0x =,代入原式可解得0a 的值;(2)观察可知,令1x =-,代入原式即可得式子012345a a a a a a -+--+的值;(3)观察可知,令1x =,代入原式可得式子012345a a a a a a +++++的值,结合(1)和(2)中所得结果可求得24a a +的值.试题解析:(1)令x=0,则a 0=(2×0﹣1)5=﹣1;(2)令x=﹣1,则a 0﹣a 1+a 2﹣a 3+a 4﹣a 5=[2×(﹣1)﹣1]5=(﹣3)5=﹣243;(3)令x=1,则a 0+a 1+a 2+a 3+a 4+a 5=(2×1﹣1)5=1 ①,由(2),可得a 0﹣a 1+a 2﹣a 3+a 4﹣a 5=﹣243 ①,由①+①可得:024222242a a a ++=-,又①01a =-,①2422240a a +=-,①24120a a +=-.24.如图,数轴上线段AB =2(单位长度),线段CD =4(单位长度),点A 在数轴上表示的数是-10,点C 在数轴上表示的数是16.若线段AB 以每秒6个单位长度的速度向右匀速运动,同时线段CD 以每秒2个单位长度的速度向左匀速运动.设运动时间为t s.(1)当点B 与点C 相遇时,点A 、点D 在数轴上表示的数分别为________;(2)当t 为何值时,点B 刚好与线段CD 的中点重合;(3)当运动到BC =8(单位长度)时,求出此时点B 在数轴上表示的数.【答案】(1)8,14(2)当t 为134时,点B 刚好与线段CD 的中点重合(3) 4或16【解析】试题分析:根据图示易求B 点表示的数是﹣8,点D 表示的数是20.(1)由速度×时间=距离列出方程(6+2)t =24,则易求t =3.据此可以求得点A 、D 移动后所表示的数;(2)C 、D 的中点所表示的数是18,则依题意,得(6+2)t =26,则易求t 的值;(3)需要分类讨论,当点B 在点C 的左侧和右侧两种情况.试题解析:解:如图,①AB =2(单位长度),点A 在数轴上表示的数是﹣10,①B 点表示的数是﹣10+2=﹣8.又①线段CD=4(单位长度),点C在数轴上表示的数是16,①点D表示的数是20.(1)根据题意,得(6+2)t=|﹣8﹣16|=24,即8t=24,解得,t=3.则点A表示的数是6×3﹣|﹣10|=8,点D在数轴上表示的数是20﹣2×3=14.故答案为8、14;(2)C、D的中点所表示的数是18,则依题意,得.(6+2)t=26,解得t=134时,点B刚好与线段CD的中点重合;答:当t为134(3)当点B在点C的左侧时,依题意得:(6+2)t+8=24,解得t=2,此时点B在数轴上所表示的数是4;当点B在点C的右侧时,依题意得到:(6+2)t=32,解得t=4,此时点B在数轴上所表示的数是24﹣8=16.综上所述,点B在数轴上所表示的数是4或16.点睛:本题考查了一元一次方程的应用和数轴.解题关键是要读懂题目的意思,找出合适的等量关系列出方程,再求解.25.某一线城市对出租车营运价进行了调整,调价前后的收费标准对比如下:调整前,3公里及3公里以内12.5元,3公里后里程价2.4元/公里,无返空费;调整后, 2公里及2公里以内10元,2公里后里程价2.4元/公里,超过25公里部分,按里程价的30%加收返空费.(1)请你帮忙计算一下,调价后,若乘客乘坐出租车的行程为8公里,他比以前少付了多少钱(不考虑红灯等因素)?(2)网上流传“24公里换车”规避返空费,即乘客的行程超过25公里,就在24公里处下车,换乘另一辆出租车.但其实并不是所有行程超过25公里的乘客都需要换车.例如:①若行程为30公里:不换车,总费用为:10+23×2.4+5×2.4×130%=80.8元;换车,总费用为:10+22×2.4+10+4×2.4=82.4元,因此,行程30公里若换车,则费用反而增加2.4元.②若行程为40公里,不换车,总费用为:10+23×2.4+15×2.4×130%=112元,若换车,总费用为:10+22×2.4+10+2.4×14=106.4元,则可节约5.6元.若设行程为x 公里(26<x<48 ),请用含x的式子分别表示出不换车的费用和换车的费用,并帮忙计算一下,行程超过多少公里后换车会就会节约费用(不考虑红灯等因素).【答案】(1)他比以前少付了0.1元;(2)行程超过290公里后换车会就9会节约费用.【解析】试题分析:(1)调价前的付费为:起步价12.5+超过3公里的5公里的付费;调价后的付费为:起步价10+超过2公里的6公里的付费,两者相减,即可得到少付的费用;(2)不换车的费用为:起步价10+2.4×超过2公里的23公里+2.4×130%×超过25公里的公里数;换车的费用为:起步价10+2.4×超过2公里的22公里+起步价10+2.4×超过26公里的公里数;让前面的代数式=后面的代数式求值即可.试题解析:(1)调价前应付金额:12.5+(8-3)×2.4=24.5 (元)调价后应付金额:10+(8-2)×2.4=24.4 (元)①他比以前少付了24.5-24.4=0.1(元)(2)不换车的费用10+(25-2)×2.4+(x-25)×2.4×(1+30%)=3.12x-12.8换车的费用10+(24-2)×2.4+10+(x-26)×2.4=2.4x+10.4令3.12x-12.8=2.4x+10.4解得:x=2909由题意可知,当行程较短时,换车不节约费用,所以当行程超过2909公里后换车会节约费用.答:行程超过290公里后换车会节约费用.9点睛:考查一元一次方程的应用;根据费用的各部分得到总费用的等量关系是解决本题的关键.26.如图,已知一周长为30cm的圆形轨道上有相距10cm的A、B两点(备注:圆形轨道上两点的距离是指圆上这两点间较短部分展直后的线段长).动点P从A点出发,以a cm/s的速度,在轨道上按逆时针方向运动,与此同时,动点Q从B出发,以3 cm/s的速度,按同样的方向运动.设运动时间为t (s),当t=5时,动点P、Q第一次相遇.(1)求a的值;(2)若a > 3,在P、Q第二次相遇前,当动点P、Q在轨道上相距12cm时,求t的值.【答案】(1)a=1或a=7;(2)t的值为0.5、2、8或9.5.【解析】试题分析:(1)根据相遇时,点P和点Q的运动的路程和等于AB的长列方程即可求解;(2)设经过ts,P、Q两点相距12cm,分相遇前和相遇后两种情况建立方程求出其解;分点P,Q只能在直线AB上相遇,而点P旋转到直线AB上的时间分两种情况,所以根据题意列出方程分别求解.试题解析:(1)若a<3,则3×5-5a=10,解得:a=1;若a>3,则5a-3×5=20,解得:a=7;(2)∵a>3,∴a=7,共有4种可能:①7t+10-3t=12,解得:t=0.5;②7t+10-3t=18,解得:t=2;③7t+10-3t=42,解得:t=8;④7t+10-3t=48,解得:t=9.5;综上所知,t的值为0.5、2、8或9.5.【点睛】本题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系是解决问题的关键.27.用一元一次方程解决问题:爸爸买了一箱苹果回家,小芳想分给家里的每一个人,如果每人分3个,就剩下3个苹果分不完,如果每人分4个,则还差2个苹果才够分,问小芳家有几个人?爸爸买了多少个苹果?【答案】小芳家有5个人,爸爸买了18个苹果.【解析】试题分析:设小芳家有x个人,根据苹果总数不变及“如果每人分3个,就剩下3个苹果分不完,如果每人分4个,则还差2个苹果才够分”列出方程,解方程即可.试题解析:设小芳家有x个人,根据题意则有,3x+3=4x-2,解得:x=5,3x+3=18,答:小芳家有5个人,爸爸买了18个苹果.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.28.某中学为初一年级寄宿生安排宿舍,如果每间宿舍住5人,那么有3人住不下;如果每间宿舍住6人,那么有一间只住2人.初一年级寄宿生有多少人?宿舍有多少间?【答案】7间,38人【解析】试题分析:若设宿舍有x间,应根据学生总数来找等量关系:5×宿舍间数+3=6×(宿舍间数-1)+2,再进行求解即可得出答案.试题解析:设宿舍有x间,根据题意得:5x+3=6(x−1)+2,解得:x =7,该年级寄宿生有:5x +3=38(人).答:初一年级寄宿生有38人,宿舍有7间.29.当m 为何值时,关于x 的方程4323x m x -=+的解比关于x 的方程21132x m x ---=的解大2? 【答案】m=-45. 【解析】试题分析:分别解两个方程求得方程的解,然后根据题意列出方程,求出m 的值即可.试题解析:解方程3413m x x +=+得:13,x m =- 解方程21132x m x ---=得:32.x m =+ 根据题意列出方程:()13322,m m --+=54,m -=4.5m =- 30.某管道由甲、乙两工程队单独施工分别需30天、20天.(1)如果两队从两端同时相向施工,需要多少天铺好?(2)又知甲队单独施工每天需付200元的施工费,乙队单独施工每天需付280元的施工费,那么是由甲队单独施工,还是由乙队单独施工,还是由两队同时施工,请你按照少花钱多办事的原则,设计一个方案,并说明理由.【答案】(1)需要12天完工;(2)由乙队单独施工花钱少,理由见解析.【解析】试题分析:(1)设需要x 天完工,根据等量关系:施工效率×时间=工作总量,列方程进行求解即可;(2)分三种情况:甲单独、乙单独、甲乙合作,分别求出每种情况的费用,进行比较即可得出施工费用最少的那个方案.试题解析:(1)设需要x天完工,由题意得130x+120x=1 ,解得:x=12 ,答:需要12天完工;(2)由乙队单独施工花钱少,理由:甲单独施工需付费:200×30=6000(元),乙单独施工需付费:280×20=5600(元),两队同时施工需付费:(200+280)×12=5760(元),因为5600<5760<6000,所以由乙队单独施工花钱少.【点睛】本题考查了一元一次方程的应用,解题的关键是弄清题意,找出等量关系,根据等量关系列出方程求解.。
寒假讲义-数学-七年级-第3讲-一元一次方程综合复习
分母小数化为整数,是为了方便去分母,即分式的分子 分母同时乘以一个数,使小数化为整数
【例题精讲】
(1) ; (2) .
【课堂练习】
1、已知关于x的方程mx+2=2(m-x)的解满足方程 ,求m的值.
2、如果代数式 与 的值互为相反数,那么x=_______.
★等式:含有“=”
★整式方程:分母中不含有字母
【例题精讲】
例1. 下列方程: ; ; ;④ ;⑤ ;⑥ .其中,一元一次方程的个数是________.
例2. 若方程 是关于 的一元一次方程,则 =________.
【课堂练习】
1、下列方程中,属于一元一次方程的是( )
A. B. C. D.
2、若关于 的方程 是一元一次方程,则 =________.
5、求盈亏
[例5]某商店有两种进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店盈利还是亏损?盈利或亏损了多少元?
【知识梳理】
方案选择问题
【例题精讲】
例1:某同学在A、B两家超市发现他看中的随身听的单价相同,书包的单价也相同,随身听和书包的单价和452元,且随身听的单价比书包的单价的4倍少8元。某天该超市打折,A超市所有商品打8折出售,B超市购物每满100元返购物券30元,但他只带了400元钱,如果他只在一家超市购买看中的两件物品,你能说明他可以选择哪一家吗?若两家都可以选择,哪家更省钱呢?
【例题精讲】
例1. 一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50 个或做桌腿300条,现有5m3木料,那么用多少立方米的木料做桌面, 多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?能配成多少张方桌.
七年级上册数学专项:一元一次方程复习题精选(附答案)
七年级上册数学一元一次方程一.选择题1.一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了()天.A.10B.20C.30D.252.检修一台机器,甲、乙小组单独做分别需要7.5h,5h就可完成.两小组合作2h后,由乙小组单独完成,还需()小时才能完成机器的检修任务.A.1B.C.D.2二.解答题3.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)请根据他们的对话内容,求小明和爸爸的骑行速度.(2)爸爸第一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?4.一快递员的摩托车需要在规定的时间内把快递送到某地,若每小时行驶60km,就早到12分钟,若每小时行驶50km,就要迟到6分钟,求快递员所要骑行的路程.5.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯仍按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由.6.甲、乙两个仓库共存有粮食60t.解决下列问题,3个小题都要写出必要的解题过程:(1)甲仓库运进粮食14t,乙仓库运出粮食10t后,两个仓库的粮食数量相等.甲、乙两个仓库原来各有多少粮食?(2)如果甲仓库原有的粮食比乙仓库的2倍少3t,则甲仓库运出多少t粮食给乙仓库,可使甲、乙两仓库粮食数量相等?(3)甲乙两仓库同时运进粮食,甲仓库运进的数量比本仓库原存粮食数量的一半多1t,乙仓库运进的数量是本仓库原有粮食数量加上8t所得的和的一半.求此时甲、乙两仓库共有粮食多少t?7.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当分别购买20盒、40盒乒乓球时,去哪家商店购买更合算?(2)当购买乒乓球多少盒时,两种优惠办法付款一样?8.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:(1)如何进货,进货款恰好为46000元?(2)如何进货,才能使商场销售完节能灯时获利为13500元?9.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9.5折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为20元,乙平均每本书的价格为25元,优惠后甲乙两人的书费共323元.(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场8.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?10.列方程解应用题:(1)“自由骑”共享单车公司委托甲、乙两家公司分别生产一批数量相同的共享单车,已知甲公司每天能生产共享单车100辆,乙公司每天能生产共享单车70辆,甲公司比乙公司提前3天完成任务,请问乙公司完成任务需要多少天?(2)元旦期间,天虹商场用2000元购进某种品牌的毛衣共10件进行销售,每件毛衣的标价为400元,实际销售时,商场决定对这批毛衣全部按如下的方式进行打折销售:一次性购买一件打8折,一次性购买两件或两件以上,都打6折,商场在销售完这批毛衣后,发现仍能获利44%①该商场在售出这批毛衣时,属于“一次性购买一件毛衣”的方式有多少件?②小颖妈妈计划在元旦期间在天虹商场购买3件这种品牌的毛衣,请问她有哪几种购买方案?哪一种购买方案最省钱?请说明理由.11.为有效治理污染,改善生态环境,山西太原成为国内首个实现纯电动出租车的城市,绿色环保的电动出租车受到市民的广泛欢迎,给市民的生活带来了很大的方便,下表是行驶路程在15公里以内时普通燃油出租车和纯电动出租车的运营价格:张先生每天从家打出租车去单位上班(路程在15公里以内),结果发现,正常情况下乘坐纯电动出租车比乘坐燃油出租车平均每公里节省0.8元,求张先生家到单位的路程.12.有一些相同的房间需要粉刷,一天3名师傅去粉刷7个房间,结果其中有30m2墙面未来得及粉刷;同样的时间内5名徒弟粉刷了9个房间之外,还多粉刷了另外的10m2墙面.每名师傅比徒弟一天多刷20m2墙面.求每个房间需要粉刷的墙面面积.13.某城市按以下规定收取天然气费:(1)每月所用天然气按整立方米计算;(2)若每月用天然气不超过60立方米,按每立方米2.4元收费,若超过60立方米,超过部分按每立方米3元收费.已知某户人家冬季某月的天然气气费平均每立方米2.6元,试求这户人家该月需要交多少天然气费.14.某手机经销商购进甲,乙两种品牌手机共 100 部.(1)已知甲种手机每部进价 1500 元,售价 2000 元;乙种手机每部进价 3500 元,售价 4500 元;采购这两种手机恰好用了 27 万元.把这两种手机全部售完后,经销商共获利多少元?(2)已经购进甲,乙两种手机各一部共用了 5000 元,经销商把甲种手机加价 50%作为标价,乙种手机加价 40%作为标价.从 A,B 两种中任选一题作答:A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利 1570 元.求甲,乙两种手机每部的进价.B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后 10 部按标价的八折全部售完.在这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.15.某市滴滴快车运价调整后实行分时段计价,部分的计价规则如下表:(1)小明今天早上在7:30﹣8:00之间乘坐滴滴快车去单位上班,行车里程4公里,行车时间20分钟,则他应付车费多少元?(2)上周五小明在单位加班,一直工作到晚上23:45才乘坐滴滴快车回家,已知行车里程为m公里(m>15),行车时间为n分钟(n<100),请用含m,n的代数式表示小明应付的车费.(3)若小明和小亮在17:00﹣18:30之间各自乘坐滴滴快车回家,行车里程分别为9.6公里与12公里,如果下车时两人所付车费相同,问这两辆滴滴快车的行车时间相差多少分钟?16.某商店购进一批棉鞋,原计划每双按进价加价60%标价出售.但是,按这种标价卖出这批棉鞋90%时,冬季即将过去.为加快资金周转,商店以打6折(即按标价的60%)的优惠价,把剩余棉鞋全部卖出.(1)剩余的棉鞋以打6折的优惠价卖出,这部分是亏损还是盈利?请说明理由.(2)在计算卖完这批棉鞋能获得的纯利润时,减去购进棉鞋的钱以及卖完这批棉鞋所花的1400元的各种费用,发现实际所得纯利润比原计划的纯利润少了20%.问该商店买进这批棉鞋用了多少钱?该商店买这批棉鞋的纯利润是多少?17.某水果批发市场苹果的价格如下表(1)小明分两次共购买40千克,第二次购买的数量多于第一次购买的数量,共付出216元,小明第一次购买苹果千克,第二次购买千克.(2)小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量,共付出432元,请问小强第一次,第二次分别购买苹果多少千克?(列方程解应用题,写出分析过程)18.为了丰富学生的课外活动,某校决定购买一批体育活动用品,经调查发现:甲、乙两个体育用品商店以同样的价格出售同种品牌的篮球和羽毛球拍.已知每个篮球比每副球拍贵50元,两个篮球与三副球拍的费用相等,经洽谈,甲体育用品商店的优惠方案是:每购买十个篮球,送一副羽毛球拍;乙商店的优惠方案是:若购买篮球超过80个,则购买羽毛球拍打八折.该校购买100个篮球和a(a>10)副羽毛球拍.(1)求每个篮球和每副羽毛球拍的价格分别是多少?(2)请用含a的式子分别表示出到甲商店和乙商店购买体育活动用品所花的费用;(3)当该校购买多少副羽毛球拍时,在甲、乙两个商店购买所需费用一样?19.学校“数学魔盗团”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买1个A种魔方比1个B种魔方多花5元.(1)求这两种魔方的单价;“双(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).11期间”某商店有两种优惠活动,如图所示.请根据以上信息填空:购买A种魔方个时选择活动一盒活动二购买所需费用相同.20.某学校刚完成一批结构相同的学生宿舍的修建,这些宿舍地板需要铺瓷砖,一天4名一级技工去铺4个宿舍,结果还剩12m2地面未铺瓷砖;同样时间内6名二级技工铺4个宿舍刚好完成,已知每名一级技工比二级技工一天多铺3m2瓷砖.(1)求每个宿舍需要铺瓷砖的地板面积.(2)现该学校有20个宿舍的地板和36m2的走廊需要铺瓷砖,某工程队有4名一级技工和6名二级技工,一开始有4名一级技工来铺瓷砖,3天后,学校根据实际情况要求3天后必须完成剩余的任务,所以决定加入一批二级技工一起工作,问需要安排多少名二级技工才能按时完成任务?21.下表中有两种移动电话计费方式.其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收超时费.(1)如果每月主叫时间不超过400min,当主叫时间为多少min时,两种方式收费相同?(2)如果每月主叫时间超过400min,选择哪种方式更省钱?22.某公路收费站的收费标准是大客车20元,大货车10元,轿车5元,某天通过收费站的这三种车辆的数量之比是5:7:6,共收费4.8万元,问这天通过收费站的大货车是多少辆?23.由甲地到乙地前三分之二的路是高速公路,后三分之一的路是普通公路,高速公路和普通公路交界处是丙地,A车在高速公路和普通公路的行驶速度都是80千米/时;B车在高速公路上的行驶速度是100千米/时,在普通公路上的行驶速度是70千米/时,A、B两车分别从甲、乙两地同时出发相向行驶,在高速公路上距离丙地40千米处相遇,求甲、乙两地之间的距离是多少?24.一辆客车以每小时30千米的速度从甲地出发驶向乙地,经过45分钟,一辆货车以每小时比客车快10千米的速度从乙地出发驶向甲地.若两车刚好在甲、乙两地的中点相遇,求甲、乙两地的距离.25.某商场出售的甲种商品每件售价80元,利润为30元;乙种商品每件进价40元,售价60元.(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小明第一天只购买甲种商品,实际付款360元,第二题只购买乙种商品实际付款432元,求小明这两天在该商场购买甲、乙两种商品一共多少件?26.制作一张餐桌要用一个桌面和4条桌腿.某家具公司的木工师傅用1m3木材可制作15个桌面或300个桌腿,公司现有18m3的木材.(1)应怎样安排用料才能使制作的桌面和桌腿配套?(2)家具公司欲将制作餐桌全部出售,为尽快回收资金,决定以标价的八折出售,一张餐桌仍可获利28%,这样全部出售后总获利31500元.求每张餐桌的标价是多少?27.“五一”期间,小明一家人乘坐高铁前往某市旅游,计划第二天开始租用新能源汽车自驾出游.经了解,甲、乙两公司的收费标准如下:甲公司:按日收取固定租金80元,另外再按租车时间计费,每小时的租费是15元;乙公司:无固定租金,直接以租车时间计费,每小时的租费是30元.(1)若租车时间为x小时,则租用甲公司的车所需费用为元,租用乙公司的车所需费用为元(结果用含x的代数式表示);(2)当租车时间为11小时时,选择哪一家公司比较合算?(3)当租车多少时间时,两家公司收费相同?28.某市为了节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨的部分,按2元/吨收费;超过10吨的部分按2.5元/吨收费.(1)若黄老师家5月份用水16吨,问应交水费多少元?(2)若黄老师家6月份交水费30元,问黄老师家6月份用水多少吨?(3)若黄老师家7月份用水a吨,问应交水费多少元?(用a的代数式表示)29.某商场开展春节促销活动出售A 、B 两种商品,活动方案如下两种:(1)某单位购买A 商品30件,B 商品20件,选用何种方案划算?能便宜多少钱?(2)某单位购买A 商品x 件(x 为正整数),购买B 商品的件数是A 商品件数的2倍少1件,若两方案的实际付款一样,求x 的值.30.2018年元旦期间,某商场打出促销广告,如下表所示: (1)用代数式表示(所填结果需化简)设一次性购买的物品原价是x 元,当原价x 超过200元但不超过500元时,实际付款为 元;当原价x 超过500元时,实际付款为 元;(2)若甲购物时一次性付款490元,则所购物品的原价是多少元?(3)若乙分两次购物,两次所购物品的原价之和为1000元(第二次所购物品的原价高于第一次),两次实际付款共894元,则乙两次购物时,所购物品的原价分别是多少元?31.某水果经销商到水果批发市场采购苹果,他看中了甲、乙两家苹果的某种品质一样的苹果,零售价都为8元/千克,批发价各不相同.甲家规定:批发数量不超过100千克,全部按零售价的九折优惠;批发数量超过100千克全部按零售价的八五折优惠.乙家的规定如下表:表格说明:批发价分段计算:如:某人批发200千克的苹果;则总费用=50×8×95%+100×8×85%+50×8×75%.(1)如果他批发240千克苹果选择哪家批发更优惠;(2)设他批发x千克苹果(x>100),当x取何值时选择两家批发所花费用一样多.32.滴滴快车是一种便捷的出行工具,计价规则如下表:(1)小敏乘坐滴滴快车,行车里程5公里,行车时间20分钟,写小敏下车时付多少车费?(2)小红乘坐滴滴快车,行车里程10公里,下车时所付车费29.4元,则这辆滴滴快车的行车时间为多少分钟?33.列一元一次方程解应用题.有一批共享单车需要维修,维修后继续投放骑用,现有甲、乙两人做维修,甲每天维修16辆,乙每天维修的车辆比甲多8辆,甲单独维修完成这批共享单车比乙单独维修完多用20天,公司每天付甲80元维修费,付乙120元维修费.(1)问需要维修的这批共享单车共有多少辆?(2)在维修过程中,公司要派一名人员进行质量监督,公司负担他每天10元补助费,现有三种维修方案:①由甲单独维修;②由乙单独维修;③甲、乙合作同时维修,你认为哪种方案最省钱,为什么?34.甲、乙两支“徒步队”到野外沿相同路线徒步,徒步的路程为24千米.甲队步行速度为4千米/时,乙队步行速度为6千米/时.甲队出发1小时后,乙队才出发,同时乙队派一名联络员跑步在两队之间来回进行一次联络(不停顿),他跑步的速度为10千米/时.(1)乙队追上甲队需要多长时间?(2)联络员从出发到与甲队联系上后返回乙队时,他跑步的总路程是多少?(3)从甲队出发开始到乙队完成徒步路程时止,何时两队间间隔的路程为1千米?35.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x﹣0|;这个结论可以推广为|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离.绝对值的几何意义在解题中有着广泛的应用:例1:解方程|x|=4.容易得出,在数轴上与原点距离为4的点对应的数为±4,即该方程的x=±4;例2:解方程|x+1|+|x﹣2|=5.由绝对值的几何意义可知,该方程表示求在数轴上与﹣1和2的距离之和为5的点对应的x的值.在数轴上,﹣1和2的距离为3,满足方程的x对应的点在2的右边或在﹣1的左边.若x对应的点在2的右边,如图(25﹣1)可以看出x=3;同理,若x对应点在﹣1的左边,可得x=﹣2.所以原方程的解是x=3或x=﹣2.例3:解不等式|x﹣1|>3.在数轴上找出|x﹣1|=3的解,即到1的距离为3的点对应的数为﹣2,4,如图(25﹣2),在﹣2的左边或在4的右边的x值就满足|x﹣1|>3,所以|x﹣1|>3的解为x<﹣2或x>4.参考阅读材料,解答下列问题:(1)方程|x+3|=5的解为;(2)方程|x﹣2017|+|x+1|=2020的解为;(3)若|x+4|+|x﹣3|≥11,求x的取值范围.36.两种移动电话计费方式表如下:设主叫时间为t分钟.(1)请完成下表(2)问主叫时间为多少分钟时,两种方式话费相等?(3)问主叫时间超过400分钟时,哪种计费方式便宜?便宜多少元?(用含t的式子表示)37.如图,长方形ABCD中,AB=4cm,BC=8cm.点P从点A出发,沿AB匀速运动;点Q从点C 出发,沿C→B→A→D→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了3cm,并沿B→C→D→A的路径匀速运动;点Q保持速度不变,继续沿原路径匀速运动,3s后两点在长方形ABCD某一边上的E点处第二次相遇后停止运动.设点P原来的速度为xcm/s.(1)点Q的速度为cm/s(用含x的代数式表示);(2)求点P原来的速度.(3)判断E点的位置并求线段DE的长.38.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;(2)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.39.成都某网络约车公司的收费标准是:起步价8 元,不超过3 千米时不加价,行程在3 千米到5 千米时,超过3 千米但不超过5 千米的部分按每千米1.8 元收费(不足1 千米按1 千米计算),当超过5 千米时,超过5 千米的部分按每千米2 元收费(不足1 千米按1 千米计算).(1)若李老师乘坐了2.5 千米的路程,则他应支付费用为元;若乘坐的5 千米的路程,则应支付的费用为元;若乘坐了10 千米的路程,则应支付的费用为元;(2)若李老师乘坐了x(x>5 且为整数)千米的路程,则应支付的费用为元(用含x 的代数式表示);(3)李老师周一从家到学校乘坐出租车付了19.6元的车费(且他所乘路程的千米数为整数),若李老师改骑电动自行车从家到学校与乘坐出租车所走路程相等,李老师骑电动自行车的费用为每千米0.1元,不考虑其他因素,问李老师可以节约多少元钱?40.甲乙两地相距400千米,一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,相向而行.已知客车的速度为60千米/小时,出租车的速度是100千米/小时.(1)多长时间后两车相遇?(2)若甲乙两地之间有相距100km的A、B两个加油站,当客车进入A站加油时,出租车恰好进入B站加油,求A加油站到甲地的距离.(3)若出租车到达甲地休息40分钟后,按原速原路返回.出租车能否在到达乙地或到达乙地之前追上客车?若不能,则出租车往返的过程中,至少提速为多少才能在到达乙地或到达乙地之前追上客车?是否超速(高速限速为120千米/小时)?为什么?七年级上册数学一元一次方程参考答案与试题解析一.选择题(共2小题)1.一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了()天.A.10 B.20 C.30 D.25【分析】设乙中途离开了x天,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设乙中途离开了x天,根据题意得:×40+×(40﹣x)=1,解得:x=25,则乙中途离开了25天.故选:D.【点评】此题考查了一元一次方程的应用,弄清题意是解本题的关键.2.检修一台机器,甲、乙小组单独做分别需要7.5h,5h就可完成.两小组合作2h后,由乙小组单独完成,还需()小时才能完成机器的检修任务.A.1 B.C.D.2【分析】利用总共量为1,进而表示出甲、乙的工作量得出等式求出答案.【解答】解:设两小组合做1h后,再由乙小组单独做,还需x小时才能完成这台机器的检修任务,根据题意可得:2(+)+x•=1,解得:x=.答:还需小时后才能完成这台机器的检修任务.选:C.【点评】此题主要考查了一元一次方程的应用,根据总共量为1得出等式是解题关键.二.解答题(共38小题)3.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)请根据他们的对话内容,求小明和爸爸的骑行速度.(2)爸爸第一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?【分析】(1)设小明的骑行速度为x米/分钟,则爸爸的骑行速度为2x米/分钟,根据距离=速度差×时间即可得出关于x的一元一次方程,解之即可得出结论;(2)设爸爸第一次追上小明后,在第二次相遇前,再经过y分钟,小明和爸爸跑道上相距50m.根据距离=速度差×时间即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设小明的骑行速度为x米/分钟,则爸爸的骑行速度为2x米/分钟,根据题意得:2(2x﹣x)=400,解得:x=200,∴2x=400.答:小明的骑行速度为200米/分钟,爸爸的骑行速度为400米/分钟.(2)解:设爸爸第一次追上小明后,在第二次相遇前,再经过y分钟,小明和爸爸相距50m.400y﹣200y=50,y=答:爸爸第一次追上小明后,在第二次相遇前,再经过分钟,小明和爸爸相距50m.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,由路程差找出合适的等量关系列出方程,再求解.4.一快递员的摩托车需要在规定的时间内把快递送到某地,若每小时行驶60km,就早到12分钟,若每小时行驶50km,就要迟到6分钟,求快递员所要骑行的路程.【分析】设路程为xkm,根据时间=路程÷速度、“若每小时行驶60km,就早到12分钟;若每小时行驶50km,就要迟到6分钟”,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设路程为xkm,以每小时60km的速度到达目的地所需的时间为;以每小时50km的速度到达目的地所需的时间为.根据题意得:+=﹣,解得:x=90.答:快递员需要骑行90km.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)根据时间=路程÷速度表示出两种速度下将快递送到某地所需时间;(2)根据两种速度下所需时间之间的关系,列出关于x的一元一次方程.5.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯仍按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由.【分析】(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果.【解答】解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,。
七年级数学上册第三单元《一元一次方程》-解答题专项知识点复习(含解析)
一、解答题1.如果,a b 为定值,关于x 的方程2236kx a x bk+-=+无论k 为何值时,它的根总是1,求,a b 的值.解析:a=132,b=﹣4 【分析】先把方程化简,然后把x =1代入化简后的方程,因为无论k 为何值时,它的根总是1,就可求出a 、b 的值. 【详解】解:方程两边同时乘以6得: 4kx +2a =12+x−bk , (4k−1)x +2a +bk−12=0①, ∵无论为k 何值时,它的根总是1, ∴把x =1代入①, 4k−1+2a +bk−12=0,则当k =0,k =1时,可得方程组:12120412120a a b --⎧⎨--⎩+=++=, 解得:a=132,b=﹣4 当a=132,b=﹣4时,无论为k 何值时,它的根总是1. ∴a=132,b=﹣4 【点睛】本题主要考查了一元一次方程的解,理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.本题利用方程的解求未知数a 、b .2.已知方程3210x a +-=的解与方程20x a -=的解互为相反数,求a 的值.解析:14a =-【分析】先分别求出两个方程的解,再根据解互为相反数列方程计算即可. 【详解】3210x a +-=,解得123ax -=; 20x a -=,解得2x a =.由题意得,12203aa -+=, 解得14a =-. 【点睛】本题考查一元一次方程的解法,解题的关键是根据两个方程的解互为相反数列方程求解.3.10.3x -﹣20.5x + =1.2. 解析:4 【解析】试题分析:先将分母化成整数后,再去分母,去括号,移项,系数为1的步骤解方程即可; 试题121.20.30.5x x -+-=10103x --10205x +=6550x-50-30x-60=18 20 x=128 x=6.44.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生? 解析:10个家长,5个学生 【分析】设小明他们一共去了x 个家长,则有(15﹣x )个学生,根据“大人门票购买费用+学生门票购买费用=1400”列式求解即可. 【详解】解:设小明他们一共去了x 个家长,(15﹣x )个学生, 根据题意得:100x +100×0.8(15﹣x )=1400, 解得:x =10, 15﹣x =5,答:小明他们一共去了10个家长,5个学生. 【点睛】本题考查了一元一次方程的应用. 5.解下列方程: (1)2(x -1)=6; (2)4-x =3(2-x); (3)5(x +1)=3(3x +1)解析:(1)x =4;(2)x =1;(3)x =12【分析】(1)方程去括号,移项合并,将未知数系数化为1,即可求出解; (2)方程去括号,移项合并,将未知数系数化为1,即可求出解; (3)方程去括号,移项合并,将未知数系数化为1,即可求出解; 【详解】(1)去括号, 得2x -2=6. 移项,得2x =8. 系数化为1,得x =4. (2)去括号,得4-x =6-3x. 移项,得-x +3x =6-4. 合并同类项,得2x =2. 系数化为1,得x =1. (3)去括号,得5x +5=9x +3. 移项,得5x -9x =3-5. 合并同类项,得-4x =-2. 系数化为1,得x =12. 【点睛】此题考查了解一元一次方程,其步骤为:去括号,移项合并,将未知数系数化为1,求出解.6.设a ,b ,c ,d 为有理数,现规定一种新的运算:a b ad bc c d=-,那么当35727x -=时,x 的值是多少?解析:x =-2【分析】根据新定义的运算得到关于x 的一元一次方程,解方程即可求解. 【详解】解:由题意得:21 - 2(5 - x )=7 即21-10+2x =7 x =-2. 【点睛】本题考查了新定义,解一元一次方程,根据新定义的运算列出方程是解题关键. 7.王叔叔十月份的工资为8000元,超过5000元的部分需要交3%的个人所得税。
[++初中数学]一元一次方程+复习课+课件+人教版数学七年级上册
方程和方程的解的概念 例1 若关于x的方程2x-a=1的解是x=2,求a的值. 解:由题可知, 关于x的方程2x-a=1的解是x=2, 所以可将x=2代入方程2x-a=1中, 即4-a=1, 解得a=3.
变式训练 1.若x=4是方程2-3(x-a)=-1的解,则a的值为( A )
A.3 B.-3 C.-5 D.5
2.若方程2ax+3-b=0的解为x=1,则式子2a-b的值为 ( A ) A.-3 B.3 C.-1 D.2
3.方程12x-1=3和方程12x+m=0的解相同,则m= -4 .
等式的性质
例2 是 c≠1
如
果
a=b,
那
么
a c−1
=
b c−1
成
立
时
c
应
满
足
的
条
件
.
变式训练 1.已知等式2a=3b-1,则下列等式不一定成立的是( D ) A.2a+1=3b B.4a+5=6b+3 C.a=32b-12 D.6a=9b-1
例8 A市欲将一批容易变质的水果运往B市销售,有火车、
汽车两种运输方式,现只可选择其中的一种,这两种运输工具的
主要参考数据如下:
运输 途中速度 途中费用 装卸时间 装卸费用
工具 /(千米/时) /(元/千米) /小时
/元
汽车
50
8
2
1000
火车
100
4
4
2000
若这批水果在运输(包括装卸)过程中的损耗为200元/小时. (1)当A,B两地间的距离为多少千米时,火车、汽车运输的费 用相等. (2)在什么情况下,采用汽车运输划算?在什么情况下,采用火 车运输划算?
人教版七年级上册数学:第三章《一元一次方程》全章复习与巩固(提高)知识讲解(含答案)
《一元一次方程》全章复习与巩固(提高)知识讲解【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】要点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:(1)一元一次方程变形后总可以化为ax+b=0(a≠0)的形式,它是一元一次方程的标准形式.(2)判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.要点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母的指数不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反. 要点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b (a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解b x a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.要点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【典型例题】类型一、一元一次方程的相关概念1.已知方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,求m 和x 的值.【思路点拨】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.【答案与解析】解:因为方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,所以3m -4=0且5-3m ≠0.由3m -4=0解得43m =,又43m =能使5-3m ≠0,所以m 的值是43. 将43m =代入原方程,则原方程变为485333x ⎛⎫--⨯= ⎪⎝⎭,解得83x =-. 所以43m =,83x =-. 【总结升华】解答这类问题,一定要严格按照一元一次方程的定义.方程(3m -4)x 2-(5-3m )x -4m =-2m 2是关于x 的一元一次方程,就是说x 的二次项系数3m -4=0,而x的一次项系数5-3m≠0,m的值必须同时符合这两个条件.举一反三:【高清课堂:一元一次方程复习393349 等式和方程例3】【变式】下面方程变形中,错在哪里:(1)方程2x=2y两边都减去x+y,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y).方程 x-y=-(x-y)两边都除以x-y, 得1=-1.(2)3721223x xx-+=+,去分母,得3(3-7x)=2(2x+1)+2x,去括号得:9-21x=4x+2+2x.【答案】(1)答:错在第二步,方程两边都除以x-y.(2)答:错在第一步,去分母时2x项没乘以公分母6.2.如果5(x+2)=2a+3与(31)(53)35a x a x+-=的解相同,那么a的值是________.【答案】7 11【解析】由5(x+2)=2a+3,解得275ax-=.由(31)(53)35a x a x+-=,解得95x a=-.所以27955aa-=-,解得711a=.【总结升华】因为两方程的解相同,可把a看做已知数,分别求出它们的解,令其相等,转化为求关于a的一元一次方程.举一反三:【变式】已知|x+1|+(y+2x)2=0,则y x=________.【答案】1类型二、一元一次方程的解法3.解方程:4621132x x-+-=.【答案与解析】解:去分母,得:2(4-6x)-6=3(2x+1).去括号,得:8-12x-6=6x+3.移项,合并同类项,得:-18x=1.系数化为1,得:118x=-.【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.举一反三:【变式1】解方程26752254436z z z zz+---++=-【答案】解:把方程两边含有分母的项化整为零,得267522544443366z z z z z +++-=--+. 移项,合并同类项得:1122z =,系数化为1得:z =1. 【高清课堂:一元一次方程复习 393349 解方程例1(2)】 【变式2】解方程: 0.10.050.20.05500.20.54x x +--+=. 【答案】 解:把方程可化为:0.520.550254x x +--+=, 再去分母得:232x =-解得:16x =-4.解方程3{2x -1-[3(2x -1)+3]}=5.【答案与解析】解:把2x -1看做一个整体.去括号,得:3(2x -1)-9(2x -1)-9=5.合并同类项,得-6(2x -1)=14. 系数化为1得:7213x -=-,解得23x =-. 【总结升华】把题目中的2x -1看作一个整体,从而简化了计算过程.本题也可以考虑换元法:设2x -1=a ,则原方程化为3[a -(3a+3)]=5.类型三、特殊的一元一次方程的解法1.解含字母系数的方程5.解关于x 的方程:11()(2)34m x n x m -=+ 【思路点拨】这个方程化为标准形式后,未知数x 的系数和常数都是以字母形式出现的,所以方程的解的情况与x 的系数和常数的取值都有关系.【答案与解析】解:原方程可化为:(43)462(23)m x mn m m n -=+=+ 当34m ≠时,原方程有唯一解:4643mn m x m +=-; 当33,42m n ==-时,原方程无数个解; 当33,42m n =≠-时,原方程无解; 【总结升华】解含字母系数的方程时,一般化为最简形式ax b =,再分类讨论进行求解,注意最后的解不能合并,只能分情况说明.2.解含绝对值的方程6. 解方程|x -2|=3.【答案与解析】解:当x -2≥0时,原方程可化为x -2=3,得x =5.当x -2<0时,原方程可化为-(x -2)=3,得 x =-1.所以x =5和x =-1都是方程|x -2|=3的解.【总结升华】如图所示,可以看出点-1与5到点2的距离均为3,所以|x -2|=3的意义为在数轴上到点2的距离等于3的点对应的数,即方程|x -2|=3的解为x =-1和x =5.举一反三:【变式1】若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系为: ( )A . m n k >> B.n k m >> C.k m n >> D.m k n >>【答案】A【变式2】若9x =是方程123x m -=的解,则__m =;又若当1n =时,则方程123x n -=的解是 .【答案】1; 9或3. 类型四、一元一次方程的应用7.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟,现在李伟打算在火车开车前10分钟到达火车站,求李伟此时骑摩托车的速度应是多少?【思路点拨】本题中的两个不变量为:火车开出的时间和李伟从家到火车站的路程不变.【答案与解析】 解:设李伟从家到火车站的路程为y 千米,则有:151530601860y y +=-,解得:452y = 由此得到李伟从家出发到火车站正点开车的时间为4515213060+=(小时). 李伟打算在火车开车前10分钟到达火车站时,设李伟骑摩托车的速度为x 千米/时, 则有:452271010116060y x ===--(千米/时) 答:李伟此时骑摩托车的速度应是27千米/时.【总结升华】在解决问题时,当发现某种方法不能解决问题时,应该及时变换思维角度,如本题直接设未知数较难时,应迅速变换思维的角度,合理地设置间接未知数以寻求新的解决问题的途径和方法.8. 黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用刚好为4920元时,问公司租用的四座车和十一座车各多少辆?【答案与解析】解:设四座车租x 辆,十一座车租70411x -辆,依题意得: 7047060601110492011x x -⨯++⨯⨯= 解得:x =1,704611x -= 答:公司租用的四座车和十一座车分别是1辆和6辆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一. 一元一次方程复习
1.若x=3,y=-1是方程3x-ay=8的一个解,则a=______. 2.在y=5x+t 中,当t=15,y=45时,x=_______. 3.若n m y x
23
3+与1222+-n m y x 为同类项,则m=_____,n=_____.
4.将方程
21101
136x x +--=去分母,得 。
5.方程221
1632
x x x -+--=+,去分母得 。
6.某校办厂2007年的产值为a 万元,2006年的产值比2007年少10%,则2006年的产值为.______万元.
7.连续三个奇数的和为51,则其中最小的数为 。
8.解方程:
(1)x-15=57; (2)2x+3=x ; (3)4-73y=13; (4) 7
5
y=y+1;
(5)8∶3=4x ∶7; (6)13=2t +3; (7)-x+1=0; (8)-35x+3
5
=0.
9.解放程:
(1)21x=41; (2) 12x -=4; (3)2(x-1)=4; (4)3=0131=⎪⎭
⎫ ⎝⎛+x ;
(5).(x-2)-(2-x)=4 (6).
3
53235x
x -=
-;
(7).21252--
=-+x x x ; (8).10065(y-1)=100
37
(y+1)+0.1;
(9).2
2
)1(32119--
-=+--x x x x (10).x
0.7 -0.17-0.2x
0.03 =1
10. a 为何值时,方程a(5x-1)-41(3-x)=6a ⎪⎭⎫ ⎝
⎛
-41x 有一个根是-1?
二. 二元一次方程复习 1.已知方程
3
1
x -2y =6,用x 表示y ,则y =_______;用y 表示x ,则x =_______. 2.已知二元一次方程x +2y -4=0,当x 与y 互为相反数,x =_______,y =_______. 3.当1-=m x ,1+=m y 满足方程032=-+-m y x ,则=m _________.
4.在2001年的“世界杯”足球赛中,有一支足球赛了9场,只输了2场,共得17分,已知得分规则是:胜一场得3分,平一场得1分,负一场得0分,你知道这支球队胜了_____场,平了_____场。
5.方程组⎩⎨⎧=-=-14
467
23y x y x 一定有_______个解。
6.用加减法解方程组⎩
⎨⎧=-=+8231
32y x y x 时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形
的结果:
①⎩⎨
⎧=-=+8
461
96y x y x ②⎩⎨⎧=-=+869164y x y x ③⎩⎨⎧-=+-=+1646396y x y x ④⎩⎨⎧=-=+2469264y x y x
其中变形正确的是………………………………………………………………( ) A.①② B.③④ C.①③ D.②④
7.下列方程中是二元一次方程的是( ) A.
4232512--=-y y B. 542
=-y x C. y x xy += D. 31=+x
y
8.方程■52+=-x y x 是二元一次方程,■是被弄污的x 的系数,请你推断■的值属于下列情况中的( ) A.不可能是-1 B. 不可能是-2 C.不可能是1 D. 不可能是2 9.如果|y x 2-|+)3(-+y x 2
=0成立,那么x
y
=( )
A.1
B. 2
C.9
D.16 10.解方程组
(1)102x y y x +=⎧⎨-=⎩ (2)379475x y x y +=⎧⎨-=⎩
(3)⎩⎨⎧=++=82573y x y x (4)⎩
⎨⎧=-=+765132y x y x
(5)9215
3410x y x y +=⎧⎨+=⎩ (6)⎪⎩⎪⎨⎧=-=+34
31332n m n
m
(7)⎪⎩⎪⎨⎧=--+--=+2
)(5)(43
62y x y x y x y
x
11.在公式vt s s +=0中,当3=t 时,5.5=s ;当5=t 时,5.8=s 。
求: (1) 当0s 、t 的值;
(2) 7=t 时,s 的值是多少?
12.光明中学现有校舍面积20000平方米,为改善办学条件,计划拆除部分旧校舍,建造新校舍,使新校舍的面积比拆除旧校舍面积的3倍还多1000平方米,这样建造后就使校舍总面积比原有校舍面积增加20%,求学校拆除旧校舍和建造新校舍分别是多少平方米?
13.有一批足球迷来到一家旅社,当领队安排住房时,发现这样一个问题;若每间客房住2人,则有10人无房间住;若每间客房住3人,则有5间客房无人住。
你能算出这批足球迷的人数和旅社客房的间数吗?
14.某校为了促进学生参加体育活动,举办了一次乒乓球比赛,每赛一场的记分及奖励方案如下表;当比赛进行到第12场(也是最后一场)时,七年级甲班的李宏同学共积19分。
(2)设李宏同学获得的奖金为w元,试求w的最大值。
15.下表所示为装运甲、乙、丙三种蔬菜的重量及利润。
某汽运公司计划装运甲、乙、丙三种蔬菜到外地销售(每辆汽车按规定满载,且每辆汽车只能装一种蔬菜)
(3)若用8辆汽车装运乙、丙两种蔬菜11吨到A地销售,问装运的汽车各多少辆?
(4)计划用20辆汽车装运甲、乙、丙三种蔬菜36吨到B地销售,如何安排装运,可使公司获得100个
百元的利润?。