2020年高一数学第二学期期末模拟试卷及答案(共七套)
2020高一下学期数学期末考试卷(20200408113101)
10 3n
2
3n 17n 48 2
…… 13 分
∴
17n 3n 2
1n 3
Sn
2 3n2 17n 48
n4
2
……………… 14 分
19. ( 本小题总分值 14 分 )
向量 p (a c, b), q ( a c, b a) 且p q 0 ,其中角 A, B, C 是 ABC 的内角, a, b, c 分别是角 A, B, C 的对边 .
〔 1〕求角 C 的大小;
〔 2〕求 sin A cosB 的取值范围 .
解
:
〔
1
〕
由
pq 0
得
(a c)( a c) b(b a) 0
…………… -2 分
a 2 b2 c 2 a b
…………… 3 分
由
余
弦
a2 b c
cC
o
2ab
12 s
2
定
2
…
理
得
:
…………… -5 分
0C C
3
…-6 分
…………
∵
an an 1 3
对
nN
且
n2
,
有
……… -5 分
∴
an
为
等
差
数
列。
…………… 6分
〔 2 〕由题意, dn an ,即 dn 10 3n 1 n 3
3n 10 n 4
………… 8分
∴当1 n 3 时, Sn
7 10 3n
17n 3n2
n
2
2
……………… 10 分
当 n 4时, Sn 7 4 1 2 5
1
人教版2020-2021学年下学期高一数学期末检测卷及答案
密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020--2021学年下学期期末考试卷高一 数学(满分:150分 时间: 120分钟)题号一 二 三 总分 得分第Ⅰ卷(选择题,满分60分)一、选择题(本大题共12小题,每题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求) 1.现有这么一列数:1,,,,(),,,…,按照规律,( )中的数应为( )A .B .C .D .2. 设,且,则()A. B.C. D.3. 在△ABC 中,点D 在边BC 上,若,则 A.B.C.D.4. 设单位向量,则的值为( ) A . B . C .D .5. 已知△ABC 中,,那么满足条件的△ABC ( )A .有一个解B .有两个解C .不能确定D .无解 6.已知数列成等差数列,成等比数列,则的值是( )A .或B .C .D .7. 《九章算术》是我国古代内容极为丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,七日织28尺,第二日,第五日,第八日所织之和为15尺,则第十四日所织尺数为 ( )A .13B .14C .15D .168.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,其中,那么△ABC 一定是( )A. 锐角三角形B. 直角三角形C. 等腰三角形D. 等腰或直角三角形 9.已知,都是锐角,,,则 A . B . C .D .10.如图所示,隔河可以看到对岸两目标AB ,但325478113213649161116121118,,a b c R ∈a b >ac bc>11a b<20ca b≥-11a b a>-2BD DC =AD =2133AB AC +1233AB AC +1344AB AC+3144AB AC +1(cos )3e α=,cos 2α79-12-793223,22,4a b B π===121,,,4a a 1231,,,,4b b b 212a ab -12-1212-121422tan tan a B b A =αβ3sin 5α=()5cos 13αβ+=-sin β=5665-1665-33656365密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题不能到达,现在岸边取相距4km 的C ,D 两点,测得∠ACB=75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),则两目标A ,B 间的距离为( )km.A .2B .C .D .11. 设是△ABC 的重心,且,若△ABC 外接圆的半径为1,则△ABC 的面积为( )A .B .C .D .12.当时,函数取得最小值,则的值为( ) A .- B .C .-D .第Ⅱ卷(非选择题,满分90分)二、填空题(本题共4小题,每小题5分,共20分) 13.若,则的最小值为.14. 在中,是方程的两根,则.15. 如图,在半径为的圆上,C 为圆心,A 为圆上的一个定点,B 为圆上的一个动点,若,则 .16. 已知数列满足…,设数列满足:,数列的前项和为,若恒成立,则的最小值是 .三、解答题:解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分10分)已知□ABCD 的三个顶点A 、B 、C 的坐标分别是(-2,1)、(-1,3)、(3,4).(1)求顶点D 的坐标;(2)求与所成夹角的余弦值. 18.(本小题满分12分)已知数列是公比为2的等比数列,且成等差数列.(1)求数列的通项公式;(2)记,数列的前项和为,求.19.(本小题满分12分)521534153853G ()()()sin sin sin 0A GA B GB C GC ++=91634334332x θ=()2cos f x sinx x =+sin 3πθ⎛⎫+ ⎪⎝⎭215510+251510+1010310101x >41y x x =+-ABC ∆tan ,tan A B 22370x x +-=tan C =3CBAC CB AC -=+AB AC ⋅={}n a 1212a a ++2*1()n a n n n N n +=+∈{}n b 121n n n n b a a ++={}n b n nT *4()1n nT n N n λ≤∈+λAC BD {}n a 234,1,a a a +{}n a 2 , n n n a b log a n n ⎧⎪=⎨⎪⎩为奇数,为偶数{}n b n n T 2nT密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题已知向量,且函数.(1)求函数在时的值域; (2)设α是第一象限角,且112610f απ⎛⎫+= ⎪⎝⎭求sin()4cos(22)παπα++的值. 20.(本小题满分12分)首届世界低碳经济大会11月17日在南昌召开,本届大会的主题为“节能减排,绿色生态”.某企业在国家科研部门的支持下,投资810万元生产并经营共享单车,第一年维护费为10万元,以后每年增加20万元,每年收入租金300万元. (1)若扣除投资和各种维护费,则从第几年开始获取纯利润?(2)若干年后企业为了投资其他项目,有两种处理方案: ①纯利润总和最大时,以100万元转让经营权;②年平均利润最大时以460万元转让经营权,问哪种方案更优?21.(本小题满分12分)已知的角A,B,C 的对边分别为a ,b ,c ,满足.(1)求A;(2)从下列条件中:①中任选一个作为已知条件,求周长的取值范围.注:如果选择多个条件分别解答,按第一个解答计分. 22.(本小题满分12分)函数满足:对任意,都有,且,数列满足.(1)证明数列为等差数列,并求数列的通项公式; (2)记数列前n 项和为,且,问是否存在正整数m ,使得成立,若存在,求m 的最小值 ;若不存在, 请说明理由.数学试题参考答案及评分意见一、选择题(本大题共12小题,每题5分,共60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACBCBCBDDCCA二、填空题(本大题共4小题,每小题5分,共20分)13.5 14. 1315.9 16. 32三、解答题17.(本小题满分10分) 解:(1)设顶点D 的坐标为(,)x y .(2,1)A -,(1,3)B -,(3,4)C ,(1(2),31)(1,2)AB ∴=----=,(3,4)DC x y =--, ----------------2分()cos 3m x x=(cos ,cos )n x x =()f x m n =⋅)(x f ,02x π⎡⎤∈-⎢⎥⎣⎦ABC ∆()(sin sin )()sin b a B A b c C -+=-3a =3ABCS=ABC ∆()x f R ∈βα,()()()αββααβf f f +=()22=f {}n a (2) ()n n a f n N +=∈2n n a ⎧⎫⎨⎬⎩⎭{}n a }{n b n S (1)n nn n b a +=(1)(4)190m m m S b +-+<密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题又AB DC =,-----------------3分所以(1,2)(3,4)x y =--.即13,24,x y =-⎧⎨=-⎩解得2,2.x y =⎧⎨=⎩所以顶点D 的坐标为(2,2). --------------------5分(2)由22(5,3),||5334AC OC OA AC =-==+=22(3,1),||3(1)10BD OD OB BD =-=-=+-=353(1)12AC BD ⋅=⨯+⨯-= ------------------8分685cos ,||||3410AC BD AC BD AC BD ⋅∴<>===⋅⨯ ----------------10分18.(本小题满分12分)(1)由题意可得32421a a a +=+(),--------------2分即2222214a a a +=+(),解得:22a =,∴2112a a ==, ----------4分∴数列{}n a 的通项公式为12n n a -=. -------------------6分(2)12 1 ,, n n n n b n -⎧⎪=⎨-⎪⎩为奇数为偶数--------------------7分 21232153226241()()n n n n T b b b b b b b b b b b b -=+++⋯++++⋯++++⋯+=+0422222223521n n -=+++⋯++++⋯+-()+(1)------------------10分214(121)4114233n n n n n -+-=+=+----------------------12分19.(本小题满分12分) 解:(1)由2()cos 3sin cos f x m n x x x =⋅= --------------------1分1311cos 22sin(2)22262x x x π=++=++ -----------------3分50,22666x x ππππ-≤≤-≤+≤由得1sin(2)[1,]62x π+∈-所以 ---------------5分所以()f x 的值域为1[,1]2- -----------------6分 (2)π11(),2610f α+=ππ111sin 2()266210α⎡⎤∴+++=⎢⎥⎣⎦ 则π3sin()25α+=即53cos =α 又α为第一象限的角则54sin =α ----9分π2sin()cos )42cos(2π2)cos 2ααααα++=+----------------10分=αααααsin cos 22sin cos )cos (sin 2222-=-+x225-= -----------------12分20.(本小题满分12分)解:(1)设第n 年获取利润为y 万元,n 年共收入租金万元,付出维护费构成一个以10为首项,20为公差的等差数列,共2(1)1020102n n n n -+⨯= -----------------2分因此利润2300(81010)y n n =-+ -------------------3分 令0y >,解得:327n <<所以从第4年开始获取纯利润. -----------------5分 (2)方案①:纯利润22300(81010)10(15)1440y n n n =-+=--+所以15年后共获利润:1440+100=1540(万元)------8分方案②:年平均利润2300(81010)810300(10)n n W n n n--==-+密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题810300210120n n≤-⨯=当且仅当81010n n =,即n =9时取等号所以9年后共获利润:120×9+460=1540(万元) ----11分综上:两种方案获利一样多,而方案②时间比较短,所以选择方案②. ------------12分21.(本小题满分12分)解:(1)因为()(sin sin )()sin b a B A b c C -+=- 由正弦定理得()()()b a b a b c c -+=-,即222bc a bc +-= --------2分由余弦定理得2221cos ,(0,)22b c a A A bc π+-==∈ -------------4分所以3A π=-----------------5分(2)选择①3a =由正弦定理2sin sin sin b c aB C A===,-----6分即ABC ∆周长22sin 2sin 32sin 2sin()33l B C B B π=+=+-+3sin 33B B =23)36B π=++----------------9分251 (0,) ,sin()1366626B B B πππππ∈∴<+<<+≤ ----------------11分即ABC ∆周长的取值范围(23,33----------------12分选择②3ABC S =.,得13sin 324ABC S bc A ===得4bc =.-------7分由余弦定理得22222()3()12,a b c bc b c bc b c =+-=+-=+- --------9分即ABC ∆周长2()12,l a b c b c b c =++=+-+24b c bc +≥=,当且仅当2b c ==时等号成立.----------------11分2 41246l a b c ∴=++≥-=即ABC ∆周长的取值范围[6,) +∞ ----------------12分 22.(本小题满分12分) 解:()()()1112,22,n n a f a f =∴==()()()()112222222,n n n n n a f f f f ++==⋅=⋅+⋅1122n n n a a ++∴=+,----------------2分11122n nn n a a ++∴-=⎭⎬⎫⎩⎨⎧∴nn a 2为等差数列,首项为121=a ,公差为1,----------4分22nn n n a n a n ∴==⋅即. ----------------5分 (2)由(1)12n n n n n n b a ++== ----------------6分23111111234(1)22222n n nS n n -=⨯+⨯+⨯++⨯++⨯2311111123(1)22222n n n S n n +=⨯+⨯++⨯++⨯, 两式相减得 121111111133(1)22222222n n n n n S n +++=+++-+⨯+=-332n nn S +∴=------------------9分假设存在正整数m ,使得(1)(4)190m m m S b +-+<成立,即2160m m +->---------10分密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题由指数函数与一次函数单调性知:()216m F m m =+-m N +∈为增函数.又因为34(3)231650,(4)241640F F =+-=-<=+-=> ------------11分 所以当4m ≥时恒有()2160m F m m =+->成立.故存在正整数m ,使得(1)(4)190m m m S b +-+<成立,m 的最小值为4.---------12分。
2020年高一数学第二学期期中模拟试卷及答案(共七套)
2020年年高一数学第二学期期中模拟试卷及答案(共七套)2020年年高一数学第二学期期中模拟试卷及答案(一)一、选择题:(本大题共10小题,每小题5分,共50分,有且只有一个选项正确)1.如果cosθ<0,且tanθ>0,则θ是()A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角2.①某高校为了解学生家庭经济收入情况,从来自城镇的150名学生和来自农村的150名学生中抽取100名学生的样本;②某车间主任从100件产品中抽取10件样本进行产品质量检验.I.简单随机抽样法;Ⅱ.分层抽样法.上述两问题和两方法配对正确的是()A.①配I,②配ⅡB.①配Ⅱ,②配ⅠC.①配I,②配I D.①配Ⅱ,②配Ⅱ3.某研究机构对儿童记忆能力x和识图能力y进行统计分析,得到如下数据:46810记忆能力x3568识图能力y由表中数据,求得线性回归方程为,=x+,若某儿童的记忆能力为11时,则他的识图能力约为()A.8.5 B.8.7 C.8.9 D.94.如果如图所示程序执行后输出的结果是480,那么在程序UNTIL 后面的“条件”应为()A.i>8 B.i>=8 C.i<8 D.i<=85.若,,则sin(2π﹣α)=()A. B.C. D.6.天气预报说,在今后的三天中,每一天下雨的概率均为50%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用0,1,2,3,4表示下雨,用5,6,7,8,9表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,这三天中恰有两天下雨的概率近似为()A.0.30 B.0.35 C.0.40 D.0.507.如图的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为()A. B. C.D.8.若sinα=,cosα=﹣,则在角α终边上的点是()A.(﹣4,3)B.(3,﹣4)C.(4,﹣3)D.(﹣3,4)9.记集合A={x,y)|x2+y2≤4}和集合B={(x,y)|x﹣y﹣2≤0,x ﹣y+2≥0}表示的平面区域分别为Ω1、Ω2,若在区域Ω1内任取一点M (x,y),则点M落在区域Ω2内的概率为()A.B.C. D.10.当x=时,函数f(x)=Asin(x+φ)(A>0)取得最小值,则函数y=f(﹣x)是()A.奇函数且图象关于直线x=对称B.偶函数且图象关于点(π,0)对称C.奇函数且图象关于(,0)对称D.偶函数且图象关于点(,0)对称二、填空题:(本大题有4小题,每小题5分,共20分.请将正确的答案填在横线上)11.已知扇形AOB的周长是6,中心角是2弧度,则该扇形的面积为.12.设a=sin33°,b=cos55°,c=tan35°,则a,b,c三数由大到小关系为.13.高一(9)班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:则统计表中的a•p=.组数分组低碳族的人数占本组的频率第一组[25,30)1200.6第二组[30,35)195p第三组[35,40)1000.5第四组[40,45)a0.4第五组[45,50)300.3第六组[50,55)150.314.已知函数f(x)=x+sinπx,则f()+f()+f()+…+f ()的值为.三、解答题:(本大题有3个小题,共30分.请书写完整的解答过程)15.(10分)某中学调查了某班全部50名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团86未参加演讲社团630(I)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(II)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3,现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.16.(10分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200.220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图示.(Ⅰ)求直方图中x的值;(Ⅱ)求月平均用电量的众数和中位数;(Ⅲ)在月平均用电量为[220,240),[240,260),[260,280)的三组用户中,用分层抽样的方法抽取10户居民,则月平均用电量在[220,240)的用户中应抽取多少户?17.(10分)已知:﹣<x<﹣π,tanx=﹣3.(Ⅰ)求sinx•cosx的值;(Ⅱ)求的值.四、选择题:(本大题共2小题,每小题5分,共15分,有且只有一个选项正确)18.现有1名女教师和2名男教师参加说题比赛,共有2道备选题目,若每位选手从中有放回地随机选出一道题进行说题,其中恰有一男一女抽到同一道题的概率为()A.B.C.D.19.函数y=,x∈(﹣,0)∪(0,)的图象可能是下列图象中的()A.B.C.D.五、填空题:(共5分.请将正确的答案填在横线上)20.将函数f(x)=2cos2x的图象向右平移个单位得到函数g(x)的图象,若函数g(x)在区间和上均单调递增,则实数a的取值范围是.六、解答题:(本大题有3个小题,共35分.请书写完整的解答过程)21.(11分)已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2,3,4,5}和B={﹣2,﹣1,1,2,3,4},分别从集合A,B中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.22.(12分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,﹣π<φ<0).(1)若f(x)的部分图象如图所示,求f(x)的解析式;(2)在(1)的条件下,求最小正实数m,使得函数f(x)的图象向左平移m个单位后所对应的函数是偶函数;(3)若f(x)在[0,]上是单调递增函数,求ω的最大值.23.(12分)我们把平面直角坐标系中,函数y=f(x),x∈D上的点P(x,y),满足x∈N*,y∈N*的点称为函数y=f(x)的“正格点”.(Ⅰ)若函数f(x)=sinmx,x∈R,m∈(3,4)与函数g(x)=lgx 的图象有正格点交点,求m的值,并写出两个函数图象的所有交点个数.(Ⅱ)对于(Ⅰ)中的m值,函数f(x)=sinmx,时,不等式log a x>sinmx恒成立,求实数a的取值范围.参考答案与试题解析一、选择题:(本大题共10小题,每小题5分,共50分,有且只有一个选项正确)1.如果cosθ<0,且tanθ>0,则θ是()A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角【考点】GC:三角函数值的符号.【分析】根据三角函数的符号,判断θ是哪一象限角即可.【解答】解:∵cosθ<0,∴θ是第二、第三象限角或x负半轴角,又tanθ>0,∴θ是第一或第三象限角,∴θ是第三象限角.故选:C.【点评】本题考查了根据三角函数值判断三角函数符号的应用问题,是基础题目.2.①某高校为了解学生家庭经济收入情况,从来自城镇的150名学生和来自农村的150名学生中抽取100名学生的样本;②某车间主任从100件产品中抽取10件样本进行产品质量检验.I.简单随机抽样法;Ⅱ.分层抽样法.上述两问题和两方法配对正确的是()A.①配I,②配ⅡB.①配Ⅱ,②配ⅠC.①配I,②配I D.①配Ⅱ,②配Ⅱ【考点】B3:分层抽样方法;B2:简单随机抽样.【分析】由题意知①的总体中个体明显分层两,用分层抽样,②的总体中个体的数目不大用简单分层抽样.【解答】解:①、总体中个体明显分层两层:来自城镇的学生和来自农村的学生,故用分层抽样来抽取样本;②,总体中个体的数目是100,不是很大,故用简单分层抽样来抽取样本.故选B.【点评】本题的考点是选择抽样方法,即根据总体的特征和抽样方法适用的条件进行选择最佳方法.3.某研究机构对儿童记忆能力x和识图能力y进行统计分析,得到如下数据:46810记忆能力x3568识图能力y由表中数据,求得线性回归方程为,=x+,若某儿童的记忆能力为11时,则他的识图能力约为()A.8.5 B.8.7 C.8.9 D.9【考点】BK:线性回归方程.【分析】由表中数据计算、,根据线性回归方程过样本中心点求出,写出线性回归方程,利用回归方程计算x=11时的值.【解答】解:由表中数据,计算=×(4+6+8+10)=7,=×(3+5+6+8)=5.5,且线性回归方程=x+过样本中心点(,),∴=5.5﹣×7=﹣0.1=﹣,∴线性回归方程为=x﹣;当x=11时,=×11﹣=8.7,即某儿童的记忆能力为11时,他的识图能力约为8.7.故选:B.【点评】本题考查了线性回归方程过样本中心点的应用问题,是基础题.4.如果如图所示程序执行后输出的结果是480,那么在程序UNTIL 后面的“条件”应为()A.i>8 B.i>=8 C.i<8 D.i<=8【考点】EA:伪代码.【分析】先根据输出的结果推出循环体执行的次数,再根据S=1×10×8×6=480得到程序中UNTIL后面的条件.【解答】解:因为输出的结果是480,即S=1×10×8×6,需执行3次,所以程序中UNTIL后面的“条件”应为i<8.故选:C.【点评】本题主要考查了直到型循环语句问题,语句的识别是一个逆向性思维过程,是基础题.5.若,,则sin(2π﹣α)=()A. B.C. D.【考点】GO:运用诱导公式化简求值.【分析】由条件利用诱导公式求得cosα的值,再根据α的范围求得sinα的值,可得要求式子的值.【解答】解:∵=﹣cosα,∴cosα=.又,∴sinα=﹣=﹣,∴sin(2π﹣α)=﹣sinα=,故选:B.【点评】本题主要考查同角三角函数的基本关系、诱导公式的应用,以及三角函数在各个象限中的符号,属于基础题.6.天气预报说,在今后的三天中,每一天下雨的概率均为50%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用0,1,2,3,4表示下雨,用5,6,7,8,9表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,这三天中恰有两天下雨的概率近似为()A.0.30 B.0.35 C.0.40 D.0.50【考点】CE:模拟方法估计概率.【分析】由题意知模拟三天中恰有两天下雨的结果,分析所给的数据可得表示三天下雨的数据组数,根据概率公式,计算可得结果.【解答】解:根据题意,用随机模拟试验模拟三天中恰有两天下雨的结果,分析可得:20组数据中表示三天中恰有两天下雨的有191、271、932、812、393、027、730,共7组,则这三天中恰有两天下雨的概率近似为=0.35;故选:B.【点评】本题考查模拟方法估计概率,解题主要依据是等可能事件的概率,注意列举法在本题的应用.7.如图的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为()A. B. C.D.【考点】BA:茎叶图;CB:古典概型及其概率计算公式.【分析】根据茎叶图中的数据,求出甲乙两人的平均成绩,再求出乙的平均成绩不小于甲的平均成绩的概率,即可得到答案.【解答】解:由已知中的茎叶图得,甲的平均成绩为(88+89+90+91+92)=90;设污损的数字为x,则乙的平均成绩为(83+83+87+99+90+x)=88.4+,当x=9,甲的平均数<乙的平均数,即乙的平均成绩超过甲的平均成绩的概率为,当x=8,甲的平均数=乙的平均数,即乙的平均成绩等于甲的平均成绩的概率为,所以,甲的平均成绩超过乙的平均成绩的概率为1﹣﹣=.故选:D.【点评】本题考查了平均数,茎叶图,古典概型概率计算公式的应用问题,是基础题目.8.若sinα=,cosα=﹣,则在角α终边上的点是()A.(﹣4,3)B.(3,﹣4)C.(4,﹣3)D.(﹣3,4)【考点】G9:任意角的三角函数的定义.【分析】利用三角函数的定义有sinα=,cosα=,从而可知选项.【解答】解:由于sinα=,cosα=﹣,根据三角函数的定义:sinα=,cosα=,可知x=﹣4,y=3,故选:A.【点评】本题主要考查了三角函数的定义.考查了学生对三角函数基础知识的掌握.9.记集合A={x,y)|x2+y2≤4}和集合B={(x,y)|x﹣y﹣2≤0,x ﹣y+2≥0}表示的平面区域分别为Ω1、Ω2,若在区域Ω1内任取一点M (x,y),则点M落在区域Ω2内的概率为()A.B.C. D.【考点】CF:几何概型.【分析】分别求出集合A,B对应区域的面积,根据几何概型的概率公式即可得到结论.【解答】解:区域Ω1对应的面积S1=4π,作出平面区域Ω2,则Ω2对应的平面区域如图,则对应的面积S=2π+4,则根据几何概型的概率公式可知若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2的概率为P==.故选;D【点评】本题主要考查几何概型的概率公式的计算,根据条件求出相应的面积是解决本题的关键.10.当x=时,函数f(x)=Asin(x+φ)(A>0)取得最小值,则函数y=f(﹣x)是()A.奇函数且图象关于直线x=对称B.偶函数且图象关于点(π,0)对称C.奇函数且图象关于(,0)对称D.偶函数且图象关于点(,0)对称【考点】HJ:函数y=Asin(ωx+φ)的图象变换;H2:正弦函数的图象.【分析】由题意可得sin(+φ)=﹣1,解得φ=2kπ﹣,k∈Z,从而可求y=f(﹣x)=﹣Asinx,利用正弦函数的图象和性质即可得解.【解答】解:由x=时函数f(x)=Asin(x+φ)(A>0)取得最小值,∴﹣A=Asin(+φ),可得:sin(+φ)=﹣1,∴+φ=2kπ﹣,k∈Z,解得:φ=2kπ﹣,k∈Z,∴f(x)=Asin(x﹣),∴y=f(﹣x)=Asin(﹣x﹣)=﹣Asinx,∴函数是奇函数,排除B,D,∵由x=时,可得sin取得最大值1,故C错误,图象关于直线x=对称,A正确;故选:A.【点评】本题主要考查了正弦函数的图象和性质,考查了数形结合能力,属于基础题.二、填空题:(本大题有4小题,每小题5分,共20分.请将正确的答案填在横线上)11.已知扇形AOB的周长是6,中心角是2弧度,则该扇形的面积为.【考点】G8:扇形面积公式.【分析】由已知中,扇形AOB的周长是6cm,该扇形的中心角是2弧度,我们可设计算出弧长与半径的关系,进而求出弧长和半径,代入扇形面积公式,即可得到答案【解答】解:∵扇形圆心角2弧度,可得扇形周长和面积为整个圆的.弧长l=2πr•=2r,故扇形周长C=l+2r=4r=6,∴r=,扇形面积S=π•r2•=.故答案为:.【点评】本题考查的知识点是扇形面积公式,弧长公式,其中根据已知条件,求出扇形的弧长及半径,是解答本题的关键,属于基础题.12.设a=sin33°,b=cos55°,c=tan35°,则a,b,c三数由大到小关系为c>b>a.【考点】GA:三角函数线.【分析】分别作出三角函数线,比较可得.【解答】解:∵a=sin33°,b=cos55°,c=tan35°,作出三角函数线结合图象可得c>b>a,故答案为:c>b>a.【点评】本题考查三角函数线,数形结合是解决问题的关键,属基础题.13.高一(9)班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:则统计表中的a•p= 65.组数分组低碳族的人数占本组的频率第一组[25,30)1200.6第二组[30,35)195p第三组[35,40)1000.5第四组[40,45)a0.4第五组[45,50)300.3第六组[50,55)150.3【考点】B8:频率分布直方图.【分析】由频率=,得第一组人数为200,由频率分布直方图得第一组的频率为0.2,从而n=1000,进而a=1000×0.02×5=100,第二组人数为1000×[1﹣(0.04+0.04+0.03+0.02+0.01)×5]=300,求出P==0.65,由此能求出a•P.【解答】解:由频率=,得第一组人数为:=200,由频率分布直方图得第一组的频率为:0.04×5=0.2,n==1000,∴a=1000×0.02×5=100,第二组人数为1000×[1﹣(0.04+0.04+0.03+0.02+0.01)×5]=300,∴P==0.65,∴a•P=100×0.65=65.故答案为:65.【点评】本题考查频率率的求法及应用,是基础题,解题时要认真审题,注意频率=及频率分布直方图的合理运用.14.已知函数f(x)=x+sinπx,则f()+f()+f()+…+f ()的值为4033.【考点】3O:函数的图象;3T:函数的值.【分析】根据题意,求出f(2﹣x)的解析式,分析可得f(x)+f(2﹣x)=2,将f()+f()+f()+…+f()变形可得[f()+f()]+[f()+f()]+…[f()+f()]+f (1),计算可得答案.【解答】解:根据题意,f(x)=x+sinπx,f(2﹣x)=(2﹣x)+sin[π(2﹣x)]=(2﹣x)﹣sinx,则有f(x)+f(2﹣x)=2,f()+f()+f()+…+f()=[f()+f()]+[f ()+f()]+…[f()+f()]+f(1)=4033;故答案为:4033.【点评】本题考查了利用函数的对称性求函数值的应用问题,关键是依据函数的解析式确定函数的对称中心.三、解答题:(本大题有3个小题,共30分.请书写完整的解答过程)15.(10分)(2017春•台江区校级期中)某中学调查了某班全部50名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团86未参加演讲社团630(I)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(II)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3,现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.【考点】CC:列举法计算基本事件数及事件发生的概率;B8:频率分布直方图.【分析】(Ⅰ)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,故至少参加上述一个社团的共有50﹣30=20(人),利用古典概率计算公式即可得出.(Ⅱ)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有15个根据题意,这些基本事件的出现是等可能的,事件“A1被选中且B1未被选中”所包含的基本事件有:{A1,B2},{A1,B3},共2个,利用古典概率计算公式即可得出.【解答】解:(Ⅰ)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,故至少参加上述一个社团的共有50﹣30=20(人),所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P=.(4分)(Ⅱ)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},{A4,B1},{A4,B2},{A4,B3},{A5,B1},{A5,B2},{A5,B3},共15个.…(6分)根据题意,这些基本事件的出现是等可能的,事件“A1被选中且B1未被选中”所包含的基本事件有:{A1,B2},{A1,B3},共2个.…(8分)因此,A1被选中且B1未被选中的概率为.…(10分)【点评】本题考查了古典概型及其概率计算公式、列举法,考查了推理能力与计算能力,属于中档题.16.(10分)(2017春•黄山期末)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200.220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图示.(Ⅰ)求直方图中x的值;(Ⅱ)求月平均用电量的众数和中位数;(Ⅲ)在月平均用电量为[220,240),[240,260),[260,280)的三组用户中,用分层抽样的方法抽取10户居民,则月平均用电量在[220,240)的用户中应抽取多少户?【考点】CC:列举法计算基本事件数及事件发生的概率;B8:频率分布直方图.【分析】(Ⅰ)由直方图的性质能求出直方图中x的值.(Ⅱ)由频率分布直方图能求出月平均用电量的众数和中位数.(Ⅲ)月平均用电量为[220,240]的用户有25户,月平均用电量为[240,260)的用户有15户,月平均用电量为[260,280)的用户有10户,由此能求出月平均用电量在[220,240)的用户中应抽取的户数.【解答】(本小题10分)解:(Ⅰ)由直方图的性质,可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1得:x=0.0075,所以直方图中x的值是0.0075.…(3分)(Ⅱ)月平均用电量的众数是=230.…(4分)因为(0.002+0.0095+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a﹣220)=0.5得:a=224,所以月平均用电量的中位数是224.…(6分)(Ⅲ)月平均用电量为[220,240]的用户有0.0125×20×100=25户,月平均用电量为[240,260)的用户有0.0075×20×100=15户,月平均用电量为[260,280)的用户有0.005×20×100=10户,…(8分)抽取比例==,所以月平均用电量在[220,240)的用户中应抽取25×=5户.…(10分)【点评】本题考查频率分布直方图的应用,考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.17.(10分)(2017春•台江区校级期中)已知:﹣<x<﹣π,tanx=﹣3.(Ⅰ)求sinx•cosx的值;(Ⅱ)求的值.【考点】GH:同角三角函数基本关系的运用;GI:三角函数的化简求值.【分析】(Ⅰ)利用“切化弦”及其平方关系可得sinx•cosx的值;(Ⅱ)根据诱导公式化简,利用“弦化切”可得答案.【解答】解:(Ⅰ)∵tanx=﹣3,即=﹣3,且﹣<x<﹣π,sin2x+cos2x=1,∴cosx=﹣,sinx=.那么:sinx•cosx=.(Ⅱ)原式====﹣3.【点评】本题考查了“弦化切”及同角三角函数基本关系式,考查了计算能力,属于基础题.四、选择题:(本大题共2小题,每小题5分,共15分,有且只有一个选项正确)18.现有1名女教师和2名男教师参加说题比赛,共有2道备选题目,若每位选手从中有放回地随机选出一道题进行说题,其中恰有一男一女抽到同一道题的概率为()A.B.C.D.【考点】CB:古典概型及其概率计算公式.【分析】基本事件总数n=23=8,设两道题分别为A,B题,利用列举法求出满足恰有一男一女抽到同一题目的事件个数,由此能求出其中恰有一男一女抽到同一道题的概率.【解答】解:现有1名女教师和2名男教师参加说题比赛,共有2道备选题目,若每位选手从中有放回地随机选出一道题进行说题,基本事件总数n=23=8,设两道题分别为A,B题,所以抽取情况共有:AAA,AAB,ABA,ABB,BAA,BAB,BBA,BBB,其中第1个,第2个分别是两个男教师抽取的题目,第3个表示女教师抽取的题目,一共有8种;其中满足恰有一男一女抽到同一题目的事件有:ABA,ABB,BAA,BAB,共4种,故其中恰有一男一女抽到同一道题的概率为p=.故选:C.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.19.函数y=,x∈(﹣,0)∪(0,)的图象可能是下列图象中的()A.B.C.D.【考点】3O:函数的图象.【分析】根据三角函数图象及其性质,利用排除法即可.【解答】解:因为y=是偶函数,排除A,当x=1时,y=>1,排除C,当x=时,y=>1,排除B、C,故选D.【点评】本题考查了三角函数的图象问题,注意利用函数图象的寄偶性及特殊点来判断.五、填空题:(共5分.请将正确的答案填在横线上)20.将函数f(x)=2cos2x的图象向右平移个单位得到函数g(x)的图象,若函数g(x)在区间和上均单调递增,则实数a的取值范围是[,] .【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】根据函数y=Asin(ωx+φ)的图象变换规律,求得g(x)=2cos (2x﹣);再利用条件以及余弦函数的单调性,求得a的范围.【解答】解:将函数f(x)=2cos2x的图象向右平移个单位得到函数g(x)=2cos(2x﹣)的图象,若函数g(x)在区间和上均单调递增,∴a>0.由2kπ﹣π≤0﹣≤2kπ,且2kπ﹣π≤2•﹣≤2kπ,k∈Z,求得k=0,﹣π≤a≤①.由2nπ﹣π≤4a﹣≤2nπ,且2nπ﹣π≤2•﹣≤2nπ,求得n=1,≤a≤②,由①②可得,≤a≤,故答案为:.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,余弦函数的单调性,属于中档题.六、解答题:(本大题有3个小题,共35分.请书写完整的解答过程)21.(11分)(2017春•黄山期末)已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2,3,4,5}和B={﹣2,﹣1,1,2,3,4},分别从集合A,B中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.【考点】CF:几何概型;CB:古典概型及其概率计算公式.【分析】(Ⅰ)分a=1,2,3,4,5 这五种情况来研究a>0,且≤1的取法共有16种,而所有的取法共有6×6=36 种,从而求得所求事件的概率.(Ⅱ)由条件可得,实验的所有结果构成的区域的面积等于S△OMN=×8×8=32,满足条件的区域的面积为S△POM=×8×=,故所求的事件的概率为P=,运算求得结果.【解答】解:要使函数y=f(x)在区间[1,+∞)上是增函数,则a >0且,即a>0且2b≤a.(Ⅰ)所有(a,b)的取法总数为6×6=36个,满足条件的(a,b)有(1,﹣2),(1,﹣1),(2,﹣2),(2,﹣1),(2,1),(3,﹣2),(3,﹣1),(3,1),(4,﹣2),(4,﹣1),(4,1),(4,2),(5,﹣2),(5,﹣1),(5,1),(5,2)共16个,所以,所求概率.…(6分)(Ⅱ)如图,求得区域的面积为.由,求得所以区域内满足a>0且2b≤a的面积为.所以,所求概率.【点评】本题考查了等可能事件的概率与二次函数的单调区间以及简单的线性规划问题相结合的问题,画出实验的所有结果构成的区域,Ⅰ是古典概型的概率求法,Ⅱ是几何概型的概率求法.22.(12分)(2017春•台江区校级期中)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,﹣π<φ<0).(1)若f(x)的部分图象如图所示,求f(x)的解析式;(2)在(1)的条件下,求最小正实数m,使得函数f(x)的图象向左平移m个单位后所对应的函数是偶函数;(3)若f(x)在[0,]上是单调递增函数,求ω的最大值.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式;H5:正弦函数的单调性.【分析】(1)根据函数f(x)的部分图象,求出A、T、ω和φ的值,即可写出f(x)的解析式;(2)根据函数图象平移法则,写出f(x)左移m个单位后的函数解析式,根据函数y是偶函数,求出m的最小正数;(3)根据f(x)在[0,]上是单调递增函数,得出﹣≤φ≤ω+φ≤,求出ω≤﹣,再根据φ的取值范围求出ω的最大值.【解答】解:(1)根据函数f(x)=Asin(ωx+φ)的部分图象知,\A=3,=﹣=,∴T=π,ω==2;根据五点法画图知,2×+φ=,解得φ=﹣,∴f(x)=3sin(2x﹣);(2)f(x)=3sin(2x﹣),函数f(x)的图象向左平移m个单位后,所对应的函数是y=3sin[2(x+m)﹣]=3sin(2x+2m﹣)的图象,又函数y是偶函数,∴2m﹣=+kπ,k∈Z,解得m=+,k∈Z,∴m的最小正数是;(3)f(x)=Asin(ωx+φ)在[0,]上是单调递增函数,A>0,ω>0,∴﹣≤φ≤ω+φ≤,解得ω≤﹣;又﹣π<φ<0,∴﹣≤φ<0,∴0<﹣≤,∴ω≤+=3,即ω的最大值为3.【点评】本题考查了正弦型函数的图象与性质的应用问题,也考查了数形结合思想,是综合题.23.(12分)(2017春•台江区校级期中)我们把平面直角坐标系中,函数y=f(x),x∈D上的点P(x,y),满足x∈N*,y∈N*的点称为函数y=f(x)的“正格点”.(Ⅰ)若函数f(x)=sinmx,x∈R,m∈(3,4)与函数g(x)=lgx 的图象有正格点交点,求m的值,并写出两个函数图象的所有交点个数.(Ⅱ)对于(Ⅰ)中的m值,函数f(x)=sinmx,时,不等式log a x>sinmx恒成立,求实数a的取值范围.【考点】3O:函数的图象.【分析】(I)根据正弦函数的性质可知正格点交点坐标为(10,1),从而求出m的值,根据图象判断交点个数.(II)令y=log a x的最小值大于f(x)的最大值即可.【解答】解:(Ⅰ)若y=sinmx与函数y=lgx的图象有正格点交点,则此交点必为(10,1),∴sin10m=1,即10m=+2kπ,m=+,k∈Z.∵m∈(3,4),∴.作出y=sinmx与y=lgx的函数图象,如图所示:根据图象可知:两个函数图象的所有交点个数为10个.(Ⅱ)由(Ⅰ)知,x∈(0,],i)当a>1时,不等式log a x<0,而sin>0,故不等式log a x>sinmx 无解.ii)当0<a<1时,由图函数y=log a x在上为减函数,∵关于x的不等式log a x>sinmx在(0,]上恒成立,∴log a>1,解得:.综上,.【点评】本题考查了方程的解与函数图象的关系,函数恒成立问题与函数最值计算,属于中档题.2020年年高一数学第二学期期中模拟试卷及答案(二)一、选择题1、集合A={x|3x+2>0},B={x| <0},则A∩B=()A、(﹣1,+∞)B、(﹣1,﹣)C、(3,+∞)D、(﹣,3)2、已知a,b,c为实数,且a>b,则下列不等式关系正确的是()A、a2>b2B、ac>bcC、a+c>b+cD、ac2>bc23、在△ABC中,a,b,c分别为角A,B,C所对的边,若b= ,a=2,B= ,则c=()A、B、C、2D、4、在数列{a n}中,已知a1=0,a n+2﹣a n=2,则a7的值为()A、9B、15C、6D、85、在下列函数中,最小值为2的是()A、y=2x+2﹣xB、y=sinx+ (0<x<)C、y=x+D、y=log3x+ (1<x<3)6、若点A(4,3),B(2,﹣1)在直线x+2y﹣a=0的两侧,则a的取值范围是()A、(0,10)B、(﹣1,2)C、(0,1)D、(1,10)7、在等比数列{a n}中,3a5﹣a3a7=0,若数列{b n}为等差数列,且b5=a5,则{b n}的前9项的和S9为()A、24B、25C、27D、288、若实数x,y满足约束条件,则z=2x+y的最大值为()A、9B、4C、6D、39、在△ABC中,a,b,c分别为角A,B,C所对的边,若(a+c+b)(b+a﹣c)=3ab,则C=()A、150°B、60°C、120°D、30°10、在等差数列{a n}中,a1=﹣2012,其前n项和为S n,若﹣=2002,则S2017=()A、8068B、2017C、﹣8027D、﹣201311、设x>0,y>0,满足+ =4,则x+y的最小值为()A、4B、C、2D、912、已知数列{a n}满足a1=4,a n+1=a n+2n,设b n= ,若存在正整数T,使得对一切n∈N*,b n≥T恒成立,则T的最大值为()A、1B、2C、4D、3二、填空题13、在△ABC中,若a=18,b=24,A=30°,则此三角形解的个数为________.14、设关于x的不等式x+b>0的解集为{x|x>2},则关于x的不等式>0的解集为________.15、若△ABC的内角A,C,B成等差数列,且△ABC的面积为2 ,则AB边的最小值是________.16、某企业生产甲、乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获得利润分别为4万元、3万元,则该企业每天可获得最大利润为________万元甲乙原料限额A(吨) 2 5 10B(吨) 6 3 18三、解答题17、如图,在△ABC中,已知B=45°,D是BC边上的一点,AD=4,AC=2 ,DC=2(1)求cos∠ADC(2)求AB.18、已知数列{a n}是等差数列,{b n}是各项均为正数的等比数列,满足a1=b1=1,b2﹣a3=2b3,a3﹣2b2=﹣1。
2020年高一数学第二学期期末模拟试卷及答案(二)
2020年高一数学第二学期期末模拟试卷及答案(二)一、选择题:本大题共8个小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“∃x0>0,2≤0”的否定是()A.∀x>0,2x>0 B.∀x≤0,2x>0 C.∀x>0,2x<0 D.∀x≤0,2x<02.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m3.在△ABC中,三个内角A,B,C的对边分别是a.b.c,已知B=30°,c=150,b=50,那么这个三角形是()A.等边三角形B.等腰三角形C.直角三角形D.等腰三角或直角三角形4.如图所示的程序框图,若输出的S=31,则判断框内填入的条件是()A.i>4?B.i>5?C.i≤4?D.i≤5?5.设{a n}(n∈N*)是等差数列,S n是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误的是()A.d<0 B.a7=0C.S9>S5D.S6与S7均为S n的最大值6.如图所示,E是正方形ABCD所在平面外一点,E在面ABCD上的正投影F恰在AC上,FG∥BC,AB=AE=2,∠EAB=60°,有以下四个命题:(1)CD⊥面GEF;(2)AG=1;(3)以AC,AE作为邻边的平行四边形面积是8;(4)∠EAD=60°.其中正确命题的个数为()A.1 B.2 C.3 D.47.下列命题中,正确的命题个数为()①△ABC的三边分别为a,b,c,则该三角形是等边三角形的充要条件为a2+b2+c2=ab+ac+bc;②数列{a n}的前n项和为S n,则S n=An2+Bn是数列{a n}为等差数列的充要条件;③在数列{a n}中,a1=1,S n是其前n项和,满足S n+1=S n+2,则{a n}是等比数列;④已知a1,b1,c1,a2,b2,c2都是不等于零的实数,关于x的不等式a1x2+b1x+c1>0和a2x2+b2x+c2>0的解集分别为P,Q,则==是P=Q的充分必要条件.A.1 B.2 C.3 D.48.如图,设P为正四面体A﹣BCD表面(含棱)上与顶点不重合的一点,由点P到四个顶点的距离组成的集合记为M,如果集合M中有且只有2个元素,那么符合条件的点P有()A.4个B.6个C.10个D.14个二、填空题(共6小题,每题4分,满分24分,将答案填在答题纸上)9.已知数列{a n}的前n项和为S n,a n≠0(n∈N*),a n a n+1=S n,则a3﹣a1=______.10.执行如图所示的程序框图,输出的a值为______.11.已知一个三棱锥的三视图如图所示,主视图和左视图都是腰长为1的等腰直角三角形,那么,这个三棱锥的表面积为______.12.a>0,b>0,a+b=1,则+的最小值为______.13.如图,四面体ABCD的一条棱长为x,其余棱长均为1,记四面体ABCD的体积为F(x),则函数F(x)的单调增区间是______;最大值为______.14.在数列{a n}中,若a n2﹣a n﹣12=p(n≥2,n∈N×,p为常数),则称{a n}为“等方差数列”,下列是对“等方差数列”的判断;①若{a n}是等方差数列,则{a n2}是等差数列;②{(﹣1)n}是等方差数列;③若{a n}是等方差数列,则{a kn}(k∈N*,k为常数)也是等方差数列;④若{a n}既是等方差数列,又是等差数列,则该数列为常数列.其中正确命题序号为______.(将所有正确的命题序号填在横线上)三、解答题(本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤.)15.已知p:>1,q:∃x∈R,ax2+ax﹣1≥0,r:(a﹣m)(a﹣m﹣1)>0.(1)若p∧q为真,求实数a的取值范围;(2)若¬p是¬r的必要不充分条件,求m的取值范围.16.如图△ABC中,已知点D在BC边上,满足•=0.sin∠BAC=,AB=3,BD=.(Ⅰ)求AD的长;(Ⅱ)求cosC.17.如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,且∠ABC=120°,点E是棱PC的中点,平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若PA=PD=AD=2,且平面PAD⊥平面ABCD,求①二面角E﹣AF﹣D的二面角的余弦值;②在线段PC上是否存在一点H,使得直线BH与平面AEF所成角等于60°,若存在,确定H的位置,若不存在,说明理由.18.已知等差数列{a n}的公差d≠0,若a2=5且a1,a3,a6成等比数列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b1=0且对任意的n≥2,均有|b n﹣b n﹣1|=2①写出b3所有可能的取值;②若b k=2116,求k的最小值.参考答案与试题解析一、选择题:本大题共8个小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“∃x0>0,2≤0”的否定是()A.∀x>0,2x>0 B.∀x≤0,2x>0 C.∀x>0,2x<0 D.∀x≤0,2x<0【考点】命题的否定.【分析】利用特称命题的否定是全称命题,写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题“∃x0>0,2≤0”的否定是:∀x>0,2x>0.故选:A.2.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m【考点】直线与平面平行的判定.【分析】根据题意,依次分析选项:A,根据线面垂直的判定定理判断.C:根据线面平行的判定定理判断.D:由线线的位置关系判断.B:由线面垂直的性质定理判断;综合可得答案.【解答】解:A,根据线面垂直的判定定理,要垂直平面内两条相交直线才行,不正确;C:l∥α,m⊂α,则l∥m或两线异面,故不正确.D:平行于同一平面的两直线可能平行,异面,相交,不正确.B:由线面垂直的性质可知:平行线中的一条垂直于这个平面则另一条也垂直这个平面.故正确.故选B3.在△ABC中,三个内角A,B,C的对边分别是a.b.c,已知B=30°,c=150,b=50,那么这个三角形是()A.等边三角形B.等腰三角形C.直角三角形D.等腰三角或直角三角形【考点】三角形的形状判断.【分析】由正弦定理求出sinC=,C=60°或120°.再根据三角形的内角和公式求出A的值,由此即可这个三角形的形状.【解答】解:∵△ABC中,已知B=30°,b=50,c=150,由正弦定理可得,∴sinC=,可得:C=60°或120°.当C=60°,∵B=30°,∴A=90°,△ABC是直角三角形.当C=120°,∵B=30°,∴A=30°,△ABC是等腰三角形.故△ABC是直角三角形或等腰三角形,故选:D.4.如图所示的程序框图,若输出的S=31,则判断框内填入的条件是()A.i>4?B.i>5?C.i≤4?D.i≤5?【考点】程序框图.【分析】根据框图的流程知,算法的功能是计算S=1+2+22+...+2n的值,由输出的S是31,得退出循环体的n值为5,由此得判断框的条件.【解答】解:根据框图的流程得:算法的功能是计算S=1+2+22+ (2)的值,∵输出的S是31,∴S==2n+1﹣1=31,解得n=4;退出循环体的n值为5,∴判断框的条件为n≥5或n>4.故选:A.5.设{a n}(n∈N*)是等差数列,S n是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误的是()A.d<0 B.a7=0C.S9>S5D.S6与S7均为S n的最大值【考点】等差数列的前n项和.【分析】利用结论:n≥2时,a n=s n﹣s n﹣1,易推出a6>0,a7=0,a8<0,然后逐一分析各选项,排除错误答案.【解答】解:由S5<S6得a1+a2+a3+…+a5<a1+a2++a5+a6,即a6>0,又∵S6=S7,∴a1+a2+…+a6=a1+a2+…+a6+a7,∴a7=0,故B正确;同理由S7>S8,得a8<0,∵d=a7﹣a6<0,故A正确;而C选项S9>S5,即a6+a7+a8+a9>0,可得2(a7+a8)>0,由结论a7=0,a8<0,显然C选项是错误的.∵S5<S6,S6=S7>S8,∴S6与S7均为S n的最大值,故D正确;故选C.6.如图所示,E是正方形ABCD所在平面外一点,E在面ABCD上的正投影F恰在AC上,FG∥BC,AB=AE=2,∠EAB=60°,有以下四个命题:(1)CD⊥面GEF;(2)AG=1;(3)以AC,AE作为邻边的平行四边形面积是8;(4)∠EAD=60°.其中正确命题的个数为()A.1 B.2 C.3 D.4【考点】平面与平面垂直的判定.【分析】连结EG,通过证明AB⊥平面EFG得出CD⊥平面EFG,在直角三角形AEG中求出AG,EF,求出三角形ACE的面积,根据AG判断出F的位置,利用全都三角形判断∠EAD.【解答】解:连结EG,(1)∵EF⊥平面ABCD,AB⊂平面ABCD,∴EF⊥AB,∵FG∥BC,BC⊥AB,∴AB⊥FG,又EF⊂平面EFG,FG⊂平面EFG,EF∩FG=F,∴AB⊥平面EFG,∵AB∥CD,∴CD⊥平面EFG.故(1)正确.(2)∵AB⊥平面EFG,∴AB⊥EG,∵∠EAB=60°,AE=2,∴AG=AE=1,故(2)正确.(3))∵AG=1=,∴F为AC的中点.∵AE=2,AC==2,AF==,∴EF==.∴S△ACE===2,∴以AC,AE作为邻边的平行四边形面积为2S△ACE=4,故(3)错误;(4)过F作FM⊥AD于M,则AM=1,由(1)的证明可知AD⊥平面EFM,故而AD⊥EM,∴Rt△EAG≌Rt△EAM,∴∠EAM=∠EAG=60°,故(4)正确.故选:C7.下列命题中,正确的命题个数为()①△ABC的三边分别为a,b,c,则该三角形是等边三角形的充要条件为a2+b2+c2=ab+ac+bc;②数列{a n}的前n项和为S n,则S n=An2+Bn是数列{a n}为等差数列的充要条件;③在数列{a n}中,a1=1,S n是其前n项和,满足S n+1=S n+2,则{a n}是等比数列;④已知a1,b1,c1,a2,b2,c2都是不等于零的实数,关于x的不等式a1x2+b1x+c1>0和a2x2+b2x+c2>0的解集分别为P,Q,则==是P=Q的充分必要条件.A.1 B.2 C.3 D.4【考点】命题的真假判断与应用.【分析】①根据等边三角形的性质结合充分条件和必要条件的定义进行判断,②根据等差数列的定义和性质进行判断,③根据数列项和前n项和的关系,结合等比数列的定义进行判断.④举反例进行判断即可.【解答】解:①若a=b=c,则a2+b2+c2=ab+ac+bc成立,反之若a2+b2+c2=ab+ac+bc,则2(a2+b2+c2)=2(ab+ac+bc),整理得(a﹣b)2+(a﹣c)2+(b﹣c)2=0,当且仅当a=b=c时成立故充分性成立,故①正确;②当n=1时,a1=A+B;当n≥2时,a n=S n﹣S n﹣1=2An+B﹣A,显然当n=1时也满足上式,∴a n﹣a n﹣1=2A,∴{a n}是等差数列.反之,若数列{a n}为等差数列,∴S n=na1+d=n2+(a1﹣)n,令A=,B=a1﹣,则S n=An2+Bn,A,B∈R.综上,“S n=An2+Bn,是“数列{a n}为等差数列”的充要条件.故②正确,③在数列{a n}中,a1=1,S n是其前n项和,满足S n+1=S n+2,则当n≥2时,S n=S n﹣1+2,两式作差得S n+1﹣S n=S n+2﹣S n﹣1﹣2,即a n+1=a n,即=,(n≥2),当n=1时,S2=S1+2,即a1+a2=a1+2,即a2=﹣a1+2=2﹣=,则=≠,即{a n}不是等比数列;故③错误,④举反例,不等式x2+x+1>0与x2+x+2>0的解集都是R,但是≠,则==是P=Q的充分必要条件错误,故④错误.故正确的是①②,故选:B.8.如图,设P为正四面体A﹣BCD表面(含棱)上与顶点不重合的一点,由点P到四个顶点的距离组成的集合记为M,如果集合M中有且只有2个元素,那么符合条件的点P有()A.4个B.6个C.10个D.14个【考点】计数原理的应用.【分析】根据分类计数加法原理可得,由题意符合条件的点只有两类,一在棱的中点,二在面得中心,问题得以解决.【解答】解:符合条件的点P有两类:(1)6条棱的中点;(2)4个面的中心.共10个点.故集合M中有且只有2个元素,那么符合条件的点P有4+6=10.故选:C二、填空题(共6小题,每题4分,满分24分,将答案填在答题纸上)9.已知数列{a n}的前n项和为S n,a n≠0(n∈N*),a n a n+1=S n,则a3﹣a1=1.【考点】数列递推式.【分析】由题意可得a n+1=,从而可得a2==1,a3===1+a1;从而解得.【解答】解:∵a n a n+1=S n,∴a n+1=;∴a2==1;a3===1+a1;∴a3﹣a1=1+a1﹣a1=1,故答案为:1.10.执行如图所示的程序框图,输出的a值为﹣.【考点】程序框图.【分析】根据框图的流程依次计算程序运行的结果,发现a值的周期为4,再根据条件确定跳出循环的i值,从而可得输出的a值.【解答】解:由程序框图知:第一次循环a==﹣2,i=2;第二次循环a==﹣,i=3;第三次循环a==,i=4;第四次循环a==3,i=5;第五次循环a==﹣2,i=6;…∴a值的周期为4,又跳出循环的i值为11,∴输出的a=﹣.故答案为:﹣.11.已知一个三棱锥的三视图如图所示,主视图和左视图都是腰长为1的等腰直角三角形,那么,这个三棱锥的表面积为.【考点】由三视图求面积、体积.【分析】如图所示,该三棱锥为P﹣ABC,满足PD⊥底面BAC,D 为点P在底面ABC的射影,四边形ABCD是边长为1的正方形,PD=1,即可得出.【解答】解:如图所示,该三棱锥为P﹣ABC,满足PD⊥底面BAC,D为点P在底面ABC的射影,四边形ABCD是边长为1的正方形,PD=1,这个三棱锥的表面积S=+++=.故答案为:.12.a>0,b>0,a+b=1,则+的最小值为5+2.【考点】基本不等式.【分析】根据基本不等式即可求出最小值.【解答】解:∵a>0,b>0,a+b=1,∴+=(a+b)(+)=2+3++≥5+2=5+2,当且仅当a=,b=时取等号,∴则+的最小值为5+2,故答案为:5+2,13.如图,四面体ABCD的一条棱长为x,其余棱长均为1,记四面体ABCD的体积为F(x),则函数F(x)的单调增区间是,;最大值为.【考点】棱柱、棱锥、棱台的体积.【分析】如图所示,设BC=x,AB=AC=AD=CD=BD=1.取AD的中点O,连接OB,OC,则OB⊥AD,OC⊥AD,OB=OC=.又OB∩OC=O,则AD⊥平面OBC.取BC的中点E,连接OE,则OE ⊥BC,可得OE,可得F(x)==(0<x<).利用导数研究其单调性即可得出.【解答】解:如图所示,设BC=x,AB=AC=AD=CD=BD=1.取AD的中点O,连接OB,OC,则OB⊥AD,OC⊥AD,OB=OC=.又OB∩OC=O,则AD⊥平面OBC,取BC的中点E,连接OE,则OE⊥BC,OE==.∴S△OBC==.∴F(x)==×1=(0<x<).F′(x)=,令F′(x)≥0,解得,此时函数F(x)单调递增;令F′(x)<0,解得,此时函数F(x)单调递减法.因此当x=时,F(x)取得最大值,==.故答案分别为:,.14.在数列{a n}中,若a n2﹣a n﹣12=p(n≥2,n∈N×,p为常数),则称{a n}为“等方差数列”,下列是对“等方差数列”的判断;①若{a n}是等方差数列,则{a n2}是等差数列;②{(﹣1)n}是等方差数列;③若{a n}是等方差数列,则{a kn}(k∈N*,k为常数)也是等方差数列;④若{a n}既是等方差数列,又是等差数列,则该数列为常数列.其中正确命题序号为①②③④.(将所有正确的命题序号填在横线上)【考点】等差数列的性质.【分析】根据等差数列的性质及题中的等方差数列的新定义,即可判断出正确的答案.【解答】解:①因为{a n}是等方差数列,所以a n2﹣a n﹣12=p(n≥2,n ∈N×,p为常数)成立,得到{a n2}为首项是a12,公差为p的等差数列;②因为a n2﹣a n﹣12=(﹣1)2n﹣(﹣1)2n﹣1=1﹣(﹣1)=2,所以数列{(﹣1)n}是等方差数列;③数列{a n}中的项列举出来是:a1,a2,…,a k,a k+1,a k+2,…,a2k,…,a3k,…数列{a kn}中的项列举出来是:a k,a2k,a3k,…因为a k+12﹣a k2=a k+22﹣a k+12=a k+32﹣a k+22=…=a2k2﹣a k2=p所以(a k+12﹣a k2)+(a k+22﹣a k+12)+(a k+32﹣a k+22)+…+(a2k2﹣a2k﹣12)=a2k2﹣a k2=kp,类似地有a kn2﹣a kn﹣12=a kn﹣12﹣a kn﹣22=…=a kn+32﹣a kn+22=a kn+22﹣a kn+12=a kn+12﹣a kn2=p同上连加可得a kn+12﹣a kn2=kp,所以,数列{a kn}是等方差数列;④{a n}既是等方差数列,又是等差数列,所以a n2﹣a n﹣12=p,且a n﹣a n﹣1=d(d≠0),所以a n+a n﹣1=,联立解得a n=+,所以{a n}为常数列,当d=0时,显然{a n}为常数列,所以该数列为常数列.综上,正确答案的序号为:①②③④故答案为:①②③④三、解答题(本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤.)15.已知p:>1,q:∃x∈R,ax2+ax﹣1≥0,r:(a﹣m)(a﹣m﹣1)>0.(1)若p∧q为真,求实数a的取值范围;(2)若¬p是¬r的必要不充分条件,求m的取值范围.【考点】必要条件、充分条件与充要条件的判断;复合命题的真假.【分析】分别求出p,q,r为真时的a的范围,(1)p∧q为真,则p,q均为真,得到关于a的不等式组,解出即可;(2)问题转化为r是p的必要不充分条件,得到关于m的不等式,解出即可.【解答】解:(1)p为真时:由>1解得﹣2<a<1,q为真时,当a>0,一定存在ax2+ax﹣1≥0,当a<0,△=a2+4a≥0,解得a≤﹣4,故q为真时,实数a的取值范围为a>0或a≤﹣4,∵p∧q为真,则p,q均为真,∴a的取值范围为(0,1);(2)关于r:(a﹣m)(a﹣m﹣1)>0,解得:a>m+1或a<m,若¬p是¬r的必要不充分条件,即r是p的必要不充分条件,即p⇒r,∴m+1≤﹣2或m>1,即m≤﹣3或m>1,故m的取值范围为(﹣∞,﹣3]∪(1,+∞).16.如图△ABC中,已知点D在BC边上,满足•=0.sin∠BAC=,AB=3,BD=.(Ⅰ)求AD的长;(Ⅱ)求cosC.【考点】余弦定理的应用;正弦定理.【分析】(I)通过向量的数量积,判断垂直关系,求出cos∠BAD的值,在△ABD中,由余弦定理求AD的长;(Ⅱ)在△ABD中,由正弦定理,求出sin∠ADB,通过三角形是直角三角形,即可求cosC.【解答】解:(Ⅰ)∵•=0,∴AD⊥AC,∴,∵sin∠BAC=,∴….在△ABD中,由余弦定理可知BD2=AB2+AD2﹣2AB•ADcos∠BAD,即AD2﹣8AD+15=0,解之得AD=5或AD=3 ….由于AB>AD,∴AD=3…..(Ⅱ)在△ABD中,由正弦定理可知,又由,可知,∴=,∵∠ADB=∠DAC+∠C,∠DAC=,∴.…17.如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,且∠ABC=120°,点E是棱PC的中点,平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若PA=PD=AD=2,且平面PAD⊥平面ABCD,求①二面角E﹣AF﹣D的二面角的余弦值;②在线段PC上是否存在一点H,使得直线BH与平面AEF所成角等于60°,若存在,确定H的位置,若不存在,说明理由.【考点】二面角的平面角及求法;直线与平面所成的角.【分析】(1)根据CD∥平面ABEF即可得出CD∥EF,结合CD∥AB得出结论;(2)①以AD的中点O为原点建立空间坐标系,分别求出平面AEF 和平面ADF的法向量,计算法向量的夹角即可得出二面角的大小;②假设存在H符合条件,设=λ,求出,令cos<,>=解出λ即可得出结论.【解答】解:(1)证明:∵CD∥AB,AB⊂平面ABEF,CD⊄平面ABEF,∴CD∥平面ABEF,又CD⊂平面PCD,平面PCD∩平面ABEF=EF,∴CD∥EF.又CD∥AB,∴AB∥EF.(2)取AD的中点O,连结PO,OB,BD.∵ABCD是菱形,且∠ABC=120°,PA=PD=AD.∴△ABD,△PAD是等边三角形,∴PO⊥AD,OB⊥AD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,∴PO⊥平面ABCD.以O为原点,以OB,OD,OP为坐标轴建立空间直角坐标系O﹣xyz,则A=(0,﹣1,0),D(0,1,0),P(0,0,),B(,0,0),C(,2,0),∴E(,1,),F(0,,).①=(0,,),=(﹣,﹣,0),设平面AEF的法向量为=(x,y,z),则,∴,令x=1得=(1,﹣,3),∵OB⊥平面PAD,∴=(,0,0)为平面PAD的一个法向量,∴cos<,>===.∴二面角E﹣AF﹣D的二面角的余弦值为.②假设PC上存在点H使得直线BH与平面AEF所成角等于60°,则与所成夹角为30°,设=λ=(﹣λ,﹣2λ,)(0≤λ≤1),则==(﹣,2﹣2λ,).∴cos<>===,化简得19λ2﹣12λ﹣6=0,解得λ=或λ=(舍)∴线段PC上存在一点H,使得直线BH与平面AEF所成角等于60°,18.已知等差数列{a n}的公差d≠0,若a2=5且a1,a3,a6成等比数列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b1=0且对任意的n≥2,均有|b n﹣b n﹣1|=2①写出b3所有可能的取值;②若b k=2116,求k的最小值.【考点】数列递推式.【分析】(1)由题意列式求得等差数列的公差,则等差数列的通项公式可求;(2)①把数列{a n}的通项公式代入|b n﹣b n﹣1|=2(n≥2),去绝对值,即可求得b3所有可能的取值;②在①的基础上依次求解,即可得到满足b k=2116时k的最小值.【解答】解:(1)由题意,,即(5+d)2=(5﹣d)(5+4d),整理得5d2﹣5d=0,∵d≠0,∴d=1,则a1=a2﹣d=5﹣1=4,∴a n=4+1×(n﹣1)=n+3;(2)①由|b n﹣b n﹣1|=2(n≥2),得,∴,则b2=±32.,当b2=32时,b3=﹣32或b3=96;当b2=﹣32时,b3=﹣96或b3=32.∴b3所有可能的取值为﹣96,﹣32,32,96;②=±128,当b3=96时,b4=224;,当b4=224时,;b5=580;,当b5=580时,b6=1092;,当b6=1092时,b7=2116.∴b k=2116,k的最小值为7.。
2020年高一数学第二学期期末模拟试卷及答案(四)
2020年高一数学第二学期期末模拟试卷及答案(四)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.若=(2,4),=(1,3),则等于()A.(1,1)B.(﹣1,﹣1) C.(3,7)D.(﹣3,﹣7)2.已知α∈(0,2π),sinα>0,且cosα<0,则角α的取值范围是()A.B.C.D.3.如果函数y=tan(x+φ)的图象经过点,那么φ可以是()A.B.C. D.4.设m∈R,向量=(1,﹣2),=(m,m﹣2),若⊥,则m 等于()A.B.C.﹣4 D.45.函数y=(sinx+cosx)2(x∈R)的最小正周期是()A. B. C.πD.2π6.函数y=cosx图象的一条对称轴的方程是()A.x=0 B.C.D.7.在△ABC中,D是BC的中点,则等于()A.B.C.D.8.已知函数f(x)=sinx+cosx,那么的值是()A.B.C.D.9.已知、均为单位向量,它们的夹角为60°,那么||等于()A.1 B. C. D.210.为得到函数的图象,只需将函数y=sinx的图象()A.向左平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.设α是第二象限角,sinα=,则cosα=______.12.若向量=(1,2)与向量=(λ,﹣1)共线,则实数λ=______.13.2cos215°﹣1=______.14.已知向量与的夹角为120°,且||=||=4,那么•的值为______.15.若角α的终边经过点P(1,﹣2),则tan2α的值为______.16.如图,某地一天中6时至14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+B(其中),那么这一天6时至14时温差的最大值是______°C;与图中曲线对应的函数解析式是______.三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.已知,tanα=﹣2.(1)求的值;(2)求sin2α+cos2α的值.18.设,向量=(cosα,sinα),.(1)证明:向量与垂直;(2)当||=||时,求角α.19.已知函数f(x)=2sin2(+x)+(sin2x﹣cos2x),x∈[,].(1)求的值;(2)求f(x)的单调区间;(3)若不等式|f(x)﹣m|<2恒成立,求实数m的取值范围.参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.若=(2,4),=(1,3),则等于()A.(1,1)B.(﹣1,﹣1) C.(3,7)D.(﹣3,﹣7)【考点】平面向量的坐标运算.【分析】直接利用向量减法的三角形法则代入坐标得答案.【解答】解:∵=(2,4),=(1,3),∴=.故选:B.2.已知α∈(0,2π),sinα>0,且cosα<0,则角α的取值范围是()A.B.C.D.【考点】三角函数值的符号.【分析】由sinα>0,且cosα<0 可知,角α是第二象限角,又α∈(0,2π),从而得到角α的取值范围.【解答】解:由sinα>0,且cosα<0 可知,角α是第二象限角,又α∈(0,2π),故α∈,故选B.3.如果函数y=tan(x+φ)的图象经过点,那么φ可以是()A.B.C. D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由已知中函数y=tan(x+φ)的图象经过点,根据正切函数的图象和性质,易构造出一个关于φ的三角方程,解方程即可求出满足条件的φ值.【解答】解:∵y=tan(x+φ)的图象经过点,tan(+φ)=0即+φ=kπ,k∈Z,则φ=kπ﹣,解:∵y=tan(x+φ)的图象经过点,tan(+φ)=0即+φ=kπ,k∈Z,则φ=kπ﹣,k∈Z,当k=0时,φ=﹣,故选A4.设m∈R,向量=(1,﹣2),=(m,m﹣2),若⊥,则m 等于()A.B.C.﹣4 D.4【考点】数量积判断两个平面向量的垂直关系.【分析】根据⊥,然后利用向量数量积为0得到关于m的方程,直接求解即可.【解答】解:=(1,﹣2),=(m,m﹣2),∵⊥,∴,m=4.故选D.5.函数y=(sinx+cosx)2(x∈R)的最小正周期是()A. B. C.πD.2π【考点】三角函数的周期性及其求法;二倍角的正弦.【分析】把函数关系式利用完全平方公式化简,再利用同角三角函数间的基本关系及二倍角的正弦函数公式化简后,化为一个角的正弦函数,找出ω的值,代入周期公式即可求出原函数的周期.【解答】解:函数y=(sinx+cosx)2=sin2x+2sinxcosx+cos2x=1+sin2x,∵ω=2,∴T==π.故选C6.函数y=cosx图象的一条对称轴的方程是()A.x=0 B.C.D.【考点】余弦函数的对称性.【分析】根据余弦函数的对称轴方程x=kπ确定选项.【解答】解:y=cosx的对称轴方程为x=kπ,当k=0时,x=0.故选A.7.在△ABC中,D是BC的中点,则等于()A.B.C.D.【考点】向量的三角形法则.【分析】作出三角形的图象,利用平行四边形法则作出,由图象即可选出正确答案【解答】解:如图,作出平行四边形ABEC,D是对角线的交点,故D是BC的中点,且是AE的中点由题意如图==故选D8.已知函数f(x)=sinx+cosx,那么的值是()A.B.C.D.【考点】三角函数的恒等变换及化简求值.【分析】化简f(x)=sinx+cosx=sin(x+),直接代入求值.【解答】解:f(x)=sinx+cosx=sin(x+)∴f()==故选C.9.已知、均为单位向量,它们的夹角为60°,那么||等于()A.1 B. C. D.2【考点】平面向量数量积的坐标表示、模、夹角.【分析】由于本题中未给出向量的坐标,故求向量的模时,主要是根据向量数量的数量积计算公式,求出向量模的平方,即向量的平方,再开方求解.【解答】解:∵、均为单位向量,它们的夹角为60°∴||=||=1,•=∴===1∴=1故选A.10.为得到函数的图象,只需将函数y=sinx的图象()A.向左平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【考点】函数y=Asin(ωx+φ)的图象变换.【分析】将y=sinx化为y=cos(x﹣),再根据三角函数的图象变换知识确定平移的方向和长度即可.【解答】解:y=sinx=cos(x﹣),,故只需将函数y=sinx的图象向左平移个长度单位.故选C.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.设α是第二象限角,sinα=,则cosα=﹣.【考点】同角三角函数间的基本关系.【分析】利用sin2α+cos2α=1,结合α是第二象限角,即可求得cosα.【解答】解:∵sinα=,α是第二象限角,∴cosα=﹣=﹣=﹣.故答案为:﹣.12.若向量=(1,2)与向量=(λ,﹣1)共线,则实数λ=.【考点】平面向量共线(平行)的坐标表示.【分析】利用向量共线的充要条件列出方程,解方程求出λ的值.【解答】解:∵∴﹣1=2λ∴故答案为:.13.2cos215°﹣1=.【考点】二倍角的余弦.【分析】直接利用二倍角的余弦公式得出2cos215°﹣1=cos30°,然后运用特殊角的三角函数值求出结果.【解答】解:2cos215°﹣1=cos30°=故答案为:.14.已知向量与的夹角为120°,且||=||=4,那么•的值为﹣8.【考点】平面向量数量积的运算.【分析】利用2个向量的数量积公式,2个向量相乘的结果,等于向量的模相乘,再乘以这两个向量夹角的余弦值.【解答】解:.故答案为﹣8.15.若角α的终边经过点P(1,﹣2),则tan2α的值为.【考点】二倍角的正切;任意角的三角函数的定义.【分析】根据角α的终边经过点P(1,﹣2),可先求出tanα的值,进而由二倍角公式可得答案.【解答】解:∵角α的终边经过点P(1,﹣2),∴故答案为:.16.如图,某地一天中6时至14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+B(其中),那么这一天6时至14时温差的最大值是20°C;与图中曲线对应的函数解析式是,x∈[6,14] .【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的最值.【分析】(1)由图象的最高点与最低点易于求出这段时间的最大温差;(2)A、b可由图象直接得出,ω由周期求得,然后通过特殊点求φ,则问题解决.【解答】解:(1)由图示,这段时间的最大温差是30﹣10=20℃,(2)图中从6时到14时的图象是函数y=Asin(ωx+∅)+b的半个周期,∴•=14﹣6,解得ω=,由图示,A=(30﹣10)=10,B=(10+30)=20,这时,y=10sin(φ)+20,将x=6,y=10代入上式,可取φ=,综上,所求的解析式为,x∈[6,14].故答案为:20;,x∈[6,14]三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.已知,tanα=﹣2.(1)求的值;(2)求sin2α+cos2α的值.【考点】两角和与差的正切函数;二倍角的余弦.【分析】(1)直接利用两角和的正切公式和特殊角的三角函数值,求出tan(+α)的值.(2)先求出sinα,cosα的值,然后利用二倍角的公式,解出sin2α+cos2α的值即可.【解答】解:(1).…(2)由,tanα=﹣2,得,,…所以.…18.设,向量=(cosα,sinα),.(1)证明:向量与垂直;(2)当||=||时,求角α.【考点】数量积表示两个向量的夹角;数量积判断两个平面向量的垂直关系.【分析】(1)计算||,,通过计算,证明向量与垂直;(2)将||=||两边平方,平方可得3(||2﹣||2)+8,从而得到以,然后求角α.【解答】解:(1)证明:由向量=(cosα,sinα),,得||=1,=1,则,所以向量与垂直.…(2)将||=||两边平方,化简得3(||2﹣||2)+8,由||==1,得,即.所以,注意到,得.19.已知函数f(x)=2sin2(+x)+(sin2x﹣cos2x),x∈[,].(1)求的值;(2)求f(x)的单调区间;(3)若不等式|f(x)﹣m|<2恒成立,求实数m的取值范围.【考点】三角函数中的恒等变换应用;三角函数的最值.【分析】(1)根据所给的解析式,代入所给的自变量的值,计算出结果,本题也可以先化简再代入数值进行运算.(2)把所给的三角函数的解析式进行恒等变形,整理出y=Asin(ωx+φ)的形式,根据正弦曲线的单调性写出ωx+φ所在的区间,解出不等式即可.(3)根据前面整理出来的结果,得到f(x)的值域,不等式|f(x)﹣m|<2恒成立,解出关于绝对值的不等式,求出结果.【解答】解:(1).(2)=.又,∴,当时,f(x)单调递增;当时,f(x)单调递减,所以f(x)的单调递增区间是;f(x)的单调递减区间是.(3)由(2)得,∴f(x)的值域是[2,3].|f(x)﹣m|<2⇔f(x)﹣2<m<f(x)+2,.∴m>f(x)max﹣2且m<f(x)min+2,∴1<m<4,即m的取值范围是(1,4).。
2020-2020学年高一下学期数学期末考试试卷附答案
2020-2020学年高一下学期数学期末考试试卷一、选择题(1)0sin 75的值等于( )(A )624+ (B )624- (C )324+ (D )324- (2)201sin 440-化简为( )(A )0cos 220 (B )0cos80 (C )0sin 220 (D )0sin80(3)化简sin()sin cos()cos x y x x y x +++等于( )(A )cos(2)x y + (B ) cos y (C )sin(2)x y + (D )sin y(4)下列函数中是周期为π的奇函数的为( )(A )x y 2sin 21-= (B ))32sin(3π+=x y (C )2tan xy =(D ))2sin(2π+=x y(5)为了得到函数13sin 25y x π⎛⎫=- ⎪⎝⎭,x R ∈的图象,只需把函数13sin 25y x π⎛⎫=+ ⎪⎝⎭的图象上所有点( )(A )向左平行移动25π个单位长度 (B )向右平行移动25π个单位长度 (C )向左平行移动45π个单位长度 (D )向右平行移动45π个单位长度(6)已知tan 2α=,tan 3β=,且α、β都是锐角,则α+β等于( ) (A )4π (B )43π (C )4π或43π (D )43π或45π (7)已知a =(2,3),b =(x ,-6),若a ∥b ,则x 等于( ) (A )9 (B )4 (C )-4 (D )-9(8)已知a 、b 是两个单位向量,下列四个命题中正确的是( ) (A )a 与b 相等 (B )如果a 与b 平行,那么a 与b 相等 (C )a ·b =1 (D )a 2=b 2(9)在△ABC 中,已知AB u u u r=(3,0),AC u u u r =(3,4),则cos B 的值为( )(A )0 (B )53(C )54 (D )1(10)已知|a |=3,|b |=4(且a 与b 不共线),若(a k +b )⊥(a k -b ),则k 的值为( )(A )-43 (B )43 (C )±43 (D )±34(11)已知|a |=3,b =(1,2),且a ∥b ,则a 的坐标为( )(A )(355,655)(B )(-355,-655)(C )(355,-655) (D )(355,655)或(-355,-655) (12)已知向量a =(1,-2),b =13,x ⎛⎫⎪⎝⎭,若a ·b ≥0,则实数x的取值范围为( )(A )2(0,)3 (B )2(0,]3 (C )(,0)-∞∪2[,)3+∞(D )(,0]-∞∪2[,)3+∞ 二、填空题(13)在三角形ABC 中,已知a 、b 、c 是角A 、B 、C 的对边,且a =6,b =32,A =4π,则角B 的大小为 .(14)已知3cos 45x π⎛⎫+= ⎪⎝⎭,则sin 2x 的值为 .(15)若将向量)1,2(=a 绕原点按逆时针方向旋转4π,得到向量b ,则向量b 的坐标是(16)已知|a |=2,|b |=1,a 与b 的夹角为3π,则向量2a -3b 与a +5b 的夹角大小为 .三、解答题) (17)已知12cos 13θ=-,3,2πθπ⎛⎫∈⎪⎝⎭,求tan 4πθ⎛⎫- ⎪⎝⎭的值.(18)已知函数()sin y A x ωϕ=+,x R ∈(其中A >0,ω>0,||ϕ<2π)的部分图象如图所示,求这个函数的解析式. (19)如图,飞机的航线和山顶在同一个铅直平面内,已知飞机的高度为海拔25000米,速度为3000米/分钟,飞行员先在点A 看到山顶C 的俯角为300,经过8分钟后到达点B ,此时看到山顶C 的俯角为600,则山顶的海拔高度为多少米. (参考数据:2=1.414,3=2 226xyO1.732,6=2.449).(20)已知|a |=3,|b |=2,且3a +5b 与4a -3b 垂直求a 与b 的夹角.(21)已知向量a =(3cos2x ,3sin 2x ),b =(cos 2x ,-sin 2x),且[0,]2x π∈. (Ⅰ)用cos x 表示a ·b 及|a +b |; (Ⅱ)求函数f (x )=a ·b +2|a +b |的最小值.(22)已知向量a 、b 、c 两两所成的角相等,并且|a |=1,|b |=2,|c |=3.(Ⅰ)求向量a +b +c 的长度; (Ⅱ)求a +b +c 与a 的夹角.参考答案一、 选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A B B D D B C D A D D C 二、 填空题 (13)6π(14)725 (15))223,22( (16)2π三、 解答题 (17)解:∵12cos 13θ=-,且3,2πθπ⎛⎫∈⎪⎝⎭,∴ 5sin 13θ=-, 则 5tan 12θ=, ∴ tan 4πθ⎛⎫- ⎪⎝⎭=tan 11tan θθ-+ =51125112-+=-717.(18)解:(Ⅰ)根据题意,可知A =22, 且4T=6-2=4,所以T =16,于是 ω=28T ππ= 将点(2,22)代入22sin 8y x πϕ⎛⎫=+ ⎪⎝⎭,得 2222sin 28πϕ⎛⎫=⨯+ ⎪⎝⎭, 即sin 4πϕ⎛⎫+ ⎪⎝⎭=1, 又||ϕ<2π,所以ϕ=4π.从而所求的函数解析式为:22sin 84y x ππ⎛⎫=+ ⎪⎝⎭,x R ∈(19)解:如图,过C 作AB 的垂线,垂足为D , 依题意,AB =3000·8=24000米,由∠BAC =300,∠DBC =600,则∠BCA =300,∴ BC =24000米,在直角三角形CBD 中,CD =BC ·0sin 60=24000·0.866=20784米,故山顶的海拔高度为25000-20784=4216米. (20)解:∵ 3a +5b 与4a -3b 垂直,∴ (3a +5b )·(4a -3b )=0, 即 12|a |2+11a ·b -15|b |2=0, 由于|a |=3,|b |=2,∴ a ·b =-4811, 则 cos ,||||a b a b a b ⋅<>=⋅=-811, 故a 与b 的夹角为8arccos 11⎛⎫- ⎪⎝⎭. (21)解:(Ⅰ)a ·b =3cos2x cos 2x -3sin 2x sin 2x=cos2x =2cos 2x -1,|a +b |=2233cos cos sin sin 2222x x x x ⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭=22cos 2x +=2|cos x |, ∵ [0,]2x π∈,∴ cos x ≥0,∴ |a +b |=2cos x .(Ⅱ)f (x )=a ·b +2|a +b |=2cos 2x -1+4cos x =2(cos x +1)2-3,∵ [0,]2x π∈,∴ 0≤cos x ≤1, ∴ 当cos x =0时,f (x )取得最小值-1.(22)解:(Ⅰ)设向量a 、b 、c 两两所成的角均为θ,则θ=0或θ=23π, 又|a |=1,|b |=2,|c |=3. 则当θ=0时,a ·b =|a |·|b |cos θ=2, b ·c =|b |·|c |cos θ=6, c ·a =|c |·|a |cos θ=3,此时 |a +b +c |2=a 2+b 2+c 2+2a ·b +2b ·c +2c ·a =14+22=36,∴ |a +b +c |=6; 当θ=23π时, a ·b =|a |·|b |cos θ=-1, b ·c =|b |·|c |cos θ=-3, c ·a =|c |·|a |cos θ=-32,此时 |a +b +c |2=a 2+b 2+c 2+2a ·b +2b ·c +2c ·a =14-11=3,∴ |a +b +c |=3.(Ⅱ)当θ=0,即|a +b +c |=6时,a +b +c 与a 的夹角显然为0; 当θ=23π,即|a +b +c |=3时,∵ (a +b +c )·a =-32,且|a +b +c |·|a |=3, cos <a +b +c ,a >=-32,∴ a +b +c 与a 的夹角为56π.。
2020-2021学年度高一下学期期末数学试题(有答案)
2020-2021学年度高一下学期期末数学试题一、单选题1.已知,, O 是坐标原点,则()A. B. C. D.【答案】D【解析】根据向量线性运算可得,由坐标可得结果.【详解】故选:【点睛】本题考查平面向量的线性运算,属于基础题.2.()A. B. C. D.【答案】C【解析】由两角和差正弦公式将所求式子化为,由特殊角三角函数值得到结果.【详解】故选:【点睛】本题考查利用两角和差正弦公式化简求值的问题,属于基础题.3.设,,则下列不等式成立的是()A. B. C. D.【答案】D【解析】试题分析:本题是选择题,可采用逐一检验,利用特殊值法进行检验,很快问题得以解决.解:∵a>b,c>d;∴设a=1,b=-1,c=-2,d=-5,选项A,1-(-2)>-1-(-5),不成立;选项B,1 (-2)>(- 1)(-5),不成立;取选项C,,不成立,故选D【考点】不等式的性质点评:本题主要考查了基本不等式,基本不等式在考纲中是C级要求,本题属于基础题4.若两个球的半径之比为,则这两球的体积之比为()A. B. C. D.【答案】C【解析】根据球的体积公式可知两球体积比为,进而得到结果.【详解】由球的体积公式知:两球的体积之比故选:【点睛】本题考查球的体积公式的应用,属于基础题.5.在等差数列中, ,则()A.5 B.8 C.10 D.14【答案】B【解析】试题分析:设等差数列的公差为,由题设知,,所以,所以,故选B.【考点】等差数列通项公式.6.在锐角中,内角,,的对边分别为,,,若,则等于()A. B. C. D.【答案】D【解析】由正弦定理将边化角可求得,根据三角形为锐角三角形可求得 .【详解】由正弦定理得:,即故选:【点睛】本题考查正弦定理边化角的应用问题,属于基础题.7.已知不等式的解集为,则不等式的解集为()A. B.C. D.【答案】A【解析】根据一元二次不等式的解集与一元二次方程根的关系,结合韦达定理可构造方程求得;利用一元二次不等式的解法可求得结果.【详解】的解集为和是方程的两根,且,解得:解得:,即不等式的解集为故选:【点睛】本题考查一元二次不等式的解法、一元二次不等式的解集与一元二次方程根的关系等知识的应用;关键是能够通过一元二次不等式的解集确定一元二次方程的根,进而利用韦达定理构造方程求得变量.8.如图是某几何体的三视图,则该几何体的外接球的表面积是()A. B. C. D.【答案】B【解析】由三视图还原几何体,可知该几何体是由边长为的正方体切割得到的四棱锥,可知所求外接球即为正方体的外接球,通过求解正方体外接球半径,代入球的表面积公式可得到结果.【详解】由三视图可知,几何体为如下图所示的四棱锥:由上图可知:四棱锥可由边长为的正方体切割得到该正方体的外接球即为四棱锥的外接球四棱锥的外接球半径外接球的表面积故选:【点睛】本题考查棱锥外接球表面积的求解问题,关键是能够通过三视图还原几何体,并将几何体放入正方体中,通过求解正方体的外接球表面积得到结果;需明确正方体外接球表面积为其体对角线长的一半.9.已知等比数列的公比为,若,,则()A.-7 B.-5 C.7 D.5【答案】A【解析】由等比数列通项公式可构造方程求得,再利用通项公式求得结果. 【详解】故选:【点睛】本题考查等比数列通项公式基本量的计算问题,考查基础公式的应用,属于基础题. 10.在中,内角,,的对边分别为,,,若,,,则的最小角为()A. B. C. D.【答案】A【解析】由三角形大边对大角可知所求角为角,利用余弦定理可求得,进而得到结果.【详解】的最小角为角,则故选:【点睛】本题考查利用余弦定理解三角形的问题,关键是明确三角形中大边对大角的特点,进而根据余弦定理求得所求角的余弦值.11.若x+2y=4,则2 x +4 y 的最小值是()A.4 B.8 C.2 D.4【答案】B【解析】试题分析:由,当且仅当时,即等号成立,故选B.【考点】基本不等式.12.已知数列且是首项为2,公差为1的等差数列,若数列是递增数列,且满足,则实数 a 的取值范围是()A. B.C. D.【答案】D【解析】根据等差数列和等比数列的定义可确定是以为首项,为公比的等比数列,根据等比数列通项公式,进而求得;由数列的单调性可知;分别在和两种情况下讨论可得的取值范围. 【详解】由题意得:,,是以为首项,为公比的等比数列为递增数列,即①当时,,,即只需即可满足②当时,,,即只需即可满足综上所述:实数的取值范围为故选:【点睛】本题考查根据数列的单调性求解参数范围的问题,涉及到等差和等比数列定义的应用、等比数列通项公式的求解、对数运算法则的应用等知识;解题关键是能够根据单调性得到关于变量和的关系式,进而通过分离变量的方式将问题转化为变量与关于的式子的最值的大小关系问题.二、填空题13.已知向量,,若,则实数___________.【答案】【解析】由垂直关系可得数量积等于零,根据数量积坐标运算构造方程求得结果.【详解】,解得:故答案为:【点睛】本题考查根据向量垂直关系求解参数值的问题,关键是明确两向量垂直,则向量数量积为零.14.若,则 __________.【答案】【解析】【详解】15.若数列满足,且,则 ___________.【答案】【解析】对已知等式左右取倒数可整理得到,进而得到为等差数列;利用等差数列通项公式可求得,进而得到的通项公式,从而求得结果.【详解】,即数列是以为首项,为公差的等差数列故答案为:【点睛】本题考查利用递推公式求解数列通项公式的问题,关键是明确对于形式的递推关系式,采用倒数法来进行推导.16.如图所示, E , F 分别是边长为1的正方形的边 BC , CD 的中点,将其沿 AE , AF , EF 折起使得 B , D , C 三点重合.则所围成的三棱锥的体积为___________.【答案】【解析】根据折叠后不变的垂直关系,结合线面垂直判定定理可得到为三棱锥的高,由此可根据三棱锥体积公式求得结果.【详解】设点重合于点,如下图所示:,,又平面,平面,即为三棱锥的高故答案为:【点睛】本题考查立体几何折叠问题中的三棱锥体积的求解问题,处理折叠问题的关键是能够明确折叠后的不变量,即不变的垂直关系和长度关系.三、解答题17.已知等差数列的前 n 项和为,且, .(1)求;(2)求 .【答案】(1);(2)【解析】(1)由可求得公差,利用等差数列通项公式求得结果;(2)利用等差数列前项和公式可求得结果.【详解】(1)设等差数列公差为,则,解得:(2)由(1)知:【点睛】本题考查等差数列通项公式和前项和的求解问题,考查基础公式的应用,属于基础题.18.已知向量,, .(1)若,求实数的值;(2)若,求向量与的夹角 .【答案】(1);(2)【解析】(1)由向量平行的坐标表示可构造方程求得结果;(2)利用向量夹角公式可求得,进而根据向量夹角的范围求得结果.【详解】(1),解得:(2)又【点睛】本题考查平面向量共线的坐标表示、向量夹角的求解问题;考查学生对于平面向量坐标运算、数量积运算掌握的熟练程度,属于基础应用问题.19.在中,已知内角所对的边分别为,已知,,的面积 .(1)求边的长;(2)求的外接圆的半径 .【答案】(1);(2)【解析】(1)由三角形面积公式可构造方程求得结果;(2)利用余弦定理可求得;利用正弦定理即可求得结果.【详解】(1)由得:,解得:(2)由余弦定理得:由正弦定理得:【点睛】本题考查利用正弦定理、余弦定理和三角形面积公式解三角形的问题,考查学生对于解三角形部分的公式掌握的熟练程度,属于基础应用问题.20.在直三棱柱 ABC - A 1 B 1 C 1 中, AC =3, BC =4, AB =5, AA 1 =4,点D 是 AB 的中点.求证:(1) AC ⊥ BC 1 ;(2) AC 1 ∥平面 CDB 1 .【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)由勾股定理可证得为直角三角形即可证得,由直棱柱可知面,可证得,根据线面垂直的判定定理可证得面,从而可得.(2)设与的交点为,连结,由中位线可证得,根据线面平行的判定定理可证得平面.试题解析:证明:(1)证明:,,为直角三角形且,即.又∵三棱柱为直棱柱,面,面,,,面,面,.(2)设与的交点为,连结,是的中点,是的中点,.面,面,平面.【考点】1线线垂直,线面垂直;2线面平行.21.设数列的前n项和为,已知.(Ⅰ)求通项;(Ⅱ)设,求数列的前n项和.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)当时,根据,构造,利用,两式相减得到,然后验证,得到数列的通项公式;(Ⅱ)由上一问可知.根据零点分和讨论去绝对值,利用分组转化求数列的和.试题解析:(Ⅰ)因为,所以当时,,两式相减得:当时,,因为,得到,解得,,所以数列是首项,公比为5的等比数列,则;(Ⅱ)由题意知,,易知当时,;时,所以当时,,当时,,所以,,……当时,又因为不满足满足上式,所以.【考点】1.已知求;2.分组转化法求和.【方法点睛】本题考查了数列求和,一般数列求和方法(1)分组转化法,一般适用于等差数列加等比数列,(2)裂项相消法求和,,等的形式,(3)错位相减法求和,一般适用于等差数列乘以等比数列,(4)倒序相加法求和,一般距首末两项的和是一个常数,这样可以正着写和和倒着写和,两式两式相加除以2得到数列求和,(5)或是具有某些规律求和,(6)本题考查了等差数列绝对值求和,需讨论零点后分两段求和.22.已知且,比较与的大小.【答案】详见解析【解析】将两式作差可得,由、和可得大小关系.【详解】当且时,当时,当时,综上所述:当时,;当时,;当时,【点睛】本题考查作差法比较大小的问题,关键是能够根据所得的差进行分类讨论;易错点是忽略差等于零,即两式相等的情况.23.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD="40" m,则电视塔的高度为多少?【答案】40m.【解析】试题分析:本题是解三角形的实际应用题,根据题意分析出图中的数据,即∠ADB=30°,∠ACB=45°,所以,可以得出在Rt△ABD中,BD= AB,在Rt△ABC中,∴BC=AB.在△BCD中,由余弦定理,得BD 2 =BC 2 +CD 2 -2BC·CDcos∠BCD,代入数据,运算即可得出结果.试题解析:根据题意得,在Rt△ABD中,∠ADB=30°,∴BD= AB,在Rt△ABC中,∠ACB=45°,∴BC=AB.在△BCD中,由余弦定理,得BD 2 =BC 2 +CD 2 -2BC·CDcos∠BCD,∴3AB 2 =AB 2 +CD 2 -2AB·CDcos120°整理得AB 2 -20AB-800=0,解得,AB=40或AB=-20(舍).即电视塔的高度为40 m【考点】解三角形.高一下学期数学期末考试试卷(含答案)考试时量: 120 分钟考试总分: 150 分一、选择题:本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项符合题目要求的.1 .已知集合,则A .B .C .D .2 .下面是属于正六棱锥的侧视图的是3 .给出以下命题:① 经过三点有且只有一个平面;② 垂直于同一直线的两条直线平行;③ 一个平面内有两条直线与另一个平面平行,则这两个平面平行;④垂直于同一平面的两条直线平行 . 其中正确命题的个数有A . 1 个B . 2 个C . 3 个D . 4 个4. 下列命题正确的是A .幂函数的图象都经过、两点B .当时,函数的图象是一条直线C .如果两个幂函数的图象有三个公共点,那么这两个函数一定相同D .如果幂函数为偶函数,则图象一定经过点5 .直线被圆截得的弦长为,则直线的倾斜角为A. B. C. 或 D. 或6 .若函数定义域为,则的取值范围是A .B .且C .D .7 .如图,在直角梯形中,,将沿折起,使得平面平面 . 在四面体中,下列说法正确的是A. 平面平面B. 平面平面C. 平面平面D. 平面平面8 . 中国古代数学名著《九章算术》中 , 将顶部为一线段,下底为一矩形的拟柱体称之为刍甍 (méng) ,如图几何体为刍甍,已知面是边长为 3 的正方形,,与面的距离为 2 ,则该多面体的体积为A. B.C. D.9 .我们从这个商标中抽象出一个图像为右图,其对应的函数可能是A .B .C .D .10 .已知三棱锥的三条侧棱两两垂直,且,则三棱锥的外接球的表面积为A. B. C. D.11 .若实数满足,则的取值范围是A. B.C. D.12 .设函数有 5 个零点,且对一切实数均满足,则A. B. C. D.二、填空题:本大题共 4 小题,每小题 5 分,共 20 分,把答案填在答题卡中对应题号的横线上.13 .给出下列平面图形:①三角形;②四边形;③五边形;④六边形 . 则过正方体中心的截面图形可以是(填序号)14 .已知,则直线与直线的距离的最大值为15 .已知函数,则函数恰好存在一个零点时,实数的取值范围为 ____________ .16 .圆锥 AO 底面圆半径为,母线长为,从中点拉一条绳子,绕圆锥一周转到点,则这条绳子最短时长度为三、解答题:本大题共 6 小题,共 70 分。
2020高一数学第二学期期末模拟试卷及答案(共三套)
范文2020学年高一数学第二学期期末模拟试卷及答案1/ 7(共三套)2020 年学年高一数学第二学期期末模拟试卷及答案(共三套)2020 年学年高一数学第二学期期末模拟试卷及答案(一)一、填空题(共 14 小题,每小题 5 分,满分 70 分) 1.设集合 A={1,2},B=(a+1,2),若A∪B={1,2,3},则实数 a 的值为. 2.若向量 =(2,1), =(﹣4,x),且∥ ,则 x 的值为. 3.在△ABC 中,已知 AB=2,AC=3,∠A=120°,则△ABC 的面积为. 4.函数 f(x)=lg(2﹣x﹣x2)的定义域为. 5.若指数函数 f(x)=(a﹣1)x 是 R 上的单调减函数,则实数 a 的取值范围是. 6.已知直线 x﹣y=0 与圆(x﹣2)2+y2=6 相交于 A,B 两点,则弦 AB 的长为. 7.已知两曲线 f(x)=cosx 与 g(x)= sinx 的一个交点为 P,则点 P 到 x 轴的距离为. 8.已知长方体 ABCD﹣A1B1C1D1 中,AB=AD=2.AA1=4,则该长方体外接球的表面积为. 9.如图,D,E 分别是△ABC 的边 AC,BC 上的点,且 = , = .若=λ +μ (λ,μ∈R),则λ+μ 的值为.第1页(共78页)10.如图,已知正三棱柱 ABC﹣A1B1C1 的所有棱长均为 2,△DEF 为平行于棱柱底面的截面,O1,O 分别为上、下底面内一点,则六面体O1DEFO 的体积为. 11.将函数 f(x)=sinωx(0<ω<6)图象向右平移个单位后得到函数 g(x)的图象.若 g(x)图象的一个对称中心为(,0),则 f(x)的最小正周期为. 12.在△ABC 中,已知 AB=AC=4,BC=2,∠B 的平分线交 AC 于点 D,则 ? 的值为. 13.已知 f(x)是定义在 R 上的奇函数,当 x>0 时,f(x)=x2﹣3x.若方程 f(x)+x﹣t=0 恰有两个相异实根,则实数 t 的所有可能值为. 14.在平面直角坐标系 xOy 中,已知点 A(2a,0)(a>0),直线 l1: mx ﹣ y ﹣ 2m+2=0 与直线 l2:x+my=0 (m∈R)相交于点 M ,且 MA2+MO2=2a2+16,则实数 a 的取值范围是.二、解答题(共 6 小题,满分 90 分) 15.已知 tan(α﹣)=﹣.(1)求tanα 的值;(2)求cos2α 的值.第2页(共78页)3/ 716.在四棱锥 P﹣ABCD 中,已知DC∥AB,DC=2AB,E 为棱 PD 的中点.(1)求证:AE∥平面 PBC;(2)若PB⊥PC,PB⊥AB,求证:平面PAB⊥平面 PCD. 17.如图,在平面直角坐标系 xOy 中,边长为 1 的正△OAB 的顶点 A, B 均在第一象限,设点 A 在 x 轴的射影为 C,∠AOC=α.(1)试将 ? 表示α 的函数 f(α),并写出其定义域;(2)求函数 f(α)的值域. 18.如图,海平面某区域内有 A,B,C 三座小岛,岛 C 在 A 的北偏东70°方向,岛C 在 B 的北偏东40°方向,且 A,B 两岛间的距离为 3 海里.(1)求 B,C 两岛间的距离;(2)经测算海平面上一轮船D 位于岛 C 的北偏西50°方向,且与岛 C 相距 3 海里,求轮船在岛 A 的什么位置.(注:小岛与轮船视为一点)第3页(共78页)19.在平面直角坐标系 xOy 中,圆:x2+y2=4,直线 l:4x+3y﹣20=0.A (,)为圆 O 内一点,弦 MN 过点 A,过点 O 作 MN 的垂线交 l 于点 P.(1)若MN∥l.①求直线 MN 的方程;②求△PMN 的面积.(2)判断直线 PM 与圆 O 的位置关系,并证明. 20.已知函数 f(x)=a|x﹣b|+1,其中 a,b∈R.(1)若 a<0,b=1,求函数 f(x)的所有零点之和;(2)记函数 g(x)=x2﹣f(x).①若 a<0,b=0,解不等式 g(2x+1)≤g(x﹣1);②若 b=1,g(x)在[0,2]上的最大值为 0,求 a 的取值范围.第4页(共78页)5/ 7参考答案与试题解析一、填空题(共 14 小题,每小题 5 分,满分70 分) 1.设集合 A={1,2},B=(a+1,2),若A∪B={1,2,3},则实数 a 的值为 2 .【考点】1D:并集及其运算.【分析】由并集定义得 a+1=3,由此能求出实数 a 的值.【解答】解:∵集合 A={1,2},B=(a+1,2),A∪B={1,2,3},∴a+1=3,解得实数 a 的值 2.故答案为:2. 2.若向量 =(2,1), =(﹣4,x),且∥ ,则 x 的值为﹣2 .【考点】9K:平面向量共线(平行)的坐标表示.【分析】利用向量共线定理即可得出.【解答】解:∵ ∥ ,∴﹣4﹣2x=0,解得 x=﹣2.故答案为:﹣2. 3.在△ABC 中,已知 AB=2,AC=3,∠A=120°,则△ABC 的面积为.【考点】HP:正弦定理.【分析】由已知利用三角形面积公式求解即可得答案.【解答】解:∵AB=2,AC=3,∠A=120°,第5页(共78页)∴S△ABC= AB?AC?sinA= 故答案为:. =. 4.函数 f(x)=lg (2﹣x﹣x2)的定义域为(﹣2,1).【考点】33:函数的定义域及其求法.【分析】根据函数 y 的解析式,列出使解析式有意义的不等式,求出解集即可.【解答】解:函数 f(x)=lg(2﹣x ﹣x2),∴2﹣x﹣x2>0,即 x2+x﹣2<0,解得﹣2<x<1,∴函数 f(x)的定义域为(﹣2,7/ 7。
2020年高一数学第二学期期末模拟试卷及答案(共五套)
2020年高一数学第二学期期末模拟试卷及答案(共五套)2020年高一数学第二学期期末模拟试卷及答案(一)一、选择题:1.重庆市2013年各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是()A.19 B.20 C.21.5 D.232.等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1 B.2 C.3 D.43.在区间[﹣2,3]上随机选取一个数X,则X≤1的概率为()A.B.C.D.4.执行如图所示的程序框图,输出的k值为()A.3 B.4 C.5 D.65.已知x,y满足约束条件,则z=﹣2x+y的最大值是()A.﹣1 B.﹣2 C.﹣5 D.16.在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2,将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.D.2π7.某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+B.4+C.2+2 D.58.对于集合{a1,a2,…,a n}和常数a0,定义w=为集合{a1,a2,…,a n}相对a0的“正弦方差”,则集合{,, }相对a0的“正弦方差”为()A.B.C.D.与a0有关的一个值二、填空题:9.某电子商务公司对1000名网络购物者2015年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为______.10.在△ABC中,a=4,b=5,c=6,则=______.11.等比数列{a n}的前n项和为S n,公比不为1.若a1=1,且对任意的n∈N+都有a n+2+a n+1﹣2a n=0,则S5=______.12.已知1<a<2,2<a+b<4,则5a﹣b的取值范围是______.13.如图,在正三棱柱A1B1C1﹣ABC中,AB=2,A1A=2,D,F 分别是棱AB,AA1的中点,E为棱AC上的动点,则△DEF周长的最小值为______.14.已知函数f(x)=.(1)若f(x)>k的解集为{x|x<﹣3或x>﹣2},则k的值等于______;(2)对任意x>0,f(x)≤t恒成立,则t的取值范围是______.三、解答题:本大题共5小题,共50分.15.海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区 A B C数量50 1510(Ⅰ)求这6件样品来自A,B,C各地区商品的数量;(Ⅱ)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.16.如图,在长方体ABCD﹣A1B1C1D1中,AB=16,AA1=8,BC=10,点E,F 分别在A1B1C1D1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形EFGH.(I)在图中画出这个正方形EFGH(不必说明画法和理由),并说明G,H在棱上的具体位置;(II)求平面α把该长方体分成的两部分体积的比值.17.已知函数f(x)=sinxcosx﹣cos2x+,△ABC三个内角A,B,C的对边分别为a,b,c且f(A)=1.(I)求角A的大小;(Ⅱ)若a=7,b=5,求c的值.18.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲乙丙丁10√×√√21×√×√720√√√×30√×√×85 √××××√××98(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?19.已知数列{a n}和{b n}满足a1a2a3…a n=(n∈N*).若{a n}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求a n和b n;(Ⅱ)设c n=(n∈N*).记数列{c n}的前n项和为S n.(i)求S n;(ii)求正整数k,使得对任意n∈N*均有S k≥S n.参考答案与试题解析一、选择题:1.重庆市2013年各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是()A.19 B.20 C.21.5 D.23【考点】茎叶图.【分析】根据中位数的定义进行求解即可.【解答】解:样本数据有12个,位于中间的两个数为20,20,则中位数为,故选:B2.等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1 B.2 C.3 D.4【考点】等差数列的通项公式.【分析】设数列{a n}的公差为d,则由题意可得2a1+4d=10,a1+3d=7,由此解得d的值.【解答】解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B.3.在区间[﹣2,3]上随机选取一个数X,则X≤1的概率为()A.B.C.D.【考点】几何概型.【分析】利用几何槪型的概率公式,求出对应的区间长度,即可得到结论.【解答】解:在区间[﹣2,3]上随机选取一个数X,则﹣2≤X≤3,则X≤1的概率P=,故选:B.4.执行如图所示的程序框图,输出的k值为()A.3 B.4 C.5 D.6【考点】程序框图.【分析】根据程序运行条件,分别进行判断,即可得到结论.【解答】解:第一次运行,n=5,不是偶数,则n=3×5+1=16,k=1,第二次运行,n=16,是偶数,则n==8,k=2,第三次运行,n=8,是偶数,则n==4,k=3,第四次运行,n=4,是偶数,则n==2,k=4,第五次运行,n=2,是偶数,则n==1,k=5,此时满足条件n=1,输出k=5.故选:C.5.已知x,y满足约束条件,则z=﹣2x+y的最大值是()A.﹣1 B.﹣2 C.﹣5 D.1【考点】简单线性规划.【分析】首先画出平面区域,z=﹣2x+y的最大值就是y=2x+z在y轴的截距的最大值.【解答】解:由已知不等式组表示的平面区域如图阴影部分,当直线y=2x+z经过A时使得z最大,由得到A(1,1),所以z的最大值为﹣2×1+1=﹣1;故选:A.6.在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2,将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.D.2π【考点】棱柱、棱锥、棱台的体积.【分析】画出几何体的直观图,利用已知条件,求解几何体的体积即可.【解答】解:由题意可知几何体的直观图如图:旋转体是底面半径为1,高为2的圆柱,挖去一个相同底面高为1的倒圆锥,几何体的体积为:=.故选:C.7.某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+B.4+C.2+2 D.5【考点】由三视图求面积、体积.【分析】根据三视图可判断直观图为:OA⊥面ABC,AC=AB,E为BC中点,EA=2,EA=EB=1,OA=1,:BC⊥面AEO,AC=,OE=判断几何体的各个面的特点,计算边长,求解面积.【解答】解:根据三视图可判断直观图为:OA⊥面ABC,AC=AB,E为BC中点,EA=2,EC=EB=1,OA=1,∴可得AE⊥BC,BC⊥OA,运用直线平面的垂直得出:BC⊥面AEO,AC=,OE=∴S△ABC=2×2=2,S△OAC=S△OAB=×1=.S△BCO=2×=.故该三棱锥的表面积是2,故选:C.8.对于集合{a1,a2,…,a n}和常数a0,定义w=为集合{a1,a2,…,a n}相对a0的“正弦方差”,则集合{,, }相对a0的“正弦方差”为()A.B.C.D.与a0有关的一个值【考点】进行简单的合情推理.【分析】先根据题意表示出正弦方差μ,进而利用二倍角公式把正弦的平方转化成余弦的二倍角,进而利用两角和公式进一步化简整理,求得结果即可.【解答】解:因为集合{,, }相对a0的“正弦方差”,所以W===故选:C.二、填空题:9.某电子商务公司对1000名网络购物者2015年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为600.【考点】频率分布直方图.【分析】频率分布直方图中每一个矩形的面积表示频率,先算出频率,在根据频率和为1,算出a的值,再求出消费金额在区间[0.5,0.9]内的购物者的频率,再求频数.【解答】解:由题意,根据直方图的性质得(1.5+2.5+a+2.0+0.8+0.2)×0.1=1,解得a=3由直方图得(3+2.0+0.8+0.2)×0.1×1000=600.故答案为:600.10.在△ABC中,a=4,b=5,c=6,则=1.【考点】余弦定理;二倍角的正弦;正弦定理.【分析】利用余弦定理求出cosC,cosA,即可得出结论.【解答】解:∵△ABC中,a=4,b=5,c=6,∴cosC==,cosA==∴sinC=,sinA=,∴==1.故答案为:1.11.等比数列{a n}的前n项和为S n,公比不为1.若a1=1,且对任意的n∈N+都有a n+2+a n+1﹣2a n=0,则S5=11.【考点】等比数列的性质;数列的求和.【分析】由题意可得a n q2+a n q=2a n ,即q2+q=2,解得q=﹣2,或q=1(舍去),由此求得S5=的值.【解答】解:∵等比数列{a n}的前n项和为S n,a1=1,且对任意的n ∈N+都有a n+2+a n+1﹣2a n=0,∴a n q2+a n q=2a n ,即q2+q=2,解得q=﹣2,或q=1(舍去).∴S5==11,故答案为11.12.已知1<a<2,2<a+b<4,则5a﹣b的取值范围是(2,10).【考点】简单线性规划.【分析】由线性约束条件画出可行域,然后求出目标函数的范围.【解答】解:画出1<a<2,2<a+b<4的可行域,如图:目标函数z=5a﹣b在直线2=a+b与直线a=2的交点B(2,0)处,z 值的上界取:10,在直线4=a+b与直线a=1的交点A(1,3)处,目标函数z值的下界取:2,5a﹣b的取值范围是(2,10).故答案为:(2,10).13.如图,在正三棱柱A1B1C1﹣ABC中,AB=2,A1A=2,D,F 分别是棱AB,AA1的中点,E为棱AC上的动点,则△DEF周长的最小值为+2.【考点】平面的基本性质及推论.【分析】由正三棱柱A1B1C1﹣ABC的性质可得:AA1⊥AB,AA1⊥AC.在Rt△ADF中,利用勾股定理可得DF=2.因此只要求出DE+EF 的最小值即可得出.把底面ABC展开与侧面ACC1A1在同一个平面,如图所示,只有当三点D,E,F在同一条直线时,DE+EF取得最小值.利用余弦定理即可得出.【解答】解:由正三棱柱A1B1C1﹣ABC,可得AA1⊥底面ABC,∴AA1⊥AB,AA1⊥AC.在Rt△ADF中,DF==2.把底面ABC展开与侧面ACC1A1在同一个平面,如图所示,只有当三点D,E,F在同一条直线时,DE+EF取得最小值.在△ADE中,∠DAE=60°+90°=150°,由余弦定理可得:DE==.∴△DEF周长的最小值=+2.故答案为: +2.14.已知函数f(x)=.(1)若f(x)>k的解集为{x|x<﹣3或x>﹣2},则k的值等于﹣;(2)对任意x>0,f(x)≤t恒成立,则t的取值范围是[,+∞).【考点】其他不等式的解法;函数恒成立问题.【分析】(1)根据不等式和方程之间的关系,转化为方程进行求解即可.(2)任意x>0,f(x)≤t恒成立,等等价于t≥=恒成立,根据基本不等式即可求出.【解答】解:(1):f(x)>k⇔kx2﹣2x+6k<0.由已知{x|x<﹣3,或x>﹣2}是其解集,得kx2﹣2x+6k=0的两根是﹣3,﹣2.由根与系数的关系可知(﹣2)+(﹣3)=,解得k=﹣,(2)任意x>0,f(x)≤t恒成立,等价于t≥=恒成立,∵x+≥2=2,当且仅当x=时取等号,∴t≥,故答案为:(1):﹣,(2):[,+∞)三、解答题:本大题共5小题,共50分.15.海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区 A B C数量50 1510(Ⅰ)求这6件样品来自A,B,C各地区商品的数量;(Ⅱ)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.【考点】古典概型及其概率计算公式.【分析】(Ⅰ)先计算出抽样比,进而可求出这6件样品来自A,B,C各地区商品的数量;(Ⅱ)先计算在这6件样品中随机抽取2件的基本事件总数,及这2件商品来自相同地区的事件个数,代入古典概型概率计算公式,可得答案.【解答】解:(Ⅰ)A,B,C三个地区商品的总数量为50+150+100=300,故抽样比k==,故A地区抽取的商品的数量为:×50=1;B地区抽取的商品的数量为:×150=3;C地区抽取的商品的数量为:×100=2;(Ⅱ)在这6件样品中随机抽取2件共有:=15个不同的基本事件;且这些事件是等可能发生的,记“这2件商品来自相同地区”为事件A,则这2件商品可能都来自B 地区或C地区,则A中包含=4种不同的基本事件,故P(A)=,即这2件商品来自相同地区的概率为.16.如图,在长方体ABCD﹣A1B1C1D1中,AB=16,AA1=8,BC=10,点E,F 分别在A1B1C1D1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形EFGH.(I)在图中画出这个正方形EFGH(不必说明画法和理由),并说明G,H在棱上的具体位置;(II)求平面α把该长方体分成的两部分体积的比值.【考点】棱柱、棱锥、棱台的体积.【分析】(I)过E作EM⊥AB于M,由勾股定理可得MH=6,从而确定出G,H的位置;(II)两部分均为底面为梯形的直棱柱,代入棱柱的体积公式求出两部分的体积即可得出体积比.【解答】解:(I)作出图形如图所示:过E作EM⊥AB于M,∵四边形EFGH为正方形,∴EH=EF=BC=10,∵EM=AA1=8,∴MH==6,∴AH=AM+MH=10,∴DG=10,即H在棱AB上,G在棱CD上,且AH=DG=10.(II)设平面α把该长方体分成的两部分体积分别为V1,V2,则V1=S•AD=×(4+10)×8×10=560,V2=V长方体﹣V1=16×8×10﹣560=720.∴==.17.已知函数f(x)=sinxcosx﹣cos2x+,△ABC三个内角A,B,C的对边分别为a,b,c且f(A)=1.(I)求角A的大小;(Ⅱ)若a=7,b=5,求c的值.【考点】二倍角的余弦;二倍角的正弦;余弦定理.【分析】(I)由f(x)=sinxcosx﹣cos2x+利用二倍角公式及辅助角公式对已知化简,然后结合f(A)=1,及A∈(0,π)可求A;(Ⅱ)由余弦定理a2=b2+c2﹣2bccosA可求c【解答】解:(I)因为f(x)=sinxcosx﹣cos2x+==sin(2x﹣)…又f(A)=sin(2A﹣)=1,A∈(0,π),…所以,∴…(Ⅱ)由余弦定理a2=b2+c2﹣2bccosA得到,所以c2﹣5c﹣24=0 …解得c=﹣3(舍)或c=8 …所以c=818.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲乙丙丁10√×√√21×√×√720√√√×30√×√×85 √××××√××98(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?【考点】相互独立事件的概率乘法公式.【分析】(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,从而求得顾客同时购买乙和丙的概率.(2)根据在甲、乙、丙、丁中同时购买3种商品的有300人,求得顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率.(3)在这1000名顾客中,求出同时购买甲和乙的概率、同时购买甲和丙的概率、同时购买甲和丁的概率,从而得出结论.【解答】解:(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,故顾客同时购买乙和丙的概率为=0.2.(2)在这1000名顾客中,在甲、乙、丙、丁中同时购买3种商品的有100+200=300(人),故顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率为=0.3.(3)在这1000名顾客中,同时购买甲和乙的概率为=0.2,同时购买甲和丙的概率为=0.6,同时购买甲和丁的概率为=0.1,故同时购买甲和丙的概率最大.19.已知数列{a n}和{b n}满足a1a2a3…a n=(n∈N*).若{a n}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求a n和b n;(Ⅱ)设c n=(n∈N*).记数列{c n}的前n项和为S n.(i)求S n;(ii)求正整数k,使得对任意n∈N*均有S k≥S n.【考点】数列与不等式的综合;数列的求和.【分析】(Ⅰ)先利用前n项积与前(n﹣1)项积的关系,得到等比数列{a n}的第三项的值,结合首项的值,求出通项a n,然后现利用条件求出通项b n;(Ⅱ)(i)利用数列特征进行分组求和,一组用等比数列求和公式,另一组用裂项法求和,得出本小题结论;(ii)本小题可以采用猜想的方法,得到结论,再加以证明.【解答】解:(Ⅰ)∵a1a2a3…a n=(n∈N*)①,当n≥2,n∈N*时,②,由①②知:,令n=3,则有.∵b3=6+b2,∴a3=8.∵{a n}为等比数列,且a1=2,∴{a n}的公比为q,则=4,由题意知a n>0,∴q>0,∴q=2.∴(n∈N*).又由a1a2a3…a n=(n∈N*)得:,,∴b n=n(n+1)(n∈N*).(Ⅱ)(i)∵c n===.∴S n=c1+c2+c3+…+c n====;(ii)因为c1=0,c2>0,c3>0,c4>0;当n≥5时,,而=>0,得,所以,当n≥5时,c n<0,综上,对任意n∈N*恒有S4≥S n,故k=4.2020年高一数学第二学期期末模拟试卷及答案(二)一、选择题:本大题共8个小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“∃x0>0,2≤0”的否定是()A.∀x>0,2x>0 B.∀x≤0,2x>0 C.∀x>0,2x<0 D.∀x≤0,2x<02.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m3.在△ABC中,三个内角A,B,C的对边分别是a.b.c,已知B=30°,c=150,b=50,那么这个三角形是()A.等边三角形B.等腰三角形C.直角三角形D.等腰三角或直角三角形4.如图所示的程序框图,若输出的S=31,则判断框内填入的条件是()A.i>4?B.i>5?C.i≤4?D.i≤5?5.设{a n}(n∈N*)是等差数列,S n是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误的是()A.d<0 B.a7=0C.S9>S5D.S6与S7均为S n的最大值6.如图所示,E是正方形ABCD所在平面外一点,E在面ABCD上的正投影F恰在AC上,FG∥BC,AB=AE=2,∠EAB=60°,有以下四个命题:(1)CD⊥面GEF;(2)AG=1;(3)以AC,AE作为邻边的平行四边形面积是8;(4)∠EAD=60°.其中正确命题的个数为()A.1 B.2 C.3 D.47.下列命题中,正确的命题个数为()①△ABC的三边分别为a,b,c,则该三角形是等边三角形的充要条件为a2+b2+c2=ab+ac+bc;②数列{a n}的前n项和为S n,则S n=An2+Bn是数列{a n}为等差数列的充要条件;③在数列{a n}中,a1=1,S n是其前n项和,满足S n+1=S n+2,则{a n}是等比数列;④已知a1,b1,c1,a2,b2,c2都是不等于零的实数,关于x的不等式a1x2+b1x+c1>0和a2x2+b2x+c2>0的解集分别为P,Q,则==是P=Q的充分必要条件.A.1 B.2 C.3 D.48.如图,设P为正四面体A﹣BCD表面(含棱)上与顶点不重合的一点,由点P到四个顶点的距离组成的集合记为M,如果集合M中有且只有2个元素,那么符合条件的点P有()A.4个B.6个C.10个D.14个二、填空题(共6小题,每题4分,满分24分,将答案填在答题纸上)9.已知数列{a n}的前n项和为S n,a n≠0(n∈N*),a n a n+1=S n,则a3﹣a1=______.10.执行如图所示的程序框图,输出的a值为______.11.已知一个三棱锥的三视图如图所示,主视图和左视图都是腰长为1的等腰直角三角形,那么,这个三棱锥的表面积为______.12.a>0,b>0,a+b=1,则+的最小值为______.13.如图,四面体ABCD的一条棱长为x,其余棱长均为1,记四面体ABCD的体积为F(x),则函数F(x)的单调增区间是______;最大值为______.14.在数列{a n}中,若a n2﹣a n﹣12=p(n≥2,n∈N×,p为常数),则称{a n}为“等方差数列”,下列是对“等方差数列”的判断;①若{a n}是等方差数列,则{a n2}是等差数列;②{(﹣1)n}是等方差数列;③若{a n}是等方差数列,则{a kn}(k∈N*,k为常数)也是等方差数列;④若{a n}既是等方差数列,又是等差数列,则该数列为常数列.其中正确命题序号为______.(将所有正确的命题序号填在横线上)三、解答题(本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤.)15.已知p:>1,q:∃x∈R,ax2+ax﹣1≥0,r:(a﹣m)(a﹣m﹣1)>0.(1)若p∧q为真,求实数a的取值范围;(2)若¬p是¬r的必要不充分条件,求m的取值范围.16.如图△ABC中,已知点D在BC边上,满足•=0.sin∠BAC=,AB=3,BD=.(Ⅰ)求AD的长;(Ⅱ)求cosC.17.如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,且∠ABC=120°,点E是棱PC的中点,平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若PA=PD=AD=2,且平面PAD⊥平面ABCD,求①二面角E﹣AF﹣D的二面角的余弦值;②在线段PC上是否存在一点H,使得直线BH与平面AEF所成角等于60°,若存在,确定H的位置,若不存在,说明理由.18.已知等差数列{a n}的公差d≠0,若a2=5且a1,a3,a6成等比数列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b1=0且对任意的n≥2,均有|b n﹣b n﹣1|=2①写出b3所有可能的取值;②若b k=2116,求k的最小值.参考答案与试题解析一、选择题:本大题共8个小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“∃x0>0,2≤0”的否定是()A.∀x>0,2x>0 B.∀x≤0,2x>0 C.∀x>0,2x<0 D.∀x≤0,2x<0【考点】命题的否定.【分析】利用特称命题的否定是全称命题,写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题“∃x0>0,2≤0”的否定是:∀x>0,2x>0.故选:A.2.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m【考点】直线与平面平行的判定.【分析】根据题意,依次分析选项:A,根据线面垂直的判定定理判断.C:根据线面平行的判定定理判断.D:由线线的位置关系判断.B:由线面垂直的性质定理判断;综合可得答案.【解答】解:A,根据线面垂直的判定定理,要垂直平面内两条相交直线才行,不正确;C:l∥α,m⊂α,则l∥m或两线异面,故不正确.D:平行于同一平面的两直线可能平行,异面,相交,不正确.B:由线面垂直的性质可知:平行线中的一条垂直于这个平面则另一条也垂直这个平面.故正确.故选B3.在△ABC中,三个内角A,B,C的对边分别是a.b.c,已知B=30°,c=150,b=50,那么这个三角形是()A.等边三角形B.等腰三角形C.直角三角形D.等腰三角或直角三角形【考点】三角形的形状判断.【分析】由正弦定理求出sinC=,C=60°或120°.再根据三角形的内角和公式求出A的值,由此即可这个三角形的形状.【解答】解:∵△ABC中,已知B=30°,b=50,c=150,由正弦定理可得,∴sinC=,可得:C=60°或120°.当C=60°,∵B=30°,∴A=90°,△ABC是直角三角形.当C=120°,∵B=30°,∴A=30°,△ABC是等腰三角形.故△ABC是直角三角形或等腰三角形,故选:D.4.如图所示的程序框图,若输出的S=31,则判断框内填入的条件是()A.i>4?B.i>5?C.i≤4?D.i≤5?【考点】程序框图.【分析】根据框图的流程知,算法的功能是计算S=1+2+22+...+2n的值,由输出的S是31,得退出循环体的n值为5,由此得判断框的条件.【解答】解:根据框图的流程得:算法的功能是计算S=1+2+22+ (2)的值,∵输出的S是31,∴S==2n+1﹣1=31,解得n=4;退出循环体的n值为5,∴判断框的条件为n≥5或n>4.故选:A.5.设{a n}(n∈N*)是等差数列,S n是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误的是()A.d<0 B.a7=0C.S9>S5D.S6与S7均为S n的最大值【考点】等差数列的前n项和.【分析】利用结论:n≥2时,a n=s n﹣s n﹣1,易推出a6>0,a7=0,a8<0,然后逐一分析各选项,排除错误答案.【解答】解:由S5<S6得a1+a2+a3+…+a5<a1+a2++a5+a6,即a6>0,又∵S6=S7,∴a1+a2+…+a6=a1+a2+…+a6+a7,∴a7=0,故B正确;同理由S7>S8,得a8<0,∵d=a7﹣a6<0,故A正确;而C选项S9>S5,即a6+a7+a8+a9>0,可得2(a7+a8)>0,由结论a7=0,a8<0,显然C选项是错误的.∵S5<S6,S6=S7>S8,∴S6与S7均为S n的最大值,故D正确;故选C.6.如图所示,E是正方形ABCD所在平面外一点,E在面ABCD上的正投影F恰在AC上,FG∥BC,AB=AE=2,∠EAB=60°,有以下四个命题:(1)CD⊥面GEF;(2)AG=1;(3)以AC,AE作为邻边的平行四边形面积是8;(4)∠EAD=60°.其中正确命题的个数为()A.1 B.2 C.3 D.4【考点】平面与平面垂直的判定.【分析】连结EG,通过证明AB⊥平面EFG得出CD⊥平面EFG,在直角三角形AEG中求出AG,EF,求出三角形ACE的面积,根据AG判断出F的位置,利用全都三角形判断∠EAD.【解答】解:连结EG,(1)∵EF⊥平面ABCD,AB⊂平面ABCD,∴EF⊥AB,∵FG∥BC,BC⊥AB,∴AB⊥FG,又EF⊂平面EFG,FG⊂平面EFG,EF∩FG=F,∴AB⊥平面EFG,∵AB∥CD,∴CD⊥平面EFG.故(1)正确.(2)∵AB⊥平面EFG,∴AB⊥EG,∵∠EAB=60°,AE=2,∴AG=AE=1,故(2)正确.(3))∵AG=1=,∴F为AC的中点.∵AE=2,AC==2,AF==,∴EF==.∴S△ACE===2,∴以AC,AE作为邻边的平行四边形面积为2S△ACE=4,故(3)错误;(4)过F作FM⊥AD于M,则AM=1,由(1)的证明可知AD⊥平面EFM,故而AD⊥EM,∴Rt△EAG≌Rt△EAM,∴∠EAM=∠EAG=60°,故(4)正确.故选:C7.下列命题中,正确的命题个数为()①△ABC的三边分别为a,b,c,则该三角形是等边三角形的充要条件为a2+b2+c2=ab+ac+bc;②数列{a n}的前n项和为S n,则S n=An2+Bn是数列{a n}为等差数列的充要条件;③在数列{a n}中,a1=1,S n是其前n项和,满足S n+1=S n+2,则{a n}是等比数列;④已知a1,b1,c1,a2,b2,c2都是不等于零的实数,关于x的不等式a1x2+b1x+c1>0和a2x2+b2x+c2>0的解集分别为P,Q,则==是P=Q的充分必要条件.A.1 B.2 C.3 D.4【考点】命题的真假判断与应用.【分析】①根据等边三角形的性质结合充分条件和必要条件的定义进行判断,②根据等差数列的定义和性质进行判断,③根据数列项和前n项和的关系,结合等比数列的定义进行判断.④举反例进行判断即可.【解答】解:①若a=b=c,则a2+b2+c2=ab+ac+bc成立,反之若a2+b2+c2=ab+ac+bc,则2(a2+b2+c2)=2(ab+ac+bc),整理得(a﹣b)2+(a﹣c)2+(b﹣c)2=0,当且仅当a=b=c时成立故充分性成立,故①正确;②当n=1时,a1=A+B;当n≥2时,a n=S n﹣S n﹣1=2An+B﹣A,显然当n=1时也满足上式,∴a n﹣a n﹣1=2A,∴{a n}是等差数列.反之,若数列{a n}为等差数列,∴S n=na1+d=n2+(a1﹣)n,令A=,B=a1﹣,则S n=An2+Bn,A,B∈R.综上,“S n=An2+Bn,是“数列{a n}为等差数列”的充要条件.故②正确,③在数列{a n}中,a1=1,S n是其前n项和,满足S n+1=S n+2,则当n≥2时,S n=S n﹣1+2,两式作差得S n+1﹣S n=S n+2﹣S n﹣1﹣2,即a n+1=a n,即=,(n≥2),当n=1时,S2=S1+2,即a1+a2=a1+2,即a2=﹣a1+2=2﹣=,则=≠,即{a n}不是等比数列;故③错误,④举反例,不等式x2+x+1>0与x2+x+2>0的解集都是R,但是≠,则==是P=Q的充分必要条件错误,故④错误.故正确的是①②,故选:B.8.如图,设P为正四面体A﹣BCD表面(含棱)上与顶点不重合的一点,由点P到四个顶点的距离组成的集合记为M,如果集合M中有且只有2个元素,那么符合条件的点P有()A.4个B.6个C.10个D.14个【考点】计数原理的应用.【分析】根据分类计数加法原理可得,由题意符合条件的点只有两类,一在棱的中点,二在面得中心,问题得以解决.【解答】解:符合条件的点P有两类:(1)6条棱的中点;(2)4个面的中心.共10个点.故集合M中有且只有2个元素,那么符合条件的点P有4+6=10.故选:C二、填空题(共6小题,每题4分,满分24分,将答案填在答题纸上)9.已知数列{a n}的前n项和为S n,a n≠0(n∈N*),a n a n+1=S n,则a3﹣a1=1.【考点】数列递推式.【分析】由题意可得a n+1=,从而可得a2==1,a3===1+a1;从而解得.【解答】解:∵a n a n+1=S n,∴a n+1=;∴a2==1;a3===1+a1;∴a3﹣a1=1+a1﹣a1=1,故答案为:1.10.执行如图所示的程序框图,输出的a值为﹣.【考点】程序框图.【分析】根据框图的流程依次计算程序运行的结果,发现a值的周期为4,再根据条件确定跳出循环的i值,从而可得输出的a值.【解答】解:由程序框图知:第一次循环a==﹣2,i=2;第二次循环a==﹣,i=3;第三次循环a==,i=4;第四次循环a==3,i=5;第五次循环a==﹣2,i=6;…∴a值的周期为4,又跳出循环的i值为11,∴输出的a=﹣.故答案为:﹣.11.已知一个三棱锥的三视图如图所示,主视图和左视图都是腰长为1的等腰直角三角形,那么,这个三棱锥的表面积为.【考点】由三视图求面积、体积.【分析】如图所示,该三棱锥为P﹣ABC,满足PD⊥底面BAC,D 为点P在底面ABC的射影,四边形ABCD是边长为1的正方形,PD=1,即可得出.【解答】解:如图所示,该三棱锥为P﹣ABC,满足PD⊥底面BAC,D为点P在底面ABC的射影,四边形ABCD是边长为1的正方形,PD=1,这个三棱锥的表面积S=+++=.故答案为:.12.a>0,b>0,a+b=1,则+的最小值为5+2.【考点】基本不等式.【分析】根据基本不等式即可求出最小值.【解答】解:∵a>0,b>0,a+b=1,∴+=(a+b)(+)=2+3++≥5+2=5+2,当且仅当a=,b=时取等号,∴则+的最小值为5+2,故答案为:5+2,13.如图,四面体ABCD的一条棱长为x,其余棱长均为1,记四面体ABCD的体积为F(x),则函数F(x)的单调增区间是,;最大值为.【考点】棱柱、棱锥、棱台的体积.【分析】如图所示,设BC=x,AB=AC=AD=CD=BD=1.取AD的中点O,连接OB,OC,则OB⊥AD,OC⊥AD,OB=OC=.又OB∩OC=O,则AD⊥平面OBC.取BC的中点E,连接OE,则OE ⊥BC,可得OE,可得F(x)==(0<x<).利用导数研究其单调性即可得出.【解答】解:如图所示,设BC=x,AB=AC=AD=CD=BD=1.取AD的中点O,连接OB,OC,则OB⊥AD,OC⊥AD,OB=OC=.又OB∩OC=O,则AD⊥平面OBC,取BC的中点E,连接OE,则OE⊥BC,OE==.∴S△OBC==.∴F(x)==×1=(0<x<).F′(x)=,令F′(x)≥0,解得,此时函数F(x)单调递增;令F′(x)<0,解得,此时函数F(x)单调递减法.因此当x=时,F(x)取得最大值,==.故答案分别为:,.14.在数列{a n}中,若a n2﹣a n﹣12=p(n≥2,n∈N×,p为常数),则称{a n}为“等方差数列”,下列是对“等方差数列”的判断;①若{a n}是等方差数列,则{a n2}是等差数列;②{(﹣1)n}是等方差数列;③若{a n}是等方差数列,则{a kn}(k∈N*,k为常数)也是等方差数列;④若{a n}既是等方差数列,又是等差数列,则该数列为常数列.其中正确命题序号为①②③④.(将所有正确的命题序号填在横线上)【考点】等差数列的性质.【分析】根据等差数列的性质及题中的等方差数列的新定义,即可判断出正确的答案.【解答】解:①因为{a n}是等方差数列,所以a n2﹣a n﹣12=p(n≥2,n ∈N×,p为常数)成立,得到{a n2}为首项是a12,公差为p的等差数列;②因为a n2﹣a n﹣12=(﹣1)2n﹣(﹣1)2n﹣1=1﹣(﹣1)=2,所以数列{(﹣1)n}是等方差数列;③数列{a n}中的项列举出来是:a1,a2,…,a k,a k+1,a k+2,…,a2k,…,a3k,…数列{a kn}中的项列举出来是:a k,a2k,a3k,…因为a k+12﹣a k2=a k+22﹣a k+12=a k+32﹣a k+22=…=a2k2﹣a k2=p所以(a k+12﹣a k2)+(a k+22﹣a k+12)+(a k+32﹣a k+22)+…+(a2k2﹣a2k﹣12)=a2k2﹣a k2=kp,类似地有a kn2﹣a kn﹣12=a kn﹣12﹣a kn﹣22=…=a kn+32﹣a kn+22=a kn+22﹣a kn+12=a kn+12﹣a kn2=p同上连加可得a kn+12﹣a kn2=kp,所以,数列{a kn}是等方差数列;④{a n}既是等方差数列,又是等差数列,所以a n2﹣a n﹣12=p,且a n﹣a n﹣1=d(d≠0),所以a n+a n﹣1=,联立解得a n=+,所以{a n}为常数列,当d=0时,显然{a n}为常数列,所以该数列为常数列.综上,正确答案的序号为:①②③④故答案为:①②③④三、解答题(本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤.)15.已知p:>1,q:∃x∈R,ax2+ax﹣1≥0,r:(a﹣m)(a﹣m﹣1)>0.(1)若p∧q为真,求实数a的取值范围;(2)若¬p是¬r的必要不充分条件,求m的取值范围.【考点】必要条件、充分条件与充要条件的判断;复合命题的真假.【分析】分别求出p,q,r为真时的a的范围,(1)p∧q为真,则p,q均为真,得到关于a的不等式组,解出即可;(2)问题转化为r是p的必要不充分条件,得到关于m的不等式,解出即可.【解答】解:(1)p为真时:由>1解得﹣2<a<1,q为真时,当a>0,一定存在ax2+ax﹣1≥0,当a<0,△=a2+4a≥0,解得a≤﹣4,故q为真时,实数a的取值范围为a>0或a≤﹣4,∵p∧q为真,则p,q均为真,∴a的取值范围为(0,1);(2)关于r:(a﹣m)(a﹣m﹣1)>0,解得:a>m+1或a<m,若¬p是¬r的必要不充分条件,即r是p的必要不充分条件,即p⇒r,∴m+1≤﹣2或m>1,即m≤﹣3或m>1,。
2020年高一数学第二学期期末模拟试卷及答案(三)
范文2020年高一数学第二学期期末模拟试卷及答案(三)1/ 62020 年高一数学第二学期期末模拟试卷及答案(三)学校班级姓名成绩一.选择题:本大题共 8 小题,每小题 4 分,共32 分,在每小题给出的四个选项中,只有一项是符合题目要求的. ? ? 1.已知集合 A ? x ? R x2 ? x ? 6 p 0 ,则 A=( ) A.(-2,3) B.(-3,2) C.(2,+∞) D.(一∞,3) 2.已知等差数列?an? 中, a1 ? 1, a3 ? 9 ,则下列数中,不是?an? 中项的是( ) A.17 B.21 C.33 D.60 3.对于实数 a,b ,下列命题正确的是( ) A.若 a f b ,则 1 f 1 ba B.若 a f b ,则 a2 f b2 C.若 a f b ,则 log2 (a ? b) f 0 D.若 a f b ,则 2a f 2b 4.某次数学考试中,整个年级的数学成绩取值只有 x1, x2,K , xn 这 n 个数,这些值的频率分别为 p1, p2,K , pn ,若年级的平均成绩记为 x ,则下面结论正确的是( ) A. x f x1 p1 ? x2 p2 ?K ? xn pn B. x p x1 p1 ? x2 p2 ?K ? xn pn C. x ? x1 p1 ? x2 p2 ?K ? xn pn D.无法判断 x 与 x1 p1 ? x2 p2 ?K ? xn pn 的大小关系 5.秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入 n, x的值分别为 3,2,则输出 v 的值为( ) A.9 B.18 C.20 D.35 6.已知数列?an? 满足 a1 ? a2 ? a3 ?K ? an ? 2 ? an 。
对 n? N* 成立,则 a1, a10 的值分别为( ) A.1, 1 29 c.1,210 B.1, 29 D.1, 1 210 7.从一批产品中随机取出三件产品,设“三件产品都是正品为事件A”,“三件产品都是次品为事件B”,“三件产品中有次品为事件C”,则下列结论正确的是( ) A.事件 A 与 C 为对立事件 B.事件 B 与 C 为互斥事件 C.事件 A,B,C 两两都是互斥事件 D.事件 A,B,C 两两都是对立事件 ?x ? y ?1? 0 8.若实数 x, y 满足不等式组 ??x ? y ?1 ? 0 ,将一颗质地均匀的骰子投掷 ?? y ?1 ? 0 两次得到的点数分别记为 a,b ,则 z ? 2ax ? by 在点(2,-1)处取得最大值的概率为( ) A. 1 6 B. 1 C. 2 5 5 D. 5 63/ 6二.填空题:本大题共 6 小题,每小题 4 分,共 24 分,把答案填写在题中横线上. 9.在线段 AB 上任取一点 P,则 AP f 2 的概率是. AB 3 10.某班一个小组 5 名同学父亲、母亲的年龄,用茎叶图表示(如右图所示).用 x1 , x2 分别表示父亲、母亲的平均年龄,若 x1 ? x2 ? 2 ,则 a= 11.已知函数 f (x) ? x2 ? m (x f 0) 的最小值大于 4,请写出一个满足条 x 件的 m 值____. 12.已知某地区中小学学生人数和近视情况分别如图 1 和图2 所示,为了了解该地区学生的近视形成原因,用分层抽样的方法抽取 20%的近.视.学.生.进行调查,则样.本.容.量.为 , 从中抽取的高.中.生.近视人数为____ 13.已知△ABC 在边长为 1 的正方形网格中的位置如图所示,老师让同学们计算 cos?ABC 的值,小明给出三个思路:思路①:用向量夹角的方法求值;思路②:利用余弦定理求值;思路③:利用两角和的方法求值.请你从中选择一个思路,你的选择是____(只需填写序号);按照你的选择,进行计算,得到的cos?ABC ? . 14.王亮同学在研究首项 a1 ? 2 ,公差 d=2 的等差数列?an?时,从中取连续的 5 项,其中 4 项的和为 134 ,则此连续 5 项的和为 . 三、解答题:本大题共 4 小题,共 44 分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分 12 分)已知数列?an?满足点( n, an )在直线 2x ? y ?1 ?0 上. ( I)若 a1 , a4 , am 成等比数列,求 m 的值;(Ⅱ)求?an?的前 n 项和Tn 。
2020年高一数学第二学期期末试卷及答案(共七套)
2020年高一数学第二学期期末试卷及答案(共七套)2020年高一数学第二学期期末试卷及答案(一)一.选择题1.两直线3x+y﹣3=0与6x+my+1=0平行,则它们之间的距离为()A. 4B.C.D.2.将边长为的正方形ABCD沿对角线AC折成一个直二面角B﹣AC﹣D.则四面体ABCD的内切球的半径为()A. 1B.C.D.3.下列命题正确的是()A. 两两相交的三条直线可确定一个平面B. 两个平面与第三个平面所成的角都相等,则这两个平面一定平行C. 过平面外一点的直线与这个平面只能相交或平行D. 和两条异面直线都相交的两条直线一定是异面直线4.在空间中,给出下面四个命题,则其中正确命题的个数为()①过平面α外的两点,有且只有一个平面与平面α垂直;②若平面β内有不共线三点到平面α的距离都相等,则α∥β;③若直线l与平面α内的无数条直线垂直,则l⊥α;④两条异面直线在同一平面内的射影一定是两条平行线.A. 0B. 1C. 2D. 35.已知直线l1:x+2ay﹣1=0,与l2:(2a﹣1)x﹣ay﹣1=0平行,则a的值是()A. 0或1B. 1或C. 0或D.6.如果圆(x﹣a)2+(y﹣a)2=8上总存在到原点的距离为的点,则实数a的取值范围是()A. (﹣3,﹣1)∪(1,3)B. (﹣3,3)C. [﹣1,1]D. [﹣3,﹣1]∪[1,3]7.若圆C:(x﹣5)2+(y+1)2=m(m>0)上有且只有一点到直线4x+3y﹣2=0的距离为1,则实数m的值为()A. 4B. 16C. 4或16 D. 2或48.已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A. B. C.D.9.如图,在圆的内接四边形ABCD中,AC平分∠BAD,EF切⊙O于C点,那么图中与∠DCF相等的角的个数是()A. 4B. 5C. 6D. 710.点P是双曲线﹣=1的右支上一点,M是圆(x+5)2+y2=4上一点,点N 的坐标为(5,0),则|PM|﹣|PN|的最大值为()A. 5B. 6C. 7D. 811.m,n,l为不重合的直线,α,β,γ为不重合的平面,则下列说法正确的是()A. m⊥l,n⊥l,则m∥nB. α⊥γ,β⊥γ,则α⊥βC. m∥α,n∥α,则m∥nD. α∥γ,β∥γ,则α∥β12.曲线y=1+ 与直线y=k(x﹣2)+4有两个交点,则实数k的取值范围是()A. B. C. D.二.填空题13.如图,网格纸上每个小正方形的边长为1,若粗线画出的是某几何体的三视图,则此几何体的体积为________.14.若过定点M(﹣1,0)且斜率为k的直线与圆x2+4x+y2﹣5=0在第一象限内的部分有交点,则k的取值范围是________.15.若点P在圆上,点Q在圆上,则|PQ|的最小值是________.16.直线x+7y﹣5=0分圆x2+y2=1所成的两部分弧长之差的绝对值为________.三.解答题17.已知△ABC三边所在直线方程:l AB:3x﹣2y+6=0,l AC:2x+3y﹣22=0,l BC:3x+4y﹣m=0(m∈R,m≠30).(1)判断△ABC的形状;(2)当BC边上的高为1时,求m的值.18.如图,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,且△ABC为等边三角形,AA1=AB=6,D为AC的中点.(1)求证:直线AB1∥平面BC1D;(2)求证:平面BC1D⊥平面ACC1A1;(3)求三棱锥C﹣BC1D的体积.答案解析部分一.<b >选择题</b>1.【答案】D【考点】两条平行直线间的距离【解析】【解答】解:∵直线3x+y﹣3=0与6x+my+1=0平行,∴,解得m=2.因此,两条直线分别为3x+y﹣3=0与6x+2y+1=0,即6x+2y﹣6=0与6x+2y+1=0.∴两条直线之间的距离为d= = = .故答案为:D【分析】根据两条直线平行的一般式的系数关系可求出m=2,进而得到两条直线的方程,再利用两条平行线间的距离公式可得结果。
人教版2020-2021学年下学期高一数学期末检测卷及答案
密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020--2021学年下学期期末考试卷高一 数学(满分:150分 时间: 120分钟)题号 一 二 三 总分 得分一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{}n a 的前n 项和为n S ,23a =,41a =-,则5S =( ) A .10 B .5 C .0 D .2-2.已知(2,3)a =-,a 与b 的夹角为60︒,则a 在b 方向上的投影为( ) A .72B .72C .27D .773.已知某班级17位同学某次数学联合诊断测试成绩的茎叶图如图所示,则这17位同学成绩中位数为( )A .91B .92C .94D .954.总体由编号为01,02,...,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表的第1行第5列和第6列数字开始由左向右依次选取两个数字,则选出来的第5个个体的编号为( )7961 9507 8403 1379 5103 2094 4316 8317 1869 6254 0738 9261 5789 8106 4138 4975 A .20B .18C .17D .165.已知某企业2020年4月之前的过去5个月产品广告投入与利润依次统计如表:月份11121 23广告投入(x 万元)8.27.88 7.98.1利润(y 万元) 92 89 8987 93由此所得回归方程为ˆ12yx a =+,则a 为( ) A .4- B .6- C .8- D .10-6.设α,β是两个不同的平面,是m ,n 两条不同的直线,下列说法正确的是( ) A .若m n ∥,mα,则n αB .若m α⊂,n β⊂,αβ⊥,则m n ⊥C .m α⊂,n β⊂,m n ∥, 则αβ密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题D .若n α⊂,m n ∥,m β⊥,则αβ⊥7.如果实数m ,n ,满足:0m n <<,则下列不等式中不成立的是( )A .m n >B .11m n m>- C .11n m<D .220n m -<8.在数列{}n a 中,11a =-,23a =-,23n n a a +=-,记数列{}n a 的前n 项和为n S ,则2022S =( )A .4-B .1-C .0D .39.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若22tan tan B C bc=,则ABC △的形状为( ) A .等腰三角形或直角三角形 B .等腰直角三角形 C .等腰三角形D .直角三角形10.唐朝的狩猎景象浮雕银杯如图1所示,其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺,它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度),如图2所示,己知球的半径为R ,酒杯内壁表面积为214π3R ,设酒杯上部分(圆柱)的体积为1V ,下部分(半球)的体积为2V ,则21V V =( )A .2B .32C .12D .111.设a ,b ,c 分别是ABC △的内角的对边A ,B ,C ,已知点M 是BC 边的中点,且2221a b c --=,则()AB MA MB ⋅+=( ) A .17B 17C .12D 1712.在锐角ABC △中,若cos cos sin sin 3sin A C B C acA+=,且3sin cos 2C C +=,则a b +的取值范围是( ) A .(3⎤⎦B .(3⎤⎦C .(23,43D .(3⎤⎦二、填空题:本题共4小题,每小题5分,共20分。
2020年高一数学第二学期期末模拟试卷及答案(三)
2020年高一数学第二学期期末模拟试卷及答案(三)学校 班级 姓名 成绩一.选择题:本大题共8小题,每小题4分,共32分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}260A x R x x =∈--p ,则A=( )A .(-2,3)B .(-3,2) C.(2,+∞) D .(一∞,3) 2.已知等差数列{}n a 中,11a =,39a =,则下列数中,不是{}n a 中项的是( )A .17B .21C .33D .60 3.对于实数,a b ,下列命题正确的是( ) A .若a b f ,则11bafB .若a b f ,则22a b fC .若a b f ,则2log ()0a b -fD .若a b f ,则22a b f4.某次数学考试中,整个年级的数学成绩取值只有12,,,n x x x K 这n 个数,这些值的频率分别为12,,,n p p p K ,若年级的平均成绩记为x ,则下面结论正确的是( ) A .1122n n x x p x p x p +++f K B .1122n n x x p x p x p +++p K C .1122n n x x p x p x p =+++KD .无法判断x 与1122n n x p x p x p +++K 的大小关系5.秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中 提出的多项式求值的算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实 例,若输入,n x 的值分别为3,2,则输出v 的值为( ) A .9 B .18 C .20 D .356.已知数列{}n a 满足1232n n a a a a a ++++=-K 。
对*n N ∈ 成立,则110,a a 的值分别为( )A.1,912B .1,92 c .1,102 D .1,10127.从一批产品中随机取出三件产品,设“三件产品都是正品为事件A”,“三件产品都是次品 为事件B”,“三件产品中有次品为事件C”,则下列结论正确的是( )A .事件A 与C 为对立事件B .事件B 与C 为互斥事件 C .事件A ,B ,C 两两都是互斥事件D .事件A ,B ,C 两两都是对立事件8.若实数,x y 满足不等式组101010x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,将一颗质地均匀的骰子投掷两次得到的点数分别记为,a b ,则2z ax by =+在点(2,-1)处取得最大值的概率为( )A .16 B .15 C. 25 D .56二.填空题:本大题共6小题,每小题4分,共24分,把答案填写在题中横线上.9.在线段AB 上任取一点P ,则23AP AB f 的概率是 .10.某班一个小组5名同学父亲、母亲的年龄,用茎叶图表 示(如右图所示).用1x ,2x 分别表示父亲、母亲的平均年 龄,若1x =22x +,则a=11.已知函数2()(0)x mf x x x+=f 的最小值大于4,请写出一个满足条件的m 值____.12.已知某地区中小学学生人数和近视情况分别如图1和图2所示,为了了解该地区学生的近视形成原因,用分层抽样的方法抽取20%的近视学生....进行调查,则样本容量....为 , 从中抽取的高中生...近视人数为____13.已知△ABC 在边长为1的正方形网格中的位置如图所示,老师让同学们计算cos ABC ∠的值,小明给出三个思路:思路①:用向量夹角的方法求值; 思路②:利用余弦定理求值; 思路③:利用两角和的方法求值.请你从中选择一个思路,你的选择是____(只需填写序号); 按照你的选择,进行计算,得到的cos ABC ∠= .14.王亮同学在研究首项12a =,公差d=2的等差数列{}n a 时,从中取连续的5项,其中 4 项的和为134,则此连续5项的和为 .三、解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分12分)已知数列{}n a 满足点(,n n a )在直线210x y -+=上. ( I)若1a ,4a ,m a 成等比数列,求m 的值; (Ⅱ)求{}n a 的前n 项和n T 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
范文
2020年高一数学第二学期期末模拟试卷及答案(共
1/ 10
七套)
2020 年高一数学第二学期期末模拟试卷及答案(共七套) 2020 年高一数学第二学期期末模拟试卷及答案(一)一、选择题: 1.重庆市 2013 年各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是() A.19 B.20 C.21.5 D.23 2.等差数列{an}中,a1+a5=10,a4=7,则数列{an}的公差为() A.1 B.2 C.3 D.4 3.在区间[﹣2,3]上随机选取一个数 X,则X≤1 的概率为()A. B. C. D. 4.执行如图所示的程序框图,输出的 k 值为()第1页(共123页)
A.3 B.4 C.5 D.6 5.已知 x,y 满足约束条件,则 z=﹣2x+y 的最大值是() A.﹣1 B.﹣2 C.﹣5 D.1 6.在梯形 ABCD 中,∠ABC= ,AD∥BC,BC=2AD=2AB=2,将梯形 ABCD 绕 AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A. B. C. D.2π 7.某三棱锥的三视图如图所示,则该三棱锥的表面积是()第2页(共123页)
3/ 10
A.2+ B.4+ C.2+2 D.5 8.对于集合{a1,a2,…,an}和常数 a0,定义 w= 为集合{a1,a2,…, an}相对 a0 的“正弦方差”,则集合{ ,,差”为() A. B. C. D.与 a0 有关的一个值 }相对 a0 的“正弦方二、填空题: 9.某电子商务公司对 1000 名网络购物者 2015 年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.在这些购物者中,消费金额在区间[0.5,0.9] 内的购物者的人数为______.第3页(共123页)
10.在△ABC 中,a=4,b=5,c=6,则 =______. 11.等比数列{an}的前 n 项和为 Sn,公比不为 1.若 a1=1,且对任意的n∈N+都有an+2+an+1﹣2an=0,则 S5=______. 12.已知 1<a<2,2<a+b<4,则 5a﹣b 的取值范围是______. 13.如图,在正三棱柱 A1B1C1﹣ABC 中,AB=2,A1A=2 ,D,F 分别是棱 AB,AA1 的中点,E 为棱 AC 上的动点,则△DEF 周长的最小值为______. 14.已知函数 f(x)= .(1)若(f x)>k 的解集为{x|x<﹣3 或 x>﹣2},则 k 的值等于______;(2)对任意 x>0,f(x)≤t 恒成立,则 t 的取值范围是______.三、解答题:本大题共 5 小题,共 50 分. 15.海关对同时从 A,B,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取 6 件样品进行检测.地区 A B C 第4页(共123页)
5/ 10
5 15 10 数量 00 0 (Ⅰ)求这
6 件样品来自 A,B,C 各地区商品的数量;(Ⅱ)若在这 6 件样品中随机抽取 2 件送往甲机构进行进一步检测,求这 2 件商品来自相同地区的概率. 16.如图,在长方体 ABCD﹣A1B1C1D1 中,AB=16,AA1=8,BC=10,点 E,F 分别在 A1B1C1D1 上,A1E=D1F=4,过点 E,F 的平面α 与此长方体的面相交,交线围成一个正方形 EFGH.(I)在图中画出这个正方形EFGH(不必说明画法和理由),并说明 G,H 在棱上的具体位置;(II)求平面α 把该长方体分成的两部分体积的比值. 17.已知函数 f (x)= sinxcosx﹣cos2x+ ,△ABC 三个内角 A,B, C 的对边分别为 a,b,c 且 f(A)=1.(I)求角 A 的大小;(Ⅱ)若 a=7,b=5,求 c 的值.第5页(共123页)
18.某超市随机选取 1000 位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.甲乙丙丁10 √ ×√ √ 0 21 ×√ ×√ 7 20 √√√× 0 30 √ ×√ × 0 85 √ × × × ×√ ×× 98 (1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买 3 种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 19.已知数列{an}和{bn}满足a1a2a3…an= 比数列,且 a1=2,b3=6+b2.(Ⅰ)求 an 和 bn;(n∈N*).若{an}为等第6页(共123页)
7/ 10
(Ⅱ)设 cn= (n∈N*).记数列{cn}的前 n 项和为 Sn.(i)求 Sn;(ii)求正整数 k,使得对任意n∈N*均有Sk≥Sn.第7页(共123页)
参考答案与试题解析一、选择题: 1.重庆市 2013 年各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是() A.19 B.20 C.21.5 D.23 【考点】茎叶图.【分析】根据中位数的定义进行求解即可.【解答】解:样本数据有 12 个,位于中间的两个数为 20,20,则中位数为,故选:B 2.等差数列{an}中,a1+a5=10,a4=7,则数列{an}的公差为() A.1 B.2 C.3 D.4 【考点】等差数列的通项公式.【分析】设数列{an}的公差为 d,则由题意可得 2a1+4d=10,a1+3d=7,由此解得 d 的值.【解答】解:设数列{an}的公差为 d,则由 a1+a5=10,a4=7,可得 2a1+4d=10,a1+3d=7,解得 d=2,第8页(共123页)
9/ 10
故选 B. 3.在区间[﹣。