高数第九章自测题答案
第九章习题答案高数下
作 业 9—1一.填空:1.已知D 是长方形域:,10;≤≤≤≤y b x a 且⎰⎰=Dd x yf 1)(σ,则⋅=b adx x f )(2 .解:⎰⎰=Dd x yf σ)(⎰⎰⋅=baydy dx x f 1)(21⎰⋅badx x f )( 故⎰⋅=badx x f )( 22.若D 是由1=+y x 和两个坐标轴围成的三角形域,且⎰⎰⎰⋅=Ddx x dxdy x f 1)()(ϕ,那么.=)(x ϕ)()1(x f x -解:⎰⎰=Ddxdy x f )(⎰⎰-⋅=xdy x f xdx 1010)(⎰⋅-10)()1(dx x f x ⎰⋅=1)(dx x ϕ二、单项选择题:1. 设1D 是正方形域,2D 是1D 的内切圆,3D 是1D 的外接圆,1D 的中心在(-1,1)处,记1I =⎰⎰---12222D xy x y dxdy e;2I =⎰⎰---22222D xy x y dxdy e;3I =⎰⎰---32222D xy x y dxdy e.则1I ,2I ,3I 大小顺序为( B )。
A .1I ≤2I ≤3I B.2I ≤1I ≤3I C. 3I ≤2I ≤1I D. 3I ≤1I ≤2I解:因为三个被积函数一样,均为正值,213D D D ⊃⊃,故2I ≤1I ≤3I 2. 设D 是第二象限的一个有界闭区域,且10<<y ,记1I =⎰⎰Dd yx σ3;2I =⎰⎰Dd x y σ32;3I =⎰⎰Dd x y σ321.1I ,2I ,3I 的大小顺序是( )。
A .1I ≤2I ≤3I B.2I ≤1I ≤3I C. 3I ≤1I ≤2I D. 3I ≤2I ≤1I 解:因10<<y ,故212y y y <<,而03<x ,从而323321x y yx x y <<,选(C )。
三.利用二重积分定义证明: 1.σσ=⎰⎰Dd (其中σ为D 的面积)解:ini iiDf d σηξσλ∑⎰⎰=→∆=⋅10),(lim 1i ni σλ∑=→∆⋅=11limσσσλλ==∆=→=→∑01lim limini故 σσ=⎰⎰Dd (其中λ是各iσ∆的最大直径)2.k d y x kf D=⎰⎰σ),(⎰⎰Dd y x f σ),( (其中k 为常数)解:=⎰⎰Dd y x kf σ),( ini iif σηξλ∑=→∆1),(lim i ni i i f k σηξλ∑=→∆=1),(limi ni i i f k σηξλ∑=→∆=1),(lim ⎰⎰=Dd y x f k σ),( (k 为常数)四.利用二重积分的性质估计下列积分的值: 1.}10,10|),{(,)(⎰⎰≤≤≤≤=+=Dy x y x d y x xy I 其中Dσ解: 10,10≤≤≤≤y x∴2)(0≤+≤y x xy∴⎰⎰⎰⎰≤≤+≤DDd d y x xy 22)(0σσ2.}4|),{(,)49(22⎰⎰≤+=++=Dy x d y x I 22yx其中Dσ 解: 中在D ,422ππσ=⋅=,()22222249499yx y x y x ++≤++≤++2549922≤++≤y x∴ σσσ25)49(922≤++≤⎰⎰⎰⎰DDd y x d即 ππ10036≤≤I五.根据二重积分的性质比较下列积分的大小: 1.⎰⎰⎰⎰++DDd y x d y x σσ32)()(与其中积分区域D 是由圆周2)1()2(22=-+-y x 所围成。
《高等数学 II》第9章 综合测试解答
华东政法大学2009-2010学年第二学期 刑事司法学院09年级计算机科学与技术专业《高等数学 II 》第九章综合测试解答学院:________ 班级:_____学号:_________姓名:________任课教师:_____一、填空题(本大题共4小题,每小题4分,共16分)请在每小题的空格中填上正确答案。
错填、不填均不得分。
1、函数221)ln(),(yx x x y y x f --+-=的定义域为 .解: f (x, y ) 的定义域为}1,0,0|),{(22<+≥>-y x x x y y x 2、设),ln(22y xy x z ++= 则=∂∂+∂∂yz y x z x. 解: 2222222=+++⋅++++⋅=∂∂+∂∂yxy x y x y y xy x y x x y zy x z x3、设,),(,),(2222y x y x y x y x f -=+=ϕ 则=)],(),,([y x y x f f ϕ .解: ).(2)()()],([)],([)],(),,([4422222222y x y x y x y x y x f y x y x f f +=-++=+=ϕϕ4、若函数y xy ax x y x f 22),(22+++=在点(1, -1)处取得极值, 则常数a = .解: 因,4),(2y a x y x f x ++= 所以),(y x f 在点(1, -1)处取得极值应有50)1(4,0)1,1(2-==-++=-a a f x 故即二、单项选择题(本大题共4小题,每小题5分,共20分)在每小题列出的四个备选项中只有一个是最符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均不得分。
1、函数z y x xy z y x u 62332222--++++=在原点沿=OA {1, 2, 1}方向的方向导数等于 .(A) 47-(B) 41 (C) 61 (D) 67- 解: 66,24,32-=-+=++=z U x y U y x U z y x 故 ,6,2,3)0,0,0()0,0,0()0,0,0(-=-==zyxU U U而方向余弦为 ,66,36,66⎪⎪⎭⎫⎝⎛故所求方向导数 = 67666664663-=-⋅-⋅.故选(D). 2、设),(y x u φ=, 而φ,xe y =具有连续二阶偏导数, 则22dxud 等于 .(A) x x x e e e 22221112φφφφ+++ (B) 22212112φφφφ+++x e (C) x x x e e e 22222112φφφφ+++ (D) x x x e e e 222212112φφφφ+++ 解: 因为2121Φ+Φ=Φ+Φ=x e dxdy dx du而 Φ1, Φ2仍按原来的复合关系, 故 .2)(22221211222221121122221121122x x x x x x x x x e e e e e e e e e dxdydx dy dx u d Φ+Φ+Φ+Φ=Φ+Φ+Φ+Φ+Φ=Φ+Φ+Φ+Φ+Φ=故选(D)3、设,)(z y x u -= 而,22y x z += 则y x u u +等于 .(A) )]ln())(()([21y x y x y x y x z z z --++-- (B) z y x z )(2- (C) )ln()()(2y x y x y x z-+- (D) )ln()(21y x y x z --+ 解: 因为),ln()(ln 22y x y x u -+= 两端对x 求偏导:yx y x y x x u u x -++-=1)()ln(222 两端对y 求偏导, 得yx y x y x y uu y --++-=1)()ln(222故 ).ln()()(2)]ln()(2[)(y x y x y x y x y x y x u u z z y x -+-=-+-=+ 选(C).4、函数⎪⎩⎪⎨⎧=+≠+++=0,20,)(2sin ),(22222222y x y x y x y x y x f 在点(0, 0)处 .(A) 无定义 (B) 无极限 (C) 有极限但不连续 (D) 连续解: 因为 )0,0(2)(2sin lim ),(lim 22220000f y x y x y x f y x y x ==++=→→→→, 故 ),(y x f 在(0, 0)连续. 选(D).三、计算题(本大题共7小题,每小题7分,共49分)1、求221)ln(limyx e x y y x ++→→解: .2ln )ln()ln(lim122221=++=++==→→y x y y y x yx e x yx e x2、设),(t x f y =,而t 是由方程0),,(=t y x F 所确定的y x ,的函数,试求dxdy . 解:由),(t x f y =及0),,(=t y x F 确定出t y ,为x 的函数)(),(x t t x y y ==,将给定的两个方程的两边对x 求导,便有⎪⎪⎩⎪⎪⎨⎧='+'+'∂∂+'=0dx dt F dx dy F F dxdt t f f dx dy t y x x解之, 得=dx dy t y t x t t x f F F F f F f ''+'''-'' 3、设),,(x v u f z =, ),(y x u ϕ=,)(y v ψ=,求复合函数)),(),,((x y y x f z ψϕ=的偏导数xz∂∂与yz ∂∂. 解: 由复合函数求导法,得321f x f x f x z '+∂∂'+∂∂'=∂∂ψϕ,31f xf '+∂∂'=ϕ=∂∂yz dy d f y f ψϕ21'+∂∂')(21y f y f ψϕ''+∂∂'=.4、求由方程2222=+++z y x xyz 所确定的函数),(y x z z =在点)1,0,1(-处的全微分.dz[解法一] 对方程两边求全微分可得+++xydz xzdy yzdx 0222=++++zy x zdz ydy xdx将1,0,1-===z y x 代入上式可得0)(21=-+-dz dx dy由此得到dy dx dz 2-= [解法二] 设=),,(z y x F 2222-+++z y x xyzx F '=222zy x x yz +++; y F '=222zy x y xz +++;z F '=222zy x z xy +++222222z y x xy z z y x yz x F F x z z x ++++++-=''-=∂∂;222222z y x xy z z y x xz y F F y z z y ++++++-=''-=∂∂=dz dx zy x xy z z y x yz x 222222++++++-dy zy x xy z z y x xz y 222222++++++-将1,0,1-===z y x 代入上式可得dy dx dz 2-=5、设函数)(x f y =由方程1)cos(2-=-+e xy e yx 所确定,求曲线)(x f y =在点)1,0(处的法线方程。
《高等数学》同济第六版 第9章答案
1 得C = 0 , 9 1 1 故所求的特解为: y = x ln x − x 3 9
代入初始条件 y (1) = − 11.求下列微分方程的通解 (1) y′′ − 4 y′ + 3 y = 0 (3) y′′ − 4 y′ + 4 y = 0 解: (1)特征方程为 (2) y′′ − 4 y′ = 0 (4) y′′ − 4 y′ + 5 y = 0
x )dy = 0 y
解: (1)原方程可化为: 3
dy x 2 y = + , 这是齐次方程. dx y 2 x
设u
=
y dy du ,由 y = xu 得 =u + x⋅ dx dx x
3u 2 1 du = dx 代入原方程并分离变量得: 3 x 1 − 2u
两边积分得: −
3
1 ln 1 − 2u 3 = ln x + ln C1 2 1 C 3 ,即 1 − 2u = 2 , 2 2 C1 x x
3 3 ⎤ ∫ y dy ⎡ y − ∫ y dy x=e dy + C ⎥ ⎢∫ − e ⎢ ⎥ ⎣ 2 ⎦
y 1 1 y2 = y 3 ( ∫ − ⋅ 3 dy + C ) = y 3 ( + C ) = Cy 3 + 2 2 y 2y
10.求微分方程 xy′ + 2 y = x ln x 满足 y (1) = − 解:原方程化为 将 P ( x) =
有⎨
⎧ C1 = 0 解得 C1 = 0, C2 = 1 . C + 2 C = 1 ⎩ 2 1
写出由下列条件确定的曲线所满足的微分方程.
4
(1)曲线在点 ( x, y ) 处的切线斜率等于该点横坐标的 5 倍. (2) 曲线在点 ( x, y ) 处的切线斜率等于该点横坐标与纵坐标乘积的倒数. 答案.(1) y ′ = 5 x (2) y ′ =
(完整版)高等代数(北大版)第9章习题参考答案
第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在n R 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。
解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =ji j i ijy x a,),(αααα,由于A 是正定矩阵,因此∑ji j i ij y x a,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。
2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n a a a a a a a a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛ =ij a ,),,2,1,(n j i =,因此有B A =。
4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3) )2,1,1,1(=α, )0,1,2,3(-=β。
高等数学第九章多元函数微分学试题及答案
第九章 多元函数微分学§9.1 多元函数的概念、极限与连续性一、多元函数的概念1.二元函数的定义及其几何意义设D 是平面上的一个点集,如果对每个点()D y x P ∈,,按照某一对应规则f ,变量z 都有一个值与之对应,则称z 是变量x ,y 的二元函数,记以()y x f z ,=,D 称为定义域。
二元函数()y x f z ,=的图形为空间一卦曲面,它在xy 平面上的投影区域就是定义域D 。
例如 221y x z --=,1:22≤+y x D , 此二元函数的图形为以原点为球心,半径为1的上半球面,其定义域D 就是 xy 平面上以原点为圆心,半径为1的闭圆。
2.三元函数与n 元函数()z y x f u ,,= ()Ω∈z y x ,,空间一个点集称为三元函数()n x x x f u ,,21 = 称为n 元函数它们的几何意义不再讨论,在偏导数和全微分中会用到三元函数。
条件极值中,可能会遇到超过三个自变量的多元函数。
二、二元函数的极限设函数),(y x f 在区域D 内有定义,),(000y x P 是D 的聚点,如果存在常数A ,对于任意给定的0>ε,总存在0>δ,当),(y x P 满足δ<-+-=<20200)()(0y y x x PP 时,恒有ε<-A y x f ),(成立。
则记以()A y x f y y x x =→→,lim 0或()()()A y x f y x y x =→,lim00,,。
称当()y x ,趋于()00,y x 时,()y x f ,的极限存在,极限值A ,否则称为极限不存在。
值得注意:这里()y x ,趋于()00,y x 是在平面范围内,可以按任何方式沿任意曲线趋于()00,y x ,所以二元函数的极限比一元函数的极限复杂;但考试大纲只要求知道基本概念和简单的讨论极限存在性和计算极限值,不像一元函数求极限要求掌握各种方法和技巧。
大学高数下册试题及答案第9章
大学高数下册试题及答案第9章第九章曲线积分与曲面积分作业13对弧长的曲线积分1.计算,其中为直线及抛物线所围成的区域的整个边界.解:可以分解为及2.,其中为星形线在第一象限内的弧.解:为原式3.计算,其中折线ABC,这里A,B,C依次为点.解:4.,其中为螺线上相应于从变到的一段弧.解:为5.计算,其中L:.解:将L参数化,6.计算,其中L为圆周,直线及轴在第一象限内所围成的扇形的整个边界.解:边界曲线需要分段表达,从而需要分段积分从而作业14对坐标的曲线积分1.计算下列第二型曲线积分:(1),其中为按逆时针方向绕椭圆一周;解:为原式(2),其中是从点到点的一段直线;解:是原式(3),其中是圆柱螺线从到的一段弧;解:是原式(4)计算曲线积分,其中为由点A(-1,1)沿抛物线到点O(0,0),再沿某轴到点B(2,0)的弧段.解:由于积分曲线是分段表达的,需要分段积分;原式2.设力的大小等于作用点的横坐标的平方,而方向依轴的负方向,求质量为的质点沿抛物线从点移动到点时,力所作的功.解:3.把对坐标的曲线积分化成对弧长的曲线积分,其中为:(1)在平面内沿直线从点到点;(2)沿抛物线从点到点.解:(1)(2)作业15格林公式及其应用1.填空题(1)设是三顶点(0,0),(3,0),(3,2)的三角形正向边界,12.(2)设曲线是以为顶点的正方形边界,不能直接用格林公式的理由是_所围区域内部有不可道的点_.(3)相应于曲线积分的第一型的曲线积分是.其中为从点(1,1,1)到点(1,2,3)的直线段.2.计算,其中L是沿半圆周从点到点的弧.解:L加上构成区域边界的负向3.计算,其中为椭圆正向一周.解:原式4.计算曲线积分其中为连续函数,是沿圆周按逆时针方向由点到点的一段弧.解:令则,原式5.计算,其中为(1)圆周(按反时针方向);解:,而且原点不在该圆域内部,从而由格林公式,原式(2)闭曲线(按反时针方向).解:,但所围区域内部的原点且仅有该点不满足格林公式条件,从而可作一很小的圆周(也按反时针方向),在圆环域上用格林公式得,原式6.证明下列曲线积分在平面内与路径无关,并计算积分值:(1);解:由于在全平面连续,从而该曲线积分在平面内与路径无关,沿折线积分即可,原式(2);解:由于在全平面连续,从而该曲线积分在平面内与路径无关,沿直线积分也可,原式(3).解:由于在全平面连续,从而该曲线积分在平面内与路径无关,沿折线积分即可,原式7.设在上具有连续导数,计算,其中L为从点到点的直线段.解:由于在右半平面连续,从而该曲线积分右半平面内与路径无关,沿曲线积分即可,原式8.验证下列在整个平面内是某一函数的全微分,并求出它的一个原函数:(1);解:由于在全平面连续,从而该曲线积分在平面内是某一函数的全微分,设这个函数为,则从而,(2);解:由于在全平面连续,从而该曲线积分在平面内是某一函数的全微分,设这个函数为,则原式可取(3)解:可取折线作曲线积分9.设有一变力在坐标轴上的投影为,这变力确定了一个力场,证明质点在此场内移动时,场力所作的功与路径无关.证:,质点在此场内任意曲线移动时,场力所作的功为由于在全平面连续,从而质点在此场内移动时,场力所作的功与路径无关.作业16对面积的曲面积分1.计算下列对面积的曲面积分:(1),其中为锥面被柱面所截得的有限部分;解:为,原式(2),其中为球面.解:为两块,原式2.计算,是平面被圆柱面截出的有限部分.解:为两块,,原式(或由,而积分微元反号推出)3.求球面含在圆柱面内部的那部分面积.解:为两块,原式4.设圆锥面,其质量均匀分布,求它的重心位置.解:设密度为单位1,由对称性可设重点坐标为,故重点坐标为5.求抛物面壳的质量,此壳的密度按规律而变更.解:作业17对坐标的曲面积分1.,其中是柱面被平面及所截得的在第一卦限内的部分前侧.解:原式=2.计算曲面积分,其中为旋转抛物面下侧介于平面及之间的部分.解:原式=3.计算其中是平面所围成的空间区域的整个边界曲面的外侧.解:分片积分。
工科类本科《高等数学》第7-9章自测题参考答案
工科类本科《高等数学》第7,8,9章自测题参考答案一、填空题:1.极限00x y →→12- ;20tan()lim x y xy y →→= 2;0x y →→= -2 .解:利用等价无穷小量替换或根式有理化及重要极限求待定型的极限:00000111lim sin()2x x x y y y xy xy xy →→→→→→-+==-=-或 0000112lim 2x x y y xy xy →→→→-==-;222000tan()limlim lim 2x x x y y y xy xy x y y →→→→→→===;)()))00000111limlim lim 2121xyxyx x x x y y y y xyxyxye xye →→→→→→→→====-----或()000002limlim2112x x x x xy y y y y xy xyxy e →→→→→→→→====---.2.若22(,)22f x y x xy ax y =+++在点)1,1(-处取得极值,则a = -2 . 解:依题意,有(1,1)0,(1,1)0x y f f ''-=-=.而(,)42x f x y x xy a '=++, 于是,有(1,1)420x f a '-=-+=,解得 2.a =-3.函数2sin()z x xy =的全微分dz = 22222sin()cos()2cos()xy xy xy dx x y xy dy ⎡⎤++⎣⎦. 解:z zdz dx dy x y∂∂=+∂∂,而222222sin()cos()sin()cos(),z xy x xy y xy xy xy x ∂=+⋅=+∂222cos()22cos()z x xy xy x y xy y∂=⋅=∂.故22222sin()cos()2cos()dz xy xy xy dx x y xy dy ⎡⎤=++⎣⎦. 4. 设函数44224z x y x y =+-,则此函数在点(1,1)处的全微分(1,1)dz = ()4dx dy -+ .解:(1,1)(1,1)(1,1)x y dz z dx z dy ''=+,而()3211(1,1)484x x y z x xy=='=-=-,()3211(1,1)484y x y z y x y =='=-=-,故()(1,1)4dz dx dy =-+.5.设22()z f x y =+,且()f u 可导,则z x ∂=∂()222xf x y '+,22z x∂=∂()()2222224f x y x f x y '''+++.解:()()222222zf x y x xf x y x∂''=+⋅=+∂, ()()()()2222222222222224zf x y xf x y x f x y x f x y x∂''''''=+++⋅=+++∂. 6. 设方程1xy xz yz ++=确定隐函数(,)z f x y =, 则z x ∂=∂ y z x y +-+ , z y ∂=∂ x zx y+-+ . 解:令(,,)1F x y z xy xz yz =++-,则(,,)(,,),(,,)(,,)y x z z F x y z F x y z z y z z x zx F x y z x y y F x y z x y''∂+∂+=-=-=-=-''∂+∂+. 二、单项选择题:1.设有直线⎩⎨⎧=+--=+++031020133:z y x z y x L 和平面0224:=-+-∏z y x ,则L 与∏( D )A. 垂直B. 平行C.L 在 ∏ 上D. 斜交解:直线L 有方向向量()()33210133271672110i j ks i j k i j k i j k =++⨯--==-+---,平面∏有法向量()4,2,1n =-,因为0,(s n n ks k ⋅≠≠为非零常数), 所以s n 与既不垂直也不平行,故L 与∏斜交.2.已知k j i b k j i a+-=++=2,32,那么a 与b ( A )A. 垂直B. 平行C. 夹角为030D. 夹角为060 解:因为()1122310a b ⋅=⨯+⨯-+⨯=,所以a b ⊥. 3. 已知函数22f x+y,x -y =x -y (),则(,)(,)f x y f x y x y∂∂+=∂∂( C ). (A )22x y - (B) 22x y + (C) x y + (D) x y -解:因为()()22f x+y,x -y =x -y x+y x -y =(),所以(,)f x y xy =, 故(,)(,).f x y f x y y x x y∂∂+=+∂∂ 4. 设yz x =, 则dz =( A ).(注意分清对幂函数还是指数函数求导) (A)1ln y y yxdx x xdy -+ (B)11y y yx dx yx dy --+(C)1ln y y x xdx yxdy -+ (D)ln ln y y x xdx x xdy +5.曲线 t a x cos =,t a y sin =,amt z =,在 4π=t 处的切向量是 ( D ).A .)2,1,1( B.)2,1,1(- C.)2,1,1(m D.)2,1,1(m -解:曲线在4π=t 处有切向量()())44,,sin ,cos ,t t t t t s x y z a t a t am a a am ππ==⎛⎫'''==-=-=- ⎪ ⎪⎝⎭. 6. 函数(,,)f x y z xy z =+在点(1,1,1)-处沿方向(2,1,2)l =-的方向导数为( C ) A. 1; B.23; C. 13; D. 0. 解:所求的方向导数(1,1,1)(1,1,1)cos (1,1,1)cos (1,1,1)cos x y z l f f f f αβγ''''-=-+-+-. 而11(1,1,1)1,(1,1,1)1,(1,1,1) 1.x y z y x f y f x f =='''-==-==-= 又2213l =+=,从而212cos ,cos ,cos 333αβγ===-.故2121(1,1,1)1113333l f ⎛⎫'-=⨯+⨯+⨯-= ⎪⎝⎭.7.二元函数ln()z xy =的全微分为( A ).A.dx dy x y +; B. dx dy xy +; C. dx dy y x+; D. dxdyxy . 解:全微分z z dz dx dy x y ∂∂=+∂∂,而1111,z z y x x xy x y xy y ∂∂=⋅==⋅=∂∂.故dx dydz x y=+ 三、证明题:1.设()F u z xy x =+,y u x =,()F u 为可导函数. 求证:z zx y z xy x y∂∂+=+∂∂. 证 因为2()()()()z y y y F u xF u y F u F u x x x ∂⎛⎫''=++⋅-=+- ⎪∂⎝⎭;1()()z x xF u x F u y x ∂''=+⋅=+∂. 所以 ()()()()()z z y xy x y F u F u y x F u xy xF u xy z xy x y x ∂∂⎛⎫''+=+-++=++=+ ⎪∂∂⎝⎭. 2. 设22()y f x y z -=, ()f u 为可导函数. 求证:211z z zx x y y y ∂∂+=∂∂. 证 因为2222222222222222()()2()()()()x z y y xyf x y f x y xf x y x f x y f x y f x y '∂-''⎡⎤=-⋅-=-⋅-=-⎣⎦∂---, ()222222222222222()()2()2()()()f x y y f x y y z f x y y f x y y f x y f x y '--⋅-⋅-'∂-+-==∂--.故22222222222222221112()1()2()1()()()z z xyf x y f x y y f x y z x x y y x f x y y f x y yf x y y ''∂∂--+-+=-⋅+⋅==∂∂---. 四、计算题:1.设2(,)x z f x y y =,其中f 具有连续的二阶偏导数,求222,,,z z z z x y x x y∂∂∂∂∂∂∂∂∂. 解:22121211(,)(,)22,z x x f x y f x y xy f xyf x y y y y∂''''=⋅+⋅=+∂2222121222(,)(,),z x x x xf x y f x y x f x f y y y y y ⎛⎫∂''''=⋅-+⋅=-+ ⎪∂⎝⎭212122211222f f z z f xyf yf xy x x x x y y xx ''⎛⎫∂∂∂∂∂∂⎛⎫'''==+=++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭ 221112221221112222211112222442f xyf yf xy f xyf f xf x y f yf y y y y⎛⎫⎛⎫''''''''''''''''=++++=+++ ⎪ ⎪⎝⎭⎝⎭, 21212122111222f f z z f xyf f xf xy x y y x y y y y y y ''⎛⎫∂∂∂∂∂∂⎛⎫''''==+=-+++ ⎪ ⎪∂∂∂∂∂∂∂⎝⎭⎝⎭2211112221222221122x x f f x f xf xy f x f y y y y ⎛⎫⎛⎫''''''''''=-+-+++-+ ⎪ ⎪⎝⎭⎝⎭231211122223122x xf xf f f x yf y y y''''''''=-+--+.注:因为f 具有连续的二阶偏导数,所以1221f f ''''=.2.设22220x y z z ++-=,求22,z zx y∂∂∂∂.解:令222(,,)2F x y z x y z z =++-,则(,,)2(,,)221x z F x y z z x xx F x y z z z '∂=-=-='∂--,(,,)2(,,)221y z F x y z z y y yF x y z z z '∂=-=-='∂--, 2222223(1)(1)(1)11(1)(1)(1)z y z y z y y z z y z y z y y y y z z z z ⎛⎫∂--⋅- ⎪-+⋅∂⎛⎫∂∂∂∂-+⎛⎫⎝⎭-===== ⎪ ⎪∂∂∂∂----⎝⎭⎝⎭. 注意:z 是关于,x y 的二元函数.3.设方程组22222x y uv xy u v ⎧++=⎪⎨--=⎪⎩确定隐函数组(,),(,)u u x y v v x y ==,求 u x ∂∂,v x ∂∂.解法一:分别对两方程两边分别对x 求偏导,得20220u v x v u x x u v y u v x x ∂∂⎧++=⎪⎪∂∂⎨∂∂⎪--=⎪∂∂⎩ 即 222uv v u x x x u v u v yxx ∂∂⎧+=-⎪⎪∂∂⎨∂∂⎪+=⎪∂∂⎩当222()022v uJ u v u v==--≠时,有222114(4)22()x u u xv yuxv yu y v x J J u v -∂+==--=∂- , 222114(4)22()v x v xu yvyv xu u y x J J u v -∂+==+=-∂- . 解法二:令2222(,,,)0(,,,)20F x y u v x y uvG x y u v xy u v ⎧=-+=⎪⎨=---=⎪⎩,则22(,)2()22(,)uv v u F G J u v u v u v ∂===---∂2(,)42(,)xv x u F G J xv yu y v x v ∂===---∂ , 2(,)42(,)ux v x F G J yv xu u yu x ∂===+-∂ 故2242()xv uv J u xv yu x J u v ∂+=-=∂- ,2242()ux uv J v xu yvx J u v ∂+=-=-∂-. 4.求函数3322(,)339f x y x y x y y =+-+-的极值.解:解方程组223603690f x x xf y y y∂⎧=-=⎪∂⎪⎨∂⎪=+-=∂⎪⎩,得四个驻点1234(0,3),(0,1),(2,3),(2,1)P P P P --. 又66,0,66xx xy yy f x f f y ''''''=-==+.记(),(),()(1,2,3,4)xx i xy i yy i A f P B f PC f P i ''''''====对21(0,3),6(12)00,P AC B --=-⨯-->且60A =-<,则1(0,3)P-是函数的极大值点,极大值(0,3)27f -=;对22(0,1),61200P AC B -=-⨯-<,则2(0,1)P 不是极值点; 对()23(2,3),61200P AC B --=⨯--<,则3(2,3)P -不是极值点;对24(2,1),61200P AC B -=⨯->,且60A =>,则4(2,1)P 是函数的极小值点,极小值(2,1)9f =-. 5.求曲面222327xy z +-=在点(3,1,1)P 处的切平面方程和法线方程.解:令 222(,,)327F x y z x y z =+--,则曲面在点(3,1,1)P 处的法向量为()(3,1,1)(3,1,1)(,,)(6,2,2)(18,2,2)29,1,1x y z n F F F x y z '''==-=-=-于是,所求的切平面方程为 9(3)(1)(1)0x y z -+---=,即 9180x y z +--=.法线方程为311911x y z ---==-. 6.求曲面z=在点(3,4,5)P 处的切平面方程和法线方程.解:曲面在点(3,4,5)P 处的法向量为()(3,4,5)(3,4,5)341(,,1)1),,13,4,5555x y n z z ⎛⎫''=-=-=-=- ⎪⎝⎭. 于是,所求的切平面方程为 3(3)4(4)5(5)0x y z -+---=,即 3450x y z +-=.法线方程为345345x y z ---==-. 7.求函数23(,,)f x y z xy yz =+在点0(1,1,2)P 处沿从0(1,1,2)P 到(3,1,3)P -方向的方向导数0P fl∂∂.解:记()02,2,1l P P ==-,(223l =+=,从而221cos ,cos ,cos 333αβγ==-=.又()23211(1,1,2)2(1,1,2)1,(1,1,2)210,(1,1,2)312.y x y z y z f yf xy z f yz ==='''===+===故所求的方向导数P f l∂∂(1,1,2)cos (1,1,2)cos (1,1,2)cos x y z f f f αβγ'''=++221110122333⎛⎫=⨯+⨯-+⨯=- ⎪⎝⎭.。
高等数学第9章试题[大全]
高等数学第9章试题[大全]第一篇:高等数学第9章试题[大全]高等数学院系_______学号_______班级_______姓名_________得分_______ 题号选择题填空题计算题证明题其它题总分型题分 20 20 20 20 20 核分人得分复查人一、选择题(共 20 小题,20 分)1、设Ω是由z≣及x2+y2+z2≢1所确定的区域,用不等号表达I1,I2,I3三者大小关系是A.I1>I2>I3;B.I1>I3>I2;C.I2>I1>I3;D.I3>I2>I1.答()2、设f(x,y)为连续函数,则积分可交换积分次序为答()3、设Ω是由曲面z=x2+y2,y=x,y=0,z=1所围第一卦限部分的有界闭区域,且f(x,y,z)在Ω上连续,则等于(A)(B)(C)(D)答()4、设u=f(t)是(-∞,+∞)上严格单调减少的奇函数,Ω是立方体:|x|≢1;|y|≢1;|z|≢1.I=a,b,c为常数,则(A)I>0(B)I<0(C)I=0(D)I的符号由a,b,c确定答()5、设Ω为正方体0≢x≢1;0≢y≢1;0≢z≢1.f(x,y,z)为Ω上有界函数。
若,则(A)f(x,y,z)在Ω上可积(B)f(x,y,z)在Ω上不一定可积(C)因为f有界,所以I=0(D)f(x,y,z)在Ω上必不可积答()6、由x2+y2+z2≢2z,z≢x2+y2所确定的立体的体积是(A)(B)(C)(D)答()7、设Ω为球体x2+y2+z2≢1,f(x,y,z)在Ω上连续,I=(A)4(C)2x2yzf(x,y2,z3)dv(D)0 x2yzf(x,y2z3)dv(B)4x2yzf(x,y2,z3),则I= x2yzf(x,y2,z3)dv答()8、函数f(x,y)在有界闭域D上有界是二重积分存在的(A)充分必要条件;(B)充分条件,但非必要条件;(C)必要条件,但非充分条件;(D)既非分条件,也非必要条件。
高数答案第9章
第9章(之1) (总第44次)*1. 微分方程7359)(2xy y y y =''''-''的阶数是 ( ) (A )3; (B )4; (C )6; (D )7. 答案(A )解 微分方程的阶数是未知函数导数的最高阶的阶数.*2. 下列函数中的C 、α、λ及k 都是任意常数,这些函数中是微分方程04=+''y y 的通解的函数是 ( ) (A )x C x C y 2sin )2912(2cos 3-+=; (B ))2sin 1(2cos x x C y λ+=; (C )x C k x kC y 2sin 12cos 22++=; (D ))2cos(α+=x C y . 答案 (D )解 二阶微分方程的通解中应该有两个独立的任意常数. (A )中的函数只有一个任意常数C ;(B )中的函数虽然有两个独立的任意常数,但经验算它不是方程的解;(C )中的函数从表面上看来也有两个任意常数C 及k ,但当令kC C =时,函数就变成了x C x C y 2sin 12cos 2++=,实质上只有一个任意常数;(D )中的函数确实有两个独立的任意常数,而且经验算它也确实是方程的解.*3.在曲线族 xxec e c y -+=21中,求出与直线x y =相切于坐标原点的曲线.解 根据题意条件可归结出条件1)0(,0)0(='=y y , 由xxe c e c y -+=21, xx ec e c y --='21,可得1,02121=-=+c c c c ,故21,2121-==c c ,这样就得到所求曲线为)(21x x e e y --=,即x y sinh =.*4.证明:函数y e x x =-2333212sin 是初值问题⎪⎪⎩⎪⎪⎨⎧===++==1d d ,00d d d d 0022x x x y y y x yx y 的解.证明 '=-+--y e x e x x x 3332321212sin cos ,''=----y e x e x x x 3332321212sin cos ,代入方程得 ''+'+=y y y 0, 此外,,1)0(0)0(='=y y 故y e x x =-2333212sin 是初始值问题的解.*5.验证y e e t Ce x t xx=+⎰20d (其中C 为任意常数)是方程'-=+y ye x x 2的通解.证明 '=+⋅+⎰y ee t e e Ce xt xx x x 220d =++ye x x 2, 即 2x x e y y +=-',说明函数确实给定方程的解.另一方面函数y ee t Ce xt x x=+⎰2d 含有一任意常数C ,所以它是方程的通解.**6.求以下列函数为通解的微分方程: (1)31+=Cx y ;解 将等式31+=Cx y 改写为13+=Cx y ,再在其两边同时对x 求导,得C y y ='23,代入上式,即可得到所求之微分方程为1332-='y y xy . (2)xC x C y 21+=. 解 因为给定通解的函数式中有两个独立的任意常数,所以所求方程一定是二阶方程,在方程等式两边同时对x 求两次导数,得221x C C y -=',322xC y =''. 从以上三个式子中消去任意常数1C 和2C ,即可得到所求之微分方程为02=-'+''y y x y x .**7.建立共焦抛物线族)(42C x C y +=(其中C 为任意常数)所满足的微分方程[这里的共焦抛物线族是以x 轴为对称轴,坐标原点为焦点的抛物线].解 在方程)(42C x C y +=两边对x 求导有C y y 42=',从这两式中消去常数所求方程为)2(y y x y y '+'=.**8.求微分方程,使它的积分曲线族中的每一条曲线)(x y y =上任一点处的法线都经过坐标原点.解 任取)(x y y =上的点 ),(y x ,曲线在该点处的切线斜率为 y '=dxdy . 所以过点),(y x 的法线斜率为y '-1, 法线方程为y Y -=y '-1)(x X -, 因为法线过原点,所以=-y 0y '-1)0(x -从而可得所求微分方程为0='+y y x .第9章(之2)(总第45次)教学容:§9.2 .1可分离变量的方程; §9.2 .2一阶线性方程**1.求下列微分方程的通解:(1)21)1(x y x y +-=';解: 分离变量21d 1d x x x y y +=-,两边积分⎰⎰+=-21d 1d x xx y y , 得C x y ln )1ln(21)1ln(2-+=--,即211xC y +-=. (2)222y x e yx y -='; 解:分离变量x xe y ye x y d d 222=,两边积分就得到了通解)d (21222x e xe e x x y ⎰-=c e xe x x +-=)21(2122.(3)042)12(=-+'+y y e y e x .解: 12d 42d +-=-x xe y e y y ,C x e y ln 21)12ln(21)2ln(21++-=-, 即 ()()e x C y-+=221.**2.试用两种不同的解法求微分方程xy y x y +--='1的通解.解法一 (可分离变量方程的分离变量法)这是一个一阶可分离变量方程,同时也是一个一阶线性非齐次方程,这时一般作为可分离变量方程求解较为容易. 分离变量,)1)(1(y x y --=',x x y y d )1(1d -=-,并积分 x x y yd )1(1d -=-⎰⎰ 得c x x y +-=--221)1ln(,所求通解为 x x ce y -+=2211.解法二 (线性方程的常数变易法)将原方程改写为x y x y -=-+'1)1(,这是一个一阶线性非齐次方程.对应的齐次方程为0)1(=-+'y x y ,其通解为○1x x e C y -=221.代入原非齐次方程得x e C x x -='-1221,解得○2C eC x x +=-221,○2代入○1即可得原方程的通解xx Cey -+=2211.*3.求解下列初值问题:(1)21x yy -=',6)21(πe y -=.解:Θy '=21xy -,∴21d d xx y y -= (0≠y ), 21d d xx y y -=⎰⎰,∴C x y +=arcsin ln , ∴ x Ce y arcsin =,Θπ6)21(e y -=,∴21arcsin 6Ce e =-π,∴1-=C , ∴ x e y arcsin -=.(2)22x e xy y -=+',1)0(=y ;解: Θ22x e xy y -=+', x x p 2)(=∴,2)(x e x q -=,=∴)(x y ⎰-xx ed 2⎥⎦⎤⎢⎣⎡+⎰⎰-C dx e e x x x d 222x e -=⎥⎦⎤⎢⎣⎡+⎰⎰-C dx e e x x x d 2222x x Ce xe --+=, Θ 1)0(=y , 101=⇒+=∴c c , 2)1(x e x y -+=∴.(3)xex y y cos cot =+',1)2(=πy ;解: Θ xex y y cos cot =+', ∴x x P cot )(=,xex Q cos )(=.∴ ⎥⎦⎤⎢⎣⎡⎰+⎰=⎰-x C y xx x x x d e e e d cot cos d cot )d e e (e sin ln cos sin ln ⎰+=-x C x x x)d sin e (csc cos ⎰+=x x C x x x C xcsc )e(cos -=,由1)2(=πy , 可确定 2=C ,所以x y x csc )e 2(cos -=.(4)0d )12(d 2=+-+x x xy y x ,01==x y .解: 方程变形为 2112xx y x y -=+',是一阶线性非齐次方程,其通解为⎥⎦⎤⎢⎣⎡⎰-+⎰=⎰-dx ex x c e y dx x dx x 222)11( ⎥⎦⎤⎢⎣⎡-+=⎰dx x x x c x 222)11(1⎥⎦⎤⎢⎣⎡-+=x x c x22211x xc 1212-+= 由 0)1(=y , 得 21=c , 所以特解为:x xy 121212-+=.**4.求微分方程 0d )ln (d ln =-+y y x x y y 的通解(提示将x 看作是y 的函数). 解:将x 看作是y 的函数,原方程可化为yx y y dy dx 1ln 1=+,这是一阶线性方程,将其中yy Q y y y P 1)( ,ln 1)(==代入一阶线性方程求解公式,得通解 1e 1)ln(ln )ln(ln ln 1ln 1⎥⎦⎤⎢⎣⎡+=⎥⎥⎦⎤⎢⎢⎣⎡⎰+⎰=⎰⎰--dy e y c dy ey c e x y y dy y y dy y y y y c dy y y c y ln 21ln ln ln 1+=⎥⎦⎤⎢⎣⎡+=⎰.**5.求满足关系式)(d )(22x y x u u uy x +=⎰的可导函数)(x y .解:这是一个积分方程,在方程等式两边同对x 求导,可得微分方程xy x x y x()d d =+2,即d d yxxy x -=-2,分离变量得d d y y x x -=2,积分得y Ce x =+222,在原方程两边以2=x 代入,可得初试条件22-==x y.据此可得14--=e C ,所以原方程的解为 24122+-=-x e y .**6.设降落伞自塔顶自由下落,已知阻力与速度成正比(比例系数为k ),求降落伞的下落速度与时间的函数关系. 解:根据牛顿运动第二定理有kv mg tvm -=d d .这是一个可分离变量方程,分离变量并积分得--=+1k mg kv tmC ln(). 由初始条件0)0(=v , 得)ln(1mg k C -=,即得 v mg k e kmt =-⎛⎝ ⎫⎭⎪-1.**7.求一曲线,已知曲线过点)1,0(,且其上任一点),(y x 的法线在x 轴上的截距为kx . 解:曲线在点(,)x y 处的法线斜率为y '-1,所以法线方程为Y y y X x -=-'-1().只要令0=Y ,就可以得到法线在x 轴上的截距为 y y x X '+= .据题意可得微分方程x yy kx +'=,即x k y y )1(-='.这是一个可分离变量方程,分离变量并积分得所求曲线C x k y =-+22)1(,由于曲线过点)1,0(,所以1=C ,所以所求曲线方程为 y k x 2211+-=().***8.求与抛物线族2Cx y =(C 是常数)中任一抛物线都正交的曲线(族)的方程. 解:在给定曲线2cx y =上任意一点),(y x 处切线斜率为cx y k 20='=,从上面两式中消去c 得x y y k 20='=,这样就得到了给定曲线族所满足的微分方程xyy 2='. 设所求曲线方程为 )(x y y =,在同一点),(y x 处切线斜率为y k '=,则根据正交要求有10-=k k ,这样就得到了所求曲线族应该满足的微分方程yx y 2-='. 这是一个可分离变量方程,分离变量xdx ydy -=2,积分得所求曲线族c x y +-=2221,即椭圆族c x y =+2221. ***9.作适当变换,求微分方程 1224+-='-x e y y的通解. 解 原方程可化为4122=++'y ye x y e ,在换元y e z =下方程可化为4122=++'x zz ,这是一个一阶线性方程,其通解为⎭⎬⎫⎩⎨⎧+=⎰+⎰+-⎰x eC ez x xx xd 412d 212d 2}44{1212x x C x +++=.***10.作适当变换,求微分方程 d d tan y x y x y y x =+⎛⎝ ⎫⎭⎪2122的通解.解:令ux y =2,代入方程整理得 xxu u d tan d =,积分得 Cx u =sin ,以 x y u 2= 代入上式,即得原方程的通解: Cx xy =2sin .第9章 (之3) (总第46次)教学容:§9.2 .3齐次型方程;9.2.4伯努利方程.**1.求下列微分方程的通解:(1) )ln ln 1(d d x y xyx y -+=; 解: Θ )ln ln 1(d d x y x y x y -+=, ∴ dx dy =x y (1+xyln ),这是一个一阶齐次型方程.令 xyu =,则 ux y =,即u x u y '+=',于是原方程可化为u u u x ln ='.这是一个可分离变量方程.分离变量x dx u u du =ln ,并积分⎰⎰=xdxu u du ln ,得c x u ln ln ln ln +=,即cx e u =. 以 xy u =代入,得所求的通解为cxxe y =.(2)()arctan xy y yxx '-=. 解:方程可化为xy xy y arctan1+=',这是一个一阶齐次型方程.令 x y u =,则 ux y =,即u x u y '+=',于是原方程可化为ux u x arctan 1d d =,这是一个可分离变量方程.分离变量后积分得 x u Ce u u 12+=arctan .以 xy u =代入上式得原方程的通解:x y Cey x yx 22+=arctan . **2.求解下列初值问题:(1)0d )2(d 22=+-y y x x xy 满足初始条件 1)2(=y 的特解. 解: Θ 0d )2(d 22=+-y y x x xy ,dy dx =x y y x +2, 令 yxu = , 则 u u dy du yu 12+=+, u u du 1+=y dy , ∴⎰+uu du 1=⎰y dy,c y u ln ln )1ln(212+=+∴, cy u =+∴12, 即 2221y c u =+ , 代回即得22y x +1=22y c , 1)2(=y Θ, ∴52=c , 因此 22y x +=54y .(2)⎩⎨⎧==-++=.0,0d )(d )(0x y y y x x y x解:原方程可表为11d d -+=-+=x y x yx y y x x y ,令 x y u =,u x u y '+=', 代入方程,有 11-+='+u uu x u ,即 121d d 2--+=u u u x u x , 分离变量x x u uu u d 1d 2112=-+-,积分得 C x u u ln ln )21ln(212-=-+- ⇒通解 C y xy x =-+222,令 0,0==y x ,得 0=C .所以初值问题的解为 0222=-+y xy x .***3.试证明:当1221b a b a ≠时,总能找到适当的常数h ,k ,使一阶微分方程)(222111c y b x a c y b x a f y ++++='在变换k y s -=,h x t -=之下,可化为一阶齐次型方程)(d d 2211sb t a s b t a f t s++=. 并求方程 0d )32(d )12(=++++y y x x y x 的解.证明:令⎩⎨⎧+=+++=++s b t a c y b x a sb t ac y b x a 2222211111 1221b a b a ≠Θ,∴可解得:⎪⎪⎩⎪⎪⎨⎧---=---=1221122112212112b a b a c b c b x t b a b a c a c a y s 因此可取:⎪⎪⎩⎪⎪⎨⎧--=--=1221122112212112b a b a c b c b h b a b a c a c a k解:0)32()12(=++++dy y x dx y x Θ,令⎩⎨⎧-=+=32x t y s ⎩⎨⎧==⇒x t ys d d d d[][]0)2(3)3(21)2(23=-++++-++∴ds s t dt s t ,()0)32(2=+++ds s t dt s t ,ts t sdt ds dtdst s t s 32210)32(21++-=⇒=+++⇒, 令dt dutu dt ds t s u +=⇒=, 23)1)(13(3221+++-=⇒++-=+∴u u u dt du t u u dt du t u , ⎰⎰-=⎥⎦⎤⎢⎣⎡+++∴-=+++⇒t dtdu u u t dt du u u u )13(23)1(21,)1)(13()23(, c t u u ln ln )13)(1ln(21+-=++即,c tst s t ct u u =++⇒=⋅++∴)13)(1()13)(1(,c x xy x y c x y x y x 243)3631)(321()3(22=+++⇒=-++-++-∴.**4.求下列微分方程的通解(1)0ln 2=+-'x y y y x ;解: 0ln '2=+-x y y xy Θ xxy x y y ln 1'12-=-∴-- 令x x t x dx dt y t ln 11=+⇒=-, ,ln )Q( ,1)(xx x x x P ==∴ln 1 d ln )(d 1d 1⎥⎦⎤⎢⎣⎡⋅+=⎥⎦⎤⎢⎣⎡⎰+⎰=∴⎰⎰-xdx x x C x x e x x C e x t x x x x1ln C )ln (C 11-+=-+=---x x x x x x x x , 111ln --+-=Cx x y .(2)0d d )2(=+-y x x xy y .解: Θ 0d d )2(=+-y x x xy y , x y d d +y x 1=212y x, y y '-21+211y x =x 2, 21y u =,x u d d +x 21x u 1=, ∴x x P 21)(=,xx Q 1)(.∴⎥⎦⎤⎢⎣⎡⎰+⎰=⎰-x e x C e x u x x x x d 1)(d 21d 2121-=x ⎥⎦⎤⎢⎣⎡+⎰x x x C d 121[]x C x +=-21, ∴ []x C xy +=-2121, ∴xC x y +=.(3)'=-y y xy x 3222()解一:令u y =2,原方程化为: d d u x u x u x =⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪-21,解此方程得 u Ce u x =, 以u y =2代入上式,原方程通解为 y Ce y x22=.解二:原方程写成d d x y y x yx -=-2232, 令x z -=1,则方程化为:322d d yz y y z =+, 则通解 z eC y e y yy y y =+⎡⎣⎢⎢⎤⎦⎥⎥-⎰⎰⎰2322d d d ]ln 2[12y C y+= , 故原方程通解:1122x yC y =+[ln ]. **5.求下列伯努力方程满足初始条件的特解:yxy y 2-=',1)0(=y . 解:x y yy', xy y y 22'21-=-∴-=-Θ,令 x t dxdty t 42 2-=-⇒=, x x Q x P 4)( ,2)(-=-=∴, []12010211)0(1212 )]2[ d 4 d )4()(2022222222d 2d 2+=∴=⇒++⨯=∴=++=∴++=++=-=⎥⎦⎤⎢⎣⎡⎰-+⎰=∴----⎰⎰x y C Ce y Ce x y x Ce e xe C e xxe C e x e x C e x t xx x x x x x x x,Θ****6.作适当的变换求方程 12222212+⋅'=++x y y x y e x sin sin 的通解.解:原方程化为:12222212+=++x yxx y e x d sin d sin ,令z y =sin 2,得d d z x x x ze x x -+=++21122122,故 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++=⎰⎰+-+⎰+x exeC ez xx x x x x x d 1d 12212d 12222)1ln(2121222x x eCex x +++=++原方程的通解为 sin ln()221212221y Ce e x x x x =+++++.***7.已知)(2d )(1)(2202x y x y y x+='+⎰ξξξ,求y x ().解:两边关于x 求导得212yy y '-=-, 解得 y Ce x 21=+, 由yx ==00,求得C =-1,故原方程的解为:y e x21=-.***8.曲线过点(,)11,其上任一点与原点的距离平方等于该点横坐标与该点的曲线的法线在x 轴上的截距乘积的两倍,求曲线方程. 解:x y x x yy y 22211+=+'=(),(), 212yy xy x '-=- 令y z 2=,解得z y x C x ==-2()由y ()11=, 得 C =2, 曲线方程为: x y x 222+=.***9.根据托里斥利定律,液体从容器小孔中流出的速度为 gh A v 2α=,其中 g 为重力加速度,h 为液面与底部孔口之间的距离,A 为孔口面积,α为孔口收缩系数,实验确定其取值为 62.0=α.现有一直径为1m ,高为2m 的直立圆柱形容器,其中盛满的水从底部直径为1=d cm 的圆孔流出,要多长时间容器的水才会完全流尽?解:设在时刻t 时, 容器中液面高度)(t h ,则经过t ∆后液面高度为)(t t h ∆+, 于是有t t gh A t t h t h r ∆=∆+-)(2))()((2απ,即 22)()(rghA t t h t t h πα=∆-∆+-, 令0→∆t , 得⎪⎩⎪⎨⎧==-200)0(2d d 2h gh r At h πα解得 200222+=t g rAh πα, 代入0=h , 980=g , 50=r , 4π=A , 62.0=α, 得10304=t (秒).第9章 (之4)(总第47次)教学容:§9.3可降阶的高阶微分方程**1.解下列问题:(1).微分方程'+''=''y y xy 满足条件'==y y (),()2121的解是 ( ) (A )y x =-()12(B )y x =+-()122142(C )y x =-+121122() (D )y x =--()12542解:(C )(2).微分方程''-'=y yy 203满足条件'=-=y y (),()0101的解是 ( )(A )y x 3313=+(B )x y 331=- (C )y x 3313=-+(D )x y 331=-+ 解:(C )**2.求下列微分方程的通解. (1)0='+''y y x ;解: Θ 0='+''y y x 是一不显含因变量y 的二阶方程, 令 y p '= ⇒ y ''x p d d =∴0=+'p p x , ⇒p p d =xxd -,⇒⎰⎰-=x xp p d d ⇒ 1ln ln ln C x p +-= ⇒xC p 1=, ∴=xy d d x C 1, x x C y d d 1=, ⎰⎰=x x C y d d 1 ,21ln C x C y +=. (2)()1212+''+'=x y xy ; 解:''++'=+y x x y x 211122, '=++y x x C 1121(), y x C x C =+++121212ln()arctan.(3)()02='+''y y y ;解:∵()02='+''y y y , 令 y p '=, 则 yppy d d ='',代入方程有 0d d 2=+⋅⋅p ypp y , 0)d d (=+⋅⇒p ypy p , 因为求通解,所以 p 满足 0d d =+⋅p ypy . 由⎰⎰-=⇒-=y yp p y y p p d d d d , y C p C y p 11ln ln ln '=⇒+-=⇒, ⎰⎰'=⇒'=⇒'=⇒x C y y x C y y yC x y d d d d d d 111 212C x C y +=⇒. ∴ 通解:212C x C y +=. (4)()1222+''='y y yy解:令:'=''='y p y y pp (),,得()1222+⋅'=y p p p y , 即d d p p yy y =+212, 得 p C y =+121(),所以 d d yyC x 121+=,通解为:arctan y C x C =+12.第9章 (之5)(总第48次)教学容:§9 .4 .1二阶线性方程和解的存在性;§9 .4 .2二阶线性方程解的结构**1.若21,y y 是方程)()()(x R y x Q y x P y =+'+''的两个解,试证12y y - 必是其对应齐次方程0)()(=+'+''y x Q y x P y 的解.证明:因为21,y y 是方程)()()(x R y x Q y x P y =+'+''的解. 所以成立下式:)2()()()()1()()()(222111x R y x Q y x P y x R y x Q y x P y =+'+''=+'+''将 (1)、(2) 两式相减,得)3(0))(())(()(212121=-+'-'+''-''y y x Q y y x P y y(2) 式可写为0))(())(()(212121=-+'-+''-y y x Q y y x P y y ,所以 21y y - 是齐次方程 0)()(=+'+''y x Q y x P y 的解.***2.已知23211,1,1x y x y y +=+==是方程22222xy x y x y =+'-''的三个特解,问能否求出该方程得通解?若能则求出通解来.解:按(1)证明可知 21312,x y y x y y =-=- 分别是其对应齐次方程0222=+'-''y xy x y 的解,并且线性无关,所以221x C x C + 为齐次方程的通解. 所以原方程的通解可以表示为:1221++=x C x C y .*3.验证:22,t t e e -是微分方程''-'-=x tx t x 1402的两个线性无关特解,并求此方程的通解.证明:因为()()222241t t t e t e t e -'-"0421********=-⨯-+=t t t t e t te te t e ,()()2222"41t t t e t e t e ----'-=-+-⨯--=--241240222222e t e tte t e t t t t (), 故22,t t e e -是方程的解,且≠=-2222t t t e ee 常数.于是22,t t e e -是方程线性无关的解(构成基本解组),故方程的通解为2221t t e C e C x -+=,其中21,C C 为任意常数.*4.已知函数 x y e y x==21, 是方程 0)1(=-'+''-y y x y x 的两解,试求该方程满足初始条件 0)0(,1)0(='=y y 的特解.解:方程的通解为 x c e c y x21+=,将初始条件代入,有:,,0)0('1)0(21211=+=+===c c c e c y c y x解得21,c c 为: 1,121-==c c ,所以特解为:x e y x -=.**5.设x t 1()是非齐次线性方程''+'+=x t a t x t a t x t f t ()()()()()()()1211的解.x t 2()是方程''+'+=x t a t x t a t x t f t ()()()()()()()1222的解.试证明 x x t x t =+12()()是方程''+'+=+x t a t x t a t x t f t f t ()()()()()()()()12123的解.解:因为)(2),(1t x t x 分别为方程(1)和方程(2)的解,所以)1()()()()()()(112111'≡+'+''t f t x t a t x t a t x''+'+≡'x t a t x t a t x t f t 2122222()()()()()()()()()12'+'得:()()())()()()()()()()()()(2121221121t f t f t x t x t a t x t x t a t x t x +='++'++"+即 x x t x t =+12()() 是方程(3)的解.第9章 (之6)(总第49次)教学容:§9 .4 .3二阶线性常系数方程的解法**1.解下列问题:(1)方程08=+''y y 的通解为=y _______________.解:x c x c y 22sin 22cos 21+=.(2)方程025'6"=++y y y 的通解为=y _______________. 解:)4sin 4cos (213x c x c e y x+=-.(3)方程0158=+'-''y y y 的通解为=y _______________. 解:x xC C y 5231e e +=.(4)方程031525=+'+''y y y 的通解为=y _______________. 解:)(21515C x C e y x +=-.(3)方程06=+'+''py y y 的通解为)2sin 2cos (e 21x C x C y kx+=,则=p ___,=k _____. 解:11,3-.**2.求解下列初值问题:(1)0)1(,)1(,01684='==+'-''y e y y y y ;解:∵0)4(16822=-=+-λλλ, ∴421=,λ, 通解为:xe x c c y 421)(+=.将初始条件代入,有 4421)()1(e e c c y =+=,04)(4)(4)1('4424214242142=+=++=++=e e c e c c e c e x c c e c y x x得到:4521-==c c , 所以特解为:x e x y 4)45(-=.(2)3)2(,1)2(,0294='==+'+''ππy y y y y ; 解:02942=++λλ, i i5221042116164±-=±-=-±-=λ,通解为:)5sin 5cos (212x c x c ey x+=-.代入初始条件有: πππe c c ey =⇒=+=-221)0()2(,)5cos 55sin 5()5sin 5cos (2)2(212212x c x c e x c x c ey x x+-++-='--π,得:πe c -=1. 特解为:)5sin 5cos (2x x e y x+-=-π.(3)10)0(,6)0(,034='==+'+''y y y y y ;解: 0342=++λλ, 0)3)(1(=++λλ, 所以通解为 x xe c e c y 321--+=.代入初始条件有:6)0(21=+=c c y ,1033)0('21321=--=--=--c c e c e c y x x ,特解为:x xe ey 3814---=.**3.求解初值问题'++==⎧⎨⎪⎩⎪≥⎰y y y x y x x210100d ()解:将原方程对x 求导得 ''+'+=y y y 201()且有'=-=-y y ()()01201微分方程(1)的通解为:y e C x C x =+-()12,代入初始条件1)0(,1)0(-='=y y ,得1,021==C C , 故所求问题的解为:xe y -=.***4.设函数)(x ϕ二阶连续可微,且满足方程⎰-+=xu u u x x 0d )()(1)(ϕϕ,求函数ϕ()x .解:原方程关于x 求导得⎰⎰=-+='xxu u x x x x u u x 0d )()()(d )()(ϕϕϕϕϕ,0)0(='ϕ,再求导得: )()(x x ϕϕ='', 且由原方程还有:1)0(=ϕ,微分方程的通解为: xxeC e C x -+=21)(ϕ,代入条件0)0(,1)0(='=ϕϕ,得2121==C C , 故所求函数为:x e e x x x ch )(21)(=+=-ϕ.***5.长为100cm 的链条从桌面上由静止状态开始无摩擦地沿桌子边缘下滑.设运动开始时,链条已有20cm 垂于桌面下,试求链条全部从桌子边缘滑下需多少时间.解:设链条单位长度的质量为ρ,则链条的质量为ρ100.再设当时刻 t 时,链条的下端距桌面的距离为)(t x ,则根据牛顿第二定律有:gx dt x d ρρ=22100, 即 010022=-x gdtx d . 又据题意知:20)0(=x , 0)0(='x ,所以 )(t x 满足下列初值问题:⎪⎩⎪⎨⎧='==-0)0(20)0(010022x x x gdt x d , 解得方程的通解为:tg tgec ec x 102101-+=.又因为有初始条件: ()()⎩⎨⎧==⇒⎩⎨⎧==1010020021'c c x x 所以 tg t gee x 10101010-+=.又当链条全部从桌子边缘滑下时,100=x ,求解t ,得:tg tg e e 10101010100-+=,即: 510=t gch, 510arch gt =.***6.设弹簧的上端固定,下端挂一个质量为2千克的物体,使弹簧伸长2厘米达到平衡,现将物体稍下拉,然后放手使弹簧由静止开始运动,试求由此所产生的振动的周期. 解:取物体的平衡位置为坐标原点,x 轴竖直向下,设t 时刻物体m 位于x t ()处,由牛顿第二定律:22222d d ()xtg g x gx =-+=- , 其中g =980厘米/秒2其解为:x C g t C g t =+1222cossin , 振动周期为 T g ==≈222490028ππ..第9章 (之7)(总第50次)教学容:§9.4.3二阶线性常系数方程的解法; §9.4.4高阶线性常系数微分方程 **1.微分方程x x y y sin =+''的一个特解应具有形式 ( )(A )()sin Ax B x +(B )x Ax B x x Cx D x ()sin ()cos +++ (C )x Ax B x x ()(cos sin )++ (D )x Ax B C x D x ()(sin cos )++ 解:(B )**2.设A B C D ,,,是待定常数,则微分方程''+=+y y x x cos 的一个特解应具有形式 ( )(A )Ax B C x ++cos(B )Ax B C x D x +++cos sin(C )Ax B x C x D x +++(cos sin ) (D )Ax B Cx x ++cos 答:(C )**3.求下列非齐次方程的一个解 (1)122+=-'-''x y y y ;解:∵ 022=--λλ, ∴1,22,1-=λ, 0Θ不是特征根.设 01b x b y p +=, 代入原方程,得:1222011+=---x b x b b ,有:1,010-=b b ,特解为:x y -=.(2)xey y y -=+'+''2.解: ∵ 1- 是二重特征根, ∴ 设 02b e x y xp -=, 0202b e x b xe y xxp ---=',02002022b e x b xe b e x b e y x x x x p----+--='', 代入 xe y y y -=++'2'', 解得:210=b ,特解为:xe x y -=221.**4.求微分方程''-'+=y y y xe x32满足条件y y ()()000='=的特解. 解:特征方程0232=+-r r 的根为2,121==r r ,相应齐次方程的通解为x x h e C e C y 221+=,设特解为x p e B Ax x y )(+=,代入方程得: 1,21-=-=B A . 故方程的通解为xxx e x x eC e C y ⎪⎪⎭⎫ ⎝⎛+-+=22221,代入条件0)0()0(='=y y ,得1,121=-=C C ,因此所求特解为 x xe x x ey ⎪⎪⎭⎫ ⎝⎛++-=1222.**5. 求下列非齐次方程的通解:)(2x f y y ='+''x x f e x f x x f x cos )()3,)()2,14)()12==+=;解:特征方程:022=+λλ, 特征根: 2,021-==λλ,所以方程0'2=+''y y 的通解为 xh e c c y 221-+=.1)对于方程14'2+=+''x y y , 由于0是特征方程的单根,故设其特解为:x b x b y p )(10+=,代入方程有:14242100+=++x b x b b ,解得 21110-==b b , 所以特解为:x x y p 212-=. 所以方程的通解为:x x e c c y y y xp h 212221-++=+=-.2)对于方程xe y y 2'2=+''',由于2不是特征方程的根,故设其特解为:02b e y xp =, 代入方程有:810=b , xp e y 281=, 所以方程的通解为:x xp h e ec c y y y 222181++=+=-.3)对于方程:x y y cos '2=+''',由于i ±不是特征方程的根,故设其特解为: x b x b y p sin cos 10+=, 代入方程有:x b x b y p cos sin '10+-=, x b x b y p sin cos "10--=,x x b x b x b x b cos cos sin 2sin cos 1010=+---, 得:525120=-=b b , x x y p sin 52cos 51+-=,所以方程的通解为:x x e c c y y y xp h sin 52cos 51221+-+=+=-.**6.求微分方程''-'+=y y y e x x6925sin 的通解.解:特征方程r r 2690-+=的根为r 123,=,相应齐次方程的通解为xh e x C C y 321)(+=设特解为y e A x B x p x=+(cos sin ),代入方程得:A B ==43,故方程的通解为 y C C x e e x x x x =+++()(cos sin )12343***7.已知曲线y y x x =≥()()0过原点,位于x 轴上方,且曲线上任一点),(00y x M =处切线斜率数值上等于此曲线与x 轴,直线x x =0所围成的面积与该点横坐标的和,求此曲线方程.解:由已知y ()00=,且'=+'=⎰y y x x y xd ,()000,将此方程关于x 求导得''=+y y 1其通解为: y C e C exx=+--121 ,代入初始条件y y (),()0000='=,得 C C 1212==, 故所求曲线方程为:y e e x xx =+-=--1211()ch .***8.设一物体质量为m ,以初速v 0从一斜面滑下,若斜面与水平面成θ角,斜面摩擦系数为μμθ(tan )0<<,试求物体滑下的距离与时间的关系.解:设t 时刻物体滑过的距离为S ,由牛顿第二定律m Stmg mg d d sin cos 22=-θμθ 且 S S v (),()0000='=方程的通解为S gt C t C =-++12212(sin cos )θμθ 代入初始条件得C v C 1020==,,故物体滑下的距离与时间的关系为S gt v t =-+1220(sin cos )θμθ***9.设弹簧的上端固定,下端挂一质量为m 的物体,开始时用手托住重物,使弹簧既不伸长也不缩短,然后突然放手使物体开始运动,弹簧的弹性系数为k ,求物体的运动规律.解:取物体未发生运动时的位置为坐标原点,x 轴垂直向下,设t 时刻物体位于x t ()处,由牛顿第二定律: m xtkx mg d d 22+=, 且 0)0(0)0(='=x x ,. 方程的通解为: x C k m t C k m t m kg =++12cos sin , 代入初始条件得C mkg C 120=-=,,故物体的运动规律为x mg k k m t =-⎛⎝ ⎫⎭⎪1cos.***10. 求下列方程的通解: (1)02)4(=''+'''-y y y;解: 02234=+-λλλ, 0)12(22=+-λλλ, 0)1(22=-λλ,所以通解为 x e x c c x c c y )(4321+++=.(2)0365)4(=-''+y y y.解:036524=-+λλ, 0)9)(2)(2(2=++-λλλ,所以通解为 x c x c ec e c y xx 3sin 3cos 432221+++=-.****11* 试证明,当以 x t ln =为新的自变量时,变系数线性方程(其中a,b,c 为常数,这是欧拉方程))('"2x f cy bxy y ax =++可化为常系数线性方程)()(22t e f cy dt dya b dty d a =+-+并求下列方程通解:(1)022=-''y y x ; (2)x x y y x y x ln 22=+'-''. 证明:令 x t ln =, t e x =,dtdyx dx dt dt dy dx dy 1==,⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=dt dy dt y d x dt dy dx d x dt dy x dx y d 222222111, 将y y ''',代入方程有:()()te f cy dt dy a b dt y d a cy dt dy b dt dy dt y d a cy y bx y ax =+-+=++⎪⎪⎭⎫ ⎝⎛-=+'+''22222, 得证.(1)令 x t ln =, te x =,原方程化为:0222=--y dt dydty d . 其通解为t t e c e c y -+=221.将x 代入,得:xc x c y 221+=. (2) 令 x t ln =, te x =,原方程化为:tte y dt dy dty d =+-2222, 上述方程的相应其次方程的通解为:()t c t c e y t h sin cos 21+=.令上述方程一个特解为:()10b t b e y t p +=,代入方程得:0,110==b b , 即:t e y t p =.原方程得通解为:()t t c t c e y t ++=sin cos 21,即:()()[]x x c x c x y ln ln sin ln cos 21++=.***12.一质量为m 的潜水艇在水面从静止状态开始下降,所受阻力与下降速度成正比(比例系数为k >0),浮力为常数B ,求潜水艇下降深度x 与时间t 之间的函数关系. 解: ma B F F =--阻重, a 为加速度, ma B kv mg =--, v 为下降速度,因为 22,dt x d dt dv a dt dx v ===, 所以 22dt xd m B dt dx k mg =--,即 m Bg dt dx m k dtx d -=+22 , 其特征方程为: 02=+λλmk , 解得特征根为 m k-==21,0λλ.所以对应的齐次方程的通解为:21c e c x t mkh +=-.由于0是特征方程的单根,故设其特解为:t b x 01=, 代入方程有:m B g b m k -=0, 得 kBmg b -=0. 所以微分方程的通解为:t kBmg c e c x t mk-++=-21, 因为初始位置为0,初始速度为0,所以有初始条件 ()()00,00'==x x ,代入微分方程有: ⎪⎩⎪⎨⎧=-+-=++000121k Bmg c mk c c 求得:222221,kgm Bm c k Bm g m c -=-=, 所以x 与t 的关系可表示为: t k B mg e k g m Bm x t m k-+⎪⎪⎭⎫ ⎝⎛--=-122.***13.证明:若有方程'=-f x f x ()()1,则必有''+=f x f x ()()0,并求解此方程. 证明:由于'=-f x f x ()()1,两边关于x 求导得''=-'-=---=-f x f x f x f x ()()[()]()111故得''+=f x f x ()()0(1)解方程(1)得通解为 f x C x C x ()cos sin =+12(2)'=-+f x C x C x ()sin cos 12 (3)'='=f f f f ()(),()()0110,将此代入(2),(3)得C C C C C C 1221211111cos sin sin cos +=-+=⎧⎨⎩ 解得:C C 21111=+sin cos所以原方程的解为: f x C x x ()cos sin cos sin =++⎛⎝⎫⎭⎪1111.第9章 (之8) (总第51次)教学容:§9.6 微分方程应用举例 (机动)第9章 (之9) (总第52次)教学容:§9.7 差分方程1. 已知t t e y 3=是二阶差分方程tt t e ay y =+-+11的一个特解,求a .解: )31(3e ea -=.2. 求下列差分方程的一般解: (1) 0721=+-t t y y ; 解:tt C y )27(-=(2) 431-=--t t y y ;解:23+=tt C y(3) 051021=-++t y y t t ; 解:)61(125)5(-+-=t C y tt (4) tt t y y 2124=-+; 解:144-+=t t t t C y (5) tt t t y y 21⋅=-+. 解:tt t C y 2)2(-+=3. 写出下列差分方程的一个特解形式: (1) t y y t t sin 1=-+; 解:t B t B Y t cos sin 21+=(2) t y y t t πcos 31-=++. 解:)sin cos (21t B t B t Y t ππ+=4. 设t y 为第t 期国民收入,t C 为第t 期消费,I 为每期投资(I 为常数).已知t y ,t C ,I 之间有关系 I C y t t +=,βα+=-1t t y C ,其中10<<α,0>β,试求t y ,t C . 解:t y 满足:βα+=--I y y t t 1,解得 αβα-++=1I C y tt , 从而 =-=I y C t t ααβα-++1I C t.5. 已知差分方程t t t cy y by a =++1)(,其中a ,b ,c 为正的常数.设初始条件0)0(0>=y y ,证明:(1) 对任意Λ,2,1=t ,有0>t y ;(2) 在变换tt y u 1=之下,原差分方程可化为有关t u 的线性差分方程,写出该线性差分方程并求其一般解;(3) 求方程t t t y y y =++1)21(的满足初始条件20=y 的解. 解:(1)归纳法证明. (2)令 t t y u 1=,即t t u y 1=,111++=t t u y , 则原方程化为线性差分方程 b au cu t t =-+1, 其一般解为 a c ≠时, ac bcaC u tt -+=)( ; a c =时, b C u t +=. (3)令 tt y u 1=,原方程化为 21=-+t t u u ,一般解为 2+=C u t , 所以原方程的一般解为 t t u y 1=21+=C ,代入 20=y ,得 23-=C , 所以 特解为 2=t y .。
2024年高考数学总复习第九章《平面解析几何》复习试卷及答案解析
2024年高考数学总复习第九章《平面解析几何》复习试卷及答案解析一、选择题1.已知椭圆C:16x2+4y2=1,则下列结论正确的是()A.长轴长为12B.焦距为34C.短轴长为14D.离心率为32答案D解析由椭圆方程16x2+4y2=1化为标准方程可得x2 1 16+y214=1,所以a=12,b=14,c=34,长轴2a=1,焦距2c=32,短轴2b=12,离心率e=ca=32.故选D.2.双曲线x23-y29=1的渐近线方程是()A.y=±3x B.y=±13xC.y=±3x D.y=±33x 答案C解析因为x23-y29=1,所以a=3,b=3,渐近线方程为y=±ba x,即为y=±3x,故选C.3.已知双曲线my2-x2=1(m∈R)与抛物线x2=8y有相同的焦点,则该双曲线的渐近线方程为()A.y=±3x B.y=±3xC.y=±13x D.y=±33x答案A解析∵抛物线x 2=8y 的焦点为(0,2),∴双曲线的一个焦点为(0,2),∴1m +1=4,∴m =13,∴双曲线的渐近线方程为y =±3x ,故选A.4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)和直线l :x 4+y3=1,若过C 的左焦点和下顶点的直线与l平行,则椭圆C 的离心率为()A.45B.35C.34D.15答案A解析直线l 的斜率为-34,过C 的左焦点和下顶点的直线与l 平行,所以b c =34,又b 2+c 2=a 2+c 2=a 2⇒2516c 2=a 2,所以e =c a =45,故选A.5.(2019·洛阳、许昌质检)若双曲线x 2-y 2b2=1(b >0)的一条渐近线与圆x 2+(y -2)2=1至多有一个交点,则双曲线离心率的取值范围是()A .(1,2]B .[2,+∞)C .(1,3]D .[3,+∞)答案A 解析双曲线x 2-y 2b2=1(b >0)的一条渐近线方程是bx -y =0,由题意圆x 2+(y -2)2=1的圆心(0,2)到bx -y =0的距离不小于1,即2b 2+1≥1,则b 2≤3,那么离心率e ∈(1,2],故选A.6.(2019·河北武邑中学调研)已知直线l :y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点,若|FA |=2|FB |,则k 等于()A.13B.23C.23D.223答案D解析=k (x +2),2=8x ,消去y 得k 2x 2+(4k 2-8)x +4k 2=0,Δ=(4k 2-8)2-16k 4>0,又k >0,解得0<k <1,设A (x 1,y 1),B (x 2,y 2),x 1+x 2=8k 2-4,①x 1x 2=4,②根据抛物线定义及|FA |=2|FB |得x 1+2=2(x 2+2),即x 1=2x 2+2,③且x 1>0,x 2>0,由②③解得x 1=4,x 2=1,代入①得k 2=89,∵0<k <1,∴k =223.故选D.7.(2019·唐山模拟)双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±7x ,则E 的离心率为()A .2 B.2147C .22D .23答案C解析由题意,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±7x ,即ba=7,所以双曲线的离心率为e =ca=a 2+b 2a2=22,故选C.8.(2019·河北衡水中学模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1作圆x 2+y 2=a 2的切线,交双曲线右支于点M ,若∠F 1MF 2=45°,则双曲线的渐近线方程为()A .y =±2xB .y =±3xC .y =±xD .y =±2x答案A解析如图,作OA ⊥F 1M 于点A ,F 2B ⊥F 1M 于点B .因为F 1M 与圆x 2+y 2=a 2相切,∠F 1MF 2=45°,所以|OA |=a ,|F 2B |=|BM |=2a ,|F 2M |=22a ,|F 1B |=2b .又点M 在双曲线上,所以|F 1M |-|F 2M |=2a +2b -22a =2a .整理,得b =2a .所以ba= 2.所以双曲线的渐近线方程为y =±2x .故选A.9.(2019·湖南五市十校联考)在直角坐标系xOy 中,抛物线C :y 2=4x 的焦点为F ,准线为l ,P 为C 上一点,PQ 垂直l 于点Q ,M ,N 分别为PQ ,PF 的中点,直线MN 与x 轴交于点R ,若∠NFR =60°,则|FR |等于()A .2 B.3C .23D .3答案A解析由抛物线C :y 2=4x ,得焦点F (1,0),准线方程为x =-1,因为M ,N 分别为PQ ,PF 的中点,所以MN ∥QF ,所以四边形QMRF 为平行四边形,|FR |=|QM |,又由PQ 垂直l 于点Q ,可知|PQ |=|PF |,因为∠NFR =60°,所以△PQF 为等边三角形,所以FM ⊥PQ ,所以|FR |=2,故选A.10.已知F 1,F 2分别是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为()A.2B.32C.3D .2答案A解析因为MF 1与x 轴垂直,所以|MF 1|=b 2a .又sin ∠MF 2F 1=13,所以|MF 1||MF 2|=13,即|MF 2|=3|MF 1|.由双曲线的定义,得2a =|MF 2|-|MF 1|=2|MF 1|=2b 2a ,所以b 2=a 2,所以c 2=b 2+a 2=2a 2,所以离心率e =ca= 2.11.(2019·湖南长沙长郡中学调研)已知点P (-1,0),设不垂直于x 轴的直线l 与抛物线y 2=2x交于不同的两点A ,B ,若x 轴是∠APB 的角平分线,则直线l 一定过点()B .(1,0)C .(2,0)D .(-2,0)答案B解析根据题意,直线的斜率存在且不等于零,设直线的方程为x =ty +m (t ≠0),与抛物线方程联立,消元得y 2-2ty -2m =0,设A (x 1,y 1),B (x 2,y 2),因为x 轴是∠APB 的角平分线,所以AP ,BP 的斜率互为相反数,所以y 1x 1+1+y 2x 2+1=0,所以2ty 1y 2+(m +1)(y 1+y 2)=0,结合根与系数之间的关系,整理得出2t (-2m )+2tm +2t =0,2t (m -1)=0,因为t ≠0,所以m =1,所以过定点(1,0),故选B.12.(2019·陕西四校联考)已知椭圆和双曲线有共同的焦点F 1,F 2,P 是它们的一个交点,且∠F 1PF 2=2π3,记椭圆和双曲线的离心率分别为e 1,e 2,则3e 21+1e 22等于()A .4B .23C .2D .3答案A解析如图所示,设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,则根据椭圆及双曲线的定义:|PF 1|+|PF 2|=2a 1,|PF 1|-|PF 2|=2a 2,∴|PF 1|=a 1+a 2,|PF 2|=a 1-a 2,设|F 1F 2|=2c ,∠F 1PF 2=2π3,则在△PF 1F 2中,由余弦定理得4c 2=(a 1+a 2)2+(a 1-a 2)2-2(a 1+a 2)(a 1-a 2)cos2π3,化简得3a 21+a 22=4c 2,该式可变成3e 21+1e 22=4.故选A.二、填空题13.已知双曲线C :x 2-y 2=1,则点(4,0)到C 的渐近线的距离为________.答案22解析双曲线C :x 2-y 2=1的渐近线方程为y =±x ,点(4,0)到C 的渐近线的距离为|±4|2=2 2.14.(2019·新乡模拟)设P 为曲线2x =4+y 2上一点,A (-5,0),B (5,0),若|PB |=2,则|PA |=________.答案4解析由2x =4+y 2,得4x 2=4+y 2(x >0),即x 2-y 24=1(x >0),故P 为双曲线x 2-y 24=1右支上一点,且A ,B 分别为该双曲线的左、右焦点,则|PA |-|PB |=2a =2,|PA |=2+2=4.15.已知抛物线y 2=4x ,圆F :(x -1)2+y 2=1,直线y =k (x -1)(k ≠0)自上而下顺次与上述两曲线交于点A ,B ,C ,D ,则|AB |·|CD |的值是________.答案1解析设A (x 1,y 1),D (x 2,y 2),则|AB |·|CD |=(|AF |-1)(|DF |-1)=(x 1+1-1)(x 2+1-1)=x 1x 2,由y =k (x -1)与y 2=4x 联立方程消y 得k 2x 2-(2k 2+4)x +k 2=0,x 1x 2=1,因此|AB |·|CD |=1.16.(2019·四省联考诊断)在平面上给定相异两点A ,B ,设P 点在同一平面上且满足|PA ||PB |=λ,当λ>0且λ≠1时,P 点的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故我们称这个圆为阿波罗尼斯圆,现有椭圆x 2a 2+y 2b 2=1(a >b >0),A ,B 为椭圆的长轴端点,C ,D为椭圆的短轴端点,动点P 满足|PA ||PB |=2,△PAB 的面积最大值为163,△PCD 面积的最小值为23,则椭圆的离心率为________.答案32解析依题意A (-a ,0),B (a ,0),设P (x ,y ),依题意得|PA |=2|PB |,(x +a )2+y 2=2(x -a )2+y 2,两边平方化简得-53a +y 2,r =4a3.所以△PAB 的最大面积为12·2a ·43a =163,解得a =2,△PCD 的最小面积为12·2b b ·a 3=23,解得b =1.故椭圆的离心率为e =1-14=32.三、解答题17.(2019·湖南长沙长郡中学调研)在平面直角坐标系xOy 中,已知圆M :(x -3)2+(y -b )2=r 2(r 为正数,b ∈R ).(1)若对任意给定的r ∈(0,+∞),直线l :y =-x +r +4总能把圆M 的周长分成3∶1的两部分,求圆M 的标准方程;(2)已知点A (0,3),B (1,0),且r =103,若线段AB 上存在一点P ,使得过点P 的某条直线与圆M 交于点S ,T (其中|PS |<|PT |),且|PS |=|ST |,求实数b 的取值范围.解(1)根据题意可得,圆心到直线的距离为22r 恒成立,即|3+b -r -4|2=22r ,整理得|b -1-r |=r ,去绝对值符号可得b -1-r =r 或b -1-r =-r ,根据恒成立,可得b =1,所以圆M 的标准方程为(x -3)2+(y -1)2=r 2.(2)根据题意,如果存在满足条件的点,对应的边界值为过圆心的弦,而从另一个角度,即为线段端点值满足条件即可,先考虑点A ,即为|AM |≤3r ,即(0-3)2+(b -3)2≤9×109,解得2≤b ≤4,再考虑点B ,即为|BM |≤3r ,即(1-3)2+b 2≤10,解得-6≤b ≤6,两者取并集,得到b 的取值范围是[-6,4].18.(2019·陕西四校联考)已知抛物线C :y 2=2px 过点A (1,1).(1)求抛物线C的方程;(2)若过点P(3,-1)的直线与抛物线C交于M,N两个不同的点(均与点A不重合).设直线AM,AN的斜率分别为k1,k2,求证:k1·k2为定值.(1)解由题意得2p=1,所以抛物线方程为y2=x.(2)证明设M(x1,y1),N(x2,y2),直线MN的方程为x=t(y+1)+3,代入抛物线方程得y2-ty-t-3=0.所以Δ=(t+2)2+8>0,y1+y2=t,y1y2=-t-3.所以k1·k2=y1-1x1-1·y2-1x2-1=y1-1y21-1·y2-1y22-1=1(y1+1)(y2+1)=1y1y2+y1+y2+1=1-t-3+t+1=-12,所以k1·k2是定值.。
大学高等教育第九章试卷答案
第9单元 空间解析几何测试题详细解答一、填空题 1、Ⅴ2、→→⨯c a 2 原式=→→→→→→→→→→→→→→⨯=⨯-⨯+⨯+⨯+⨯+⨯c a a c a b b c b a c b c a 23、1±=k 1021.),2,1,(),1,1,(22121±=∴=-+∴⊥-==→→→→k k n n k n k n 。
4、0=-y x 设所求方程为0=+++d cz by ax ,则⎪⎩⎪⎨⎧=+++=+++=-+022200d c b a d c b a c b a0.==-=∴d c b a .0=-∴y x5、0922=+-+z y x )1,2,2(--到原点的向经为)1,2,2(--,取)1,2,2(--=→n 则所求平面方程为01)2)(2()2)(2(=-++-++-z y x 既.0922=+-+z y x6、235-将)6,4,5(--代入平面方程092=--+z ky x , 得091245=-+-k 解得2=k 取).2,,1(1-=→k n ).1,3,2(2-=→n 则.22145313221232)cos(222222221=+-=++++--=→→k k k k n n 两边平方解得235-=k 或235=k (舍去)。
7、012634=+-+z y x 设所求平面截距式方程为,123=++-zb y x 将)1,10,6(-代入 得 1211036=+-+-b 解得 4-=b 所以所求平面为1243=+-+-z y x , 即 012634=+-+z y x 。
8、43取),2,1,3(),5,1,2(21-=+=→→k s k k s 则由21→→⊥s s 得.431290)2(5132==∴=-+++⋅k k k k 。
9、043=---z y x 所求平面的法向量→n 平行于所给直线的方向向量)1,3,1(-,取)1,3,1(-=→n ,则所求平面方程为0)1())2(3)1(=++-+--z y x ,即 043=---z y x10、023=++-z y x 所求平面π过直线1L 因而过1L 上的点π);3,2,1(过1L 平行于,2L 于是π平行于不共线的向量)1,1,2(),1,0,1(21=-=→→ιι(分别是直线与的方向向量)。
高等数学第9章参考答案
第八章 多元函数的微分法及其应用§ 1 多元函数概念一、设]),,([:,),(,),(22222y y x f y x y x y x y x f ϕϕ求-=+=.二、求下列函数的定义域:1、2221)1(),(y x y x y x f ---= 222{(,)|(,)R ,1};x y x y y x ∈+≠ 2、xyz arcsin = };0,|),{(≠≤x x y y x三、求下列极限:1、222)0,0(),(sin lim y x yx y x +→ (0) 2、x y x x y3)2,(),()1(lim+∞→ (6e )四、证明极限 242)0,0(),(lim yx yx y x +→不存在. 证明:当沿着x 轴趋于(0,0)时,极限为零,当沿着2x y =趋于(0,0)时,极限为21, 二者不相等,所以极限不存在五、证明函数⎪⎩⎪⎨⎧=≠+=)0,0(),(,0)0,0(),(,1sin ),(22y x y x yx xy y x f 在整个xoy 面上连续。
证明:当)0,0(),(≠y x 时,为初等函数,连续),(y x f 。
当)0,0(),(=y x 时,)0,0(01sin lim 22)0,0(),(f yx xy y x ==+→,所以函数在(0,0)也连续。
所以函数 在整个xoy 面上连续。
六、设)(2y x f y x z +++=且当y=0时2x z =,求f(x)及z 的表达式. 解:f(x)=x x -2,z y xy y x -++=2222 § 2 偏导数1、设z=x yx e x y + ,验证 z xy +=∂∂+∂∂yzyx z x 证明:x yx yx ye x ,e x y e y +=∂∂-+=∂∂y z x z ,∴z xy xe xy xy x y+=++=∂∂+∂∂yzy x z x 42244222222)()),,((y y x x y y x y y x f +-=+-=ϕ答案:2、求空间曲线⎪⎩⎪⎨⎧=+=Γ21:22y y x z 在点(1,21,23)处切线与y 轴正向夹角(4π) 3、设yx y xy y x f arcsin )1(),(2-+=, 求)1,(x f x ( 1)4、设yz x u =, 求x u ∂∂ ,y u ∂∂ ,zu ∂∂ 解:1-=∂∂y zx y z x u ,x x yz y u y zln 2-=∂∂ x x y z u y zln 1=∂∂ 5、设222z y x u ++=,证明 : u zu y u x u 2222222=∂∂+∂∂+∂∂6、判断下面的函数在(0,0) 处是否连续?是否可导(偏导)?说明理由⎪⎩⎪⎨⎧≠+≠++=0,00,1sin ),(222222y x y x yx x y x f )0,0(0),(lim 00f y x f y x ==→→ 连续; 201sin lim )0,0(xf x x →= 不存在, 0000lim )0,0(0=--=→y f y y7、设函数 f(x,y)在点(a,b )处的偏导数存在,求 xb x a f b x a f x ),(),(lim--+→(2f x (a,b)) § 3 全微分 1、单选题(1)二元函数f(x,y)在点(x,y)处连续是它在该点处偏导数存在的 __________(A) 必要条件而非充分条件 (B )充分条件而非必要条件 (C )充分必要条件 (D )既非充分又非必要条件(2)对于二元函数f(x,y),下列有关偏导数与全微分关系中正确的是___(A) 偏导数不连续,则全微分必不存在 (B )偏导数连续,则全微分必存在 (C )全微分存在,则偏导数必连续 (D )全微分存在,而偏导数不一定存在 2、求下列函数的全微分:1)x y e z = )1(2dy x dx xy e dz x y+-=2))sin(2xy z = 解:)2()cos(22xydy dx y xy dz +=3)zyx u = 解:xdz x zyxdy x z dx x z y du z yz yz yln ln 121-+=-3、设)2cos(y x y z -=, 求)4,0(πdz解:dy y x y y x dx y x y dz ))2sin(2)2(cos()2sin(-+-+--= ∴)4,0(|πdz =dy dx 24ππ-4、设22),,(yx z z y x f += 求:)1,2,1(df )542(251dz dy dx +--5、讨论函数⎪⎩⎪⎨⎧=≠++=)0,0(),(,0)0,0(),(,1sin )(),(2222y x y x y x y x y x f 在(0,0)点处的连续性 、偏导数、 可微性解:)0,0(01sin )(lim 2222)0,0(),(f y x y x y x ==++→ 所以),(y x f 在(0,0)点处连续。
高数第九章复习题解答
f ( x, y, z )dxdydz
f ( r sin cos , r sin sin , r cos )r 2 sindrdd .
10、三重积分的应用
(1) 重心
设物体占有空间闭区域 ,在点( x , y , z ) 处的 密度为 ( x , y , z ) ,假定 ( x , y , z ) 在 上连续,则该 物体的重心为
D
性质4
Hale Waihona Puke 性质5若 为D的面积 1 d d .
D D
若在D上, f ( x , y ) g( x , y )
f ( x , y )d g( x , y )d .
D D
特殊地
f ( x, y )d f ( x, y ) d .
D D
性质6 设M 、m 分别是 f ( x , y ) 在闭区域 D 上的最
大值和最小值, 为 D 的面积,则
m f ( x , y )d M
D
(二重积分估值不等式)
D D 性质7 设函数 f ( x , y ) 在闭区域 上连续, 为
的面积,则在 D 上至少存在一点( , ) 使得
D D
性质2
[ f ( x, y ) g( x, y )]d
D
f ( x , y )d g ( x , y )d .
D D
性质3
对区域具有可加性 ( D D1 D2 )
D1 D2
f ( x, y )d f ( x, y )d f ( x, y )d .
I o ( x 2 y 2 z 2 ) dv.
二、典型例题
高等数学第九章练习题答案
第九章 练习题一、填空 第一节1、 22222)1ln(),(y x y x y x f --+-+=的定义域是2122≤+<y x .2、 2222911),(y x y x y x f --+-+=的定义域是9122≤+<y x .3、 2222001sin)(lim yx y x y x ++→→= 0 . 4、=+-→→xyxy y x 93lim0 16- .5、、函数y x z -=的定义域是 (){}y x y x y x ≥≥≥2,0,0/,6、函数()12ln 2+-=x y z 的定义域是 0122>+-x y7、()()=+-→11lim0,0,xy xy y x 2-. 19. ()()=-+→xyxy y x 24lim0,0,41. 8、求极限()()()yxy y x tan lim0,2,→= 29、 2210ln()lim y x y x e x y →→++= ln 2 . 第二节1、设z =zx ∂∂2、设z arctan(xy )=,则zx∂=∂ ,z y ∂=∂ .22,1()1()y x xy xy ++ 3、 设223z x xy y =++,则(1,2)zx ∂∂= 8 ,(1,2)z y ∂∂= 7 .4、设y x e z 2-=,而t x sin =,3t y =,则=dtdz()22sin 6cos 3t t e t t -- 5、设y x z =,而te x =,12-=t e y ,则=dt dz ()2231-+-t t t e e e6、 设(1)y z xy =+,则zx∂∂= 21(1)y y xy -+ 7、设(1)xy z x =+,则zy∂∂=(1)ln(1)xy x x x ++ 8、设y x z y3⋅=,求=∂∂∂y x z 2 ⎪⎪⎭⎫ ⎝⎛-y y y 13ln 3 。
9、函数222234x y z x ++=,则z x ∂=∂ 23z x x z∂-=∂,z y ∂=∂ 。
高数下第九章例题及答案
复习三 重积分1.了解二重的几何意义, 会交换二次积分的次序.例1.设D 为闭圆域x 2+y 2≤R 2, 则Dσ⎰⎰= .解: 此积分表示以半径为R 的半球体的体积, 即33142233R R ππ⋅=.例2.改变二次积分⎰⎰210),(x dy y x f dx 的积分次序得( ).(A )⎰⎰100),(2dx y x f dy x ; (B )⎰⎰110),(y dx y x f dy ;(C )⎰⎰ydx y x f dy 010),(; (D )⎰⎰112),(x dx y x f dy .解: 积分区域为D ={(x , y )|0≤x ≤1, 0≤y ≤x 2}, 积分区域又可表示为 }1 ,10|) ,{(≤≤≤≤=x y y y x D , 所以⎰⎰⎰⎰=1101),(),(2yx dxy x f dy dy y x f dx .2.会利用直角坐标和极坐标计算二重积分, 会利用直角坐标、柱面坐标和球面坐标计算三重积分.例1.计算σd e x Dy ⎰⎰-22, 其中D 由x =0, y =1, y =x 围成.解: 因为D ={(x , y )|0≤x ≤1, x ≤y ≤1}, 所以⎰⎰⎰⎰--=1102222xy Dy dye dx x d e x σ, 计算无法进行.因为D ={(x , y )|0≤y ≤1, 0≤x ≤y }, 所以⎰⎰⎰⎰⎰⎰----===1022103021222226131dy e y dy e y dx x dy ed exy y yy Dy σ)21(61|616161|6161101021021022222ee e dy e e y de y y y y y -=--=+-=-=----⎰⎰. 例2.计算⎰⎰=Ddxdy yyI sin , 其中D 由曲线x y =、直线y =x 围成.解: 积分区域可表示为D ={(x , y )|0≤y ≤1, y 2≤x ≤y }, 于是 ⎰⎰⎰⎰⎰-===1010sin )1(sin sin 2ydyy dx y y dy dxdy y yI y y D=1-sin1.例3.将⎰⎰-12),(x x dyy x f dx 化成极坐标形式的二次积分 .解: 积分区域为}0 ,10|) ,{(2x x y x y x D -≤≤≤≤=, 在极坐标下}cos 0 ,20|),{(θπθθ≤≤≤≤=r r D , 所以⎰⎰⎰⎰=-θπθθθc o s20100)s i n ,c o s (),(2r d r r r f d dy y x f dx x x .例4.计算二重积分⎰⎰--Dy xdxdye 22,其中D 为x 2+y 2=1所围成的闭区域.解:⎰⎰⎰⎰⎰⎰-----===1210120222222dr e rdr erdr ed dxdy er r r Dy x ππθπee r πππ-=-=-10|2. 例5.计算三重积分⎰⎰⎰Ω+++3)1(z y x dxdydz , 其中Ω为平面x =0, y =0, z =0,x +y +z =1所围成的四面体. 解: 积分区域可表示为Ω={(x , y , z )| 0≤z ≤1-x -y , 0≤y ≤1-x , 0≤x ≤1}, 于是⎰⎰⎰Ω+++3)1(z y x d x d y d z⎰⎰⎰---+++=yx xdz z y x dy dx 103101)1(1⎰⎰--++=xdy y x dx 10210]81)1(21[dx x x ⎰+-+=1]8183)1(21[)852(l n 21-=.例6.计算三重积分dv y x ⎰⎰⎰Ω+)(22其中Ω为x 2+y 2=2z 及z =2所围成的闭区域.解: 在柱面坐标下积分区域可表示为 Ω: 0≤θ≤2π, 0≤r ≤2, 2212≤≤z r ,于是316)212(2)(22322122020222ππθπ=-=⋅=+⎰⎰⎰⎰⎰⎰⎰Ωdr r r rdz r dr d dv y x r.例7.计算三重积分dv z y x )(222++⎰⎰⎰Ω, 其中Ω是由球面x 2+y 2+z 2=1所围成的闭区域.解: 在球面坐标下积分区域Ω可表示为 0≤θ≤2π, 0≤ϕ≤π, 0≤r ≤1,于是 dv z y x )(222++⎰⎰⎰Ωθϕϕd d r dr s i n 4⋅=⎰⎰⎰Ω⎰⎰⎰=1420s i n dr r d d ππϕϕθπ54=.3.会计算立体的体积, 会计算曲面的面积, 会计算质心或形心.例1.求由抛物柱面z =2-x 2及椭圆抛物面z =x 2+2y 2所围成的立体的体积. 解: ππθπ=-=-=+--=⎰⎰⎰⎰104210220222]21[2)22()]2()2[(r r rdr r d dxdy y x x V D. 例2.求锥面22y x z +=被柱面z 2=2x 所割下的部分的曲面面积. 解: 曲面22y x z +=与z 2=2x 的交线在xOy 面上的投影为⎩⎨⎧==+0222z xy x .所求曲面在xOy 在上的投影区域为D ={(x , y )|x 2+y 2≤2x }. π22122=='+'+=⎰⎰⎰⎰DDy x dxdy dxdy z z A .例3.求由曲线ay =x 2, x +y =2a (a >0)所围成闭区域的形心. 解: 闭区域可表示为}21 ,2|),{(2x a y x aa x a y x D -≤≤≤≤-=.因为 3222121227)12(2a dx x a x a x dy xdxxdxdy aaxa xa aa D-=--==⎰⎰⎰⎰⎰---,324222212536)144(212a dx x a x ax a ydy dx ydxdy a a xa x a aa D =-+-==⎰⎰⎰⎰⎰---,22221229)12(2a dx x a x a dy dx dxdy aax a x aaaD=--==⎰⎰⎰⎰⎰---.所以a a a d x d yx d x d y x DD2129122723-=-==⎰⎰⎰⎰, aa adxdy ydxdyy DD282953623===⎰⎰⎰⎰.练习三1. 设区域D 为x 2+y 2≤a 2, 且π=--⎰⎰dxdy y x a D222, a =________.2. 设D 由y 2=x 及y =x -2所围成, 则⎰⎰=Dxyd I σ=( ).(A)⎰⎰+=422y y xydy dx I ; (B)⎰⎰-+=2122y y xydx dy I ;(C)⎰⎰⎰⎰--+=4121x x xxxydydx xydy dx I ; (D)⎰⎰-+=2122y y xydy dx I .3. 交换下列二次积分的顺序, 并画出积分区域草图. (1)⎰⎰--22),(0x a xa adyy x f dx ; (2)⎰⎰xe dy y xf dx ln 01),(; (3)⎰⎰---x x dy y x f dx 214262),(.4. 设D : |x |≤1, 0≤y ≤1, 则⎰⎰+Dyd y x σ)(3=________.5. 曲面x 2+y 2+z 2=R 2(z >0)和2R z =所围成的立体的体积可表为二重积分________.6. 计算二次积分⎰⎰+=131021x dy yxy dx I .7. 利用极坐标计算积分⎰⎰⎰⎰-+++=10212022222x x dy y x dx dy y x dx I .8. 计算二重积分⎰⎰+Ddxdy y x )(, 其中D : x 2+y 2≤2x .9. 计算二重积分⎰⎰+Dd y x σ)cos(, D 是以点(0, 0),(0, π), (π, π) 为顶点的三角形区域.10. 计算二重积分dxdy xy D⎰⎰2, 其中D 为直线y =x 和抛物线y =x 2所围成的平面区域.11. 计算二重积分σd y x D22+⎰⎰, 其中D 是圆环形闭区域{(x , y )|a 2≤x 2+y 2≤b 2}.12. 计算二重积分⎰⎰+'Ddxdy y x f )(22, 其中D 为圆域: x 2+y 2≤R 2 .13. 求⎰⎰⎰Ω++=dv z y x I )(22,其中Ω是由曲线⎩⎨⎧==022x zy 绕z 轴旋转一周的曲面与平面z =4所围立体.14.计算⎰⎰⎰Ω+dVzx)(,其中Ω是由曲面22yxz+=与221yxz--=围成.15.求旋转椭球面2221449x y z++=所围成的旋转体的体积.16.求半圆域x2+y2≤a2,x≥0的形心.17.求圆锥面2z=+x2+y2=2x内部的曲面面积.。
高等数学课后习题答案第九章1
第九章习题解答(2) 习题9.31、 求上半球面222y x a z含在柱面ax y x 22内部的曲面面积解:被积函数为222y x a z 22222)(y x a x z x 22222)(yx a y z y --= 所以 dxdy yx a a dS 222--=积分区域为::D ax y x =+22,化成极坐标:设θcos r x =,θsin r y = dr rd dxdy θ=θπθπc o s 0,22a r ≤≤≤≤-⎰⎰-=-θππθcos 02222a ra ardr d S cos 0222222)(2a r a r a d d a ⎰---=22cos 022ππθθd r a a a)2(222)sin (222220-=⋅+-=--=⎰ππθθπa a a d a a a2、 求圆锥面22y x z +=被柱面x z 22=所截下的曲面面积解:被积函数为22y x z += 2222)(y x x z x += , 2222)(yx y z y += 所以 dxdy dS 2=积分区域为::D x y x 222=+,设θcos r x =,θsin r y = dr rd dxdy θ=θπθπc o s 20,22≤≤≤≤-r⎰⎰-=θππθcos 20222rdr d S ππθθππ222124cos 22222=⋅⋅==⎰-d3、 求抛物柱面221x z =含在由平面x y y x ===,0,1所围的柱体内的面积 解:被积函数为221x z = 22)(x z x = , 0)(2=y z所以 dxdy x dS 21+=积分区域为::D x y y x ===,0,1,0=z 围成的闭区域=+=⎰⎰x xdy x dx S 021⎰+xdx x x 0213122)1(3121)1(1211232022-=+⋅=++=⎰x x d x x 。
4、 求下列图形的形心 (1)、:D 1,0,2===x y x y ,围成的闭区域解:将密度看成1;⎰⎰⎰⎰=xDdy dx dxdy 201032221==⎰dx x 522210232010===⎰⎰⎰⎰⎰dx x dy xdx xdxdy xD2112010===⎰⎰⎰⎰⎰dx x ydy dx ydxdy xD于是得形心坐标为:53322522~==x 82332221~==y 形心为)82353( (2)、:D θρco s 1+=,围成的闭区域 解:将密度看成1;πθ23=⎰⎰Ddr rd (前面求出的结果) dr r d rdrd r xdxdy D D⎰⎰⎰⎰⎰⎰+'==θπθθθθcos 10220cos cos⎰+=πθθθ203)cos 1(cos 31d +⎰πθθ20cos 31d +⎰πθθ202cos d +⎰πθθ203cos d ⎰πθθ204cos 31d +=0++⎰πθθ20)2cos 1(21d +0⎰++πθθθ20242cos 2cos 2131d=π1215242122πππ=++65231215~==ππx 由图形关于x 轴的对称性得0~=y 形心为)065((3)、:D 0,12222≥=+x by a x ,围成的闭区域解:面积ab 2π=⎰⎰⎰⎰---=2222110a xb a x b a Dxdy dx xdxdy ⎰-=adx ax x b 0221232)1(32)2(22123222ba a x ab =--= ππ34232~2a ab ba x == 由图形关于x 轴的对称性得0~=y 形心为)034(πa5、 圆盘)0(222>≤+a ax y x 内各点处的密度=),(y x μ22y x +,求此圆盘的质心解:=M =⎰⎰Ddxdy y x ),(μ=+⎰⎰Ddxdy y x 22⎰⎰-θππθcos 20222a dr r d3203332316cos 316a d a ⋅==⎰πθθ3932a ==y M =⎰⎰Ddxdy y x x ),(μ=+⎰⎰Ddxdy y x x 22⎰⎰-θππθθcos 20322cos a dr r d15641588cos 1641442254a a d a =⋅==⎰-ππθθ 56~a M M x y ==,由对称性得0~=y 所求质心为)056(a6、 设有一个等腰直角三角形薄片,各点处的密度等于该点到直角顶点距离的平方,求此圆薄片质心 解:设等腰直角三角形的顶点为),0(),0,(),0,0(a a 则22),(y x y x +=μ=M =⎰⎰D dxdy y x ),(μ=+⎰⎰Ddxdy y x )(22⎰⎰-+xa a dy y x dx 0220)( ⎰-+-=a dx x a x a x 032])(31)([⎰-+-=a dx x a x a ax 03322]31312[ 62132444a a a =-= =y M =⎰⎰Ddxdy y x x ),(μ=+⎰⎰Ddxdy xy x)(23⎰⎰-+xa a dy xy x dx 0230)(⎰-+-=adx x a x x a x 033])(31)([⎰-+-=a dx x x a x a ax 043223]34312[ 5555515115463121a a a a a =-+-= 由对称性得=x M =⎰⎰Ddxdy y x y ),(μ=+⎰⎰Ddxdy y y x)(32⎰⎰-+ya a dx y y x dy 032)(155a = 52~a M M x y ==,52~a M M x x == 所求质心为)5252(aa 7、 设有顶角为α2,半径为R 的扇形薄片,各点处的密度等于该点到扇形顶点距离的平方,求此薄片质心 解:设扇形顶点为)0,0(关于x 轴对称 则22),(y x y x +=μ=M =⎰⎰Ddxdy y x ),(μ=+⎰⎰Ddxdy y x)(22⎰⎰-Rdr r d 03ααθ24R α==y M =⎰⎰Ddxdy y x x ),(μ=+⎰⎰Ddxdy y x x )(22⎰⎰-Rdr r d 04cos θθαα5sin 2αR =5sin 4~αR M M x y == 由对称性得0~=y ,所求质心为)05sin 4(αR8、 设均匀薄片(面密度为常数)ρ,战局的区域如下,求指定的转动惯量(1)、⎭⎬⎫⎩⎨⎧≤+=1),(2222b y a x y x D 求y I ,l I ,其中是过原点切倾斜角为α的直线解:ab M ρπ=y I ρμ==⎰⎰Ddxdy y x x ),(2ρ=⎰⎰Ddxdy x 2⎰⎰123203cos dr r d b a θθπ ===⎰4cos 43202ba d abρθθρπ42Ma由题设可知薄片上任意点到直线l 的距离为αα2tan 1tan +-=y x dl I ==⎰⎰Ddxdy y x d ),(2μ⎰⎰++Ddxdy xy y x )tan 2tan (tan12222αααρ⎰⎰+=Ddxdyx 222tan 1tan ααρ⎰⎰++Ddxdy y 22tan 1αρ⎰⎰+-Dxydxdy ααρ2tan 1tan 24tan 1tan 222Ma ⋅+=ααρdr r d ab ⎰⎰++1322023sin tan 1ϑθαρπdr r d b a θθθαρπ⎰⎰+-1320222sin cos tan 14tan 1tan 222Ma ⋅+=αα2tan 123παρ⋅++ab 4tan 1tan 222Ma ⋅+=αα4tan 1122Mb ⋅++ααα2222tan 1tan 4++⋅=a b M (2)、{}b y a x y x D ≤≤≤≤=0,0),(求y I ,l I ,其中是过原点与点),(b a 的对角线ab M ρ=y I ρμ==⎰⎰Ddxdy y x x ),(2ρ=⎰⎰Ddxdy x 2⎰⎰bady dx x 023323Ma ba ==ρx I ρμ==⎰⎰Ddxdy y x y ),(2ρ=⎰⎰Ddxdy y2⎰⎰bady y dx 0232Mb =由题设可知薄片上任意点到直线l 的距离为22ba ay bx d +-=l I ==⎰⎰Ddxdy y x d ),(2μ⎰⎰-++Ddxdy abxy y a x b b a )2(222222ρ=⎰⎰+Ddxdy x ba b 2222ρ⎰⎰++Ddxdy y ba a 2222ρ⎰⎰+-Dxydxdy ba ab222ρ22223b a b Ma +=22223b a a Mb ++22222b a b a M +-)(62222b a b Ma += 习题9.41、 化三重积分⎰⎰⎰Ωdv z y x F ),,(为三次积分(只须先,z 次对,y 后对x 一种次序)(1)、由三个坐标面与平面06236=-++z y x 围成解:23230yx z --≤≤,,220x y -≤≤10≤≤x ⎰⎰⎰Ωdv z y x f ),,(⎰⎰⎰---=yx x dz z y x f dy dx 32302201),,((2)、由旋转抛物面22y x z +=与平面1=z 围成解:122≤≤+z y x ,,1122x y x -≤≤--11≤≤-x⎰⎰⎰Ωdv z y x f ),,(⎰⎰⎰+-+---=111112222),,(y x x x dz z y x f dy dx(3)、由圆锥面22y x z +=与上半球面222y x z --=围成解:22222y x z y x --≤≤+,,2222x y x -≤≤--22≤≤-x⎰⎰⎰Ωdv z y x f ),,(⎰⎰⎰--+-+---=22222222222),,(y x y x x x dz z y x f dy dx(4)、由双曲抛物面xy z =与平面0,1==+z y x 围成 解:xy z ≤≤0,,10x y -≤≤10≤≤x⎰⎰⎰Ωdv z y x f ),,(⎰⎰⎰-=xyxdz z y x f dy dx 01010),,(2、 设有一物体,点据空间闭区域{}10,10,10),,(≤≤≤≤≤≤=Ωz y x z y x 密度函数为z y x z y x ++=),,(μ,求该物体的质量解:=++=⎰⎰⎰Ωdv z y x M )(=⎰⎰⎰Ωxdv ++⎰⎰⎰Ωydv =⎰⎰⎰Ωzdv =⎰⎰⎰Ωzdv 32331011==⎰⎰⎰zdz dy dx 3、 计算三重积分 (1)、⎰Ωx y d v⎭⎬⎫⎩⎨⎧=++====Ω132,0,0,0),,(z y x z y x z y x ⎰⎰⎰Ωxydv ⎰⎰⎰---=)21(30)1(2010yx x xydz dy dx ⎰⎰---=)1(202210)2333(x dy xy y x xy dx ⎰⎰---=)1(202210)2333(x dy xy y x xy dx⎰-----=103222])22(21)22(33)22(23[dx x x x x x x ⎰-----=103222])22(21)22(33)22(23[dx x x x x x x 101512215105]12303010[10432=-+-=-+-=⎰dx x x x x (2)、⎰⎰⎰Ωzdv y x 22 {}x z z x y x y x z y x ==-====Ω.0,,,1),,( ⎰⎰⎰Ωxyzdv ⎰⎰⎰-=xxx zdz y x dy dx 02210⎰⎰-=x x dy y x dx 24102124131107==⎰dx x (3)、⎰Ωx y z d v{}0,1,,),,(=====Ωz x x y xy z z y x⎰⎰⎰Ωxyzdv ⎰⎰⎰=xyxxyzdz dy dx 01264181107==⎰dx x (4)、⎰Ωdv z 2 {}0,1),,(22=--==Ωz y x z z y x⎰⎰⎰Ωxyzdv ⎰⎰⎰------=22221021111y x x x dz z dy dx ⎰⎰--=x dy y x dx 0232210)1(311525132)1(311023220ππθπ=⋅=-=⎰⎰rdr r d (5)、⎰Ωdv z 2 {}z x y z z y x 2),,(222≤++=Ω解;积分区域是1)1(222=-++z y x ,22221111y x z y x --+≤≤---2211x y x -≤≤--111≤≤-x这样计算很繁琐,改为下面的方法(是很高的技巧) 任意取一点,z 则截口面积为)2(2z z dxdy -=π⎰⎰⎰⎰⎰⎰=ΩDdxdy dz z dv z2022dz z z )2(243⎰-=π58)542(2054ππ=-=z z4、 利用柱坐标计算 (1)⎰⎰⎰Ωzdv 其中Ω是由上半球面222y x z --=与旋转抛物面22y x z +=围成的闭区域解:先确定该区域在xoy 面的投影区域⎪⎩⎪⎨⎧+=--=22222y x z y x z 为⎩⎨⎧==+0122z y x 就是{}1),(22≤+=y x y x D 设:θθsin ,cos ,r y r x z z ===,有rdxdydz dv =,222r z r -≤≤ 10,20≤≤≤≤r πθ⎰⎰⎰Ωzdv ⎰⎰⎰-=222120r rzdz rdr d πθ⎰⎰--=104220]2[21dr r r r d πθ 127)61411(]2[21105320ππθπ=--=--=⎰⎰dr r r r d (2)⎰⎰⎰Ω+dv y x z22 其中Ω是由旋转抛物面22y x z +=与平面1=z 围成的闭区域解:先确定该区域在xoy 面的投影区域⎩⎨⎧+==221yx z z 为⎩⎨⎧==+0122z y x 就是{}1),(22≤+=y x y x D 设:θθsin ,cos ,r y r x z z ===,有rdxdydz dv =,12≤≤z r 10,20≤≤≤≤r πθ⎰⎰⎰Ωzdv ⎰⎰⎰=112202rzdz dr r d πθ⎰⎰-=104220]1[21dr r r d πθ 214)7131(][21106220ππθπ=-=-=⎰⎰dr r r d5、设密度为常量μ的均匀物体占据由223y x z --=与0,1,1=±=±=z y x 围成的闭区域,求(1)、物体的质量 (2)、物体的重心 (3)、物体对于z 轴的转动惯量解:先确定该区域在xoy 面的投影区域 就是{}11,11),(≤≤-≤≤-=y x y x D (1)、=M ⎰Ωdv μ ⎰⎰⎰----=22301111y x dz dy dx μ⎰⎰--=-12211)3(2dy y x dx μμμμ328)3138(4)38(4102=-=-=⎰dx x(2)、由对称性得0~,0~==y x=z M =⎰⎰⎰Ωzdv μ⎰⎰⎰----22301111y x zdz dy dx μ⎰⎰--=-122211)3(dy y x dx μμμ45506)316536(2142=+-=⎰dx x x ==MM z z ~210253,所以物体的重心是)210253,0,0( (3)=z I ⎰⎰⎰Ω+dv y x )(22μ⎰⎰⎰----+=2230112211)(y x dz dy y x dx μ⎰⎰--+=122221)3)((4dy y x y x dx μ⎰⎰---+=14422221)233(4dy y x y x y x dx μM dx x x 1056245248)519754(4)3754(41042==-+=-+=⎰μμμ6、设密度为常量1的均匀物体占据由上半球面222y x z --=与圆锥面22y x z +=围成的闭区域,求(1)、物体的质量 (2)、物体的重心 (3)、物体对于z 轴的转动惯量解:先确定该区域在xoy 面的投影区域⎪⎩⎪⎨⎧+=--=22222y x z y x z 为⎩⎨⎧==+0122z y x 就是{}1),(22≤+=y x y x D 设:θθsin ,cos ,r y r x z z ===,有rdxdydz dv =,22r z r -≤≤ 10,20≤≤≤≤r πθ,于是(1)、=M ⎰⎰⎰Ωdv ⎰⎰⎰-=22120r rdz rdr d πθ⎰⎰--=1220]2[dr r r r d πθ=--=⎰⎰102220]2[dr r r r d πθ)12(34)12(3220-=-=⎰πθπd (2)、由对称性得0~,0~==y x =z M ⎰⎰⎰Ωzdv ⎰⎰⎰-=22120r rzdz rdr d πθ⎰⎰--=102220]2[21dr r r r d πθ=-=⎰⎰10320][dr r r d πθ24120πθπ==⎰d==MM z z ~)12(83+,所以物体的重心是))12(83,0,0(+(3)、=z I ⎰⎰⎰Ω+dv y x )(22 ⎰⎰⎰-=221320r rdz dr r d πθ⎰⎰--=12320]2[dr r r r d πθ=--=⎰⎰1042320]2[dr r r r d πθ)51(2-A π =A dt t t dr r r)(cos sin 242223123⎰⎰=-πdt t t )sin (sin 245203-=⎰π1528)15832(24=-= 所以=z I )328(152)511528(2-=-=ππ (B )的习题 1、⎰⎰⎰Ω+dv z x y )cos( ⎭⎬⎫⎩⎨⎧==+====Ω0.2,,0,2),,(z z x x y y x z y x ππ ⎰⎰⎰Ωxyzdv ⎰⎰⎰-+=xxdz z x y dy dx 202)cos(ππ=⎰⎰-xdy x y dx 020)sin 1(π⎰-=20)sin 1(21πdx x x 202]cos [sin 2116ππx x x --=21162-=π2、⎰⎰⎰Ωzdv {}z z y x z y xz y x 2,1),,(222222=++=++=Ω皆7:先确定该区域在xoy 面的投影区域⎩⎨⎧=++=++z z y x z y x 21222222为⎪⎩⎪⎨⎧==+04322z y x 就是⎭⎬⎫⎩⎨⎧≤+=43),(22y x y x D 设:θθsin ,cos ,r y r x z z ===,有rdxdydz dv =,22111r z r -≤≤-- 230,20≤≤≤≤r πθ,于是 ⎰⎰⎰Ωzdv ⎰⎰⎰---=221112320r r zdz rdr d πθ=⎰⎰--230220)112(21dr r r d πθ245]21)1(32[2302232ππ=---=r r习题9.51、 计算下列对弧长曲线积分(1)、ds y x nl⎰+)(22,其中l 为圆周222a y x =+解:设t a y t a x sin ,cos ==,adt ds =ds y xn l⎰+)(22⎰++==ππ2012122n n a dt a(2)、⎰l yds x sin 其中l 是连接点)0,0(,),3(ππ的直线段解:l 的方程为x y 31=π30≤≤x dx dx ds 310911=+=⎰lyds x sin dx xx ⎰=π303sin 310dt t t ⎰=π0sin 103π103= (3)、⎰l y ds 其中l 是连接点x y 42=上点)0,0(,)2,1(的一段弧解:l 的方程为x y 42= 10≤≤x dx xds 11+= ⎰lyds )122(34)1(34121231-=+=+=⎰x dx x (4)、⎰+l ds y x )( 其中l 是连接点)0,1(,)1,0(的直线段解:l 的方程为x y -=1 , 10≤≤x , dx ds 2=⎰+lds y x )(dx ⎰=122=(5)、ds x l⎰,其中l 为x y =与2x y =所围区域的边界解:l 的方程为x y = , 10≤≤x dx ds 2=l 的方程为2x y = , 10≤≤x dx x ds 241+=ds x l ⎰dx x x dx x ⎰⎰++=1210412)12655(121)41(32812210232-+=+⋅+x (5)、ds x l⎰,其中l 为x y =与2x y =所围区域的边界解:l 的方程为x y = , 10≤≤x dx ds 2=l 的方程为2x y = , 10≤≤x dx x ds 241+=ds x l ⎰dx x x dx x ⎰⎰++=1210412)12655(121)41(32812210232-+=+⋅+x (6)、ds y l⎰,其中l 为圆周122=+y x解:设t y t x sin ,cos ==,dtds =ds y l⎰⎰=πsin tdt ⎰-ππ2sin tdt πππ20cos cos x x +-=422=+= (7)、ds el y x ⎰+22,其中l 为圆周0,,422===+y x y y x 在第一象限的区域的边界解:在直线0=y 上 20≤≤x dx ds =ds ely x ⎰+122122-==⎰e dx e x在弧422=+y x 上设t y t x sin 2,cos 2==,dt ds 2=40π≤≤tds el y x ⎰+222222402ππ⋅==⎰e dt e在直线x y =上 20≤≤x dx ds 2=ds el y x ⎰+32212220222-===⎰e edx exxds ely x ⎰+22+-=)1(2e +⋅22πe )1(2-e )22(2+=πe 2-(8)、⎰l x y ds 其中l 是2,4,0,0====y x y x 围成的矩形的边界解:4321l l l l l +++=1l 的方程为0=y =⎰1l x y d s 001=⎰dx l ,4l 的方程为0=x=⎰4l xyds 004=⎰dy l2l 的方程为4=x=⎰2l x y d s 842==⎰y d y, 3l 的方程为2=y=⎰3l x y d s1624=⎰xdx24=⎰lxyds(9)、⎰l ds y 2其中l 是摆线)cos 1(),sin (t a y t t a x -=-=的一拱解:dt t a t a ds 2222sin )cos 1(+-=dt ta 2sin 22= ⎰l ds y 232022282sin 2)cos 1(a dt t a t a =-=⎰π=⎰π2052sin dt t ⎰π053sin 16udu a1525615832sin 32332053aa udu a =⋅==⎰π(10)、⎰+lds y x 22 其中l 是上半圆周x y x 222=+与x 轴围域的边界解:21l l l +=,1l :x y x 222=+化为1)1(22=+-y x 设t y t x sin ,cos 1==-,dt ds =⎰+122l ds y x =++=⎰π22sin )cos 1(dt t t =⎰π2cos dt t4cos 420=⎰πudu2l :0=y ,dx ds =⎰+222l ds y x 22==⎰xdx62422=+=+⎰lds y x2、 求半径为,R 中心角为α2的扇形圆弧的质心(密度均匀)1=μ解:选择与书上168页图9-34一样的坐标系,于是根据对x 轴的对称性得0~=y 设1=μ,t R y t R x sin ,.cos ==Rdt ds =R M α2=⎰=lyds M x 1~==⎰-ααtdt R M cos 12==⎰α2cos 2tdt R Mαααsin sin 22R M R ==所求质心为)0sin (ααR3、 计算下列关于坐标的曲线积分 (1)、⎰+ldx y x )(22,L 是抛物线2x y =上)0,0(O 到)4,2(A 一段弧解:⎰+l dx y x )(221556]53[)(20532042-=+=+=⎰x x dx x x(2)、⎰l y dx ,L 是 2,4,0,0====y x y x 矩形的边界按照逆时针方向 解:A O :0=y ,4:=x B A0=dx ,2:=y C A ,0:=x O C0=dx ,⎰lydx ⎰⎰⋅+=ABOAy dx 00⎰⎰⋅++COBCy dx 028204-==⎰dx(3)、⎰+l x d y y dx ,L 是 20,sin ,cos π≤≤==t t R y t R x 一段针方向的弧解:⎰+l xdy ydx dt x x dt t tR R t R t R )(]cos cos )sin (sin [242⎰++-=π02sin 22cos 202202===⎰ππtR dt t R(4)、⎰+-++lyx dyx y dx y x 22)()(,L 是圆周 222a y x =+沿逆时针方向解:t a y t a x sin ,cos ==,⎰+-++l y x dy x y dx y x 22)()(⎰-+-+=π2022]cos )sin (cos )sin )(sin [(cos a dt t t t t t t a ππ2120-=-=⎰dt(5)、⎰++l x dy dx y x )(,L 是折线 x y --=11从)0,0(到)0,2(一段解:⎩⎨⎧>-≤=121x x x xy ,弧dx dy x y A O ==,: ,dx dy x y B A -=-=,2:⎰++lxydy dx y x )(⎰⎰+=OAAB383732311)22()2(212102=+-++=+-++=⎰⎰dx x x dx x x (6)、⎰---l dy y a dx y a )()2(,L 是 )cos 1(),sin (t a y t t a x -=-=摆线的一拱,从)0,0(到)0,2(a π解:⎰---ldy y a dx y a )()2(dt t a t a a ⎰---=π20)cos 1()]cos 1(2[dt t a t a a ⎰---π20sin )]cos 1([dt t t t a ⎰+=π2022)cos sin (sin220222sin 2cos 1(a dt tt a ππ=+-=⎰4、计算⎰-++l dy x y dx y x )()(,其中L 分别是(1)、x y =2上点)1,1(到)2,4( (2)、点)1,1(到)2,4(的直线段解:(1)、在x y =2上点)1,1(到)2,4(,dx xdy 21=⎰-++ldy x y dx y x )()(dx x x xx x )](21[41-++=⎰3342153723)2121(41=++=++=⎰dx x x (2)、点)1,1(到)2,4(的直线段,3231+=x y ,dx dy 31=⎰-++ldy x y dx y x )()(dx x x x x )]3231(313231[41-++++=⎰ 11398215910)98910(41=⋅+⋅=+=⎰dx x 5、计算⎰+++l dy y x dx y x )2()2(,其中L 分别是(1)、2x y =上点)0,0(到)1,1(的一段弧 (2)、3x y =点)0,0(到)1,1(的一段弧 (3)、点)0,0(到点)0,1(再到点)1,1(的折线 解:(1)、2x y =上点)0,0(到)1,1(,xdx dy 2=⎰+++ldy y x dx y x )2()2(dx x x x xx ])2(22[122⎰+++=3111)432(132=++=++=⎰dx x x x(2)、3x y =点)0,0(到)1,1(的一段弧,dx x dy 23=⎰+++ldy y x dx y x )2()2(dx x xx ])642[153⎰++=3111=++=(3)、点)0,0(到点)0,1(再到点)1,1(的折线⎰+++ldy y x dx y x )2()2(+=⎰dx x 102⎰+1)21(dy y 3=6、一力场由沿x 轴正向的常力→F 构成,求将一个质量为m 的质点沿222R y x =+按逆时针方向移动过第一象限那段弧所做的功 解:→F →=i F dx F W l⎰=F R tdt R F -=-=⎰2sin π节9.6习题处理1、计算下列关于坐标的曲线积分,并验证格林公式的正确性(1)dy y x dx y x l )()(22--+⎰,L 是椭圆12222=+by a x 沿逆时针方向解:设t b dy t b y t a dx t a x cos ,sin ,sin ,cos ==-==dy y x dx y xl)()(22--+⎰⎰⎰⎰-+-=πππ2023202320sin cos cos sin tdt t atdt t bdt abab π2-=用格林公式y x y x P +=2),( 2),(y x y x Q +-=1),(-=y x Q x 1),(=y x P ydy y x dx y x l)()(22--+⎰ab dxdy Dπ22-=-=⎰⎰ (2)、dy y x dx y x l )()(222+-+⎰)0,0()1,0()0,1()0,0(:→→→L 直线段围成的闭路解:0),0,1()0,0(:1=→y L ; x y L -=→1),1,0()0,1:2;0),0,0()1,0(:3=→x Ldy y x dx y x l)()(222+-+⎰1])1([012012210-=--+-=⎰⎰⎰dy y dx x x xdx 用格林公式2)(),(y x y x P += 22),(y x y x Q --=x y x Q x 2),(-= )(2),(y x y x P y +=dy y x dx y x l)()(222+-+⎰=+-=⎰⎰Ddxdy y x )2(2⎰⎰-+-xdy y x dx 1010)2(21)2321(210-=-+-=⎰dx x x2、求星形线t a y t a x 33sin ,cos ==所围的面积解:dt t t a ydx xdy A l ⎰⎰=-=π20222sin cos 232183)4cos 1(1632202a dt t t a ππ=-=⎰3、用格林公式计算(1)、dy y x dx y x l)653()42(-+++-⎰)0,0()2,3()0,3()0,0(:→→→L 直线段围成的三角形边界解:653),(-+=y x y x Q 42),(+-=y x y x P3),(=y x Q x y y x P y -=),(dy y x dx y x l)653()42(-+++-⎰12212344=⨯⨯⨯==⎰⎰Ddxdy ⎰⎰-+-x dy y x dx 1010)2(2(2)、dy y y x dx xe xy l x)cos ()32(2-++⎰1:2222=+by a x L 逆时针方向解:x xe xy y x P 32),(+= y y x y x Q c o s ),(2-=x y x Q x 2),(= x y x P y 2),(=dy y x dx y x l)653()42(-+++-⎰00==⎰⎰Ddxdy(3)、⎰+++l y ydy e x dx xey )1()(22224:x x y l -=由)0,4()0,0(→的弧解:先补足成闭路1-+=l OA Ly xe y y x P 2),(+= 1),(22+=y e x y x Qy x xe y x Q 22),(= y y xe y x P 221),(+=⎰+++L y y dy e x dx xe y )1()(222ππ2)2(212-=-=-=⎰⎰Ddxdy 于是⎰+++ly ydy e x dx xey )1()(222-+++=⎰dy e x dx xe y y OA y )1()(22(2⎰+++Ly ydy e x dx xey )1()(222ππ2824+=+=⎰xdx(4)、⎰---l dy y y x dx y )sin ()cos 1(x y l s i n:=上由)0,()0,0(π→的弧解:先补足成闭路1-+=l OA Ly y x P cos 1),(-= )s i n (),(y y x y x Q --=y y y x Q x sin ),(+-= y y x P y s i n ),(=⎰-+---1)sin ()cos 1(l OA dy y y x dx y ⎰⎰⎰⎰-=-=xDydy dxydxdy sin 0π4)12((cos 41sin 21002πππ-=-=-=⎰⎰x xdx于是⎰---ldy y y x dx y )sin ()cos 1(----=⎰dy y y x dx y OA )sin ()cos 1((⎰-+---1)sin ()cos 1(l OA dy y y x dx y4400πππ=+=⎰dx(5)、⎰+--l dy y x dx y x )sin ()(2222:x x y l -=上由)1,1()0,0(→的弧解:先补足成闭路1-++=l AB OA Ly x y x P -=2),( )s i n ),(2y x y x Q --=-=),(y x Q x 1),(-=y x P y⎰-+++--1)sin ()(22lAB OA dy y x x dx y x 0=于是⎰+--l dy y x dx y x )sin ()(22+--=⎰dy y x dx y x OA)sin ()(22dy y x dx y x AB)sin ()(22--=⎰+=⎰102dx x ⎰--12)sin 1(dy y⎰---=10)2cos 1(21131dy y 672sin 41-= (6)、⎰+++l xxdy e x dx ye )()1( 1:2222=+by a x L 上由)0,()0,(a a →-的上半椭圆解:先补足成闭路1),(-++-=l a a Lx ye y x P +=1),( x e x y x Q +=),(x x e y x Q +=1),( x y e y x P =),(ab dxdy dy e x dx ye Dl a a x x π21)()1(1),(==+++⎰⎰⎰-++- 于是⎰+++lxx dy e x dx ye )()1(ab dy e x dx ye a a x x π21)()1(),(-+++=⎰+- ab dx a a π21-=⎰-ab a π212-= 4、 证明下列曲线积分在xoy 面内与路径无关,并计算积分值 (1)、⎰-++)3,2()1,1()()(dy y x dx y xy x y x P +=),( y x y x Q -=),( 都是初等函数,因此在xoy 面内有连续的偏导数1),(=y x Q x 1),(=y x P y 得 =),(y x Q x ),(y x P y 所以曲线积分在xoy 面内与路径无关⎰-++)3,2()1,1()()(dy y x dx y x ⎰+=21)1(dx x ⎰-+31)2(dy y=--+-+=)19(214)14(21125 (2)、⎰-++-)1,2()0,1(324)4()32(dy xy x dx y xy32),(4+-=y xy y x P 324),(xy x y x Q -= 都是初等函数,因此在xoy 面内有连续的偏导数342),(y x y x Q x -= 342),(y x y x P y -= 得 =),(y x Q x ),(y x P y 所以曲线积分在xoy 面内与路径无关⎰-++-)1,2()0,1(324)4()32(dy xy x dx y xy ⎰+=21)22(dx x ⎰-+13)164(dy y544)14(2=-+-+=25(3)、⎰-++),()0,0()c o s ()s i n (ππdy y xe dx x e y yx e y x P y sin ),(+= y xe y x Q y cos ),(-= 都是初等函数,因此在xoy 面内有连续的偏导数y x e y x Q =),( yy e y x P =),( 得 =),(y x Q x ),(y x P y 所以曲线积分在xoy 面内与路径无关⎰-++),()0,0()cos ()sin (ππdy y xe dx x e yy⎰+=π0)sin 1(dx x ⎰-+ππ0)cos (dy y e y=--++=0)1(2πππe 252+=ππe 5、验证下列dy y x Q dx y x P ),(),(+在整个xoy 面内是某一个函数),(y x u 的全微分,并且求这样的函数),(y x u(1)、dy y x dx y x )2()2(+++解答:y x y x P 2),(+= y x y x Q +=2),( 都是初等函数,因此在xoy 面内有连续的偏导数2),(=y x Q x 2),(=y x P y 得 =),(y x Q x ),(y x P y所以曲线积分在xoy 面内存在),(y x u ,使dy y x dx y x y x du )2()2(),(+++=⎰+++=),()0,0()2()2(),(y x dy y x dx y x y x u ⎰=x xdx 0⎰++ydy y x 0)2(2221221y xy x ++=(2)、dy y xe dx e x y y )2()2(-++解答:y e x y x P +=2),( y xe y x Q y 2),(-= 都是初等函数,因此在xoy 面内有连续的偏导数y x e y x Q =),( y y e y x P =),( 得 =),(y x Q x ),(y x P y所以曲线积分在xoy 面内存在),(y x u ,使=),(y x du dy y xe dx e x y y )2()2(-++⎰-++=),()0,0()2()2(),(y x yydy y xe dx e x y x u ⎰+=x dx x 0)12(⎰-+yy dy y xe 0)2(=-+-+=x xe y x x y 22y xe y x +-22(3)、y d y x y d x x 3c o s 2c o s 33s i n 2s i n2-解答:y x y x P 3sin 2sin 2),(= y x y x Q 3c o s 2c o s 3),(-= 都是初等函数,因此在xoy面内有连续的偏导数y x y x Q x 3c o s 2s i n 6),(= y x y x P y 3c o s 2s i n 6),(= 得 =),(y x Q x ),(y x P y所以曲线积分在xoy 面内存在),(y x u ,使=),(y x du dy y x Q dx y x P ),(),(+⎰-=),()0,0(3cos 2cos 33sin 2sin 2),(y x ydy x ydx x y x uy x ydy x y 3sin 2cos 3cos 2cos 30-=-=⎰(4)、dy ye y x y x dx xy y x y)122()3(223322++++解答:32283),(xy y x y x P += yye y x y x y x Q ++=223122),( 都是初等函数,因此在xoy 面内有连续的偏导数22246),(xy y x y x Q x += =),(y x P y 22246xy y x + 得 =),(y x Q x ),(y x P y 所以曲线积分在xoy 面内存在),(y x u ,使=),(y x du dy y x Q dx y x P ),(),(+⎰++++=),()0,0(223322)122()83(),(y x y dy ye y x y x dx xy y x y x u31 ⎰++=yy dy ye y x y x y x u 0223)122(),(y y e ye y x y x -++=322346、设→→→-++=j xy i y x F )12()(2试证:在在xoy 面内,→F 作的功与路径无关 证明:⎰-++=l dy xy dx y x W )12()(22),(y x y x P += 12),(-=xy y x Q 都是初等函数,因此在xoy 面内有连续的偏导数 y y x Q x 2),(= y y x P y 2),(= 得 =),(y x Q x ),(y x P y所以曲线积分在xoy 面内积分与路径无关,所以在在xoy 面内, →F 作的功与路径无关。
第9章重积分(单元自测题答案)
《高等数学》单元自测题答案第九章 重积分一、填空题: 1、1; 2、⎰⎰x x dy y x f dx 240),(;3、⎰⎰bardr r r f d )sin ,cos (20θθθπ;4、3;5、π8。
二、选择题:1、B ;2、C ;3、B ;4、D 。
三、计算下列二重积分:1、解 由⎪⎩⎪⎨⎧==21y x x y 解得曲线交点为)1,1(。
所以,积分区域D 可表示为:x y x≤≤1,41≤≤x 从而,dx y x dy y x dx d y x xxy x x D124113413)1(22=-==⎰⎰⎰⎰⎰σ 4243)41()1(414413=-=-=⎰x x dx x 。
2、解 由题意知,积分区域D 可表示为:y x ≤≤0,10≤≤y 。
所以,dxdy e Dy ⎰⎰2⎰⎰⎰=⋅==11022dy xe dx e dy y x y yy)1(21)(211010210222-====⎰⎰e e y d e dy ye y y y 。
3、解 由题意知,积分区域D 可表示为:21≤≤r ,πθ20≤≤。
所以,dxdy y x D⎰⎰+22ππθπ3143122132120=⋅=⋅=⎰⎰r rdr r d 。
4、解 由题意知,积分区域D 可表示为:10≤≤r ,πθ20≤≤。
所以,σd eDy x ⎰⎰+22。
πππθπ)1(212)(21211021020222-=⋅=⋅=⋅=⎰⎰⎰e er d e rdr e d r r r四、计算下列三重积分:1、解 由题意知,积分区域Ω可表示为:y x z --≤≤10,x y -≤≤10,10≤≤x所以,=⎰⎰⎰Ωdxdydz x 2⎰⎰⎰⎰⎰------=x x y x dy y x x dx dz x dy dx 102101010210)1(⎰-=--=101022)21(dx y xy y x xy 601)2(2110432=+-=⎰dx x x x 。
上海财经大学《高等数学》第九章习题及解答
第九章习题解答1.设xoy 平面上的一块平面薄片D ,薄片上分布有密度为),(y x u 的电荷,且),(y x u 在D 上连续,请给出薄片上电荷Q 的二重积分表达式.[解] 板上的全部电荷应等于电荷的面密度(,)u x y 在该板所占闭区域D 上的二重积分, 即=(,)DQ u x y d σ⎰⎰.2.由平面1342=++z y x ,0=x , 0=y ,0=z 围成的四面体的体积为V ,试用二重积分表示V . [解] 4(1)23Dx yV dxdy =--⎰⎰. 3.比较大小 (1) σ⎰⎰+D d y x 2)( 与σ⎰⎰+Dd y x 3)(,其中D 是x 轴、y 轴与直线1=+y x 所围成.(2)σ⎰⎰+Dd y x 2)(与σ⎰⎰+Dd y x 3)(,其中D 是由圆2)1()2(22=-+-y x 所围成. [解] (1) 由0x 1y ≤+≤,得32()x y ≤+(x+y), 由二重积分的性质可得23()()DDx y d x y d σσ+≥+⎰⎰⎰⎰.(2) 由积分区域D 位于+1x y ≥的半平面内,所以D 内有23()()x y x y +≤+, 由二重积分的性质可得23()()DDx y d x y d σσ+≤+⎰⎰⎰⎰. 4.估计: (1) I=σ⎰⎰+Dd y x xy )(,其中D 是矩形区域:0≤x ≤1,0≤y ≤1;(2) I=σ⎰⎰++Dd y x )1(,其中D 是矩形区域:0≤x ≤1,0≤y ≤2;(3) I=σ⎰⎰++Dd y x )9(22,其中D 是圆形区域:422≤+y x . [解] (1) 因为在区域D 上有01,0y 1x ≤≤≤≤,所以01,02,xy x y ≤≤≤+≤故0()2xy x y ≤+≤,所以0()22,DDDd xy x y d d D σσσ≤+≤=⎰⎰⎰⎰⎰⎰上海财经大学《高等数学》第九章习题及解答即()2Dxy x y d σ≤+≤⎰⎰0.(2)因为在区域D 上01,02x y ≤≤≤≤,所以114x y ≤++≤,故()=x 14=4DDDD d y d d D σσσ≤++≤⎰⎰⎰⎰⎰⎰,即()218Dx y d σ≤++≤⎰⎰.(3) 因为2222x 494()925,y x y ≤++≤++≤9,所以25D I D ≤≤9,即36100I ππ≤≤.5.由二重积分的几何意义计算⎰⎰--Dd y x R σ222,222:R y x D ≤+.[解] 令2222z x y z R =++=,所以z Dd σ⎰⎰为上半球体的体积, 于是有314=23DR σπ⋅⎰⎰.6.求下列二重积分 1)σ⎰⎰+D d y x)(22,其中D 是矩形区域:|x|≤1, |y|≤1;2)σ⎰⎰+Dd y x )23(,其中D 是x 轴、y 轴与直线2=+y x 所围成闭区域;3)σ⎰⎰++Dd y y x x )3(322,其中D 是矩形闭区域:0≤x ≤1,0≤y ≤1; 4)σ⎰⎰+Dd y x x )cos(, 其中D 是顶点分别为(0,0),(π,0)和(π,π)的三角形闭区域; 5)σ⎰⎰Dy x d e),max{22,其中D 是矩形闭区域:0≤x ≤1,0≤y ≤1.[解] (1) 1112222211128233Dx y d x y dxdy x dx σ---+=+=+=⎰⎰⎰⎰⎰()()(). (2)22-003232xDx y d dx x y dy σ+=+⎰⎰⎰⎰()()22224)xx dx =++⎰(-3220220(4)33x x x =-++=.(3) 11323323033Dx x y y d dy xx y y dx σ++=++⎰⎰⎰⎰()()42131001()()14424y y y y y dy =++=++=⎰.(4)coscos()xDx x y d xdx x y dy πσ+=+⎰⎰⎰⎰()001(sin 2sin )(cos 2cos )2x x x dx xd x x ππ=-=--⎰⎰00113(cos 2-cos )cos 2-cos 222x x x x x dx πππ=-+=-⎰(). (5) 因{}222222111max ,100001111(1)2222x x y x x x xD e d dx e dy e xdx e dx e e σ=====-⎰⎰⎰⎰⎰⎰, 所以 {}22max ,(1)x y Ded e σ=-⎰⎰.7. 画出积分区域,计算积分: 1) σ⎰⎰Dd y x ,其中D 是由两条抛物线2x y =, x y =所围成闭区域, 2) σ⎰⎰Dd xy2,其中D 是由圆周422=+y x 及y 轴所围成右半闭区域,3) σ⎰⎰+D yx d e, 其中D 是由1≤+y x 所确定的闭区域,4)σ⎰⎰-+Dd x y x )(22, 其中D 是由直线x y y ==,2 及x y 2=所围成的闭区域. [解] (1)图略.27114400226()3355xDdx x x dx σ==-=⎰⎰⎰⎰(2)图略.222352222164();31015Dxy d dy dx y y σ--==-=⎰⎰⎰ (3)图略.1111101x x x y x y x y x x De d e dx e dy e dx e dy σ+-++----=+⎰⎰⎰⎰⎰⎰1211211()()x x ee dx e e dx +---=-+-⎰⎰21021111111()()22x x e x ex e e e e +---=-+-=-.(4) 图略.2222202()()yy Dxy x dy x y x dx +-=+-⎰⎰⎰⎰2330193()248y y dy =-⎰ 4321911()2448y y =⋅- 136=. 8. 交换下列的积分顺序 1) ⎰⎰--22221),(x x xdy y x f dx ,2) ⎰⎰--aax a dy y x f dx 220),(3)⎰⎰-xx dy y x f dx sin 2sin 0),(π;4)⎰⎰--2ln 1),(2y e dx y x f dy ⎰⎰-++2)1(2112),(y dx y x f dy ;5)⎰⎰⎰⎰-+31301020),(),(yy dx y x f dy dx y x f dy ;6)⎰⎰--2ln 1),(2ye dx y xf dy ⎰⎰-++2)1(2112),(y dx y x f dy .[解] (1) 图略.2111202(,)(,)xydx f x y dy dy f x y dx--=⎰⎰⎰(2) 图略.(,)(,)aaadx f x y dy dy f x y dx-=⎰⎰(3) 图略.sin 01arcsin 0sin12arcsin 0arcsin 2(,)(,)(,)xyx yydx f x y dy dy f x y dx dy f x y dxπππ----=+⎰⎰⎰⎰⎰⎰(4) 图略. 因{}{}22ln =1,2(,)111)2D y e y x x y y y x -≤≤-≤≤⋃≤≤-≤≤(x,y ),因此积分区域还可以表示为212,02,1x D x y x e y x -⎧⎫⎪⎪=≤≤≤≤+⎨⎬⎪⎪⎩⎭(),所以 1222212221(101)1 (,)(,)(,)x x eIn y yedy f x y dx f x y dx dx f x y dy --+--+=⎰⎰⎰⎰⎰⎰.(5) 图略. 由3x y =-和=2=1x y ,,得123323012(,)(,)=(,)yyxxdy f x y dx dy f x y dx dx f x y dy --+⎰⎰⎰⎰⎰⎰.9.计算下列二重积分: ⑴⎰⎰+Dy x d e σ23.2||,2||:≤≤y x D ⑵⎰⎰+Dd y xσ)(22.1||||:≤+y x D .⑶⎰⎰+Ddxdy y x 221.10,10:≤≤≤≤y x D . ⑷⎰⎰--Ddxdy y x )2(21.2,:x y x y D ==. [解] 223232322266442222111(1)()()326x y x y x y De d e dx e dy e e e e e e σ+------==+=--⎰⎰⎰⎰. (2)3111222100()()3xxy dx x y dy dx x y --+=+⎰⎰⎰3120(1)(1)3x x x dx ⎡⎤-=-+⎢⎥⎣⎦⎰ 12463=⨯=. (3) 23112110220011arctan 1133412Dx x dxdy x dx dy yy y ππ===⋅=++⎰⎰⎰⎰. (4)21011(2)(2)22x x Dx y dxdy dx x y --=--⎰⎰⎰⎰ 22101(2)22xx y dx y xy =--⎰2412230122222x x x x x x dx ⎡⎤⎛⎫⎛⎫=-----⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦⎰1711(1)26410=-++ 11120=.10.利用极坐标求下列积分 1)⎰⎰+Dd y x σ)(22其中D 是由直线x y =, )0(3,,>==+=a a y a y a x y 所围成的区域. 2)⎰⎰+Ddxdy y x 22.1:22≤+y x D .3)⎰⎰--D d y x R σ222,其中D 是由圆周Rx y x =+22所围成的区域.4) ⎰⎰+Ddxdy y x)(22.y y x D 6:22≤+.5)⎰⎰-+Dd y x σ222,其中D :322≤+y x . 6)σ⎰⎰++Dd y x )1ln(22,其中D 是由圆周122=+y x 及坐标轴所围成的第一象限内 的闭区域; 7)计算dxdy y x D)(22⎰⎰+,其 D 为由圆 y y x 222=+,y y x 422=+及直线y x 3-0=, 03=-x y 所围成的平面闭区域8) 计算二重积分⎰⎰++Ddxdyyx y x 2222)sin(π,其中积分区域为22{(,)|14}D x y x y =≤+≤;9)σ⎰⎰++--Dd yx y x 222211,其中D 是由圆周122=+y x 及坐标轴所围成的第一象限内的闭区域. 10)⎰⎰++Dd y xσ)1ln(22.4:22≤+y x D ,0≥x ,0≥y .[解] (1) 32222414ayay a Dx y d dy x y dx a σ-+=+=⎰⎰⎰⎰()().(2)2120012233Dd r dr πθππ==⋅=⎰⎰.(3)cos 202R Dd rdr πθπθ-=⎰⎰cos 202R d rdr πθθ=⎰⎰33320112(sin )33R R d πθθ=-⎰34()33R π=-. (4)设cos ,sin x r y r θθ==, 则006sin r θπθ≤≤≤≤,.22=Dx y dxdy +⎰⎰原式()6sin 3444000136sin 6432d r dr d πθπθθθπ==⨯=⎰⎰⎰.2222222000442230(5)22)2)55((24442D x y d d rdr d r rdr r rdr r r d r r πππσθθθππ⎡⎤+-=-=-+-⎢⎥⎣⎦⎡=--=⋅=⎢⎣⎰⎰⎰⎰⎰(6)积分区域D 的极坐标表达式0,012r πθ≤≤≤≤,则12222+x (1)(221)4DInd In r rdr In ππσ=+=-⎰⎰⎰⎰(1+y ).(7)内边界22sin 2sin r r r θθ=⇒=, 外边界24sin 4sin r r r θθ=⇒=,则,2sin 4sin 63r ππθθθ≤≤≤≤,所以原式=4sin 2224332sin 6660sin 15(48Ddxdy d r rdr d ππθππθπθθθ=⋅==-⎰⎰⎰⎰⎰(x +y )(8)cos ,sin x r y r θθ==,则02,12r θπ≤≤≤≤,原式221=sin 4Dd rdr πθπ==-⎰⎰.(9)采用极坐标计算200(2)8Dd ππθπ==-⎰⎰. (10) 积分区域D 的极坐标表达式为022r πθ≤≤≤≤0,,则22222+(1)(554)4DInd d In r rdr In ππσθ=+=-⎰⎰⎰⎰(1x +y ).11. 将三次积分⎰⎰⎰yxxdz z y x f dy dx ),,(110改换积分次序为z y x →→.[解] 110(,,)(,,)xy yy x xxD I dx dy f x y z dz d f x y z dz σ==⎰⎰⎰⎰⎰⎰,现改为先y 后x 的顺序:11(,,)(,,)yyxDxzI dy dx f x y z dz dy f x y z d σ==⎰⎰⎰⎰⎰⎰现改为先x 后z 的顺序:10(,,)(,,)yzy z zD I dy dz f x y z dx d f x y z dx σ==⎰⎰⎰⎰⎰⎰现改为先y 后z 的顺序:110(,,)zzI dz dy f x y z dx =⎰⎰⎰.12.将三次积分⎰⎰⎰+10122),,(y x dz z y x f dy dx 改变成按x z y ,,的次序积分.[解] 1()(,,)(,,)D x I f x y z dV dx f x y z Ω==⎰⎰⎰⎰⎰⎰,其中22.Dy ≤≤≤≤+(x ):0y 1,0z x 现改为先y 后z 的顺序,将D (x )分成两部分: 2,01;y ≤≤≤≤0z x2211x z x y ≤≤+≤≤,所以:222111110=x x xI dx dz dy dx dz ++⎰⎰⎰⎰⎰.13..求下列给定区域的体积 1)求由曲面222y xz +=及2226y x z --=,所围成的立体的体积;2)求由下列曲面所围成的立体体积,y x z+=,xy z =,1=+y x ,0=x ,0=y .[解] 1) 222226(2)z x y x y =+=-+, {22(,)|2},D x y x y =+≤ 于是2222(62)(2)DV z y x y dxdy =---+⎰⎰2263()D xy dxdy =-+⎰⎰2203)6r rdrd πθπ=-=⎰. 2) []111107()24xx y xx y z x xyV d d d d x y xydy -+-==+-=⎰⎰⎰⎰⎰. 14.作适当的变换,计算下列二重积分:1)⎰⎰Ddxdy y x22,其中D 是由两条双曲线1=xy 和2=xy ,直线x y =和xy 4=所围成的在第Ⅰ象限的闭区域. 2)⎰⎰+Ddxdy y x )(22,其中D 是椭圆区域:1422≤+y x . [解] 1) (,)(,)1,2,(,)(,)22u xyu v x y v yx y u v v v =⎧∂∂⎪==⎨∂∂=⎪⎩, {}'(,)|12,14D u v u v =≤≤≤≤, 于是,2422221117ln 2223x y u v u v D D u x y d d u d d d d v v =⋅==⎰⎰⎰⎰⎰⎰. 2) cos 1sin 2x r y r θθ=⎧⎪⎨=⎪⎩, {}'(,)|01,02D r r θθπ=≤≤≤≤, 于是 ,,222221()(cos sin )42D Dr x y dxdy r drd θθθ+=+⎰⎰⎰⎰ 123001535(cos 2)28832r drd πθθπ=+=⎰⎰.15. 计算dxdydz z xy V42⎰⎰⎰.31,20,10:≤≤≤≤≤≤z y x V .[解]1232424213230010111196823515Vxy z dxdydz xdx y dy z dz x y z ==⋅⋅=⎰⎰⎰⎰⎰⎰. 16.计算dxdydz z y x V⎰⎰⎰++)sin(.V 由平面0=x ,0=y ,0=z ,2π=++z y x 围成.[解]222sin()sin()x yx y z dxdydz dx dy x y z dz πππ--Ω++=++⎰⎰⎰⎰⎰⎰22200cos()|x ydx x y z dy πππ--=-++⎰⎰22sin()|xx y dx ππ-=+⎰12π=-.17.在柱面坐标系下计算三重积分dxdydz y xV⎰⎰⎰+)(22,其中V 由旋转抛物面)(2122y x z +=及平面2=z 所围成的立体. [解] 令cos sin x r y r θθ=⎧⎨=⎩, {}'02,02V r z θπ=≤≤≤≤≤≤, 于是,222223016()3x y z r z r z VVx y d d d r rd d d d d d πθθπ+=⋅==⎰⎰⎰⎰⎰⎰⎰⎰. 18.设有物体占有空间V: 0≤x ≤1, 0≤y ≤1,0≤z ≤1,在点()z y x ,,的密度是()z y x z y x ++=,,ρ,求该物质量.[解] (,,)()M x y z dxdydz x y z dxdydz ρΩΩ==++⎰⎰⎰⎰⎰⎰1113()2dx dy x y z dz =++=⎰⎰⎰. 19.计算⎰⎰⎰Vdxdydz z xy32,其中V 是曲面xy z =与平面1,==x x y 和0=z 所围成的闭区域.[解] Ω在xOy 面上的投影区域Dxy 由,1,0y x x y ===所围成,则11232312001128364xxyxyz dxdydz xdx y dy z dz x dx Ω===⎰⎰⎰⎰⎰⎰⎰. 20.计算⎰⎰⎰+++Vz y x dxdydz3)1(, 其中V 是平面1,0,0,0=++===z y x z y x 所围成的四面体.[解] 令1x y z ++=中的0z =,得1x y +=,Ω在xOy 面上的投影区域Dxy 由0,0,1x y x y ==+=所围成, 所以111330001(1)(1)x x y dxdydz dx dy dz x y z x y z ---Ω=++++++⎰⎰⎰⎰⎰⎰ 1120011115()(ln 2)24(1)28x x y d d x y -=--=--++⎰⎰. 21. 计算⎰⎰⎰Vxyzdxdydz ,其中V 是球面1222=++z y x 及坐标面所围成的第一卦限内的闭区域.[解] 令2221x y z ++=中z=0得221y +=x ,故Ω在xOy 面上的投影区域Dxy 由221,0,0x y x y +===所围成,故1xyzdxdydz dx xyzdz Ω=⎰⎰⎰⎰1122220001111(1)(1)22448xdx y x y dy x x dx ⎡⎤=--=-=⎢⎥⎣⎦⎰⎰. 22. 计算⎰⎰⎰Vxyzdxdydz ,其中V 是平面1,,0===y y z z 以及抛物柱面2x y =所围成的闭区域.[解] (1)故Ω在xOy 面上的投影区域Dxy 由1y =,2y x =所围成, 所以2111yxxzdxdydz dx dy xzdz -Ω=⎰⎰⎰⎰⎰⎰21121102x xdx y dy -==⎰⎰. (2)Ω在z 轴上的投影区域为[]0,h ,过[]0h ,内的任一点做垂直于z 轴的平面截Ω得截面为一圆域Dz ,其半径为R z h,所以Dz 为:22222R x y z h +=,面积为222R z h π, 所以222224hhDzR R h zdxdydz zdz dxdy zz dz h ππΩ===⎰⎰⎰⎰⎰⎰⎰.23. 计算⎰⎰⎰Vzdxdydz , 其中V 是曲面222y x z --=及22y x z +=所围成的闭区域. [解]联立z =及22z x y =+,22=1x y +,故Ω在xOy 面上的投影区域为221x y +≤ ,用柱坐标得2242121027()2212rr r zdv d rdr d r dr ππθπθΩ-==-=⎰⎰⎰⎰⎰⎰⎰.24. 计算⎰⎰⎰+Vdv y x )(22,其中V 是z y x 222=+及平面2=z 所围成的闭区域. [解] 联立222x y z +=及2z =得224x y +=,故Ω在xOy 面上的投影区域为224x y +≤,所以2222223216()3r x y dv d r dr dz ππθΩ+==⎰⎰⎰⎰⎰⎰. 25. 计算⎰⎰⎰++Vdv z y x )(222,其中V 是球面1222=++z y x 所围成的闭区域. [解]2122240004()sin 5x y z dv d d r dr ππϕπθϕΩ++==⎰⎰⎰⎰⎰⎰. 26. 计算⎰⎰⎰Vzdv ,其中V 是由不等式()2222a a z y x ≤-++, 222z y x ≤+所围成的闭区域.[解] 在球面坐标系中,2222()y z a a ++-≤x ,即为2222cos ,r a x y z ϕ≤+≤,即4πϕ≤,所以22cos 2344440sin cos 2sin 2cos a zdv d d r dr ad d πππϕπϕϕϕϕϕθϕθΩ==⎰⎰⎰⎰⎰⎰⎰⎰245440074cos (cos )6ad d a ππθϕϕπ=-=⎰⎰.27. 用三重积分计算下面所围体的体积:(1) 226y x z --=及22y x z +=(2) az z y x 2222=++及222z y x =+(含z 轴部分).[解] (1) 226z x y =--可变为26z r =-, z =变为z r =, 则22262230322(6)3r rV dv rdrd dz d rdr dz r r r dr r πθθπ-ΩΩ====--=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰. (2) 222x y z +=的球面坐标方程为=4πϕ, 2222x y z az ++=的球面坐标方程为2cos r a ϕ=, 则22cos 22340sin sin a V dv r drd d d d r dr a ππϕϕϕϕθπθϕΩΩ====⎰⎰⎰⎰⎰⎰⎰⎰⎰.28. 求球面2222a z y x=++,含在圆柱体ax y x =+22内部的那部分面积.[解]上半球面方程为1D 为曲面在第一象限的投影:22,0x y ax y +≤≥,14D A =14D =cos 204a d πθθ=⎰⎰204(sin )a a a d πθθ=-⎰22(2)a π=-.29. 求锥面22y x z +=被柱面x z 22=所截得部分的曲面面积.[解] 由2222,2z x y z x =+=得222x y x +=,故所求曲面在xOy 的投影区域D 为222y x +≤x ,于是DA =D=⎰⎰Ddxdy ==.30. 求圆柱面222x y R +=将球面22224x y z R ++=截下部分的面积.[解] 由对称性,只考虑z =D :222x y R +≤, 于是x z =,y z =,==.因此,2S σ=⎰⎰4R d σ=⎰⎰4R θ=⎰⎰204R Rd πθ=⎰⎰0142(2RR π=⋅⋅-⋅28(2R π=.31. 求圆柱面222x y R +=,222x z R +=所围成的立体的表面积.[解] 由对称性,只考虑z =,D :222x y R +≤. 于是,==, 因此所求的表面积为16S σ=⎰⎰16σ=⎰⎰16R Rdx =⎰201616RR dx R ==⎰.32. 已知A 球的半径为R , B 球的半径为h 且球心在A 球的表面上, 求夹在A 球内部的B球的部分面积(02h R ≤≤).[解] 建立坐标系可设球A :2222x y z R ++=,球B :2222()x y z R h ++-=,则两球面的交线在xOy 面的投影区域为D :222222(4)4h x y R h R+=-,在A 球内部的B球面为:z R =A 球内部的B 球的表面积()S h σ=⎰⎰σ=⎰⎰θ=⎰⎰20hd πθ=⎰322h h Rππ=-.33. 求均匀半球体0,2222≥≤++z r z y x 的质心.[解]),0,0(r34. 求下列均匀的平面薄板重心:(1) 半椭圆;0,12222≥≤+y by a x (2) 高为h ,底分别为a 和b 的等腰梯形.[解] (1)设重心位置在),(y x ,由对称性0=x ,现求y .⎰⎰⎰⎰⎰⎰==DDDydxdy ab dxdyydxdyy πμμ2dr r ab d ab θθππsin 22120⎰⎰=π34b =. (2)设等腰梯形在直角坐标系中位置如图,其重心位置为),(y x , 对称性可得0=x ,并且有⎰⎰⎰⎰⎰⎰+==D DD ydxdy h b a dxdy ydxdyy )(2μμ⎰⎰--+=h y L y L dx ydy h b a 0)()(1211)(2 =⎰+--+h ydy a h y h b a h b a 0])([)(2=h b a ab )(32++, 其中,12():()2h a L x y x h b a =++-, 22():()2h aL x y x h a b =-+-. 35. 由直线2,2,2===+y x y x 所围成的质量分布均匀 (设面密度为μ)的平面薄板,关于x 轴的转动惯量xI .[解] 2222024x y x yDI y d y d d σμμμ-===⎰⎰⎰⎰.36. 求边长为密度均匀的立方体关于其任一棱边的转动惯量.[解] 设方体的密度为ρ, 则22()z VI x y dxdydz ρ=+⎰⎰⎰2250002()3aaadx dy x y dz a ρρ=+=⎰⎰⎰.37. 求半径为a ,高为h 的圆柱体对于过其中心并且平行于母线的轴的转动惯量(假设密度1ρ=).[解] 建立坐标系,过中心且平行于母线的轴即为z 轴, 于是 22()(,,)z I x y x y z dv ρΩ=+⎰⎰⎰22()x y dv Ω=+⎰⎰⎰3r drd dz θΩ=⎰⎰⎰23ahd r dr dz πθ=⎰⎰⎰424a h π=⋅⋅412a h π=.38. 求抛物线2y x =,直线1y =所围成的均匀薄片对于直线1y =-的转动惯量.[解] 21(1)y DI y d ρσ=-=+⎰⎰21121(1)xdx y dy ρ-=+⎰⎰1231{8(1)}3x dx ρ-=-+⎰12302{8(1)}3x dx ρ=-+⎰164202{733}3x x x dx ρ=---⎰ 213368{71}375105ρρ=---=. 39. 求密度为ρ的均匀半球体对于在其中心的一单位质量的质点的引力.[解] 设球半径为R ,建立坐标系如图,由对称性,0x y F F ==;02222dv mdMdF kk r x y zρ==++, cos z dF dF γ={,,}n x y z =,02211,,}||n n x y z n x y ==+,故cos γ=;cos z dF dF γ=320222()zk dv x y z ρ=++,从而32222()z zdvF k x y z ρΩ=++⎰⎰⎰203cos sin r k r drd d rϕρϕθϕΩ=⎰⎰⎰0cos sin k drd d ρϕϕθϕΩ=⎰⎰⎰220000cos sin Rk d d dr ππρθϕϕϕ=⎰⎰⎰001{2}2k R k R ρπρπ=⋅⋅=.40. 求均匀薄片R y x ≤+22,0=z 对于轴上一点),0,0(c )0(>c 处的单位质量的引力;[解] 由对称性,引力方向必在z 轴方向上,因此0=x F ,0=y F ,且dxdy z y x ck F R y x x ⎰⎰≤+++=22223222)(μdr c r r d c k R⎰⎰+=0232220)(πθμ]1[222cR c k +-=πμ.故},0,0{Z F F =.41.求均匀柱体222a y x ≤+,h z ≤≤0对于点),0,0(c P )(h c >处的单位质量的引力.[解] 设物体密度为μ,由对称性0=x F ,0=y F . 进一步32222[()]z Vz cF k dxdydz x y z c μ-=++-⎰⎰⎰dz c z r c z dr r d k ha ⎰⎰⎰-+-=032220]])([[πθμ2]h k πμ=,故{0,0,2]}F h k πμ=, 其中k 为引力系数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=
1 4
⎜⎜⎝⎛
π 3
−
3 4
⎟⎟⎠⎞.
o
x
六、设 Ω 是由 z ≥ 0, z ≤ 3( x2 + y2 ), x2 + y2 − y ≤ 0 所确定
的积分域,将三重积分 ∫∫∫ f ( x2 + y2 + z2 )dv 化为 Ω
柱面坐标系下的三次积分,其中 f 是连续函数.
∫∫∫ f ( x2 + y2 + z2 )dv Ω
y
2
)
3 2
(其中
a
>
0
是常数).
∫ ∫ 原式 =
π
4 dθ
0
a cosθ
0
rdr
(a 2
+
r2
3
)2
dr
∫ ∫ +
π
2 dθ
π 4
a sin θ
0
rdr
(a 2
+
r
2
3
)2
dr
y
a
o
ax
π
∫= 4 − 0
a
∫ 1
cos θ
π
dθ + 2 −
a2 + r2 0
π 4
a
1
sin θ
dθ
a2 + r2 0
−secϕ
2
十、设球体 x2 + y2 + z2 ≤ 2az 内各点的体密度与原点
到该点的距离成反比,求此球体的质量和z 质心.
ρ(x, y, z) =
k
,
x2 + y2 + z2
∫∫∫ M =
k
dv
Ω x2 + y2 + z2
•R
O
y
∫ ∫ ∫ =
2π dθ
π
2 dϕ
2a cosϕ
k
⋅r2
sin ϕdr
y )dxdy
=
lim
ρ→0
1 πρ 2
f (ξ ,η )πρ 2
= lim f (ξ ,η ) = f (0,0). ρ→0
二、用二重积分求在极坐标系下由 r ≤ a(1 + cosθ ) 与
r ≥ 2a cosθ 所确定的平面图形的面积.
y
∫ ∫ A = 2[
π
2 dθ
a(1+cosθ )
rdr
=
t
=
4a 2
π
2 cos4 t ⋅ 2dt − πa 2
0
2
0
= 8a2 3 ⋅ 1 ⋅ π − πa2 = π a2 .
422
2
三、求曲面 z = 2 − x2 − y2 被平面 z = 1 所截下的有
限部分的面积.
z2
⎧z ⎨ ⎩z
= =
2− 1
x2
−
y2
⇒
x2
+
y2
=
1
Dxy : x2 + y2 ≤ 1,
0
2a cosθ
∫ ∫ +
π
dθ
a(1+cosθ )
rdr ]
π 2
0
∫ ∫ 或A = 2 π dθ a(1+cosθ ) rdr − πa2
0
0
o
2a
x
∫= π a2 (1 + cosθ )2 dθ − πa2 ⎜⎛ = π a2 ⎟⎞
0
⎝2 ⎠
∫ ∫ = a2
π
22
cos4
θ
dθ
− πa2
令
θ 2
∫ 或⎜⎜⎝⎛ 令 sinθ =
π
2 sin t 6 0
2 2
cos t cos 2
t
dt
=
π 6
⎟⎟⎠⎞,
π
∫ ∫ π
而−2
sinθ
π
dθ = 2
d cosθ
= arcsin cosθ 2 = − π ,
π 4
1 + sin2 θ
π 4
2 − cos2 θ
2π 6
4
∫ 或⎜⎜⎝⎛ 令 cosθ =
0
r
Ω
∫∫∫ ∫ ∫ ∫ 或(球)
6zdv = 6 2π dθ
π
4 dϕ
2cosϕ r cosϕ ⋅ r 2 sinϕdr = 24π .
0
0
0
Ω
1
1 五、求由曲面 2
y = x, z =
y − x2 及平面 y = 1 在第
一卦限与平面 z = 0 所围成的立体z 的体积.
抛物柱面y = 4x2在内, Ω
高等数学第九章自测题解答
0
4− x2
∫ ∫ 一、1.交换二次积分
dx
−2
− x−2
f ( x, y)dy 的积分次序.
y
0
0
4
0
∫ ∫ ∫ ∫ I = dy f ( x, y)dx + dy
f ( x, y)dx
−2 − y−2
0
− 4− y
∫ ∫ 2.
将二次积分
π
2 dθ
0
2 cosθ 0
r
2dr
=
4
x
πa
2k
,
0
0
0
r
3
∫∫∫ 由对称性 x = 1
kx
dv = 0,
M Ω x2 + y2 + z2
∫∫∫ y = 1
ky
dv = 0,
M Ω x2 + y2 + z2
∫∫∫ z = 1
kz
dv
M Ω x2 + y2 + z2
∫ ∫ ∫ =
2π dθ
π
2 dϕ
2acosϕ kr cosϕ ⋅ r 2 sinϕdr
0
0
a 0
(a
−
x)e m(a− x )
f
( x)dx
,
(a, m 为常数,且 a > 0 ).
y a
交换积分次序
∫ ∫ 左端 =
a
dx
a
e
m(a−
x)
f
(
x)dy
0
x
o
x
∫= a (a − x)em(a−x) f ( x)dx = 右端 0
∫∫ 4.
求极限
1
lim
ρ→0
πρ
2
f (x,
x2+ y2≤ρ2
z
∫ ∫ ∫ 柱:I =
2π dθ
1
2 rdr
−1 f (r cosθ , r sinθ , z)dz
0
0
−2
o
∫ ∫ ∫ + 2π dθ
2
rdr
−
2r f (r cosθ , r sinθ , z)dz,
x
0
1
−2
•− 1
y
2
• −2
2
九、把三重积分 ∫∫∫ f ( x, y, z)dv 分别化为柱面坐标、 Ω
•1
o
y
x
dS = 1 + zx + z y dxdy = 1 + 4x2 + 4 y2 dxdy,
∫∫ ∫ ∫ S = 1 + 4x2 + 4 y2 dxdy = 2π dθ 1 1 + 4r 2 rdr
0
0
D
( ) = π 5 5 − 1 . 6
四、计算 ∫∫∫ (3x + 5 y + 6z)dv ,其中Ω 为曲面 z = z x2 + y2
y)dxdy ,
其中 f ( x, y)在原点附近连续 .
Q ( x, y)在原点附近连续,由积 分中值定理
∫∫ f ( x, y)dxdy = f (ξ ,η )πρ 2 , ∃(ξ ,η ) ∈ x 2 + y2 ≤ ρ 2
x2+ y2≤ρ2
∫∫ ∴
lim
ρ→0
1 πρ
2
f (x,
x2+ y2≤ρ2
抛物面x2 + z2 = y在外.
∫∫ y − x2 dxdy
Dxy
∫ ∫ 1
= dy
y
y − x2 dx
0
y 2
( ) 令x = y sin t
.
0
x z = y − x2
y 1
1 1y x=2 y y =1
y = 4 x 2 Dxy y = x 2
∫=
1y 02
⎜⎜⎝⎛
π 3
−
3 4
⎟⎟⎠⎞dy
球面坐标系下的三次积分,其中Ω 是由曲面
z2 = 2( x2 + y2 ), z = −1与z = −2 所围成的空间区域.
∫ ∫ ∫ 柱:I =
2π dθ
1
2 rdr
−1 f (r cosθ , r sinθ , z)dz
0
0
−2
z
∫ ∫ ∫ + 2π dθ
2
rdr
−
2r f (r cosθ , r sinθ , z)dz,
∫ ∫ ∫ =
π dθ
sinθ
rdr
3r
f(
r 2 + z 2 )dz.
0
0
0
七、计算
I
=
∫∫∫ Ω
y sin x
x
dv
,其中Ω
是由平面