多工位级进模的设计说明

合集下载

多工位级进模设计

多工位级进模设计

基本概念
双侧载体 单侧载体是在条料的一侧设计的载体,实现对工序件的运载 。
中间载体
中间载体是指载体设计在条料的中间,该方法一般适用于对称零 件,尤其是两侧有弯曲的对称零件。
空位工位
当条料送进这个工位时,不进行任何加工,随着条料的送进,再 进入下一个工位,这样的工位称为空位工位。
级进模步距
级进模步距是指条料在模具中每送进一次,所需要向前移动的 送料距离。
平接
平接是在零件的直边上先冲切去一段,然后在另一工位再冲切去余 下部分,两侧冲切刃口平行、共线但不重叠 。
切接
切接是指在零件的圆弧部位上或圆弧与圆弧相切处进行分段切除的 连接方式,即在前工位先冲切一部分圆弧段,以后工位再冲切出其 余的圆弧部分,要求先后冲切出的圆弧光滑连接 。
单侧载体 单侧载体是在条料的一侧设计的载体,实现对工序件的运载 。
1 8孔; ③—空工位; ④—冲切两端局部余料;
⑤—冲两工件之间的分断槽余料;⑥—弯曲; ⑦—冲中部长方孔;ຫໍສະໝຸດ ⑧—载体切断,零件与条料分离
冲压工艺与模具设计
冲压工艺与模具设计
基本概念
多工位级进模
多工位级进模它是在一副模具内按照所需加工零件的冲压工 艺分成若干个等距离工位,在每个工位上设置一定的冲压工 序,完成零件某一部分的冲压工作。
搭接
形孔分两次冲裁,第1工位冲切出 A、C 区,第2工位冲出B区,B 区 长度方向比被冲裁部位的实际长度略长些,长处部分即为搭接区。
调试及维修困难。
(5)材料利用率较其他模具低,对于复杂零件产生的废料较多。
2.多工位级进模的分类
1)按冲压工序性质分类
(1) 冲裁多 工位级 进模
(2) 多工序成形 多工位级

多工位级进模的设计

多工位级进模的设计

多工位级进模的设计多工位级进模是一种高效的集成电路设计方法,能够有效提高集成电路设计的速度和效率。

本文将介绍多工位级进模的概念、设计原则以及其在集成电路设计中的应用。

一、概念与原理多工位级进模是一种将传统的级进模拟法和多工作位技术相结合的设计方法。

它通过将一个电路分成多个工作位,并行处理每个工作位的数据,从而大大提高了设计的效率。

在传统的级进模拟法中,设计者需要按照顺序逐个设计每个电路模块,然后将它们按照级进的方式连接起来。

这种方法存在着设计时间长、设计过程复杂等问题。

而多工位级进模则采用并行处理的方式,将一个电路分成多个工作位,每个工作位独立设计,最后再将它们合并在一起。

这种方法不仅可以提高设计效率,还可以减少设计过程中的冗余。

二、多工位级进模的设计原则1. 分工明确:在设计多工位级进模时,需要明确每个工作位的任务和功能。

每个工作位应该独立处理一部分任务,并将结果传递给下一个工作位。

2. 数据共享:在多工位级进模的设计中,各个工作位之间需要进行数据共享。

设计者需要合理规划数据的传递和交换方式,确保数据在各个工作位之间流动顺畅。

3. 数据同步:在多工位级进模的设计中,各个工作位之间需要进行数据同步。

设计者需要合理安排同步信号,以确保各个工作位能够按照正确的顺序进行处理。

4. 效率优化:在设计多工位级进模时,需要考虑如何优化设计效率。

可以通过设计合理的并行处理流程、合理分配资源、合理利用并行计算等方式来提高设计效率。

三、多工位级进模在集成电路设计中的应用多工位级进模广泛应用于集成电路设计的各个领域,如数字电路设计、模拟电路设计、系数字混合电路设计等。

在数字电路设计中,多工位级进模可以帮助设计者快速设计复杂的逻辑电路。

设计者可以将逻辑电路分成多个工作位,每个工作位独立设计,最后再将它们合并在一起,大大提高了设计效率。

在模拟电路设计中,多工位级进模可以帮助设计者快速设计复杂的模拟电路。

设计者可以将模拟电路分成多个工作位,每个工作位独立设计,最后再将它们合并在一起,减少了设计过程中的冗余。

多工位级进模的排样设计

多工位级进模的排样设计

2.2.4双边载体排样
双边载体排样是在产品条料的两侧分别留出一定宽度的材 料,并在适当位置与产品两边相连接,实现对产品条料的送 进,它比单边载体排样送进更顺利,料带定位精度更高,适 合产品两端都有接口可连,特别适合送进强度较弱的薄板料。 但是,相对材料利用率较低,且通常需要采用双边导正。
图2-7所示为双边载体排样,共有16个工位,其中 (1)~(4) 工位为冲裁; (5)~(14) 工位为弯曲;(15) 工位将制件从条 料上分离;(16) 工位为将废料切断,这一步根据实际情况而 定,如果有自动收料装置时,可不设计。
边料载体虽然增大了条料两侧搭边的宽度,材料的利用率有所 降低,但是提供了冲导正工艺孔需要的载体,特别是所冲带料较 薄时,可保证送料的刚度和精度。这种载体主要多用于薄料(t小 于0.2mm),制件精度要求较高的场合。
2.2.3单边载体排样
单边载体排样是在产品条料的一侧留出一定宽度的材料,并 在适当位置与产品相连接,实现对产品条料的送进,一般适合切 边型排样。
如图2-6所示的是产品生产批量较大或为提高材料利用率, 而采用的双向交叉排样。实际上是一模出两根料带,并在两 个产品( 可以是同一产品,也可以是不同产品 )相邻的地方找 出合适的部位用一连接带连起来,俗称“手拉手”,这样大 大增加整个条料的强度,在所有冲裁和成形的工序完成后再 把牵手部位冲掉即可,这一步称为“分手”。但是,实践证 明一根条料分出的料带越多、工位越多,生产过程越不稳定, 冲压得到的产品精度也越低。该排样共有18个有效工位( 其 余为空位 ),其中 (1) 为预压;(2) (3) (4) (5) (8) (16) 工 位为冲裁;(6) (7) (9) (10) (11) (12) (13) (14) (15) (17)工位为弯曲(第16工位在这里被称为分手 );(18) 为调整 工位。

塑性成形工艺多工位级进模设计

塑性成形工艺多工位级进模设计

塑性成形工艺多工位级进模设计1. 引言塑性成形工艺是一种将金属或非金属材料通过加热或施加压力的方法,使其发生塑性变形的工艺。

在塑性成形中,多工位级进模设计是一种常用的方式,用于提高生产效率和产品质量。

本文将介绍塑性成形工艺多工位级进模设计的基本概念、设计原则和实施步骤。

2. 塑性成形工艺多工位级进模设计的基本概念多工位级进模设计是指在塑性成形过程中,通过设计多个工位,并使工件在每个工位上完成一定的变形,最终达到所需的形状和尺寸。

多工位级进模设计可以提高生产效率,减少制造成本,并且可以实现复杂形状的成型。

3. 塑性成形工艺多工位级进模设计的设计原则在进行塑性成形工艺多工位级进模设计时,需要考虑以下几个设计原则:3.1 合理确定工位数量和顺序工位数量和顺序的确定是多工位级进模设计的关键。

在设计过程中,需要根据工艺要求、工件形状和尺寸以及设备能力等因素来确定工位数量和顺序。

3.2 合理分配变形量和变形方式在每个工位上,需要合理分配变形量和变形方式,以确保工件在每个工位上都能得到适当的变形,最终形成所需的形状和尺寸。

变形量的分配应该根据工件的几何形状和物理特性来确定,变形方式可以通过改变模具形状、施加压力或改变工艺参数等方式实现。

3.3 考虑工件的变形特点和工艺难度在进行多工位级进模设计时,需要考虑工件的变形特点和工艺难度。

一些工件可能具有复杂的形状和几何结构,需要特殊的工艺和设备来实现。

因此,在设计过程中,需要充分了解工件的特点,针对性地设计相关的工位和工艺。

4. 塑性成形工艺多工位级进模设计的实施步骤在进行塑性成形工艺多工位级进模设计时,可以按照以下步骤进行实施:4.1 确定工艺要求和工件形状在设计过程开始前,需要明确工艺要求和工件形状,了解变形量、变形方式和变形位置等方面的要求。

4.2 设计工位数量和顺序根据工艺要求和工件形状,确定所需的工位数量和顺序。

可以利用CAD等软件进行设计和模拟,以验证设计的可行性和有效性。

多工位级进模设计(冲压与模具)_1235

多工位级进模设计(冲压与模具)_1235
用于: 冲制厚度较薄(一般不超过2 mm)、产量大,形状复杂、
精度要求较高的中、小型零件。
7.1.2 多工位级进模分类
1.按冲压工序性质分类 (1)冲裁多工位级进模 (2)成形工序多工位级进模 2.按冲压件成形方法分类 (1)封闭形孔级进模 (2)切除余料级进模
(1)封闭形孔多工位冲压
(2)切除余料多工位冲压
浮动导轨式导料装置
7.4.5 导正销
条料的导正定位方法,常使用导正销与侧刃配合定 位,侧刃作定距和初定位,导正销作为精定位。
凸模式导正销结构形式。
凸模式导正销结构形式
导正销伸出长度
7.4.6 卸料装置
1.作用及组成 2.结构 3.安装 4.卸料螺钉
弹压卸料板组成
1-凸模;2-凹模镶块;3-弹压卸料板;4-凸模;5-凸模导向护套;6-小凸模;7-凸模加强 套 ;8- 上 模 座 ;9- 螺 塞 ;10- 弹 簧 ;11- 垫 板 ;12- 卸 料 螺 钉 ;13- 凸 模 固 定 板 ;14- 小 导 柱;15-导套
7.2.2 多工位级进模排样设计内容
(1)坯料排样(详见第二章相关内容); (2)冲切刃口确定; (3)工序排样。
排样示意图
7.2.3 冲切刃口设计
1.冲切刃口设计原则 2.坯料切废后相关部位连接方式 (1)塔接 (2)平接 (3)切接
(1)塔接
(2)平接
(3)切接
7.2.4 工序排样
n
[例7-2] 某排样图为单中载体,隔一步设有导正销导正,
步数n=25,步距公差±T/2=±0.002mm,则条料定位累计
误差为
T =CT ∑
25 =1.2×(1/2)×0.004×
=0.012 mm

多工位级进模设计讲义课件

多工位级进模设计讲义课件
6.3.3 凹模设计
1、结构形式整体式嵌块式拼块式2、凹模的固定方法
6.3.3 凹模设计
嵌块式凹模的固定
6.3.3 凹模设计式凹的固定-平面固定式
6.3.3 凹模设计
拼块式凹的固定-直槽固定式
6.3.3 凹模设计
拼块式凹的固定-框孔固定式
9、静夜四无邻,荒居旧业贫。。10、雨中黄叶树,灯下白头人。。11、以我独沈久,愧君相见频。。12、故人江海别,几度隔山川。。13、乍见翻疑梦,相悲各问年。。14、他乡生白发,旧国见青山。。15、比不了得就不比,得不到的就不要。。。16、行动出成果,工作出财富。。17、做前,能够环视四周;做时,你只能或者最好沿着以脚为起点的射线向前。。9、没有失败,只有暂时停止成功!。10、很多事情努力了未必有结果,但是不努力却什么改变也没有。。11、成功就是日复一日那一点点小小努力的积累。。12、世间成事,不求其绝对圆满,留一份不足,可得无限完美。。13、不知香积寺,数里入云峰。。14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。15、楚塞三湘接,荆门九派通。。。16、少年十五二十时,步行夺得胡马骑。。17、空山新雨后,天气晚来秋。。9、杨柳散和风,青山澹吾虑。。10、阅读一切好书如同和过去最杰出的人谈话。11、越是没有本领的就越加自命不凡。12、越是无能的人,越喜欢挑剔别人的错儿。13、知人者智,自知者明。胜人者有力,自胜者强。14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。15、最具挑战性的挑战莫过于提升自我。。16、业余生活要有意义,不要越轨。17、一个人即使已登上顶峰,也仍要自强不息。
级进模示例一
6.1.3 多工位级进模示例
级进模示例二
6.2 多工位级进模的排样设计
本节主要内容:
6.2.1 排样设计的原则及考虑的因素

多工位级进模大设计说明书

多工位级进模大设计说明书

1前言1.1研究背景模具是用来成型各种工业产品的一种重要工艺装备,是机械制造工业成型毛坯或零件的一种手段。

现代工业产品的发展和技术水平的提高,在很大程度上取决于模具工业的发展水平,模具工业对国民经济和社会的发展将会起越来越大的作用,因而我们对模具的要求也在不断提高。

为冲压工艺服务的冲模约占模具总量的40%。

以冲压方法为主制造的零件,比较有代表性且与人们日常生活密切相关的有汽车覆盖件、搪瓷与不锈钢器皿、各种家用电器的外壳(罩)等,它们带来了产品层出不穷的外观变化。

从经济合理性方面看,通过合理设计、优化排样,冲压工艺可以获得很高的材料利用率。

一般的冲压工艺,生产效率为几件/分至几十件/分,自动化生产可达千件/分以上。

从技术先进性方面看,冲压是通过模具对板材施加压力或拉力,使板材塑性成型,从而获得一定尺寸、形状和性能的一种零件加工方法。

由于冲压加工经常在材料冷状态下进行,因此成为冷冲压。

冲压加工作为一个行业,在国民经济的加工工业中占有重要的地位。

根据统计,冲压件在各个行业中均占有相当大的比重,尤其在汽车、电机、仪表、军工、家用电器等方面所占比重更大。

冲压加工的应用范围极广,从精细的电子元件、仪表指针到重型汽车的覆盖件和大梁、高压容器封头以及航空航天器的机身等均需冲压加工。

我国模具行业从起步到飞跃发展,经历了半个多世纪,近代以来,我国模具技术有了很大的发展,模具水平有了较大的提高,模具国产化取得了可喜的成就。

大型、精密、复杂、高效和长寿模具又上了一个新的台阶。

大型复杂冲模以汽车覆盖件模具为代表,有了长足的进步。

模具CAD/CAM/CAE技术相当广泛地得到应用,并开发出了自主版权的模具CAD/CAE软件。

电加工、数控加工在模具制造技术发展上发挥了重要作用。

我国已成为使用各类模具的大国,目前,国内已能生产精度达2微米的精密多工位级进模,工位数最多已达160个,寿命1~2亿次。

在大型塑料模具方面,现在已能生产48英寸电视的塑壳模具、6.5Kg大容量洗衣机的塑料模具,以及汽车保险杠、整体仪表板等模具。

第六章 多工位级进模设计

第六章 多工位级进模设计
图6-14 刃口分解与重组示例二
四、空工位设置及步距设计
(1)空工位设置 空工位简称空位,是指工序件经过时,不做任何加工的工位。级进模中
空工位的设置比较普遍。
级进模中设立空工位的目的是:
提高模具强度,保证模具寿命和产品质量 模具中设置特殊机构 在带料的级进拉深中,补偿拉深次数计算误差。 产品局部结构的改进导致模具结构也应作相应调整, 为避免重新制造新模具,利用预先设置的空工位进行调整。
第六章 多工位级进模设计
多工位级进冲压是指在一副模具中沿被冲原材料(条料或卷料)的直 线送进方向,具有至少两个或两个以上等距离工位,并在压力机的一次行 程中,在不同的工位上完成两个或两个以上冲压工序的冲压方法。
多工位级进模是一种结构复杂、加工精度要求高、可实现连续冲压的 先进模具,是技术密集型模具的重要代表,是冲模发展方向之一。
(二)级进弯曲的工序排样 1)对于带孔的弯曲类零件,一般应先冲孔,再冲切掉需要弯
曲部分的周边材料,然后再弯曲,最后切除其余废料,使 工件与条料分离。但当孔靠近弯曲变形区且又有精度要求 时应先弯曲后冲孔,以防孔变形。 2)压弯时应先弯外面再弯里面,弯曲半径过小时应加整形工序。
图6-5 级进弯曲工序排样的应用举例一
凸模的固定方式
图6-28 凸模常用的固定方法(1) a)、b)螺钉固定 c)锥面压装
图6-29 凸模常用的固定方法(2) a)销钉吊装 b)带压板槽的小凸模
1-凸模 2-销钉 3-凸模固定板
图6-30 组合式凸模安装
图6-31 硬质合金凸模的安装与固定
凸模高度可调装置
(二)凹模设计 (1)凹模的结构形式及固定方式
3)毛刺方向一般应位于弯曲区内侧,以减少弯曲破裂的危 险,改善产品外观。

第四节多工位级进模的排样设计

第四节多工位级进模的排样设计

第四节多工位级进模的排样设计多工位级进模排样设计是指在一次进模运行中,利用模具上的多个工位,同时加工多个工序,提高运行效率的一种排样设计方法。

在传统的单工位连续模具排样设计中,模具在一次进模运行中只加工一道工序,造成了生产效率低下的问题。

而多工位级进模排样设计则通过合理的排样布局,将多个工序同时安排在同一模具上,充分利用机床的进给时间,提高生产效率。

在多工位级进模排样设计中,首先需要对产品的工序进行分析和归类,将相同性质的工序进行归类,按照工序的先后顺序,确定在一次进模运行中要加工的工序。

然后,根据加工工序的数量,确定需要的工位数量,同时考虑每个工序的加工时间、装夹时间和切换时间等因素,制定出合理的进模时间表。

接下来,根据进模时间表,进行排样布局设计。

在排样布局设计中,需要考虑多个工序之间的顺序、位置和间距等因素。

通常情况下,相邻工序的位置尽量靠近,以缩短切换时间;同时,各个工序之间要保持一定的间距,以方便装夹和操作。

此外,还需要考虑排样的可行性和工件的几何形状等因素,确保排样布局的合理性和稳定性。

在进行排样布局设计时,还可以利用计算机辅助设计软件进行模拟和优化。

通过虚拟的模具和工件,可以对排样布局进行可视化和动态模拟,快速评估不同布局的效果,并进行优化调整。

通过反复的模拟和优化,可以得到一个更加理想的排样布局方案。

总之,多工位级进模排样设计是一种提高生产效率的重要方法。

通过合理的工序归类、进模时间表制定和排样布局设计,可以充分利用机床的进给时间,提高生产效率,降低生产成本,提高企业的竞争力。

同时,借助计算机辅助设计软件的支持,可以进一步优化排样布局方案,提高设计效率和准确性。

冲压工艺与模具设计第6章多工位级进模设计

冲压工艺与模具设计第6章多工位级进模设计

冲压工艺与模具设计第6章多工位级进模设计多工位级进模设计是冲压工艺和模具设计中的一种重要技术。

它通过在模具中设置多个工位,并在一次冲压周期内完成多道工序的加工,提高了生产效率,降低了生产成本。

本章将介绍多工位级进模设计的原理、步骤和注意事项。

首先,多工位级进模设计的原理是在一张板材上设置多个工位,通过模具的移动,将板材逐个引导至不同的工位进行加工。

这样能够实现多道工序的同步进行,大大提高了生产效率。

同时,多工位级进模设计还能够减少加工误差,提高产品的质量稳定性。

多工位级进模设计的步骤主要包括以下几个方面:1.确定工序和工位数:根据产品的工艺要求和加工工序,确定需要设置的工位数。

通常情况下,每个工位都有一个特定的工序,因此需要根据产品的工艺流程来确定工位数。

2.工位的位置和间距:根据产品的尺寸和形状,确定不同工位之间的位置和间距。

通常情况下,工位之间的距离要足够大,以便模具的移动和板材的引导。

同时,还需要考虑工件的定位和夹持问题。

3.设计模具结构:根据产品的形状和工艺要求,设计模具的结构。

模具的结构应该能够实现板材的引导和定位,同时还要具备足够的刚性和稳定性。

4.确定进模方式:根据产品的工艺流程和加工要求,确定板材的进模方式。

通常情况下,可以采用滑块、导柱、引导板等方式来实现板材的进模。

5.考虑模具的适应性:在设计模具的同时,还要考虑模具的适应性。

模具应该能够适应不同尺寸和形状的板材,以应对不同的生产需求。

在进行多工位级进模设计时,还需要注意以下几点:1.合理安排工位的顺序:根据产品的工艺要求和加工工序,合理安排工位的顺序。

通常情况下,先进行简单工序,再进行复杂工序,以确保生产的连续性和高效性。

2.考虑工位的平衡性:在设置多个工位时,要考虑工位之间的平衡性。

工位之间的加工时间应该尽量一致,以避免生产的瓶颈。

3.加工误差的控制:在多工位级进模设计中,由于板材的引导和移动,容易产生加工误差。

因此,需要在设计模具时,采取相应的措施来控制加工误差,提高产品的精度和一致性。

多工位级进模的设计

多工位级进模的设计

多工位级进模的设计在制造业中,多工位级进模是一种常见的生产工艺,它可以提高生产效率和降低生产成本。

本文将介绍多工位级进模的设计原理和优势。

什么是多工位级进模?多工位级进模是一种通过在同一模具上设置多个工位,实现在不同工位上同时进行不同生产工序的工艺。

通常在汽车零部件、家电产品及日用品等行业中广泛应用。

通过多工位级进模,可以实现高效的生产流程,节约生产时间,提高生产效率。

多工位级进模的设计原理多工位级进模的设计原理主要包括以下几个方面:1.模具结构设计:多工位级进模需要设计合理的模具结构,包括各个工位的分布、工位之间的联动方式等。

模具结构设计需要考虑材料选择、强度分析等因素,确保模具的稳定性和耐用性。

2.工位规划:在设计多工位级进模时,需要合理规划各个工位的位置和功能,确保各工位之间的协调配合,实现生产流程的顺畅进行。

3.工艺参数设计:多工位级进模的设计还需要考虑工艺参数的设定,包括生产速度、温度控制、压力等参数的调整,以保证产品的质量和生产效率。

多工位级进模的优势多工位级进模相比传统的单工位模具具有一些明显的优势,包括:•提高生产效率:多工位级进模可以同时进行多个工序,节约生产时间,提高生产效率。

•降低生产成本:由于生产效率提高,可以减少生产周期,降低生产成本。

•减少人为操作:多工位级进模可以自动完成不同的工序,减少人为操作,减少人力成本。

结语多工位级进模是一种高效的生产工艺,可以极大提高生产效率,降低生产成本。

通过合理的模具结构设计和工位规划,可以实现多工位级进模的设计和制造。

在今后的制造业发展中,多工位级进模将发挥更加重要的作用。

冲压工艺与模具设计第7章多工位级进模设计

冲压工艺与模具设计第7章多工位级进模设计

冲压工艺与模具设计第7章多工位级进模设计多工位级进模设计是指在同一个模具中设计多个工位,以提高生产效率和加工精度。

本章将介绍多工位级进模设计的原理、方法和注意事项。

一、多工位级进模设计的原理多工位级进模设计的原理是通过在一个模具中设计多个工位,将多个工序集中在一个模具上完成,从而提高生产效率和加工精度。

在同一个模具中,可以设计多个工位,每个工位可以完成一个工序,而不需要将工件从一个模具转移到另一个模具上进行加工。

这样可以大大提高加工速度,减少生产中的机械操作和物料输送时间,提高生产效率。

同时,多工位级进模设计还可以减少零件的变形和误差,提高加工精度。

二、多工位级进模设计的方法1.确定工序及工位数量:首先确定需要完成的工序,然后根据工序的先后顺序确定工位的数量。

每个工位负责完成一个工序,可以根据工序的复杂程度和先后关系确定工位的数量。

2.工位之间的传动机构设计:由于多个工位需要协同工作,因此需要设计传动机构来实现工位之间的同步运动。

根据具体的工序要求,选择合适的传动方式,如曲柄传动、连杆传动、齿轮传动等。

3.工件进给系统设计:为了实现工件的级进加工,在模具中需要设计合适的进给系统。

根据具体的工序要求,选择合适的进给方式,如滑块进给、气动进给、液压进给等。

4.工件定位系统设计:为了确保加工的准确性和稳定性,在模具中需要设计合适的工件定位系统。

根据具体的工序要求,选择合适的定位方式,如销定位、夹爪定位、气动定位等。

5.工件卸载系统设计:在多工位级进模设计中,需要设计合适的工件卸载系统,以便及时将加工完成的工件从模具中取出。

根据具体的工序要求,选择合适的卸载方式,如吸盘卸载、气动卸载、机械手卸载等。

三、多工位级进模设计的注意事项1.工位之间的传动机构必须稳固可靠,以保证工位的同步运动。

传动机构的选用要考虑工件的精度要求、加工速度和工位之间的传动比等因素。

2.进给系统的设计要满足工件的进给速度和加工需求。

多工位级进模的设计

多工位级进模的设计

多工位级进模的设计一、原理多工位级进模的设计原理可以用一个例子来说明。

假设有一个包含四个加法模块的计算机系统,每个加法模块负责执行一个加法运算。

在传统的串行计算中,依次进行四次加法运算需要四个时钟周期。

而在多工位级进模中,可以在一个时钟周期内同时执行四个模块的加法运算,大大提高了计算速度。

1.数据拆分:将需要计算的数据拆分成多个模块处理,每个模块负责执行一个子任务。

2.并行计算:每个模块在同一个时钟周期内同时进行计算。

3.模块间传递数据:每个模块计算完成后,将计算结果传递给下一个模块。

4.模块级联:将多个模块级联在一起,形成一个完整的计算系统。

二、应用1.FFT计算:快速傅里叶变换(FFT)是一种常用的信号处理方法,可以在频域对信号进行分析。

多工位级进模可以大大提高FFT计算的速度。

2.图像处理:图像处理需要对大量像素进行计算,多工位级进模可以同时处理多个像素点,提高图像处理的速度和效率。

3.数据压缩:数据压缩涉及到大量的计算任务,多工位级进模可以并行进行多个计算任务,加快数据压缩的速度。

4.数字滤波:数字滤波是数字信号处理中常用的一种方法,通过滤波器对信号进行处理。

多工位级进模可以同时处理多个信号,提高数字滤波的速度。

三、设计步骤1.确定需要计算的任务:根据具体应用需求,确定需要计算的任务,并将计算任务拆分成多个模块。

2.设计每个模块的算法:为每个模块设计适当的算法,确保每个模块的计算结果是正确的。

3.设计模块间的数据传递方式:确定每个模块计算完成后,如何将计算结果传递给下一个模块。

4.设计时钟和时序控制:根据具体设计需求,确定时钟和时序控制方法,确保每个模块在正确的时钟周期内进行计算。

5.模块级联和测试:将设计好的多个模块级联起来,形成一个完整的计算系统,并进行测试验证。

6.优化和调试:根据测试结果进行优化和调试,确保设计的多工位级进模可以正确运行。

总结多工位级进模的设计是数字电路设计中重要的技术之一、通过将数据拆分成多个模块,实现模块间的并行计算,可以大大提高系统的性能和效率。

第7章多工位精密级进模的设计

第7章多工位精密级进模的设计

第7章多工位精密级进模的设计第7章多工位精密级进模的设计7.1 概述级进冲压是指压力机的一次行程中,在模具的不同工位同时完成多种工序的冲压。

所使用的模具又称为连续模、跳步模。

在级进冲压中,不同的冲压工序分别按一定次序排列,坯料按步距间歇移动,在等距离的不同工位上完成不同的冲压工序,经逐个工位冲制后,便得到一个完整的零件(或半成品)。

无论冲压零件的形状怎样复杂,冲压工序怎样多,均可用一副多工位级进模冲制完成。

对于批量非常大面厚度较薄的中、小型冲压件,宜采用精密多工位级进模。

多工位精密级进模是在普通级进模的基础上发展起来的一种精密、高效、长寿命的模具,其工位数可多达几十个,多工位精密级进模必须配备高精度且送料进距易于调整的自动送料装置才能实现精密自动冲压。

多工位精密级进模还应在模具中设计误差检测装置、模内工件或废料去除等机构。

因此与普通冲压模具相比多工位级进模的结构比较复杂,模具设计和制造技术要求较高,同时对冲压设备、原材料也有相应的要求,模具的成本相对也高。

因此,在模具设计前必须对制件进行全面分析,然后结合模具的结构特点和冲压件的成形工艺性来确定该制件的冲压成形工艺过程,以获得最佳的技术经济效益。

多工位精密级进模要求具有高精度、长寿命,模具的主要工作零件常采用高强度的高合金工具钢、高速钢或硬质合金等材料。

模具的精加工常采用慢走丝线切割加工和成形磨削。

在多工位级进模中,常有很精细的小凸模,必须对这些小凸模以精确导向和保护。

因此要求卸料板能对小凸模提供导向和保护功能。

卸料板上相应的孔必须采用高精度加工,其尺寸及相互位置必须准确无误。

在冲压过程中,随模具的冲程和条料的进给,卸料板的运动必须高度平稳,则卸料板要有导向保护措施。

多工位级进冲压有以下特点:(1)生产率高。

级进冲压模具属于多工序、多工位模具,在一副模具中包括冲裁、弯曲、拉深、成形等多道冲压工序,因而具有高的劳动生产率。

(2)操作安全。

因为自动送料,自动检测,自动出件等自动化装置,手不必进入危险区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多工位级进模的设计-----------------------作者:-----------------------日期:多工位级进模的设计(基础知识) 011 概述多工位级进模是在普通级进模的基础上发展起来的一种高精度、高效率、长寿命的模具,是技术密集型模具的重要代表,是冲模发展方向之一。

这种模具除进行冲孔落料工作外,还可根据零件结构的特点和成形性质,完成压筋、冲窝、弯曲、拉深等成形工序,甚至还可以在模具中完成装配工序。

冲压时,将带料或条料由模具入口端送进后,在严格控制步距精度的条件下,按照成形工艺安排的顺序,通过各工位的连续冲压,在最后工位经冲裁或切断后,便可冲制出符合产品要求的冲压件。

为保证多工位级进模的正常工作,模具必须具有高精度的导向和准确的定距系统,配备有自动送料、自动出件、安全检测等装置。

所以多工位级进模与普通冲模相比要复杂,具有如下特点:(1)在一副模具中,可以完成包括冲裁,弯曲,拉深和成形等多道冲压工序;减少了使用多副模具的周转和重复定位过程,显著提高了劳动生产率和设备利用率。

(2)由于在级进模中工序可以分散在不同的工位上,故不存在复合模的“最小壁厚”问题,设计时还可根据模具强度和模具的装配需要留出空工位,从而保证模具的强度和装配空间。

(3)多工位级进模通常具有高精度的内、外导向(除模架导向精度要求高外,还必须对细小凸模实施内导向保护)和准确的定距系统,以保证产品零件的加工精度和模具寿命。

(4)多工位级进模常采用高速冲床生产冲压件,模具采用了自动送料、自动出件、安全检测等自动化装置,操作安全,具有较高的生产效率。

目前,世界上最先进的多工位级进模工位数多达50多个,冲压速度达1000次/分以上。

(5)多工位级进模结构复杂,镶块较多,模具制造精度要求很高,给模具的制造、调试及维修带来一定的难度。

同时要求模具零件具有互换性,在模具零件磨损或损坏后要求更换迅速,方便,可靠。

所以模具工作零件选材必须好(常采用高强度的高合金工具钢、高速钢或硬质合金等材料),必须应用慢走丝线切割加工、成型磨削、坐标镗、坐标磨等先进加工方法制造模具。

(6)多工位级进模主要用于冲制厚度较薄(一般不超过2mm)、产量大,形状复杂、精度要求较高的中、小型零件。

用这种模具冲制的零件,精度可达IT10级。

由上可知,多工位级进模的结构比较复杂,模具设计和制造技术要求较高,同时对冲压设备、原材料也有相应的要求,模具的成本高。

因此,在模具设计前必须对工件进行全面分析,然后合理确定该工件的冲压成形工艺方案,正确设计模具结构和模具零件的加工工艺规程,以获得最佳的技术经济效益。

显然,采用多工位级进模进行冲压成形与采用普通冲模进行冲压成形在冲压成形工艺、模具结构设计及模具加工等方面存在许多不同,本章将重点介绍它们在冲压工艺与模具设计上的不同之处。

2. 多工位级进模的排样设计排样设计是多工位级进模设计的关键之一。

排样图的优化与否,不仅关系到材料的利用率,工件的精度,模具制造的难易程度和使用寿命等,而且关系到模具各工位的协调与稳定。

冲压件在带料上的排样必须保证完成各冲压工序,准确送进,实现级进冲压;同时还应便于模具的加工、装配和维修。

冲压件的形状是千变万化的,要设计出合理的排样图,必须从大量的参考资料中学习研究,并积累实践经验,才能顺利地完成设计任务。

排样设计是在零件冲压工艺分析的基础之上进行的。

确定排样图时,首先要根据冲压件图纸计算出展开尺寸,然后进行各种方式的排样。

在确定排样方式时,还必须对工件的冲压方向、变形次数、变形工艺类型、相应的变形程度及模具结构的可能性、模具加工工艺性、企业实际加工能力等进行综合分析判断。

同时全面考虑工件精度和能否顺利进行级进冲压生产后,从几种排样方式中选择一种最佳方案。

完整的排样图应给出工位的布置、载体结构形式和相关尺寸等。

当带料排样图设计完成后,模具的工位数及各工位的内容;被冲制工件各工序的安排及先后顺序,工件的排列方式;模具的送料步距、条料的宽度和材料的利用率;导料方式,弹顶器的设置和导正销的安排;模具的基本结构等就基本确定。

所以排样设计是多工位级进模设计的重要内容,是模具结构设计的依据之一,是决定多工位级进模设计优劣的主要因素之一。

2.1 排样设计的原则多工位级进模的排样,除了遵守普通冲模的排样原则外,还应考虑如下几点:(1)先制作冲压件展开毛坯样板(3~5个),在图面上反复试排,待初步方案确定后,在排样图的开始端安排冲孔、切口、切废料等分离工位,再向另一端依次安排成形工位,最后安排工件和载体分离。

在安排工位时,要尽量避免冲小半孔,以防凸模受力不均而折断。

(2)第一工位一般安排冲孔和冲工艺导正孔。

第二工位设置导正销对带料导正,在以后的工位中,视其工位数和易发生窜动的的工位设置导正销,也可在以后的工位中每隔2~3个工位设置导正销。

第三工位可根据冲压条料的定位精度,设置送料步距的误差检测装置。

(3)冲压件上孔的数量较多,且孔的位置太近时,可分布在不同工位上冲出孔,但孔不能因后续成形工序的影响而变形。

对有相对位置精度要求的多孔,应考虑同步冲出。

因模具强度的限制不能同步冲出时,应有措施保证它们的相对位置精度。

复杂的型孔可分解为若干简单形孔分步冲出。

(4)成形方向的选择(向上或向下)要有利于模具的设计和制造,有利于送料的顺畅。

若成形方向与冲压方向不同,可采用斜滑块、杠杆和摆块等机构来转换成形方向。

(5)为提高凹模镶块,卸料板和固定板的强度,保证各成形零件安装位置不发生干涉,可在排样中设置空工位,空工位的数量根据模具结构的要求而定。

(6)对弯曲和拉深成形件,每一工位的变形程度不宜过大,变形程度较大的冲压件可分几次成形。

这样既有利于质量的保证,又有利于模具的调试修整。

对精度要求较高的成形件,应设置整形工位。

为避免U形弯曲件变形区材料的拉伸,应考虑先弯曲45度,再弯成90°。

(7)在级进拉深排样中,可应用拉深前切口,切槽等技术,以便材料的流动。

(8)当局部有压筋时,一般应安排在冲孔前,防止由于压筋造成孔的变形。

突包时,若突包的中央有孔,为有利于材料的流动,可先冲一小孔,压突后再冲到要求的孔径。

(9)当级进成形工位数不是很多,工件的精度要求较高时,可采用“复位”技术,即在成形工位前,先将工件毛坯沿其规定的轮廓进行冲切,但不与带料分离,当凸模切入材料的20%~35%后,模具中的复位机构将作用反向力使被切工件压回条料内,再送到后续加工工位进行成形。

2.2 载体和搭口的设计搭边在多工位级进模中有着特殊的作用,它是将坯件传递到各工位进行冲裁和成形加工,并且使坯件在动态送料过程中保持稳定准确的定位。

因此,在多工位级进模的设计中把搭边称为载体。

载体是运送坯件的物体,载体与坯件或坯件和坯件的连接部分称为搭口。

1.载体形式载体形式一般可分为如下几种。

(1)边料载体(图6.2.1)边料载体是利用材料搭边或余料冲出导正孔而形成的载体, 此种载体送料刚性较好,省料,简单。

使用该载体时,在弯曲或成形部位,往往先切出展开形状,再进行成形,后工位落料以整体落料为主。

可采用多件排列,提高了材料的利用率。

此主题相关图片如下:(2)双边载体(图6.2.2)双边载体实质是一种增大了条料两侧搭边的宽度,以供冲导正工艺孔需要的载体,一般可分为等宽双边载体(图6.2.2a)和不等宽双边载体(即主载体和辅助载体,图6.2.2b)。

双边载体增加边料可保证送料的刚度和精度,这种载体主要用于薄料(t≤0.2mm),工件精度较高的场合,但材料的利用率有所降低,往往是单件排列。

(3)单边载体(图6.2.3)单边载体主要用于弯曲件。

此方法在不参与成形的合适位置留出载体的搭口,采用切废料工艺将搭口留在载体上,最后切断搭口得到制件,它适用于t≤0.4mm的弯曲件的排样。

在图6.2.3中,图a和图b在裁切工序分解形状和数量上不一样,图a第一工位的形状比图b复杂,并且细颈处模具镶块易开裂,分解为图b后的镶块便于加工,且寿命得到提高。

图c是一种加了辅助载体的单边载体。

此主题相关图片如下:此主题相关图片如下:此主题相关图片如下:(4)中间载体中间载体常用于一些对称弯曲成形件,利用材料不变形的区域与载体连接,成形结束后切除载体。

中载体可分为单中载体和双中载体。

中载体在成形过程中平衡性较好。

图6.2.4所示是同一个零件选择中载体时不同的排样方法。

图6.2.4a是单件排列,图6.2.4b是可提高生产效率一倍的双排排样。

图6.2.5所示零件要进行两侧以相反方向卷曲的成形,选用单中载体难以保证成形件成形后的精度要求,而选用可延伸连接的双中载体既可保证成形件的质量。

此方法的缺点是载体宽度较大,会降低材料的利用率。

中载体常用于材料厚度大于0.2mm的对称弯曲成形件。

(5)载体的其他形式有时为了下一工序的需要,可在上述载体中采取一些工艺措施。

① 加强载体加强载体是载体的一种加强形式,在料厚t≤0.1mm薄料冲压中,载体因刚性较差而变形造成送料失稳,使冲压件几何形状产生误差,为保证冲压精度,对载体局部采取的压筋、翻边等提高载体刚度的加强措施,而形成的载体形式,如图6.2.6。

② 自动送料载体有时为了自动送料的需要,可在载体的导正孔之间冲出与钩式自动送料装置匹配的长方孔,送料钩钩住该孔,拉动载体送进的。

此主题相关图片如下:此主题相关图片如下:此主题相关图片如下:2.3 排样图中各冲压工位的设计要点冲裁,弯曲和拉深等都有自身的成形特点,在多工位级进模的排样设计中其工位的设计必须与成形特点相适应。

1.级进模冲裁工位的设计要点(1)在级进冲压中,冲裁工序常安排在前工序和最后工序,前工序主要完成切边(切出制件外形)和冲孔。

最后工序安排切断或落料,将载体与工件分离。

(2)对复杂形状的凸模和凹模,为了使凸模、凹模形状简化,便于凸模,凹模的制造和保证凸模、凹模的强度,可将复杂的制件分解成为一些简单的几何形状多增加一些冲裁工位。

(3)对于孔边距很小的工件,为防止落料时引起离工件边缘很近的孔产生变形,可将孔旁的外缘以冲孔方式先于内孔冲出,即冲外缘工位在前,冲内孔工位在后。

对有严格相对位置要求的局部内,外形,应考虑尽可能在同一工位上冲出,以保证工件的位置精度。

2.多工位级进弯曲工位的设计要点(1)冲压弯曲方向在多工位级进模中,如果工件要求向不同方向弯曲,则会给级进加工造成困难。

弯曲方向是向上,还是向下,模具结构设计是不同的。

如果向上弯曲,则要求在下模中设计有冲压方向转换机构(如滑块、摆块);若进行多次卷边或弯曲,这时必须考虑在模具上设置足够的空工位,以便给滑动模块留出活动的余地和安装空间。

若向下弯曲,虽不存在弯曲方向的转换,但要考虑弯曲后送料顺畅。

若有障碍则必须设置抬料装置。

相关文档
最新文档