实验 粮食中淀粉含量的测定

合集下载

淀粉定量测量实验报告

淀粉定量测量实验报告

一、实验目的本实验旨在通过化学和物理方法对淀粉进行定量测量,验证淀粉在不同条件下的溶解度、反应速度以及与特定试剂的反应特性。

通过对实验数据的分析,进一步了解淀粉的性质和变化规律。

二、实验原理淀粉是一种高分子碳水化合物,由大量葡萄糖单元通过α-1,4-糖苷键和α-1,6-糖苷键连接而成。

淀粉在水中溶解后,形成具有胶体性质的淀粉溶液。

本实验采用以下原理进行淀粉的定量测量:1. 淀粉的溶解度测定:通过测定不同温度下淀粉在水中的溶解度,了解淀粉溶解度随温度变化的规律。

2. 淀粉与碘的反应:淀粉与碘反应生成蓝色复合物,根据复合物的颜色深浅,可以测定淀粉的含量。

3. 淀粉与酶的反应:淀粉在淀粉酶的作用下水解生成葡萄糖,通过测定葡萄糖的生成量,可以计算淀粉的量。

三、实验材料与仪器材料:1. 淀粉2. 碘液3. 葡萄糖标准溶液4. 淀粉酶5. 碱性酒石酸铜溶液6. 碱性氢氧化钠溶液7. 温度计8. 移液管9. 比色皿10. 烧杯仪器:1. 恒温水浴锅2. 紫外可见分光光度计3. 电子天平4. 移液器四、实验步骤1. 淀粉溶解度测定:(1)称取一定量的淀粉,溶解于不同温度的水中。

(2)将溶液在恒温水浴锅中加热至所需温度,保持一定时间。

(3)取出溶液,室温下冷却至室温。

(4)用移液管取一定量的溶液,加入碘液,观察颜色变化。

(5)记录溶液颜色变化,并计算淀粉的溶解度。

2. 淀粉与碘的反应:(1)称取一定量的淀粉溶液,加入碘液。

(2)观察溶液颜色变化,记录颜色变化时间。

(3)根据颜色变化时间,计算淀粉的含量。

3. 淀粉与酶的反应:(1)称取一定量的淀粉溶液,加入淀粉酶。

(2)在恒温水浴锅中反应一定时间。

(3)取出溶液,加入碱性酒石酸铜溶液。

(4)用移液器取一定量的溶液,加入碱性氢氧化钠溶液。

(5)用紫外可见分光光度计测定溶液的吸光度。

(6)根据吸光度计算葡萄糖的生成量,进而计算淀粉的量。

五、实验结果与分析1. 淀粉溶解度测定:随着温度的升高,淀粉的溶解度逐渐增大。

粮食油料淀粉含量的测定要点

粮食油料淀粉含量的测定要点

GB 5514—85本标准适用于商品粮食、油料淀粉含量的测定。

1 仪器和用具1.1 古氏坩埚:25 ml;1.2 抽滤瓶:500 ml;1.3 真空泵或水泵;1.4 滴定管:25 ml;1.5 锥形瓶:100 ml、250 ml、500 ml;1.6 移液管:20 ml;1.7 容量瓶:100 ml、250 ml、500 ml;1.8 回流冷凝管;1.9 电炉;1.10 烧瓶:150 ml;1.11 漏斗:6 cm;1.12 研钵、温度计、显微镜等。

2 试剂2.1 0.5%淀粉酶溶液或麦芽汁:取大麦粒加水湿润浸泡12 h,在搪瓷盘内平铺约1 cm厚,使其发芽数日。

待幼芽长约1 cm时,取发芽粒50 g,磨碎,加水400 ml,在常温下浸渍3 h,过滤备用(保存时加氯仿或甲苯数滴,防止生霉);2.2 碘溶液:称碘化钾3.6 g,溶于20 ml水中,加碘1.3 g,溶解后再加水至100 ml;2.3 0.1 N高锰酸钾标准溶液;2.4 1 N氢氧化钠溶液:取氢氧化钠4 g加水溶解至100 ml;2.5 硫酸铁溶液:取硫酸铁50 g,加水200 ml溶解后,慢慢加入硫酸100 ml,冷后加水至1000 ml;2.6 3 N盐酸:取盐酸25 ml,加水至100 ml;2.7 6 N盐酸:取盐酸100 ml,加水至200 ml;2.8 20%氢氧化钠溶液;2.9 甲基红指示液:0.1%甲基红乙醇溶液;2.10 费林氏溶液:2.10.1 碱性酒石酸铜甲液:取硫酸铜结晶34.69 g,加适量水溶解,加硫酸0.5 ml,再加水至500 ml,用精制石棉过滤;2.10.2 碱性酒石酸铜乙液:取酒石酸钾钠173 g与氢氧化钠50 g,加适量水溶解,稀释至500 ml,用精制石棉过滤,贮存于具有橡皮塞的玻璃瓶内;2.11 精制石棉:先用3 N盐酸将石棉浸泡2~3日后,用水洗净。

再加10%氢氧化钠溶液浸泡2~3日,倾去溶液,用热碱性酒石酸铜乙液浸泡数小时,用水洗净。

碘量法 淀粉

碘量法 淀粉

碘量法测定淀粉含量简介碘量法是一种常用的测定淀粉含量的方法。

淀粉是植物体内最重要的储能物质之一,广泛存在于植物的种子、块茎、根状茎和果实等部位。

淀粉的含量对于粮食、食品、饲料等行业具有重要的意义。

通过测定淀粉的含量,可以评估原料的质量和加工过程的效果。

原理碘量法是通过测定淀粉与碘之间的反应来测定淀粉的含量。

在碘溶液中,淀粉会形成蓝色复合物,其颜色的深浅与淀粉的含量成正比。

因此,通过比色法可以测定淀粉的含量。

实验步骤1.准备样品:将待测样品研磨成细粉,取约0.1g的样品称入50mL锥形瓶中。

2.加入试剂:向锥形瓶中加入10mL蒸馏水和2mL 1% 硫酸溶液。

3.摇匀:用玻璃棒搅拌溶解样品。

4.加入试剂:向锥形瓶中加入10mL 1% 碘溶液。

5.加入试剂:向锥形瓶中加入蒸馏水,使溶液体积达到刻度线。

6.摇匀:用玻璃棒搅拌溶液,使样品充分与试剂反应。

7.静置:将锥形瓶放置静置10分钟。

8.滴定:用0.1mol/L Na2S2O3溶液滴定至溶液颜色变为浅黄色。

9.计算:根据滴定所需的Na2S2O3溶液体积计算淀粉的含量。

注意事项1.确保使用的试剂纯度高,以避免对实验结果的影响。

2.在摇匀和静置的过程中,要确保样品与试剂充分反应。

3.在滴定的过程中,要小心控制滴定剂的滴加速度,以避免滴加过多而造成误差。

4.实验过程中,要注意安全操作,避免溶液的飞溅和皮肤接触。

数据处理1.计算滴定所需的Na2S2O3溶液体积,记为V。

2.计算淀粉的含量,公式为:淀粉含量(%)= V × 0.1 × 100 / 0.1结论通过碘量法测定淀粉含量的实验,可以得到样品中淀粉的含量。

该方法简单、快速、准确,被广泛应用于食品、饲料、粮食等行业。

通过测定淀粉含量,可以评估原料的质量和加工过程的效果,为产品质量控制提供科学依据。

实验六淀粉含量测定

实验六淀粉含量测定

实验六淀粉含量测定
实验六淀粉含量测定
一、实验目的
本实验旨在通过碘显色法测定样品中的淀粉含量,了解和掌握该方法的基本原理和操作技巧。

二、实验原理
淀粉能与碘发生显色反应,生成稳定的紫蓝色化合物。

因此,通过测定样品溶液显色后吸光度值,可以推算样品中的淀粉含量。

本实验采用碘显色法进行淀粉含量的测定。

三、实验步骤
1.样品处理:称取适量样品,加入适量蒸馏水研磨成匀浆,备用。

2.制作标准曲线:分别吸取0、0.2、0.4、0.6、0.8、1.0mL的淀粉标准液,
各加入到10mL容量瓶中,再加入1mL碘液,摇匀,显色10分钟,用分光光度计在660nm处测定吸光度值,绘制标准曲线。

3.样品测定:取1mL样品溶液加入到10mL容量瓶中,再加入1mL碘液,摇
匀,显色10分钟,用分光光度计在660nm处测定吸光度值。

4.结果计算:根据测得的吸光度值,在标准曲线上查得相应的淀粉含量,计算
样品中淀粉的含量。

四、实验结果与分析
1.标准曲线的绘制结果如下表所示:
性回归方程为y=0.323x+0.029(R²=0.993)。

结果表明,在所选范围内,淀粉含量与吸光度值呈良好的线性关系。

2.样品测定结果如下表所示:
(绿豆粉等)中的淀粉含量较高,而玉米粉和小麦粉中的淀粉含量相对较低。

这说明不同粮食作物的营养成分组成存在差异,因此在实际应用中需要根据用途选择合适的粮食作物。

同时,本实验方法具有操作简便、快速、准确等特点,可用于实际生产中的质量控制和检测。

食品分析实验设计——小麦中淀粉含量的测定

食品分析实验设计——小麦中淀粉含量的测定

化学化工与生命科学系《食品分析》实验设计实验题目:小麦中淀粉的测定姓名:***学号:***专业:***指导老师:***2012年1月1日一、实验名称:小麦中淀粉的测定二、实验原理:1.淀粉具有旋光性,在一定条件下旋光度的大小与淀粉的浓度成正比。

用氯化钙溶液提取淀粉,使之与其他成分分离用氯化锡沉淀提取液中的蛋白质后,测定旋光度,即可计算出淀粉含量。

计算公式如下:淀粉含量=m ×203×100×L α×100(%) 式中:α—旋光度读数,(º);L —观测管长度,dm ;m —样品质量,g ;203—淀粉比旋光度,(º)。

2.氯化钙溶液作为淀粉的提取剂,是因为钙能与淀粉分子上的羟基形成络合物,使淀粉与水有较高的亲和力而易溶于水中。

三、实验仪器与试剂:1.仪器 旋光仪、烧杯、玻璃棒、捣碎机、电子天平2.试剂 小麦、氯化钙溶液、氯化锡溶液、小麦四、实验步骤:1.用电子天平称取小麦10g ,用捣碎机磨成粉;2.将小麦粉置于烧杯中,加入适量蒸馏水搅拌;3.将小麦溶液中加入一定量的氯化钙溶液,充分搅拌;4.再在上述溶液中加入一定量的氯化锡溶液,充分搅拌,以沉淀蛋白质,避免蛋白质对淀粉测定的干扰5.上述溶液过滤,用旋光仪测溶液旋光度。

6.记录实验数据,收拾实验器材。

五、实验结果利用公式: 淀粉=m×203×100×L α×100(%) 式中: α—旋光度读数,(º);L —观测管长度,dm ;m —样品质量,g ;203—淀粉比旋光度,(º)。

六、说明与注意事项1.本法适用于不同来源的淀粉,具有重现性好、操作简便、快速等特点。

由于淀粉的比旋光度大,直链淀粉和支链淀粉的比旋光度又很接近,因此本法对于可溶性糖类含量不高的谷物样品具有较高的准确度。

2.蛋白质也具有旋光性,为消除其干扰,本法加入氯化锡溶液,以沉淀蛋白质。

实验十三食品中淀粉含量的测定

实验十三食品中淀粉含量的测定

2.结果计算:
(1)酸解法:
(2)酶解法:
3. 结果分析:分析并对比两种方法的优缺点,思考并归 纳实验过程中可能对实验结果造成影响的操作细节。
还原糖的测定:糖类在较高温度下可被浓硫酸作用而 脱水生成糠醛或羟甲基糖醛后,与蒽酮(C14H10O)脱水 缩合,形成糠醛衍生物,呈蓝绿色。该物质在620 nm 处有最大吸收,在150 µg/mL范围内,其颜色的深浅与 可溶性糖含量成正比。这一方法有很高的灵敏度,糖 含量在30 µg左右就能进行测定,可做为微量测糖之用。 一般样品少时可采用这一方法。
、实验仪器和材料
1. 仪器:容量瓶,漏斗,慢速定量滤纸,烧杯,移液 管,量筒,具塞试管,分光光度计,水浴锅,回流冷 凝管,酒精灯,电子天平,精密pH试纸。 2. 材料:普通面粉
五、实验设计参考
1. 样品水解
(1)样品预处理:准确称取0.2 g面粉样品并过40目筛, 置于放有慢速滤纸的漏斗中,用50 mL乙醚分5次洗去样 品中脂肪,弃去乙醚。再用150 mL乙醇溶液(w/w=85%) 分数次洗涤残渣,除去可溶性糖类。用50 mL水将残渣转 入250 mL锥形瓶或250 mL烧杯中,并用50 mL水洗滤纸 及漏斗,洗液并入锥形瓶或烧杯(酸水解转入锥形瓶, 酶水解则转入烧杯)。
(2)样品测定:吸取1 mL已稀释的提取液于试管中,加入 4.0 mL蒽酮试剂,平行2份;空白管以等量蒸馏水取代提取液。 以下操作同标准曲线制作。根据A620平均值在标准曲线上查 出葡萄糖的含量(mg)。
六、实验结果处理参考
1.实验记录: (1)葡萄糖含量标准曲线(Excel制作后打印并粘贴); (2)吸光值:
(2)酸水解:向装有样品的锥形瓶中加30 mL HCl溶液 (1:1),连接冷凝管,置沸水中回流1 h。回流完毕,立即 置流动水中冷却至室温,加2滴甲基红指示剂,将水解液调 至近中性[先用40% NaOH溶液调至黄色,再用盐酸(1:1) 校正至水解液刚变红色;若水解液颜色深,可用精密pH试 剂测试,调pH值约为7]。加20 mL中性Pb(Ac)2溶液(200 g/L),摇匀,静置10 min,使蛋白质等干扰物完全沉淀, 再加等量的Na2SO4溶液(100 g/L),以除去多余铅盐。摇 匀后将全部溶液及残渣转入500 mL容量瓶中,用水洗涤锥 形瓶,洗液合并于容量瓶中,用水定容,混匀、过滤,弃 去初滤液。

食物中的淀粉实验

食物中的淀粉实验

食物中的淀粉实验淀粉是一种常见的食物营养成分,许多食物中含有淀粉。

本实验将介绍一种简单的方法来检测食物中的淀粉含量。

通过这个实验,我们可以了解食物中淀粉的分布情况,进一步认识食物的营养价值。

实验材料:- 不同食物样品(如土豆、面粉、大米等)- 小刀和切菜板- 碘液(0.3%碘酒溶液)实验步骤:1. 准备食物样品。

选择食物样品,例如土豆、面粉、大米等。

将食物样品切碎或研磨成细粉状。

2. 检测淀粉。

将细粉状的食物样品分别放入几个试验管中。

3. 加入碘液。

在每个试验管中滴加几滴碘液。

4. 观察变化。

观察每个试验管中的颜色变化。

淀粉与碘液反应会产生深蓝色或紫色。

结果与讨论:通过上述实验步骤,我们可以观察到食物样品中淀粉的分布情况。

颜色变化较深的试验管表示淀粉含量较高,颜色变化较浅或无颜色变化的试验管表示淀粉含量较低或没有淀粉。

例如,土豆样品通常会呈现较深的颜色变化,说明土豆中含有较多的淀粉。

而面粉样品也会呈现较深的颜色变化,说明面粉是一种富含淀粉的食物。

相反,一些不含淀粉的食物样品,如油类、蔬菜和水果等,在本实验中不会显示颜色变化。

这个实验只能给出食物样品中淀粉的简单定性检测结果,无法精确测量淀粉含量的百分比。

如果需要精确测量淀粉含量,可以使用其他方法如酶解法或称重法。

结论:食物样品中的淀粉可以通过碘液的颜色变化来检测。

淀粉含量较高的食物样品在碘液中呈现深蓝色或紫色,而淀粉含量较低或没有淀粉的食物样品则不会改变颜色。

这个实验方法简便易行,可以帮助我们初步了解食物中淀粉的分布情况。

面粉中淀粉含量的测定(实验)

面粉中淀粉含量的测定(实验)

面粉中淀粉含量的测定(实验)引言淀粉是一种重要的碳水化合物,在食品行业中起着重要作用。

面粉是许多食物的基本成分之一,因此了解面粉中淀粉的含量对于食品加工和控制质量至关重要。

本实验旨在通过一种简单的方法来测定面粉中淀粉的含量。

实验原理淀粉是由葡萄糖分子组成的多糖,可以在水中形成胶状物质。

在本实验中,我们将利用碘与淀粉的反应来测定面粉中淀粉的含量。

碘会与淀粉结合形成蓝色或紫色的复合物,在测定过程中可以通过颜色的变化来确定面粉中淀粉的含量。

实验步骤1. 准备工作:- 将所需材料准备齐全,包括面粉样品、碘液、碘化钾溶液和色谱纸。

- 清洁和仪器,确保无杂质干扰。

2. 样品处理:- 将适量的面粉样品称取到中,加入适量的水,搅拌均匀。

- 将搅拌好的面粉糊状物置于过滤纸上,进行滤液处理。

3. 碘液滴定:- 将滤液滴入碘液中,注意搅拌均匀。

- 观察滴入碘液后的颜色变化,直到出现蓝色或紫色。

4. 阳性对照:- 使用已知浓度的淀粉溶液进行阳性对照实验。

- 重复上述步骤,观察滴入碘液后的颜色变化。

5. 数据处理:- 根据颜色的深浅对比,可初步判断面粉样品中淀粉的含量。

结论通过以上实验方法,可以初步测定面粉中淀粉的含量。

颜色变化越深,表示淀粉含量越高。

但由于本实验仅是基于颜色的主观判断,准确度有限。

对于更准确的淀粉含量测定,建议使用更精确的分析方法,如高效液相色谱法或红外光谱法。

参考文献- [1] 周XX, 张XX. 面粉中淀粉含量的测定方法[J]. 食品科学与技术, 20XX, XX(X): XX-XX.- [2] XXX标准委员会. XXXXX: XXXX[S]. 北京: 中国标准出版社, 20XX.。

淀粉的国标测定方法()

淀粉的国标测定方法()

淀粉的国标测定方法测定食物中淀粉的方法有酶水解法、酸水解法、可消化淀粉和抗性淀粉的测定方法(酶-直接法)一、酶水解法1.原理样品经除去脂肪及可溶性糖类后,其中淀粉用淀粉酶水解成双糖,再用盐酸将双糖水解成单糖,最后按还原糖测定,并折算成淀粉。

2.适用范围GB5009.9-85,适用于所有含淀粉的食物。

3.仪器(1)回流冷凝器(2)水浴锅4.试剂除特殊说明外,实验用水为蒸馏水,试剂为分析纯。

(1)乙醚(3)碘溶液:称取3.6 g碘化钾溶于20 ml水中,加入1.3 g碘,溶解后加水稀释至100 ml。

(4) 85 %乙醇。

(5)其余试剂同《蔗糖测定方法》5.操作方法5.1 样品处理称取2~5 g样品,置于放有折叠滤纸的漏斗内,先用50 ml乙醚分5次洗除脂肪(注:如果脂肪含量少,此步骤可免),再用约100 ml85 %乙醇洗去可溶性糖类(注:此步骤目的是去除可溶性糖),将残留物移入250 ml烧杯内,并用50ml水洗滤纸及漏斗,洗液并入烧杯内,将烧杯置沸水浴上加热15 min,使淀粉糊化,放冷至60 ℃以下,加20ml淀粉酶溶液,再55~60 ℃保温1h,并时时搅拌(注:温度过高,淀粉酶的活性破坏)。

然后取1滴此液加1滴碘溶液,应不现兰色,若显兰色,再加热糊化并加20ml淀粉酶溶液,继续保温,直至加碘不显兰色为止。

加热至沸,冷后移入250ml容量瓶中,并加水至刻度,混匀,过滤。

(注:此时淀粉已水解成双糖,过滤可去除残渣和纤维素)弃去初滤液,取50 ml滤液,置于250ml 锥形瓶中,加5 ml 6 mol/L盐酸,装上回流冷凝器,在沸水浴中回流1h,冷后加2滴甲基红指示剂,用5mol/L氢氧化钠溶液中和至中性,溶液转入100 ml容量瓶中,洗涤锥形瓶,洗液并入100ml容量瓶中,加水至刻度,混匀备用。

(淀粉在沸水浴条件下糊化是淀粉水解的第一步反应,然后在淀粉酶的作用下,分解成短链淀粉、糊精、麦芽糖等低聚合的糖,所以在淀粉酶解后需用酸进一步水解得到葡萄糖。

实验六 淀粉含量测定

实验六  淀粉含量测定

实验六(红薯/马玲薯/黄地瓜等淀粉块茎类植物)中淀粉含量测定(酸水解法)综合设计(4学时)一、实验原理1、淀粉提取,也称为浆渣分离或分离,是淀粉加工中的关键环节,直接影响到淀粉提取率和淀粉质量。

粉碎后的物料是细小的纤维,体积大于淀粉颗粒,膨胀系数也大于淀粉颗粒,比重又轻于淀粉颗粒, 将粉碎后的物料,以水为介质,使淀粉和纤维分离开来。

2、淀粉是食品中主要的组成部分,也是植物种子中重要的贮藏性多糖。

淀粉跟稀硫酸在加热的条件下能够完全水解成葡萄糖、麦芽糖等还原糖。

还原糖的测定是糖定量测定的基本方法。

还原糖在碱性条件下被氧化成糖酸及其他产物,3,5-二硝基水杨酸则被还原成棕红色的3-氨基-5硝基水杨酸。

在一定范围内,还原糖的量与棕红色物质的深浅成正比关系,利用分光光度计,在540nm 波长下测定光密度值,查对标准曲线。

由于淀粉完全水解成还原糖的量是成正比的,所以,也与棕红色物质的深浅成正比关系。

二、材料、仪器与试剂(一)材料:五指山红薯。

(二)仪器:分光光度计722、小台秤、分析天平、烧杯(100mL)、研钵、容量瓶(100mL)、洗瓶、漏斗、滤纸、具塞刻度试管(15mL)、恒温水浴、移液管(1mL, 2mL)。

(三)试剂1 2mol/L NaOH 溶液准确称取4g NaOH固体,溶于15 mL蒸馏水中,并倒入50ml容量瓶中,用蒸馏水分几次清洗烧杯并将清洗的溶液倒入容量瓶中,用蒸馏水定容至刻度线。

2 3,5-二硝基水杨酸试剂准确称取3,5-二硝基水杨酸1g,溶于2mol/L NaOH 溶液20mL,加入50mL蒸馏水,再加入30g酒石酸钾钠,待溶解后用蒸馏水定容至100mL。

盖紧瓶塞,勿让CO2进入。

若溶液浑浊,可过滤后使用。

3 0.1mol/L柠檬酸缓冲液(pH5.6)A液(0.1mol/L柠檬酸):称取C6H8O7٠H2O 21.01g,用蒸馏水溶解并定容至1000mL。

B液(0.1mol/L柠檬酸钠):称取Na3C6H5O7٠2H2O 29.41g,用蒸馏水溶解并定容至1000mLA液110 mL与B液290 mL 混匀,即为0.1mol/L柠檬酸缓冲液(pH5.6)。

食品分析实验设计――小麦中淀粉含量的测定

食品分析实验设计――小麦中淀粉含量的测定

化学化工与生命科学系《食品分析》实验设计实验题目:小麦中淀粉的测定姓名:***学号:***专业:***指导老师:***2012年1月1日一、实验名称:小麦中淀粉的测定二、实验原理:1.淀粉具有旋光性,在一定条件下旋光度的大小与淀粉的浓度成正比。

用氯化钙溶液提取淀粉,使之与其他成分分离用氯化锡沉淀提取液中的蛋白质后,测定旋光度,即可计算出淀粉含量。

计算公式如下:淀粉含量=式中:α—旋光度读数,(º);L—观测管长度,dm;m—样品质量,g;203—淀粉比旋光度,(º)。

2.氯化钙溶液作为淀粉的提取剂,是因为钙能与淀粉分子上的羟基形成络合物,使淀粉与水有较高的亲和力而易溶于水中。

三、实验仪器与试剂:1.仪器旋光仪、烧杯、玻璃棒、捣碎机、电子天平2.试剂小麦、氯化钙溶液、氯化锡溶液、小麦四、实验步骤:1.用电子天平称取小麦10g,用捣碎机磨成粉;2.将小麦粉置于烧杯中,加入适量蒸馏水搅拌;3.将小麦溶液中加入一定量的氯化钙溶液,充分搅拌;4.再在上述溶液中加入一定量的氯化锡溶液,充分搅拌,以沉淀蛋白质,避免蛋白质对淀粉测定的干扰5.上述溶液过滤,用旋光仪测溶液旋光度。

6.记录实验数据,收拾实验器材。

五、实验结果利用公式:淀粉=α×100L×203×mα×100L×203×m×100(%)×100(%)式中:α—旋光度读数,(º);L—观测管长度,dm;m—样品质量,g;203—淀粉比旋光度,(º)。

六、说明与注意事项1.本法适用于不同来源的淀粉,具有重现性好、操作简便、快速等特点。

由于淀粉的比旋光度大,直链淀粉和支链淀粉的比旋光度又很接近,因此本法对于可溶性糖类含量不高的谷物样品具有较高的准确度。

2.蛋白质也具有旋光性,为消除其干扰,本法加入氯化锡溶液,以沉淀蛋白质。

3.淀粉比旋光度一般按203°计,不同来源淀粉也略有不同,如玉米,小麦淀粉为203°,豆类淀粉为200°。

测定淀粉的实验报告

测定淀粉的实验报告

测定淀粉的实验报告引言淀粉是一种常见的碳水化合物,在生活中广泛应用于食品、纺织品和工业制品等领域。

准确测定淀粉的含量对于食品质量控制和研究淀粉的性质具有重要意义。

本实验旨在通过测定淀粉溶液中淀粉的浓度,进一步了解淀粉的特性。

实验原理淀粉可以与碘形成淀粉-碘复合物,发生物理吸附而呈现蓝黑色。

根据淀粉与碘浓度的线性关系,可以通过光度计测量溶液的吸光度来间接测定淀粉的浓度。

实验步骤1. 实验前准备:将10g淀粉加入200mL去离子水中搅拌均匀制备淀粉溶液。

2. 预处理:取不同体积的淀粉溶液分别加入200mL容量瓶中,并用去离子水稀释至刻度线,制备一系列标准溶液。

3. 光度测量:使用光度计将标准淀粉溶液分别置于比色皿中,设置波长为λ=620nm,记录吸光度值A。

4. 绘制标准曲线:将测得的吸光度A与相应标准溶液的浓度C绘制成曲线,通过线性回归获得拟合方程。

5. 测定待测样品:将待测淀粉溶液置于比色皿中,按照相同波长测量吸光度值A,并利用标准曲线计算出淀粉的浓度。

6. 计算结果:根据所用淀粉溶液的体积和标准曲线,计算出实际样品中淀粉的含量。

结果与讨论通过实验测得的标准曲线如下所示:淀粉浓度(mg/mL)吸光度A0.1 0.050.2 0.100.5 0.251.0 0.501.5 0.752.0 1.003.0 1.504.0 2.00通过以上数据,拟合得到标准曲线方程为:A = 0.462C + 0.017,其中A为吸光度,C为淀粉浓度。

利用该标准曲线,测得待测淀粉溶液的吸光度为0.35,计算得到淀粉浓度为0.76 mg/mL。

由于实际样品的含量较低,所以采用浓缩倍数为10倍进行计算,最终得到实际样品中淀粉的含量为7.6 mg/g。

通过和其他方法的比较可以看出,本实验采用的测定方法简便快捷、准确可靠,适用于淀粉含量的快速测定。

实验结论本实验通过测定淀粉溶液的吸光度,利用标准曲线计算出实际样品中淀粉的含量为7.6 mg/g。

实验。粮食中淀粉含量的测定

实验。粮食中淀粉含量的测定

实验。

粮食中淀粉含量的测定实验粮食中淀粉含量的测定实验目的:掌握粮食中淀粉含量测定的原理、试剂、仪器设备及操作要点。

实验原理:试样经除去脂肪及可溶性糖类后,其中淀粉用淀粉酶水解成二糖,再用盐酸水解成具有还原性的单糖,最后按还原糖测定,并折算成淀粉含量。

实验试剂:1.淀粉酶溶液:称取α-淀粉酶0.5g,加100mL水溶解,加入数滴甲苯或三氯甲烷,防止长霉。

2.碘溶液:称取3.6g碘化钾溶于20mL水中,加入1.3g碘,溶解后加水稀释至100mL。

3.85%乙醇。

4.6mol/L盐酸:取盐酸50mL加水至100mL。

5.200g/L氢氧化钠溶液。

6.甲基红指示液:称取0.1g甲基红用95%乙醇溶液定容至100mL。

7.乙醚。

8.蒸馏水。

仪器设备:粉碎磨、天平、锥形瓶、回流冷凝装置、容量瓶、抽滤装置、恒温水浴锅。

操作步骤:1.待测样品,用粉碎磨粉碎至全部通过40目筛,充分混合,保存备用。

2.试样水分含量的测定:105℃烘干至恒重,计算。

3.称取试样约2~5g(精确至0.01g),置于放有滤纸的漏斗内,先用50mL乙醚分5次洗涤去除脂肪,再用约100mL 乙醇洗涤除去可溶性糖类,将残留物移入250mL烧杯,并用50mL水洗滤纸及漏斗,洗液并入烧杯内。

4.将烧杯置于沸水浴加热15min,使淀粉糊化。

5.将糊化的试样,放置冷却至60℃以下,加20mLα-淀粉酶溶液,在恒温水浴锅中55~60℃保温水解1h,并经常搅拌。

6.取酶解液1滴加1滴碘溶液,应不显蓝色,否则再加热糊化并加适量酶溶液,继续保温,直至加碘不显蓝色为止。

7.将酶解液加热至沸,冷却后移入250mL容量瓶加水定容至刻度,混匀,过滤,弃去初滤液。

8.取50mL滤液,置于250mL锥形瓶中,加5mL盐酸,装上回流冷凝管,在沸水浴中回流1h。

冷却后加2滴甲基红指示液,用氢氧化钠溶液中和至中性,溶液转入100mL容量瓶,洗涤锥形瓶,洗液并入100mL容量瓶中,加水定容至刻度,混匀备用。

淀粉含量的测定

淀粉含量的测定

淀粉含量的测定一、引言淀粉是植物中最主要的储能物质,也是人类的主要食物之一。

因此,测定淀粉含量对于食品工业、生物学和农业等领域都具有重要意义。

本文将介绍淀粉含量的测定方法。

二、理论基础淀粉是由葡萄糖分子组成的多糖,可以通过酶解成单糖。

因此,测定淀粉含量的方法通常是通过酶解淀粉,然后测定产生的葡萄糖或者其他反应产物来计算样品中淀粉的含量。

三、常用方法1. 碘液法碘液法是一种简单易行且常用的方法。

其原理是利用碘化钾与淀粉形成蓝色复合物,通过比色法来测定样品中淀粉的含量。

操作步骤:(1)取适量样品加入试管中;(2)加入适量碘液;(3)加入适量稀盐酸溶液;(4)加入适量水,并摇匀;(5)使用比色计在波长为620nm处读取吸光度值。

2. 酶解-比色法酶解-比色法是一种准确度较高的方法。

其原理是利用淀粉酶将淀粉分解成葡萄糖,然后使用葡萄糖氧化酶将葡萄糖转化为过氧化物,最终通过比色法来测定样品中淀粉的含量。

操作步骤:(1)取适量样品加入试管中;(2)加入适量淀粉酶,并在恒温水浴中孵育一段时间;(3)加入适量葡萄糖氧化酶,并在恒温水浴中孵育一段时间;(4)加入适量琼脂糖和Na2CO3溶液,并摇匀;(5)使用比色计在波长为505nm处读取吸光度值。

四、注意事项1. 样品的选取应该具有代表性,避免出现偏差;2. 操作过程中要注意卫生和安全,避免污染和伤害;3. 仪器的校准和标准曲线的制备也是保证结果准确性的重要环节。

五、总结测定淀粉含量是一项常规实验,在食品工业、生物学和农业等领域都有广泛的应用。

本文介绍了碘液法和酶解-比色法两种常用的测定方法,同时也提醒了注意事项。

在实际操作中,应根据具体情况选取合适的方法,并保证操作规范和准确性。

淀粉的测定实验报告

淀粉的测定实验报告

一、实验目的通过本实验,了解淀粉的化学性质,掌握淀粉的测定方法,学会使用碘液检测淀粉的方法,并了解淀粉在食品、医药等领域的应用。

二、实验原理淀粉是一种高分子碳水化合物,由葡萄糖单元通过α-1,4-糖苷键和α-1,6-糖苷键连接而成。

淀粉在碘液中会发生蓝色反应,这是由于碘分子与淀粉分子中的螺旋结构发生络合反应所致。

三、实验仪器与试剂1. 仪器:天平、试管、滴管、烧杯、酒精灯、火柴、玻璃棒、试管架。

2. 试剂:淀粉溶液、碘液、蒸馏水、NaOH溶液、盐酸。

四、实验步骤1. 准备淀粉溶液:称取1g淀粉,加入100mL蒸馏水,搅拌均匀。

2. 取两只试管,分别标记为A和B。

3. 向试管A中加入5mL淀粉溶液。

4. 向试管B中加入5mL淀粉溶液。

5. 向试管A中加入2滴碘液,观察溶液颜色变化。

6. 向试管B中加入2滴碘液,观察溶液颜色变化。

7. 分别向试管A和B中加入少量NaOH溶液,观察溶液颜色变化。

8. 分别向试管A和B中加入少量盐酸,观察溶液颜色变化。

五、实验结果与分析1. 实验结果- 向试管A和B中加入碘液后,溶液均变为蓝色。

- 向试管A和B中加入NaOH溶液后,溶液颜色逐渐变浅。

- 向试管A和B中加入盐酸后,溶液颜色逐渐变浅。

2. 实验分析- 淀粉与碘液发生蓝色反应,这是由于碘分子与淀粉分子中的螺旋结构发生络合反应所致。

- 加入NaOH溶液后,溶液颜色变浅,说明NaOH溶液与碘液发生反应,使蓝色物质分解。

- 加入盐酸后,溶液颜色变浅,说明盐酸与碘液发生反应,使蓝色物质分解。

六、实验结论通过本实验,我们掌握了淀粉的测定方法,了解淀粉在碘液中的蓝色反应原理,以及淀粉在不同溶液中的颜色变化。

这为我们在食品、医药等领域检测淀粉含量提供了理论基础。

七、实验注意事项1. 操作过程中注意安全,避免接触化学试剂。

2. 称量淀粉时,应尽量减少误差。

3. 实验过程中,注意观察溶液颜色变化,以便判断实验结果。

4. 实验结束后,将仪器清洗干净,放回原位。

食品分析实验 旋光法测定淀粉的含量

食品分析实验  旋光法测定淀粉的含量

实验四 旋光法测定淀粉的含量一、实验内容使用圆盘旋光仪测定淀粉的含量。

二、实验目的1、了解圆盘旋光仪的结构和工作原理;2、掌握使用圆盘旋光仪测定淀粉溶液旋光度的方法及利用旋光度求得其含量的方法;3、学会正确使用圆盘旋光仪。

三、实验原理利用淀粉具有旋光性,在一定条件下,其旋光度的大小与淀粉的浓度成正比,=,测定其旋光度,即可计算出淀粉含量。

四、实验材料 未知浓度的淀粉溶液五、仪器 WXG-4型圆盘旋光仪六、实验步骤1、旋光仪的校准(1)打开电源,关闭空测试筒盖,稳定约10分钟;(2)转动目镜调焦螺旋,使视场清晰;(3)旋转度盘3.5度处,可看到暗视场;(4)旋转度盘到零点,可见到较亮视场;(5)旋转度盘使中间的条形消失(暗或亮),使整个视场亮度一致并记下读数。

反复几次,取平均读数作为仪器零点。

2、测定待测液旋光度(1)旋光管(干燥清洁)装入待测液(应稳定、澄清且无气泡,有气泡时要赶进试管圆球中),擦净水滴;(2)黄光稳定后,将旋光管装入旋光仪,此时试管圆球要靠近镜筒;(3)转动目镜调焦螺旋,使视场清晰。

此时原视场旋转了一个角度,旋转度盘使整个视场亮度向偏暗方向移动,最终至视场亮度一致后,记下读数;(4)正角度(右旋)度盘读数值减去仪器零点值即为仪器测量值。

负角度(左旋)度盘读数值减去180度即为仪器测量值。

七、结果处理(α-α0)×100ω = ×100L×203×m8、 说明1、三分视野示意图:2、WXG-4型圆盘旋光仪主要技术参数:(1)旋光度测定范围:±180 度(2)度盘格值:1 度(3)度盘游标读数值:0.05 度 (4)稳定时间:约10分钟(5)单色光源:钠灯(6)试管长度:100毫米、200毫米各1支 3、仪器保养方法:(1)仪器应置于空气流通和温度、湿度适宜的地方以防潮;(2)钠灯使用时间不能超过4小时,长时间使用必须关机10~15分钟;(3)镜片不能用硬质的布质、纸擦,宜用擦镜纸;(4)仪器停用后应罩上仪器罩防灰;(5)试管使用后应及时用蒸馏水冲洗干净,擦干存放。

实验十食品中淀粉的测定

实验十食品中淀粉的测定

实验十食品中淀粉的测定第一法酶水解法一、目的与要求:1、明确与掌握各类食品中淀粉含量的原理及测定方法。

2、掌握用酶水解法和酸水解法测定淀粉的方法。

二、原理样品经除去脂肪及可溶性糖类后,其中淀粉用淀粉酶水解成双糖,再用盐酸将双糖水解成单糖,最后按还原糖测定,并折算成淀粉。

三,试剂:1、0.5%淀粉酶溶液:称取淀粉酶0.5克,加100毫升水溶解,数滴甲苯或三氯甲烷,防止长霉,贮于冰箱中。

2、碘溶液:称取3.6克碘化钾溶于20毫升水中,加入1.3克碘,溶解后加水稀释至100毫升。

3、乙醚4、85%乙醇5、6N盐酸:量取50毫升盐酸加水稀释至100毫升。

6、甲基红指示液:0.1%乙醇溶液。

7、20%氢氧化钠溶液。

8、碱性酒石酸铜甲液:称取34.639克硫酸铜(CuS04·5H2O)。

加适量水溶解,加0.5毫升硫酸,再加水稀释至500毫升,用精制石棉过滤。

9、碱性酒石酸铜乙液:称取173克酒石酸钾钠与50克氢氧化钠,加适量水溶解,并稀释至500毫升,用精制石棉过滤,贮存于橡胶塞玻璃瓶内。

10、0.1000N高锰酸钾标准溶液。

11、硫酸铁溶液:称取50克硫酸铁,加入200毫升水溶解后,人100毫升硫酸,冷后加水稀释至1000毫升。

四、操作方法:1、样品处理:称取2-5克样品,置于放有折叠滤纸的漏斗内,先用50毫升乙醚分5次洗除脂肪,再用约100毫升85%乙醇洗去可溶性糖类,将残留物移入250毫升烧杯内,并用50毫升水洗滤纸及漏斗,洗液并入烧杯内,将烧杯置沸水浴上加热15分钟,使淀粉糊化,放冷至60℃以下,加20毫升淀粉酶溶液,在55-60℃保温1小时,并时时搅拌。

然后取1滴此液加1滴溶液,应不显现蓝色,若显蓝色,再加热糊化并加20毫升淀粉酶溶液,继续保温,直至加碘不显蓝色为止。

加热至沸,冷后移入250毫升容量瓶中,并加水至刻度,混匀,过滤,弃去初滤液。

取50毫升滤液,置于250毫升锥形瓶中,并加水至刻度,沸水浴中回流1小时,冷后加2滴甲基红指示液,用20%氢氧化钠溶液中和至中性,溶液转入100毫升容量瓶中,洗涤锥形瓶,洗液并人100毫升容量瓶中,加水至刻度,混匀备用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验粮食中淀粉含量的测定
一、实验目的
掌握粮食中淀粉含量测定的原理、试剂、仪器设备及操作要点。

二、实验原理
试样经除去脂肪及可溶性糖类后,其中淀粉用淀粉酶水解成二糖,再用盐酸水解成具有还原性的单糖,最后按还原糖测定,并折算成淀粉含量。

三、实验试剂
1.淀粉酶溶液:称取α-淀粉酶0.5g,加100mL水溶解,加入数滴甲苯或
三氯甲烷,防止长霉。

2.碘溶液:称取
3.6g碘化钾溶于20mL水中,加入1.3g碘,溶解后加水
稀释至100mL。

3.85%乙醇。

4.6mol/L盐酸:取盐酸50mL加水至100mL。

5.200g/L氢氧化钠溶液。

6.甲基红指示液:称取0.1g甲基红用95%乙醇溶液定容至100mL。

7.乙醚。

8.蒸馏水。

四、仪器设备
1、粉碎磨:40目筛。

2、天平:分度值0.01g。

3、锥形瓶:250mL。

4、回流冷凝装置:与250mL锥形瓶匹配。

5、容量瓶:250mL。

6、抽滤装置。

7、恒温水浴锅。

五、操作步骤
待测样品,用粉碎磨粉碎至全部通过40目筛,充分混合,保存备用。

试样水分含量的测定:105℃烘干至恒重,计算。

1、称取试样约2~5g(精确至0.01g),置于放有滤纸的漏斗内,先用50mL 乙醚分5次洗涤去除脂肪,再用约100mL乙醇洗涤除去可溶性糖类,将残留物移入250mL烧杯,并用50mL水洗滤纸及漏斗,洗液并入烧杯内。

2、将烧杯置于沸水浴加热15min,使淀粉糊化。

3、将糊化的试样,放置冷却至60℃以下,加20mL α-淀粉酶溶液,在恒温水浴锅中55~60℃保温水解1h,并经常搅拌。

4、取酶解液1滴加1滴碘溶液,应不显蓝色,否则再加热糊化并加适量酶溶液,继续保温,直至加碘不显蓝色为止。

5、将酶解液加热至沸,冷却后移入250mL容量瓶加水定容至刻度,混匀,过滤,弃去初滤液。

6、取50mL滤液,置于250mL锥形瓶中,加5mL盐酸,装上回流冷凝管,在沸水浴中回流1h。

冷却后加2滴甲基红指示液,用氢氧化钠溶液中和至中性,溶液转入100mL容量瓶,洗涤锥形瓶,洗液并入100mL容量瓶中,加水定容至刻度,混匀备用。

用处理好的试样按实验一的方法操作,测定还原糖含量。

同时量取50mL水
及与试样处理时相同量的α-淀粉酶溶液,按同一方法作试剂空白试验。

六、结果计算
试样中淀粉的干基含量(X )以质量分数表示,按下式计算:
1001000
)1()m -(m 0.9500021⨯⨯-⨯⨯⨯⨯=
w V m X 式中: X —试样中淀粉的干基含量,%;
m 1—转化后测得的还原糖质量(以葡萄糖计),mg ;
m 2—试剂空白相当于还原糖质量(以葡萄糖计),mg ;
m 0—试样质量,g ;
V —转化后稀释为100mL ,测定还原糖的体积,mL ;
w —试样水分,%;
0.9—还原糖(以葡萄糖计)换算成淀粉的换算系数。

每份样品应平行测定2次,平行试样测定的结果符合重复性要求时,取其算术平均值作为结果,测定结果保留到小数点后2位。

对同一被测对象,相互独立进行测定获得的两次独立测定结果差得绝对值不大于这两个测定值的算术平均值的5%。

七、思考题
实验过程中有哪些因素最容易影响最终检测结果?。

相关文档
最新文档