第三章不等式教案全套

合集下载

北师大版高中数学必修5第三章《不等式》全部教案

北师大版高中数学必修5第三章《不等式》全部教案

第三章 不等式 3.1.1 不等关系教学目标 1.通过具体情境建立不等观念,并能用不等式或不等式组表示不等关系;2.了解不等式或不等式组的实际背景;3.能用不等式或不等式组解决简单的实际问题.教学重点 1.通过具体的问题情景,让学生体会不等量关系存在的普遍性及研究的必要性;2.用不等式或不等式组表示实际问题中的不等关系;教学难点 1.用不等式或不等式组准确地表示不等关系;2.用不等式或不等式组解决简单的含有不等关系的实际问题.教学过程导入新课日常生活中,同学们发现了哪些数量关系.你能举出一些例子吗?1:某天的天气预报报道,最高气温32℃,最低气温26℃.则当天的气温t 应该满足: 2:对于数轴上任意不同的两点A 、B ,若点A 在点B 的左边,则x a x b .3:若一个数是非负数,则这个数大于或等于零.则这个数x 可表示为 .4.三角形两边之和大于第三边,两边之差小于第三边.可以表示为 推进新课实例5:当我们在路上看到这个路标,指示司机在前方路段行驶时,应使汽车的速度v 满足实例6:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不少于2.5%,蛋白质的含量p 应不少于2.3%. 可以表示为 [合作探究]1、2、3、4、及实例5、实例6的答案[过程引导]一、 什么是不等式呢?用不等号“≠,>,<,≥ ,≤ ”表示不等关系的式子叫不等式. 如:-7<-5;3+4>1+4;2x≤6;a +2≥0;3≠4.问题1: 设点A 与平面α的距离为d, B 为平面α上的任意一点.用不等式或不等式组来表示出此问题中的不等量关系借助图形来表示不等量关系,过点A 作AC ⊥平面α于点C ,则d=|AC |≤|AB |.问题2: 某种杂志原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢? 答案:表示为)2.01.05.28(⨯--x x≥20或者表示为(2.5+0.1n)(8-0.2n)≥20. 问题3: 某钢铁厂要把长度为4 000 mm 的钢管截成500 mm 和600 mm 两种,按照生产的要求,600mm 钢管的数量不能超过500 mm 钢管的3倍.怎样写出满足上述所有不等关系的不等式?解 假设截得500 mm 的钢管x 根,截得600 mm 的钢管y 根.根据题意,可以用下面的不等式组来表示:⎪⎪⎪⎩⎪⎪⎪⎨⎧∈≥≥≥≤+.,,0,0,3,40000600500N y x y x y x y x反馈练习1.若需在长为4 000 mm 的圆钢上,截出长为698 mm 和518 mm 两种毛坯,问怎样写出满足上述所有不等关系的不等式组?2.锐角 ABC 中,B=2A,为了求A 的范围,应该怎样列出相应的不等式(组)?3.某种植物适宜生长在温度为1820oo CC 的山区。

人教版高中必修5(B版)第三章不等式课程设计

人教版高中必修5(B版)第三章不等式课程设计

人教版高中必修5(B版)第三章不等式课程设计课程目标1.理解不等式的定义和性质;2.掌握不等式的基本运算;3.能够解一元一次不等式及其应用;4.能够解含有绝对值的不等式;5.能够解二元一次不等式组及其应用。

教学内容第一课不等式的基本概念1.定义不等式的概念;2.比较数的大小,引出不等式的符号;3.不等式的等价形式;4.不等式的性质。

第二课不等式的基本运算1.不等式的加、减、乘、除;2.不等式的平方;3.不等式在绝对值意义下的运算。

第三课一元一次不等式及其应用1.一元一次不等式的解法;2.一元一次不等式的组合;3.利用一元一次不等式解题。

第四课含有绝对值的不等式1.含有绝对值的不等式的解法;2.含有绝对值的一元一次不等式的组合;3.利用含有绝对值的不等式解题。

第五课二元一次不等式组及其应用1.二元一次不等式组的定义;2.二元一次不等式组的解法;3.利用二元一次不等式组解题。

教学方法1.讲授法:讲解不等式的定义、符号、性质等;2.演示法:通过例题演示一元一次不等式、二元一次不等式组的解法;3.练习法:进行大量练习,提高学生解决不等式问题的能力;4.提问法:通过提问调动学生积极性,帮助学生理解不等式及其应用。

教学评价1.学生考试成绩;2.学生参与度;3.学生课内互动;4.教学资源的使用情况;5.课程后的学习自觉性。

教学资源1.人教版高中数学(B版)第三章教材;2.多媒体教学课件;3.学生手册和作业本;4.立体几何模型和图形。

教学进度第一课:2课时第二课:2课时第三课:3课时第四课:3课时第五课:2课时课堂设计开始阶段(5分钟)1.教师简单介绍本节课要学习的内容;2.学生查看作业本对上堂课巩固的知识点进行温习。

讲授阶段(30分钟)1.教师讲授不等式的定义、符号、性质等;2.通过示例,讲授不等式的基本运算。

练习阶段(30分钟)1.学生自主完成几道一元一次不等式的练习;2.学生交流讨论,合作完成练习。

演示阶段(30分钟)1.教师演示一元一次不等式组的解法;2.学生通过演示题目,做题操作。

不等式的性质教学教案

不等式的性质教学教案

不等式的性质教学教案第一章:不等式的引入1.1 不等式的概念:介绍不等式的定义,理解不等号(>,<,≥,≤)的含义。

1.2 实例解析:通过实际问题引入不等式,让学生感受不等式的应用。

1.3 解不等式:讲解如何解简单的不等式,如2x > 6。

第二章:不等式的基本性质2.1 性质1:不等式两边加(减)同一个数(式子),不等号方向不变。

2.2 性质2:不等式两边乘以(除以)同一个正数,不等号方向不变。

2.3 性质3:不等式两边乘以(除以)同一个负数,不等号方向改变。

第三章:不等式的运算3.1 加减法运算:讲解不等式中加减法的运算规则,举例说明。

3.2 乘除法运算:讲解不等式中乘除法的运算规则,举例说明。

3.3 复合不等式:介绍含有多个不等式的复合不等式,讲解求解方法。

第四章:不等式的应用4.1 最大值和最小值问题:利用不等式的性质求解最大值和最小值问题。

4.2 范围问题:利用不等式表示范围,求解实际问题。

4.3 线性规划:简单介绍线性规划问题,利用不等式求解最优解。

第五章:不等式的进一步性质5.1 不等式的传递性:讲解不等式的传递性质,即如果a > b且b > c,a > c。

5.2 不等式的比较:介绍如何比较两个不等式的大小,讲解不等式的排序。

5.3 不等式的恒等变形:讲解如何通过对不等式进行恒等变形,得到新的不等式。

第六章:不等式的绝对值性质6.1 绝对值不等式:介绍绝对值不等式的概念,如|x| > 5。

6.2 绝对值性质:讲解绝对值不等式的性质,如|a| ≥0,|a| = a 当a ≥0,|a| = -a 当a < 0。

6.3 绝对值不等式的解法:讲解如何解绝对值不等式,举例说明。

第七章:不等式的分式性质7.1 分式不等式:介绍分式不等式的概念,如1/(x-1) > 0。

7.2 分式性质:讲解分式不等式的性质,如当分子分母同号时,分式不等式的符号与分子分母的符号相同。

必修5-第三章不等式教案全套

必修5-第三章不等式教案全套

课题: §3.1.1不等式与不等关系(1)授课类型:新授课 【教学目标】1.通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质;2.通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法; 3.通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯. 【教学重点】用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题.理解不等式(组)对于刻画不等关系的意义和价值. 【教学难点】用不等式(组)正确表示出不等关系. 【教学过程】1.课题导入在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.如两点之间线段最短,三角形两边之和大于第三边,等等.人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系.在数学中,我们用不等式来表示不等关系. 下面我们首先来看如何利用不等式来表示不等关系.2.讲授新课1)用不等式表示不等关系引例1:限速40km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h ,写成不等式就是:40v ≤引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量p 应不少于2.3%,写成不等式组就是——用不等式组来表示 2.5%2.3%f p ≤⎧⎨≥⎩问题1:设点A 与平面α的距离为d,B 为平面α上的任意一点,则||d AB ≤.问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢? 解:设杂志社的定价为x 元,则销售的总收入为 2.5(80.2)0.1x x --⨯ 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式问题3:某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种.按照生产的要求,600mm 的数量不能超过500mm 钢管的3倍.怎样写出满足所有上述不等关系的不等式呢?解:假设截得500 mm 的钢管 x 根,截得600mm 的钢管y 根.根据题意,应有如下的不等关系: (1)截得两种钢管的总长度不超过4000mm ;(2)截得600mm 钢管的数量不能超过500mm 钢管数量的3倍; (3)截得两种钢管的数量都不能为负.要同时满足上述的三个不等关系,可以用下面的不等式组来表示:5006004000;3;0;0.x y x y x y +≤⎧⎪≥⎪⎨≥⎪⎪≥⎩3.随堂练习1、试举几个现实生活中与不等式有关的例子.2、课本P82的练习1、24.课时小结用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题.5.评价设计课本P83习题3.1[A 组]第4、5题 【板书设计】 【授后记】课题: §3.1.2不等式与不等关系(2) 授课类型:新授课 【教学目标】1.掌握不等式的基本性质,会用不等式的性质证明简单的不等式;2.通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法; 3.通过讲练结合,培养学生转化的数学思想和逻辑推理能力. 【教学重点】掌握不等式的性质和利用不等式的性质证明简单的不等式; 【教学难点】利用不等式的性质证明简单的不等式. 【教学过程】1.课题导入在初中,我们已经学习过不等式的一些基本性质. 请同学们回忆初中不等式的的基本性质.(1)不等式的两边同时加上或减去同一个数,不等号的方向不改变; 即若a b a c b c >⇒±>±(2)不等式的两边同时乘以或除以同一个正数,不等号的方向不改变; 即若,0a b c ac bc >>⇒>(3)不等式的两边同时乘以或除以同一个负数,不等号的方向改变. 即若,0a b c ac bc ><⇒<2.讲授新课1、不等式的基本性质:师:同学们能证明以上的不等式的基本性质吗? 证明:(1)∵(a+c)-(b +c)=a -b >0, ∴a+c >b +c(2)()()0a c b c a b +-+=->, ∴a c b c +>+.实际上,我们还有,a b b c a c >>⇒>,证明:∵a>b ,b >c ,∴a-b >0,b -c >0.根据两个正数的和仍是正数,得(a -b)+(b -c)>0,即a -c >0,∴a>c . 于是,我们就得到了不等式的基本性质:(1),a b b c a c >>⇒>(2)a b a c b c >⇒+>+ (3),0a b c ac bc >>⇒> (4),0a b c ac bc ><⇒<2、探索研究思考,利用上述不等式的性质,证明不等式的下列性质: (1),a b c d a c b d >>⇒+>+; (2)0,0a b c d ac bd >>>>⇒>;(3)0,,1;n nn n a b n N n a b a b >>∈>⇒>>.证明:(1)∵a>b ,∴a+c >b +c . ① ∵c>d ,∴b+c >b +d . ② 由①、②得 a +c >b +d .(2)bd ac bd bc b d c bc ac c b a >⇒⎭⎬⎫>⇒>>>⇒>>0,0,(3)(反证法)假设nn b a ≤,则,n n n n a b a b a b a b <⇒<=⇒=这都与b a >矛盾, ∴nn b a >.[范例讲解]:例1、已知0,0,a b c >><求证c c a b >. 证明:以为0a b >>,所以ab>0,10ab >.于是 11a b ab ab ⨯>⨯,即11b a>由c<0 ,得c ca b >.3.随堂练习11、课本P82的练习32、在以下各题的横线处适当的不等号: (1)(3+2)2 6+26; (2)(3-2)2 (6-1)2; (3)251- 561-;(4)当a >b >0时,log 21a log 21b答案:(1)< (2)< (3)< (4)< [补充例题]例2、比较(a +3)(a -5)与(a +2)(a -4)的大小.分析:此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开,合并同类项之后,判断差值正负(注意是指差的符号,至于差的值究竟是多少,在这里无关紧要).根据实数运算的符号法则来得出两个代数式的大小.比较两个实数大小的问题转化为实数运算符号问题. 解:由题意可知: (a +3)(a -5)-(a +2)(a -4)=(a 2-2a -15)-(a 2-2a -8)=-7<0 ∴(a +3)(a -5)<(a +2)(a -4) 随堂练习2 1、 比较大小:(1)(x +5)(x +7)与(x +6)2(2)2256259x x x x ++++与4.课时小结本节课学习了不等式的性质,并用不等式的性质证明了一些简单的不等式,还研究了如何比较两个实数(代数式)的大小——作差法,其具体解题步骤可归纳为:第一步:作差并化简,其目标应是n 个因式之积或完全平方式或常数的形式; 第二步:判断差值与零的大小关系,必要时须进行讨论; 第三步:得出结论5.评价设计课本P83习题3.1[A 组]第2、3题;[B 组]第1题 【板书设计】课题: §3.2.1一元二次不等式及其解法(1) 【教学目标】1.理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力;2.经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;3.激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想. 【教学重点】从实际情境中抽象出一元二次不等式模型;一元二次不等式的解法. 【教学难点】理解二次函数、一元二次方程与一元二次不等式解集的关系. 【教学过程】1.课题导入从实际情境中抽象出一元二次不等式模型:教材P84互联网的收费问题教师引导学生分析问题、解决问题,最后得到一元二次不等式模型:250x x -< (1)2.讲授新课1)一元二次不等式的定义象250x x -<这样,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式2)探究一元二次不等式250x x -<的解集怎样求不等式(1)的解集呢? 探究:(1)二次方程的根与二次函数的零点的关系 容易知道:二次方程的有两个实数根:120,5x x ==二次函数有两个零点:120,5x x ==于是,我们得到:二次方程的根就是二次函数的零点. (2)观察图象,获得解集画出二次函数25y x x =-的图象,如图,观察函数图象,可知: 当 x<0,或x>5时,函数图象位于x 轴上方,此时,y>0,即250x x ->; 当0<x<5时,函数图象位于x 轴下方,此时,y<0,即250x x -<;所以,不等式250x x -<的解集是{}|05x x <<,从而解决了本节开始时提出的问题.(3)探究一般的一元二次不等式的解法任意的一元二次不等式,总可以化为以下两种形式:一般地,怎样确定一元二次不等式c bx ax ++2>0与c bx ax ++2<0的解集呢?组织讨论:从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑以下两点: (1)抛物线=y c bx ax ++2与x 轴的相关位置的情况,也就是一元二次方程c bx ax ++2=0的根的情况; (2)抛物线=y c bx ax ++2的开口方向,也就是a 的符号 总结讨论结果:(l )抛物线 =y c bx ax ++2(a> 0)与 x 轴的相关位置,分为三种情况,这可以由一元二次方程c bx ax ++2=0的判别式ac b 42-=∆三种取值情况(Δ> 0,Δ=0,Δ<0)来确定.因此,要分二种情况讨论(2)a<0可以转化为a>0分Δ>O ,Δ=0,Δ<0三种情况,得到一元二次不等式c bx ax ++2>0与c bx ax ++2<0的解集 一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集:设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:(让学生独立完成课本第86页的表格)二次函数 (0>a )的图象一元二次方程 有两相异实根 有两相等实根 无实根R[范例讲解]例2 (课本第87页)求不等式01442>+-x x 的解集. 解:因为210144,0212===+-=∆x x x x 的解是方程. 所以,原不等式的解集是⎭⎬⎫⎩⎨⎧≠21x x 例3 (课本第88页)解不等式0322>-+-x x . 解:整理,得0322<+-x x .因为032,02=+-<∆x x 方程无实数解,所以不等式x x -+<2230的解集是∅.从而,原不等式的解集是∅.3.随堂练习 课本第89的练习1(1)、(3)、(5)、(7)4.课时小结解一元二次不等式的步骤:① 将二次项系数化为“+”:A=c bx ax ++2>0(或<0)(a>0) ② 计算判别式∆,分析不等式的解的情况:ⅰ.∆>0时,求根1x <2x ,⎩⎨⎧<<<><>.002121x x x A x x x A ,则若;或,则若ⅱ.∆=0时,求根1x =2x =0x ,⎪⎩⎪⎨⎧=≤∈<≠>.00000x x A x A x x A ,则若;,则若的一切实数;,则若φⅲ.∆<0时,方程无解,⎩⎨⎧∈≤∈>.00φx A R x A ,则若;,则若③ 写出解集.5.评价设计课本第89页习题3.2[A]组第1题【板书设计】课题: §3.2.2一元二次不等式及其解法(2) 【教学目标】1.巩固一元二次方程、一元二次不等式与二次函数的关系;进一步熟练解一元二次不等式的解法; 2.培养数形结合的能力,一题多解的能力,培养抽象概括能力和逻辑思维能力;3.激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会从不同侧面观察同一事物思想 【教学重点】熟练掌握一元二次不等式的解法【教学难点】理解一元二次不等式与一元二次方程、二次函数的关系 【教学过程】1.课题导入1.一元二次方程、一元二次不等式与二次函数的关系2.一元二次不等式的解法步骤——课本第86页的表格2.讲授新课[范例讲解]例1某种牌号的汽车在水泥路面上的刹车距离s m 和汽车的速度 x km/h 有如下的关系: 在一次交通事故中,测得这种车的刹车距离大于39.5m ,那么这辆汽车刹车前的速度是多少?(精确到0.01km/h )解:设这辆汽车刹车前的速度至少为x km/h ,根据题意,我们得到21139.520180x x +> 移项整理得:2971100x x +->显然 0>,方程2971100x x +-=有两个实数根,即1288.94,79.94x x ≈-≈.所以不等式的解集为{}|88.94,79.94x x x <->或在这个实际问题中,x>0,所以这辆汽车刹车前的车速至少为79.94km/h.例4、一个汽车制造厂引进了一条摩托车整车装配流水线,这条流水线生产的摩托车数量x (辆)与创造的价值y (元)之间有如下的关系:22220y x x =-+若这家工厂希望在一个星期内利用这条流水线创收6000元以上,那么它在一个星期内大约应该生产多少辆摩托车?解:设在一个星期内大约应该生产x 辆摩托车,根据题意,我们得到 移项整理,得211030000x x -+< 因为1000=>,所以方程211030000x x -+=有两个实数根1250,60x x ==由二次函数的图象,得不等式的解为:50<x<60因为x 只能取正整数,所以,当这条摩托车整车装配流水线在一周内生产的摩托车数量在51—59辆之间时,这家工厂能够获得6000元以上的收益.3.随堂练习1课本第89页练习2 [补充例题]▲ 应用一(一元二次不等式与一元二次方程的关系)例:设不等式210ax bx ++>的解集为13{|1}x x -<<,求a b ?▲ 应用二(一元二次不等式与二次函数的关系)例:设22{|430},{|280}A x x x B x x x a =-+<=-+-≤,且A B ⊆,求a 的取值范围. 改:设2280x x a -+-≤对于一切(1,3)x ∈都成立,求a 的范围.改:若方程2280x x a -+-=有两个实根12,x x ,且13x ≥,21x ≤,求a 的范围.随堂练习21、已知二次不等式20ax bx c ++<的解集为1132{|}x x x <>或,求关于x 的不等式20cx bx a -+>的解集.2、若关于m 的不等式2(21)10mx m x m -++-≥的解集为空集,求m 的取值范围. 改1:解集非空改2:解集为一切实数4.课时小结进一步熟练掌握一元二次不等式的解法一元二次不等式与一元二次方程以及一元二次函数的关系5.评价设计课本第89页的习题3.2[A]组第3、5题 【板书设计】课题: §3.3.1.1二元一次不等式(组)与平面区域(1) 【教学目标】1.了解二元一次不等式的几何意义,会用二元一次不等式组表示平面区域; 2.经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力; 3.通过本节课的学习,体会数学来源与生活,提高数学学习兴趣. 【教学重点】用二元一次不等式(组)表示平面区域; 【教学过程】1.课题导入1.从实际问题中抽象出二元一次不等式(组)的数学模型 课本第91页的“银行信贷资金分配问题”教师引导学生思考、探究,让学生经历建立线性规划模型的过程. 在获得探究体验的基础上,通过交流形成共识:2.讲授新课1.建立二元一次不等式模型 把实际问题 转化 数学问题:设用于企业贷款的资金为x 元,用于个人贷款的资金为y 元. (把文字语言 转化 符号语言)(资金总数为25 000 000元)⇒25000000x y +≤ (1) (预计企业贷款创收12%,个人贷款创收10%,共创收30 000元以上)⇒(12%)x+(10%)y 30000≥ 即12103000000x y +≥ (2)(用于企业和个人贷款的资金数额都不能是负值)⇒0,0x y ≥≥ (3)将(1)(2)(3)合在一起,得到分配资金应满足的条件:25000000121030000000,0x y x y x y +≤⎧⎪+≥⎨⎪≥≥⎩2.二元一次不等式和二元一次不等式组的定义(1)二元一次不等式:含有两个未知数,并且未知数的最高次数是1的不等式叫做二元一次不等式. (2)二元一次不等式组:有几个二元一次不等式组成的不等式组称为二元一次不等式组.(3)二元一次不等式(组)的解集:满足二元一次不等式(组)的x 和y 的取值构成有序实数对(x,y ),所有这样的有序实数对(x,y )构成的集合称为二元一次不等式(组)的解集. (4)二元一次不等式(组)的解集与平面直角坐标系内的点之间的关系:二元一次不等式(组)的解集是有序实数对,而点的坐标也是有序实数对,因此,有序实数对就可以看成是平面内点的坐标,进而,二元一次不等式(组)的解集就可以看成是直角坐标系内的点构成的集合. 3.探究二元一次不等式(组)的解集表示的图形 (1)回忆、思考回忆:初中一元一次不等式(组)的解集所表示的图形——数轴上的区间 思考:在直角坐标系内,二元一次不等式(组)的解集表示什么图形?(2)探究从特殊到一般:先研究具体的二元一次不等式x-y<6的解集所表示的图形.如图:在平面直角坐标系内,x-y=6表示一条直线.平面内所有的点被直线分成三类: 第一类:在直线x-y=6上的点;第二类:在直线x-y=6左上方的区域内的点; 第三类:在直线x-y=6右下方的区域内的点.设点是直线x-y=6上的点,选取点,使它的坐标满足不等式x-y<6,请同学们完成课本第93页的表格,横坐标x -3-2-1123点P 的纵坐标1y 点A 的纵坐标2y并思考:当点A 与点P 有相同的横坐标时,它们的纵坐标有什么关系?根据此说说,直线x-y=6左上方的坐标与不等式x-y<6有什么关系? 直线x-y=6右下方点的坐标呢?学生思考、讨论、交流,达成共识:在平面直角坐标系中,以二元一次不等式x-y<6的解为坐标的点都在直线x-y=6的左上方;反过来,直线x-y=6左上方的点的坐标都满足不等式x-y<6.因此,在平面直角坐标系中,不等式x-y<6表示直线x-y=6左上方的平面区域;如图. 类似的:二元一次不等式x-y>6表示直线x-y=6右下方的区域;如图. 直线叫做这两个区域的边界 由特殊例子推广到一般情况: (3)结论:二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)4.二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax +By +C =0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点) 【应用举例】例1 画出不等式44x y +<表示的平面区域. 解:先画直线44x y +=(画成虚线).取原点(0,0),代入x +4y -4,∵0+4×0-4=-4<0,∴原点在44x y +<表示的平面区域内,不等式44x y +<表示的区域如图:归纳:画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法.特殊地,当0≠C 时,常把原点作为此特殊点.变式1、画出不等式1234≤-y x 所表示的平面区域. 变式2、画出不等式1≥x 所表示的平面区域. 例2 用平面区域表示.不等式组3122y x x y<-+⎧⎨<⎩的解集.分析:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.解:不等式312y x <-+表示直线312y x =-+右下方的区域,2x y <表示直线2x y =右上方的区域,取两区域重叠的部分,如图的阴影部分就表示原不等式组的解集. 归纳:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.变式1、画出不等式04)(12(<+-++)y x y x 表示的平面区域.变式2、由直线02=++y x ,012=++y x 和012=++y x 围成的三角形区域(包括边界)用不等式可表示为 .3.随堂练习1、课本第97页的练习1、2、34.课时小结1.二元一次不等式表示的平面区域.2.二元一次不等式表示哪个平面区域的判断方法. 3.二元一次不等式组表示的平面区域.5.评价设计课本第105页习题3.3[A]组的第1题 【板书设计】课题: §3.3.1.2二元一次不等式(组)与平面区域(2) 【教学目标】1.巩固二元一次不等式和二元一次不等式组所表示的平面区域;能根据实际问题中的已知条件,找出约束条件;2.经历把实际问题抽象为数学问题的过程,体会集合、化归、数形结合的数学思想; 3.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新.【教学重点】理解二元一次不等式表示平面区域并能把不等式(组)所表示的平面区域画出来; 【教学难点】把实际问题抽象化,用二元一次不等式(组)表示平面区域. 【教学过程】1.课题导入[复习引入]二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)判断方法:由于对在直线Ax +By +C =0同一侧的所有点(x ,y ),把它的坐标(x ,y )代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点). 随堂练习11、画出不等式2x +y -6<0表示的平面区域.y2、画出不等式组⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x 表示的平面区域.2.讲授新课【应用举例】例3 某人准备投资 1 200万兴办一所完全中学,对教育市场进行调查后,他得到了下面的数据表格(以班级为单位):学段 班级学生人数配备教师数硬件建设/万元教师年薪/万元初中 45 2 26/班 2/人 高中40354/班2/人分别用数学关系式和图形表示上述的限制条件.解:设开设初中班x 个,开设高中班y 个,根据题意,总共招生班数应限制在20-30之间, 所以有2030x y ≤+≤考虑到所投资金的限制,得到265422231200x y x y ++⨯+⨯≤ 即 240x y +≤另外,开设的班数不能为负,则0,0x y ≥≥把上面的四个不等式合在一起,得到:203024000x y x y x y ≤+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩用图形表示这个限制条件,得到如图的平面区域(阴影部分)例4 一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐18t ;生产1车皮乙种肥料需要的主要原料是磷酸盐1t,硝酸盐15t,现库存磷酸盐10t 、硝酸盐66t ,在此基础上生产两种混合肥料.列出满足生产条件的数学关系式,并画出相应的平面区域. 解:设x,y 分别为计划生产甲乙两种混合肥料的车皮数,于是满足以下条件:41018156600x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩在直角坐标系中可表示成如图的平面区域(阴影部分). [补充例题]例1、画出下列不等式表示的区域 (1) 0)1)((≤---y x y x ; (2) x y x 2≤≤分析:(1)转化为等价的不等式组; (2)注意到不等式的传递性,由x x 2≤,得0≥x ,又用y -代y ,不等式仍成立,区域关于x 轴对称. 解:(1)10010≤-≤⇒⎩⎨⎧≤--≥-y x y x y x 或⎩⎨⎧≥-≤-1y x y x 矛盾无解,故点),(y x 在一带形区域内(含边界).(2) 由x x 2≤,得0≥x ;当0>y 时,有⎩⎨⎧≥-≤-020y x y x 点),(y x 在一条形区域内(边界);当0≤y ,由对称性得出.指出:把非规范形式等价转化为规范不等式组形式便于求解例2、利用区域求不等式组⎪⎩⎪⎨⎧<--<-+>--015530632032y x y x y x 的整数解分析:不等式组的实数解集为三条直线032:1=--y x l ,0632:2=-+y x l ,01553:3=--y x l 所围成的三角形区域内部(不含边界).设A l l =⋂21,B l l =⋂31,C l l =⋂32,求得区域内点横坐标范围,取出x 的所有整数值,再代回原不等式组转化为y 的一元不等式组得出相应的y 的整数值.解:设032:1=--y x l ,0632:2=-+y x l ,01553:3=--y x l ,A l l =⋂21,B l l =⋂31,C l l =⋂32,∴)43,815(A ,)3,0(-B ,)1912,1975(-C .于是看出区域内点的横坐标在)1975,0(内,取x =1,2,3, 当x =1时,代入原不等式组有⎪⎪⎪⎩⎪⎪⎪⎨⎧-><-<512341y y y ⇒1512-<<-y ,得y =-2,∴区域内有整点(1,-2).同理可求得另外三个整点(2,0),(2,-1),(3,-1).指出:求不等式的整数解即求区域内的整点是教学中的难点,它为线性规划中求最优整数解作铺垫.常有两种处理方法,一种是通过打出网络求整点;另一种是本题解答中所采用的,先确定区域内点的横坐标的范围,确定x 的所有整数值,再代回原不等式组,得出y 的一元一次不等式组,再确定y 的所有整数值,即先固定x ,再用x 制约y .3.随堂练习21.(1)1+>x y ; (2).y x >; (3).y x >2.画出不等式组⎪⎪⎩⎪⎪⎨⎧<≤≥-≥-+53006x y y x y x 表示的平面区域3.课本第97页的练习44.课时小结进一步熟悉用不等式(组)的解集表示的平面区域.5.评价设计1、课本第105页习题3.3[B]组的第1、2题【板书设计】课题: §3.3.2.1简单的线性规划(1) 【教学目标】1.使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的实际问题; 2.经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;3.培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力.【教学重点】用图解法解决简单的线性规划问题 【教学难点】准确求得线性规划问题的最优解 【教学过程】1.课题导入[复习提问]1、二元一次不等式0>++C By Ax 在平面直角坐标系中表示什么图形?2、怎样画二元一次不等式(组)所表示的平面区域?应注意哪些事项?3、熟记“直线定界、特殊点定域”方法的内涵.2.讲授新课在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题. 1、下面我们就来看有关与生产安排的一个问题:引例:某工厂有A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天8h 计算,该厂所有可能的日生产安排是什么?(1)用不等式组表示问题中的限制条件:设甲、乙两种产品分别生产x 、y 件,又已知条件可得二元一次不等式组:2841641200x y x y x y +≤⎧⎪≤⎪⎪≤⎨⎪≥⎪≥⎪⎩…….(1) (2)画出不等式组所表示的平面区域:如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排. (3)提出新问题:进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大? (4)尝试解答:设生产甲产品x 件,乙产品y 件时,工厂获得的利润为z ,则z=2x+3y .这样,上述问题就转化为:当x,y 满足不等式(1)并且为非负整数时,z 的最大值是多少?把z=2x+3y 变形为233z y x =-+,这是斜率为23-,在y 轴上的截距为3z的直线.当z 变化时,可以得到一族互相平行的直线,如图,由于这些直线的斜率是确定的,因此只要给定一个点,(例如(1,2)),就能确定一条直线(2833y x =-+),这说明,截距3z可以由平面内的一个点的坐标唯一确定.可以看到,直线233zy x =-+与不等式组(1)的区域的交点满足不等式组(1),而且当截距3z 最大时,z 取得最大值.因此,问题可以转化为当直线233zy x =-+与不等式组(1)确。

高中数学 第3章 不等式 3.1 不等式的基本性质教学案(含解析)高一第一册数学教学案

高中数学 第3章 不等式 3.1 不等式的基本性质教学案(含解析)高一第一册数学教学案

3.1 不等式的基本性质(1)不等式的定义用数学符号“>”“<”“≥”“≤”“≠”连接两个数或代数式,这些含有这些不等号的式子叫做不等式.(2)关于a≥b和a≤b的含义①不等式a≥b应读作:“a大于或等于b”,其含义是a>b或a=b,等价于“a不小于b”,即若a>b或a=b中有一个正确,则a≥b正确.②不等式a≤b应读作:“a小于或等于b”,其含义是a<b或a=b,等价于“a不大于b”,即若a<b或a=b中有一个正确,则a≤b正确.(3)不等式中常用符号语言2(1)如果a-b是正数,那么a>b;即a-b>0⇔a>b;(2)如果a-b等于0,那么a=b;即a-b=0⇔a=b;(3)如果a-b是负数,那么a<b,即a-b<0⇔a<b.3.不等式的基本性质性质1: 若a>b,则b<a;(自反性),a>b⇔b<a.性质2:若a>b,b>c,则a>c;(传递性)性质3:若a>b,则a+c>b+c;(加法保号性)性质4:若a>b,c>0,则ac>bc;(乘正保号性)若a>b,c<0,则ac<bc;(乘负改号性)性质5:若a>b,c>d,则a+c>b+d;(同向可加性)性质6:若a>b>0,c>d>0,则ac>bd;(全正可乘性)性质7:如果a>b>0,那么a n>b n(n∈N*).(拓展)提醒:不等式的基本性质是不等式变形的依据,也是解不等式的根据,同时还是证明不等式的理论基础.(1)在应用不等式时,一定要搞清它们成立的前提条件,不可强化或弱化成立的条件.(2)要注意每条性质是否具有可逆性.1.思考辨析(正确的打“√”,错误的打“×”)(1)若ac>bc,则a>b.( )(2)若a+c >b+d,则a>b,c>d.( )(3)若a >b ,则1a <1b.( )[答案] (1)× (2)× (3)×2.已知a 1,a 2∈()0,1,记M =a 1a 2, N =a 1+a 2-1,则M 与N 的大小关系是( )A .M <NB .M >NC .M =ND .不确定B [由题意得M -N =a 1a 2-a 1-a 2+1=()a 1-1()a 2-1>0,故M >N .故选B .]3.若x >y ,且x +y =2,则下列不等式一定成立的是( ) A .x 2<y 2B .1x <1yC .x 2>1D .y 2<1C [因为x >y ,且x +y =2,所以2x >x +y =2,即x >1,则x 2>1,故选C .]利用不等式的性质判断和解不等式①若a >b ,则ac 2>bc 2; ②若a <b <0,则a 2>ab >b 2; ③若a >b ,则a 2>b 2;④若a <b <0,则a b >ba.其中正确命题的序号是 .(2)求解关于x 的不等式ax +1>0(a ∈R ),并用不等式的性质说明理由.(1)②④ [对于①∵c 2≥0,∴只有c ≠0时才成立,①不正确; 对于②,a <b <0⇒a 2>ab ;a <b <0⇒ab >b 2,∴②正确;对于③,若0>a >b ,则a 2<b 2,如-1>-2,但(-1)2<(-2)2,∴③不正确;对于④,∵a <b <0,∴-a >-b >0,∴(-a )2>(-b )2,即a 2>b 2.又∵ab >0,∴1ab >0,∴a 2·1ab >b 2·1ab ,∴a b >ba,④正确.所以正确答案的序号是②④.](2)[解] 不等式ax +1>0(a ∈R )两边同时加上-1得ax >-1 (不等式性质3),当a =0时,不等式为0>-1恒成立,所以x ∈R , 当a >0时,不等式两边同时除以a 得 x >-1a(不等式性质4),当a <0时,不等式两边同时除以a 得 x <-1a(不等式性质4).综上:当a =0时,不等式的解集为R ,当a >0时,不等式的解集为⎝ ⎛⎭⎪⎫-1a ,+∞,当a <0时,不等式的解集为⎝⎛⎭⎪⎫-∞,-1a .1.利用不等式判断正误的两种方法①直接法:对于说法正确的,要利用不等式的相关性质证明;对于说法错误的只需举出一个反例即可.②特殊值法:注意取值一定要遵循三个原则:一是满足题设条件;二是取值要简单,便于验证计算;三是所取的值要有代表性.2.利用不等式的性质解不等式,要求步步有据,特别是解含有参数的不等式更加要把握好分类讨论的标准.因为参数的范围不同,不等式的解集不同,所以对于参数的不同范围得到的解集都是独立的,不能求并集.[跟进训练]1.已知a <b <c 且a +b +c =0,则下列不等式恒成立的是( )A .a 2<b 2<c 2B .ab 2<cb 2C .ac <bcD .ab <acC [∵a +b +c =0且a <b <c ,∴a <0,c >0,∴ac <bc ,故选C .]2.若关于x 的不等式ax +b >0的解集为(-∞,2),则不等式bx -a >0的解集为 .⎝ ⎛⎭⎪⎫-12,+∞ [因为关于x 的不等式ax +b >0的解集为(-∞,2),所以a <0,且x =2是方程ax +b =0的实数根,所以2a +b =0,即b =-2a ,由bx -a >0得-2ax -a >0,因为a <0,所以x >-12,即不等式bx -a >0的解集为⎝ ⎛⎭⎪⎫-12,+∞.]利用不等式的性质比较代数式的大小[探究问题]1.如果a ,b 之间的大小关系分别为a >b ,a =b ,a <b ,那么a -b 分别与0的关系?反之呢?[提示] 若a >b ,则a -b >0,反之也成立; 若a =b ,则a -b =0,反之也成立; 若a <b ,则a -b <0,反之也成立.2.若a >b ,则ab >1吗?反之呢?[提示] 若a >b ,当b <0时,ab<1,即a >bab >1;若a b >1,则a b -1>0,即a -b b>0, ∴a -b >0,b >0或a -b <0,b <0,即a b >1a >b ,反之也不成立.【例2】 已知x <1,比较x 3-1与2x 2-2x 的大小.[思路点拨] 作差―→因式分解――→x <1判号―→下结论[解] x 3-1-(2x 2-2x ) =x 3-2x 2+2x -1=(x 3-x 2)-(x 2-2x +1)=x 2(x -1)-(x -1)2=(x -1)(x 2-x +1)=(x -1)⎣⎢⎢⎡⎦⎥⎥⎤⎝⎛⎭⎪⎫x -122+34, ∵x <1,∴x -1<0,又∵⎝⎛⎭⎪⎫x -122+34>0, ∴(x -1)⎣⎢⎢⎡⎦⎥⎥⎤⎝⎛⎭⎪⎫x -122+34<0, ∴x 3-1<2x 2-2x .1.(变条件)本例条件“x <1”变为“x ≥1”,比较x 3-1与2x 2-2x 的大小.[解] x 3-1-(2x 2-2x )=(x -1)(x 2-x +1)=(x -1)⎣⎢⎢⎡⎦⎥⎥⎤⎝⎛⎭⎪⎫x -122+34, ∵x ≥1,∴x -1≥0,又⎝⎛⎭⎪⎫x -122+34>0, ∴(x -1)⎣⎢⎢⎡⎦⎥⎥⎤⎝⎛⎭⎪⎫x -122+34≥0, ∴x 3-1≥2x 2-2x .2.(变题)已知:a >0, b >0, 比较1a +1b 与1a +b 的大小.[解](作差法)⎝ ⎛⎭⎪⎫1a +1b -1a +b=ab +b 2+a 2+ab -abab a +b=a 2+ab +b 2ab a +b, 因为a >0, b >0,所以a 2+ab +b 2ab a +b>0,所以1a +1b >1a +b.(作商法)因为a >0, b >0,所以1a +1b 与1a +b同为正数,所以1a +1b1a +b =a +b2ab ,所以a +b 2ab -1=a 2+ab +b 2ab>0,即a +b 2ab>1,因为1a +b >0,所以1a +1b >1a +b.(综合法)因为a >0, b >0,所以a +b >0,所以⎝ ⎛⎭⎪⎫1a +1b (a +b )=a +b a +a +b b =2+b a +a b >1,所以1a +1b >1a +b.1.作差法比较两个数大小的步骤及变形方法(1)作差法比较的步骤:作差→变形→定号→结论.(2)变形的方法:①因式分解;②配方;③通分;④分母或分子有理化(针对无理式中的二次根式);⑤分类讨论.2.作商法比较大小的三个步骤 (1)作商变形; (2)与1比较大小; (3)得出结论.提醒:作商法比较大小仅适用同号的两个数.3.综合法需要结合具体的式子的特征实施,本题思路为:A >B >0⇔A ·1B>1.[跟进训练]3.已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >bA [∵c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b . 又b +c =6-4a +3a 2,∴2b =2+2a 2,∴b =a 2+1,∴b -a =a 2-a +1=⎝⎛⎭⎪⎫a -122+34>0,∴b >a ,∴c ≥b >a .故选A .] 4.已知a ,b ∈R ,试比较a 2-ab 与3ab -4b 2的大小.[解] 因为a ,b ∈R ,所以(a 2-ab )-(3ab -4b 2)=a 2-4ab +4b 2=(a -2b )2,当a =2b 时,a 2-ab = 3ab -4b 2, 当a ≠2b 时,a 2-ab > 3ab -4b 2.证明不等式【例3】 (1)已知a >b ,e >f ,c >0,求证:f -ac <e -bc . (2)已知a > b >0, m >0,求证:b a <b +ma +m.[证明] (1)∵a >b ,c >0,∴ac >bc . ∴-ac <-bc ,∵f <e ,∴f -ac <e -bc .(2)(作差法)因为a > b >0, m >0,所以b -a <0,a +m >0,所以b a -b +m a +m =b a +m -a b +m a a +m =m b -a a a +m <0,所以b a <b +m a +m;(不等式的性质)因为a > b >0, m >0, 所以am > bm, a +m >0,ab >0,所以am +ab >ab +bm ,即a (b +m )>b (a +m ),所以b a <b +m a +m.1.利用不等式的性质证明不等式(综合法)的注意事项(1)利用不等式的性质及其推论可以证明一些不等式.解决此类问题一定要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用.(2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.2.作差法也可以应用于证明不等式.3.第二题的结论源于生活背景的提炼:在含糖b 克的a 克糖水中放入m 克的糖,结果糖水变甜了.本质上是浓度变大了.[跟进训练]5.若bc -ad ≥0,bd >0.求证:a +b b ≤c +d d.[证明] ∵bc -ad ≥0,∴ad ≤bc ,bd >0,∴a b ≤c d ,∴a b +1≤c d +1,∴a +b b ≤c +dd . 6.已知a >b >m >0,求证:a b <a -m b -m.[证明] (作差法)因为a >b >m >0, 所以b -a <0,b -m >0,所以a b -a -m b -m =a b -m -b a -m b b -m =m b -a b b -m <0,所以a b <a -m b -m;(不等式的性质)因为a >b >m >0,所以am >bm ,b -m >0, 所以-bm >-am ,所以ab -bm >ab -am ,即b (a -m )>a (b -m ),所以a b <a -m b -m.不算式性质的应用[思路点拨] 欲求a -b 的范围,应先求-b 的范围,再利用不等式的性质求解.[解]∵1<a<4,2<b<8,∴2<2a<8,6<3b<24,∴8<2a+3b<32.∵2<b<8,∴-8<-b<-2,又∵1<a<4,∴1+(-8)<a+(-b)<4+(-2),即-7<a-b<2,故8<2a+3b<32,-7<a-b<2.即2a+3b的取值范围为(8,32),a-b的取值范围为(-7,2).相除,应用时,要充分利用所给条件进行适当变形来求范围,注意变形的等价性.2.已知两个二元一次代数式的范围,求第三个二元一次式的范围,可以用双换元的方法,也可以通过待定系数法,先用已知的两个二元一次代数式表示未知的二元一次式.[跟进训练]7.已知-12≤α<β≤12,求α+β2,α-β3的取值范围.[解] ∵-12≤α<β≤12,∴-14≤α2<14,-14<β2≤14.两式相加得-12<α+β2<12.∵-16≤α3<16,-16≤-β3<16,两式相加得-13≤α-β3<13.又∵α<β,∴α-β3<0,∴-13≤α-β3<0.8.已知-4≤a -c ≤-1,-1≤4a -c ≤5,求9a -c 的范围.[解]令⎩⎪⎨⎪⎧a -c =x ,4a -c =y ,得⎩⎪⎨⎪⎧a =13y -x ,c =13y -4x ,∴9a -c =83y -53x ,∵-4≤x ≤-1,∴53≤-53x ≤203,①∵-1≤y ≤5,∴-83≤83y ≤403,②①和②相加,得-1≤83y -53x ≤20,∴-1≤9a -c ≤20.1.作差法比较大小的三个步骤作差、变形、定号,概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.2.利用不等式的性质可以判定不等式的正确性、也证明一些不等式还可以求相关量的取值范围.必须熟记不等式的性质,不可省略条件或跳步推导,更不能随意构造性质与法则.3.不等式的证明可以用比较法(作差或作商法)、也可以利用不等式的性质(综合法),注意方法的灵活应用.1.已知a ,b ,c ,d ∈R ,则下列命题中必成立的是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +bC .若a >b ,c <d ,则a c >bdD .若a 2>b 2,则-a <-bB [选项A ,若a =4,b =2,c =5,显然不成立;选项C 不满足倒数不等式的条件,如a >b >0,c <0<d 时,不成立;选项D 只有a >b >0时才可以,否则如a =-1,b =0时不成立,故选B .]2.设a =3x 2-x +1,b =2x 2+x ,则( )A.a>b B.a<bC.a≥b D.a≤bC[a-b=(3x2-x+1)-(2x2+x)=x2-2x+1=(x-1)2≥0,∴a≥b.]3.已知角α,β满足-π2<α-β<π2,0<α+β<π,则3α-β的取值范围是.(-π,2π)[结合题意可知3α-β=2(α-β)+(α+β),且2(α-β)∈(-π,π),α+β∈(0,π),利用不等式的性质可知3α-β的取值范围是(-π,2π).]4.近来鸡蛋价格起伏较大,假设第一周、第二周鸡蛋价格分别为a元/斤、b元/斤,家庭主妇甲和乙买鸡蛋的方式不同:家庭主妇甲每周买3斤鸡蛋,家庭主妇乙每周买10元钱的鸡蛋,试比较谁的购买方式更优惠(两次平均价格低视为实惠) .(在横线上填甲或乙即可)乙[由题意得甲购买产品的平均单价为3a+3b6=a+b2,乙购买产品的平均单价为2010a+10b=2aba+b,由条件得a≠b.∵a+b2-2aba+b=a-b22a+b>0,∴a+b2>2aba+b,即乙的购买方式更优惠.]5.若a>b>0,c<d<0,e<0,求证:ea-c2>e(b-d)2.[证明]∵c<d<0,∴-c>-d>0,又a>b>0,∴a-c>b-d>0,则(a-c)2>(b-d)2>0,即1a-c2<1(b-d)2.又e<0,∴ea-c2>e(b-d)2.。

人教版高中必修5(B版)第三章不等式教学设计

人教版高中必修5(B版)第三章不等式教学设计

人教版高中必修5(B版)第三章不等式教学设计一、教学目标本节课主要教授高中数学必修课5(B版)第三章——不等式。

通过本次课程的教学,学生应该能够:•理解不等式的基本概念,掌握不等式的基本性质和解不等式的方法;•能够运用已掌握的知识,解决简单的等式和不等式的应用问题;•能够培养学生的数学思维能力和解决问题的能力。

二、教学重点•不等式的基本概念和性质;•不等式解法;•一元一次不等式和二元一次不等式的解法。

三、教学难点•不等式解法的灵活运用;•二元一次不等式的解法。

四、教学过程4.1 导入1.通过白板或幻灯片展示一组简单的不等式,比如x+4<10,让学生回顾并思考之前学过的等式。

2.引导学生讲述等式和不等式的联系和区别,并引导学生从生活实际中思考不等式的应用。

4.2 讲授1.教师讲解不等式的基本概念和性质,以及不等式解法,引导学生深入理解学习内容。

2.引导学生先从一元一次不等式入手,讲解一元一次不等式的解法,并让学生进行多组练习。

3.引导学生学习二元一次不等式的解法,引导学生重点思考如何用图示法求解。

4.让学生通过练习,掌握不等式解法的具体技巧和应用方法。

4.3 拓展本节课结束后,学生可以自行探索如何用不等式来解决实际问题,例如分部门开支问题、生产效益提升问题等。

4.4 总结1.教师对本节课所学内容进行总结,并提醒学生留意其中易误解的点,引导学生归纳总结学习体会。

2.对于存在误解的同学,教师要及时纠正并逐一解决疑问。

五、课堂互动1.在讲解过程中穿插抛出简单问题,引导学生积极参与答题,加深对知识点的记忆和理解。

对于答对或答错的同学,教师进行不同程度的点评。

2.在教学中多与学生互动交流,让课堂变得更加生动有趣。

例如请学生发表自己的观点、听取学生分享自己的解题心得、讨论解题思路等。

六、板书设计1.不等式的基本概念和性质;2.不等式解法;3.一元一次不等式和二元一次不等式的解法。

七、教学评价本次课程的教学效果通过考试和家庭作业来进行评价,同时可以通过学生反馈、课堂测验和讨论等方式来了解教学效果。

高三数学总复习 第三章 不等式教案

高三数学总复习 第三章 不等式教案

芯衣州星海市涌泉学校师范大学附属中学高三数学总复习教案:第三章不等式 教材:不等式、不等式的综合性质目的:首先让学生掌握不等式的一个等价关系,理解并会证明不等式的根本性质ⅠⅡ。

过程:一、引入新课1.世界上所有的事物不等是绝对的,相等是相对的。

2.过去我们已经接触过许多不等式从而提出课题二、几个与不等式有关的名称〔例略〕1.“同向不等式与异向不等式〞2.“绝对不等式与矛盾不等式〞三、不等式的一个等价关系〔充要条件〕1.从实数与数轴上的点一一对应谈起2.应用:例一比较)5)(3(-+a a 与)4)(2(-+a a 的大小解:〔取差〕)5)(3(-+a a )4)(2(-+a a∴)5)(3(-+a a <)4)(2(-+a a例二x 0,比较22)1(+x 与124++x x 的大小解:〔取差〕22)1(+x)1(24++x x ∵0≠x ∴02>x 从而22)1(+x >124++x x小结:步骤:作差—变形—判断—结论例三比较大小1.231-和10解:∵23231+=- ∵02524562)10()23(22<-=-=-+ ∴231-<102.a b 和ma mb ++),,(+∈R m b a 解:〔取差〕a b m a m b ++)()(m a a a b m +-=∵),,(+∈R m b a ∴当a b >时a b >m a m b ++;当a b =时a b =m a m b ++;当a b <时a b <ma mb ++ 3.设0>a 且1≠a ,0>t 比较t a log 21与21log +t a 的大小 解:02)1(212≥-=-+t t t ∴t t ≥+21 当1>a 时t a log 21≤21log +t a ;当10<<a 时t a log 21≥21log +t a 四、不等式的性质1.性质1:假设b a>,那么a b <;假设a b <,那么b a >〔对称性〕 证:∵b a >∴0>-b a 由正数的相反数是负数2.性质2:假设b a>,c b >那么c a >〔传递性〕 证:∵b a >,c b >∴0>-b a ,0>-c b∵两个正数的和仍是正数∴+-)(b a 0)(>-c b 0>-c a ∴c a >由对称性、性质2可以表示为假设b c <且a b <那么a c <五、小结:1.不等式的概念2.一个充要条件3.性质1、2六、作业:P5练习P8习题1—3补充题:1.假设142=+y x ,比较22y x +与201的大小 解:241y x -=22y x +201=……=05)15(2≥-y ∴22y x +≥201 2.比较2sin 与sin2的大小(0<<2)略解:2sin sin2=2sin (1cos )当(0,)时2sin (1cos )≥02sin ≥sin2当(,2)时2sin (1cos )<02sin <sin2 3.设0>a且1≠a 比较)1(log 3+a a 与)1(log 2+a a 的大小 解:)1()1()1(223-=+-+a a a a当10<<a 时1123+<+a a ∴)1(log 3+a a >)1(log 2+a a 当1>a 时1123+>+a a ∴)1(log 3+a a >)1(log 2+a a∴总有)1(log 3+a a >)1(log 2+a a。

人教版高中必修5第三章不等式课程设计

人教版高中必修5第三章不等式课程设计

人教版高中必修5第三章不等式课程设计一、课程目标本课程设计的学习目标是帮助学生:1.了解不等式的基本概念、符号及其性质;2.掌握一元一次不等式、一元二次不等式的解法和应用;3.培养学生的逻辑思维能力和解决实际问题的能力。

二、教学内容1.不等式的基本概念、符号及其性质;2.一元一次不等式的解法和应用;3.一元二次不等式的解法和应用;4.不等式组的解法和应用。

三、教学方法根据教学内容,本课程设计采用以下教学方法:1.讲授法:对不等式的基本概念、符号及其性质进行讲解;2.演示法:通过例题演示一元一次不等式和一元二次不等式的解法和应用;3.练习法:通过练习巩固学生对一元一次不等式和一元二次不等式的掌握程度;4.合作学习法:学生分组进行不等式组的解法和应用的探究。

四、教学过程1. 不等式的基本概念、符号及其性质(1课时)教学目标:了解不等式的基本概念、符号及其性质教学内容:不等式的基本概念、符号及其性质教学方法:讲授法教学步骤:1.引入不等式的概念;2.讲解不等式的符号和基本性质;3.练习不等式的符号及其性质。

2. 一元一次不等式的解法和应用(2课时)教学目标:掌握一元一次不等式的解法和应用教学内容:一元一次不等式的解法和应用教学方法:演示法、练习法教学步骤:1.讲解一元一次不等式的基本概念;2.通过例题演示一元一次不等式的解法和应用;3.练习一元一次不等式的解法和应用。

3. 一元二次不等式的解法和应用(2课时)教学目标:掌握一元二次不等式的解法和应用教学内容:一元二次不等式的解法和应用教学方法:演示法、练习法教学步骤:1.讲解一元二次不等式的基本概念;2.通过例题演示一元二次不等式的解法和应用;3.练习一元二次不等式的解法和应用。

4. 不等式组的解法和应用(2课时)教学目标:掌握不等式组的解法和应用教学内容:不等式组的解法和应用教学方法:合作学习法、练习法教学步骤:1.讲解不等式组的基本概念;2.学生分组进行不等式组的解法和应用的探究;3.练习不等式组的解法和应用。

人教版高中数学《不等式》全套教案

人教版高中数学《不等式》全套教案

ba 0
ab 0

ba 0 ab
∴1<1 ab
当 a 0,b 0 时∵ | a | | b | 即 a b
ba 0
ab 0
∴b a 0 ab
∴ 1 >1 ab
5.若 a, b 0 求证: b 1 b a a
解: b 1 b a 0
a
a
∵a 0 ∴b a 0
∴a b
b a ba 0
∵a 0
∴b a
b 10
证:∵ (a c) (b c) a b 0 ∴ a c b c
从而可得移项法则: a b c a b ( b) c ( b) a c b
推论:如果 a b 且 c d ,那么 a c b d
(相加法则)
证: a b a c b c c d bc bd
ac bd
推论:如果 a b 且 c d ,那么 a c b d (相减法则)
aa
∴b 1 a
6.若 a b 0, c d 0 求证: log sin ac
log sin bd
证:∵ 0 sin 1
>1 ∴ log sin
0
又∵ a b 0, c d 0 ∴ a c b d
∴1
1
ac bd
∴原式成立
第三教时
教材: 算术平均数与几何平均数 目的: 要求学生掌握算术平均数与几何平均数的意义,并掌握“平均不等式”及
2
ab (当且仅当 a b 时取“ =”)
证明:∵ ( a )2 ( b ) 2 2 ab
∴ a b 2 ab
即: a b ab 2
当且仅当 a b 时 a b ab 2
注意: 1.这个定理适用的范围: a R

不等式教案(3.30)

不等式教案(3.30)

课题第三章《不等式》复习小结(第一课时)【教学目标】1、知识与技能目标(1)领会不等关系,会用不等式的性质解决相关问题;(2)巩固一元二次不等式及其解法,理解一元二次不等式的解的实质。

2、过程方法与能力目标(1)探寻不等关系,正确运用不等式的性质;(2)熟练掌握一元二次不等式的解法,培养数形结合的思想。

3、情感、态度、价值观目标(1)通过探寻不等关系,培养学生的探索、研究精神;(2)通过一元二次不等式及其解法的复习,培养学生严谨的科学态度,勇于提出问题、分析问题的习惯。

【重点难点】重点:探寻不等关系,正确运用不等式的性质,熟练求解一元二次不等式。

难点:探寻不等关系,以及三个“二次”关系的熟练运用。

【教学方法】多媒体教学,“启发—探究—讨论”式教学。

【教学过程】教学环节教学内容(问题)师生活动设计意图开门见山导入复习教师开门见山,导入复习,引导学生总结;学生回顾交流,归纳本章知识结构图。

本章内容有四块,要求学生根据理解作出知识结构图,教师对学生的作图作适当的补充和调整。

总结内容,展示教科书102页知识结构图。

梳理本章的基本知识和基本方法,使知识有层次,有条理的呈现。

提出问题讨在现实世界和日常生活中存在着大量的不等关系。

探寻问题1、问题2、问题3中的不等关系,并用不等式描述这些不等关系。

问题1已知一个扇形周长为c. 将扇形的面积S表示为半径r的函数.问题2 已知0<α<β<π,分别求α+β与α﹣β的范围.问题3国家原计划以2400元/吨的价格收购某种农产品m吨,按规定,农户向国家纳税为每收入100教师提出3个问题,学生思考交流,探寻不等关系,并用不等式表示。

师生共同归纳比较实数大小的基本方法和不等式的基本性质。

通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,了解不等式的实际背景,感知不等式的基本性质,使之能在具体问题的解决中论探究元纳税8元(称作税率为8个百分点,即8%),为了减轻农民负担,制定积极的收购政策,根据市场规律,税率降低x个百分点,收购量能增加2x个百分点。

第三章 不等式全章教案

第三章 不等式全章教案

教学过程及方法问题与情境及教师活动解:设杂志社的定价为x元,则销售的总收入为2.5(80.2)0.1xx--⨯万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式2.5(80.2)200.1xx--⨯≥问题3:某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种。

按照生产的要求,600mm的数量不能超过500mm钢管的3倍。

怎样写出满足所有上述不等关系的不等式呢?解:假设截得500 mm的钢管 x根,截得600mm的钢管y根。

根据题意,应有如下的不等关系:(1)截得两种钢管的总长度不超过4000mm ;(2)截得600mm钢管的数量不能超过500mm钢管数量的3倍;(3)截得两种钢管的数量都不能为负。

要同时满足上述的三个不等关系,可以用下面的不等式组来表示:5006004000;3;0;0.x yx yxy+≤⎧⎪≥⎪⎨≥⎪⎪≥⎩3.随堂练习(一)1.、课本P74的练习1、22.提问:除了以上列举的现实生活中的不等关系,你还能列举出你周围日常生活中的不等关系吗?归纳:文字语言与数学符号间的转换.文字语言数学符号文字语言数学符号大于> 至多≤小于< 至少≥大于等于≥不少于≥小于等于≤不多于≤言。

∴a+实际上,我们还有轴上方,此时,y>0,即>,方程实数根,即88.94,x≈288.94,<-或,所以这辆汽车刹车前的车速至少为1000=>两个实数根由二次函数的图象,得不等式的解为:辆之间时,这家工厂能够b?0},且转化点集的交集,因而是各个不等式所表示的平面区域的公共部分。

表示的平面区域。

y x+y=030用图形表示这个限制条件,得到如图的平面区域(阴影部分)1066教学过程及方法问题与情境及教师活动例1、画出下列不等式表示的区域(1) 0)1)((≤---yxyx; (2) xyx2≤≤分析:(1)转化为等价的不等式组; (2)注意到不等式的传递性,由xx2≤,得0≥x,又用y-代y,不等式仍成立,区域关于x轴对称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题: §3.1.1不等式与不等关系(1) 授课类型:新授课 【教学目标】1.通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质;2.通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法; 3.通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯. 【教学重点】 用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题.理解不等式(组)对于刻画不等关系的意义和价值. 【教学难点】用不等式(组)正确表示出不等关系. 【教学过程】1.课题导入在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.如两点之间线段最短,三角形两边之和大于第三边,等等.人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系.在数学中,我们用不等式来表示不等关系.下面我们首先来看如何利用不等式来表示不等关系.2.讲授新课1)用不等式表示不等关系 引例1:限速40km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h ,写成不等式就是:40v ≤引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量p 应不少于2.3%,写成不等式组就是——用不等式组来表示 2.5%2.3%f p ≤⎧⎨≥⎩问题1:设点A 与平面α的距离为d,B 为平面α上的任意一点,则||d AB ≤.问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解:设杂志社的定价为x 元,则销售的总收入为 2.5(80.2)0.1x x --⨯ 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式2.5(80.2)200.1x x --⨯≥ 问题3:某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种.按照生产的要求,600mm 的数量不能超过500mm 钢管的3倍.怎样写出满足所有上述不等关系的不等式呢? 解:假设截得500 mm 的钢管 x 根,截得600mm 的钢管y 根.根据题意,应有如下的不等关系:(1)截得两种钢管的总长度不超过4000mm ;(2)截得600mm 钢管的数量不能超过500mm 钢管数量的3倍; (3)截得两种钢管的数量都不能为负.要同时满足上述的三个不等关系,可以用下面的不等式组来表示:5006004000;3;0;0.x yx yxy+≤⎧⎪≥⎪⎨≥⎪⎪≥⎩3.随堂练习1、试举几个现实生活中与不等式有关的例子.2、课本P82的练习1、24.课时小结用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题.5.评价设计课本P83习题3.1[A组]第4、5题【板书设计】【授后记】课题: §3.1.2不等式与不等关系(2) 授课类型:新授课 【教学目标】1.掌握不等式的基本性质,会用不等式的性质证明简单的不等式;2.通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法; 3.通过讲练结合,培养学生转化的数学思想和逻辑推理能力. 【教学重点】掌握不等式的性质和利用不等式的性质证明简单的不等式; 【教学难点】利用不等式的性质证明简单的不等式. 【教学过程】1.课题导入在初中,我们已经学习过不等式的一些基本性质. 请同学们回忆初中不等式的的基本性质.(1)不等式的两边同时加上或减去同一个数,不等号的方向不改变; 即若a b a c b c >⇒±>±(2)不等式的两边同时乘以或除以同一个正数,不等号的方向不改变; 即若,0a b c ac bc >>⇒>(3)不等式的两边同时乘以或除以同一个负数,不等号的方向改变. 即若,0a b c ac bc ><⇒<2.讲授新课1、不等式的基本性质:师:同学们能证明以上的不等式的基本性质吗? 证明:(1)∵(a+c)-(b +c)=a -b >0, ∴a+c >b +c(2)()()0a c b c a b +-+=->, ∴a c b c +>+.实际上,我们还有,a b b c a c >>⇒>,证明:∵a>b ,b >c ,∴a-b >0,b -c >0.根据两个正数的和仍是正数,得(a -b)+(b -c)>0,即a -c >0,∴a>c . 于是,我们就得到了不等式的基本性质:(1),a b b c a c >>⇒> (2)a b a c b c >⇒+>+ (3),0a b c ac bc >>⇒> (4),0a b c ac bc ><⇒<2、探索研究思考,利用上述不等式的性质,证明不等式的下列性质: (1),a b c d a c b d >>⇒+>+; (2)0,0a b c d ac bd >>>>⇒>;(3)0,,1n na b n N n a b >>∈>⇒>>证明:(1)∵a >b ,∴a +c >b +c . ① ∵c>d ,∴b+c >b +d . ② 由①、②得 a +c >b +d . (2)bd ac bd bc b d c bc ac c b a >⇒⎭⎬⎫>⇒>>>⇒>>0,0,(3)(反证法)假设nn b a ≤,a b a b ⇒<=⇒=这都与b a >矛盾, ∴nn b a >.[范例讲解]:例1、已知0,0,a b c >><求证c c a b >. 证明:以为0a b >>,所以ab>0,10ab >.于是 11a b ab ab ⨯>⨯,即11b a>由c<0 ,得c ca b >.3.随堂练习11、课本P82的练习32、在以下各题的横线处适当的不等号: (1)(3+2)2 6+26; (2)(3-2)2 (6-1)2; (3;(4)当a >b >0时,log 21a log 21b答案:(1)< (2)< (3)< (4)< [补充例题]例2、比较(a +3)(a -5)与(a +2)(a -4)的大小.分析:此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开,合并同类项之后,判断差值正负(注意是指差的符号,至于差的值究竟是多少,在这里无关紧要).根据实数运算的符号法则来得出两个代数式的大小.比较两个实数大小的问题转化为实数运算符号问题.解:由题意可知: (a +3)(a -5)-(a +2)(a -4)=(a 2-2a -15)-(a 2-2a -8)=-7<0 ∴(a +3)(a -5)<(a +2)(a -4) 随堂练习2 1、 比较大小:(1)(x +5)(x +7)与(x +6)2(2)2256259x x x x ++++与4.课时小结本节课学习了不等式的性质,并用不等式的性质证明了一些简单的不等式,还研究了如何比较两个实数(代数式)的大小——作差法,其具体解题步骤可归纳为:第一步:作差并化简,其目标应是n 个因式之积或完全平方式或常数的形式; 第二步:判断差值与零的大小关系,必要时须进行讨论; 第三步:得出结论5.评价设计课本P83习题3.1[A 组]第2、3题;[B 组]第1题 【板书设计】课题: §3.2.1一元二次不等式及其解法(1) 【教学目标】1.理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力;2.经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;3.激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想.【教学重点】从实际情境中抽象出一元二次不等式模型;一元二次不等式的解法. 【教学难点】理解二次函数、一元二次方程与一元二次不等式解集的关系. 【教学过程】1.课题导入从实际情境中抽象出一元二次不等式模型:教材P84互联网的收费问题教师引导学生分析问题、解决问题,最后得到一元二次不等式模型:250x x -< (1)2.讲授新课1)一元二次不等式的定义象250x x -<这样,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式2)探究一元二次不等式250x x -<的解集怎样求不等式(1)的解集呢? 探究:(1)二次方程的根与二次函数的零点的关系 容易知道:二次方程的有两个实数根:120,5x x ==二次函数有两个零点:120,5x x ==于是,我们得到:二次方程的根就是二次函数的零点. (2)观察图象,获得解集画出二次函数25y x x =-的图象,如图,观察函数图象,可知: 当 x<0,或x>5时,函数图象位于x 轴上方,此时,y>0,即250x x ->; 当0<x<5时,函数图象位于x 轴下方,此时,y<0,即250x x -<;所以,不等式250x x -<的解集是{}|05x x <<,从而解决了本节开始时提出的问题.(3)探究一般的一元二次不等式的解法任意的一元二次不等式,总可以化为以下两种形式:220,(0)0,(0)ax bx c a ax bx c a ++>>++<>或一般地,怎样确定一元二次不等式c bx ax ++2>0与c bx ax ++2<0的解集呢? 组织讨论:从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑以下两点:(1)抛物线=y c bx ax ++2与x 轴的相关位置的情况,也就是一元二次方程c bx ax ++2=0的根的情况;(2)抛物线=y c bx ax ++2的开口方向,也就是a 的符号 总结讨论结果:(l )抛物线 =y c bx ax ++2(a> 0)与 x 轴的相关位置,分为三种情况,这可以由一元二次方程 c bx ax ++2=0的判别式ac b 42-=∆三种取值情况(Δ> 0,Δ=0,Δ<0)来确定.因此,要分二种情况讨论 (2)a<0可以转化为a>0分Δ>O ,Δ=0,Δ<0三种情况,得到一元二次不等式c bx ax ++2>0与c bx ax ++2<0的解集一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集:设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:(让学生独立完成课本第86页的表格) 0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根 )(,2121x x x x < 有两相等实根ab x x 221-==无实根的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax{}21x x xx <<∅∅[范例讲解]例2 (课本第87页)求不等式01442>+-x x 的解集. 解:因为210144,0212===+-=∆x x x x 的解是方程.所以,原不等式的解集是⎭⎬⎫⎩⎨⎧≠21x x 例3 (课本第88页)解不等式0322>-+-x x . 解:整理,得0322<+-x x .因为032,02=+-<∆x x 方程无实数解,所以不等式x x -+<2230的解集是∅.从而,原不等式的解集是∅.3.随堂练习 课本第89的练习1(1)、(3)、(5)、(7)4.课时小结解一元二次不等式的步骤:① 将二次项系数化为“+”:A=c bx ax ++2>0(或<0)(a>0) ② 计算判别式∆,分析不等式的解的情况:ⅰ.∆>0时,求根1x <2x ,⎩⎨⎧<<<><>.002121x x x A x x x A ,则若;或,则若ⅱ.∆=0时,求根1x =2x =0x ,⎪⎩⎪⎨⎧=≤∈<≠>.00000x x A x A x x A ,则若;,则若的一切实数;,则若φⅲ.∆<0时,方程无解,⎩⎨⎧∈≤∈>.00φx A R x A ,则若;,则若③ 写出解集.5.评价设计课本第89页习题3.2[A]组第1题【板书设计】课题: §3.2.2一元二次不等式及其解法(2) 【教学目标】1.巩固一元二次方程、一元二次不等式与二次函数的关系;进一步熟练解一元二次不等式的解法;2.培养数形结合的能力,一题多解的能力,培养抽象概括能力和逻辑思维能力; 3.激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会从不同侧面观察同一事物思想【教学重点】熟练掌握一元二次不等式的解法【教学难点】理解一元二次不等式与一元二次方程、二次函数的关系 【教学过程】1.课题导入1.一元二次方程、一元二次不等式与二次函数的关系 2.一元二次不等式的解法步骤——课本第86页的表格2.讲授新课[范例讲解]例1某种牌号的汽车在水泥路面上的刹车距离s m 和汽车的速度 x km/h 有如下的关系:21120180s x x =+ 在一次交通事故中,测得这种车的刹车距离大于39.5m ,那么这辆汽车刹车前的速度是多少?(精确到0.01km/h )解:设这辆汽车刹车前的速度至少为x km/h ,根据题意,我们得到21139.520180x x +> 移项整理得:2971100x x +->显然 0>,方程2971100x x +-=有两个实数根,即1288.94,79.94x x ≈-≈.所以不等式的解集为{}|88.94,79.94x x x <->或在这个实际问题中,x>0,所以这辆汽车刹车前的车速至少为79.94km/h.例4、一个汽车制造厂引进了一条摩托车整车装配流水线,这条流水线生产的摩托车数量x (辆)与创造的价值y (元)之间有如下的关系:22220y x x =-+若这家工厂希望在一个星期内利用这条流水线创收6000元以上,那么它在一个星期内大约应该生产多少辆摩托车?解:设在一个星期内大约应该生产x 辆摩托车,根据题意,我们得到222206000x x -+>移项整理,得211030000x x -+<因为1000=>,所以方程211030000x x -+=有两个实数根1250,60x x ==由二次函数的图象,得不等式的解为:50<x<60因为x 只能取正整数,所以,当这条摩托车整车装配流水线在一周内生产的摩托车数量在51—59辆之间时,这家工厂能够获得6000元以上的收益.3.随堂练习1课本第89页练习2 [补充例题]▲ 应用一(一元二次不等式与一元二次方程的关系)例:设不等式210ax bx ++>的解集为13{|1}x x -<<,求a b ?▲ 应用二(一元二次不等式与二次函数的关系)例:设22{|430},{|280}A x x x B x x x a =-+<=-+-≤,且A B ⊆,求a 的取值范围.改:设2280x x a -+-≤对于一切(1,3)x ∈都成立,求a 的范围.改:若方程2280x x a -+-=有两个实根12,x x ,且13x ≥,21x ≤,求a 的范围.随堂练习21、已知二次不等式20ax bx c ++<的解集为1132{|}x x x <>或,求关于x 的不等式20cx bx a -+>的解集.2、若关于m 的不等式2(21)10mx m x m -++-≥的解集为空集,求m 的取值范围. 改1:解集非空改2:解集为一切实数4.课时小结进一步熟练掌握一元二次不等式的解法一元二次不等式与一元二次方程以及一元二次函数的关系5.评价设计课本第89页的习题3.2[A]组第3、5题 【板书设计】课题: §3.3.1.1二元一次不等式(组)与平面区域(1) 【教学目标】1.了解二元一次不等式的几何意义,会用二元一次不等式组表示平面区域; 2.经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力; 3.通过本节课的学习,体会数学来源与生活,提高数学学习兴趣. 【教学重点】用二元一次不等式(组)表示平面区域; 【教学过程】1.课题导入1.从实际问题中抽象出二元一次不等式(组)的数学模型 课本第91页的“银行信贷资金分配问题”教师引导学生思考、探究,让学生经历建立线性规划模型的过程. 在获得探究体验的基础上,通过交流形成共识:2.讲授新课1.建立二元一次不等式模型 把实际问题 转化 数学问题:设用于企业贷款的资金为x 元,用于个人贷款的资金为y 元. (把文字语言 转化 符号语言)(资金总数为25 000 000元)⇒25000000x y +≤ (1) (预计企业贷款创收12%,个人贷款创收10%,共创收30 000元以上)⇒(12%)x+(10%)y 30000≥ 即12103000000x y +≥ (2)(用于企业和个人贷款的资金数额都不能是负值)⇒0,0x y ≥≥ (3)将(1)(2)(3)合在一起,得到分配资金应满足的条件:25000000121030000000,0x y x y x y +≤⎧⎪+≥⎨⎪≥≥⎩2.二元一次不等式和二元一次不等式组的定义(1)二元一次不等式:含有两个未知数,并且未知数的最高次数是1的不等式叫做二元一次不等式.(2)二元一次不等式组:有几个二元一次不等式组成的不等式组称为二元一次不等式组. (3)二元一次不等式(组)的解集:满足二元一次不等式(组)的x 和y 的取值构成有序实数对(x,y ),所有这样的有序实数对(x,y )构成的集合称为二元一次不等式(组)的解集.(4)二元一次不等式(组)的解集与平面直角坐标系内的点之间的关系:二元一次不等式(组)的解集是有序实数对,而点的坐标也是有序实数对,因此,有序实数对就可以看成是平面内点的坐标,进而,二元一次不等式(组)的解集就可以看成是直角坐标系内的点构成的集合.3.探究二元一次不等式(组)的解集表示的图形 (1)回忆、思考回忆:初中一元一次不等式(组)的解集所表示的图形——数轴上的区间 思考:在直角坐标系内,二元一次不等式(组)的解集表示什么图形? (2)探究从特殊到一般:先研究具体的二元一次不等式x-y<6的解集所表示的图形.如图:在平面直角坐标系内,x-y=6表示一条直线.平面内所有的点被直线分成三类:第一类:在直线x-y=6上的点;第二类:在直线x-y=6左上方的区域内的点; 第三类:在直线x-y=6右下方的区域内的点.设点是直线x-y=6上的点,选取点,使它的坐标满足不等式x-y<6,请同学们完成课本第93页的表格,横坐标x -3 -2 -1 0 1 2 3 点P 的纵坐标1y 点A 的纵坐标2y并思考:当点A 与点P 有相同的横坐标时,它们的纵坐标有什么关系?根据此说说,直线x-y=6左上方的坐标与不等式x-y<6有什么关系?直线x-y=6右下方点的坐标呢?学生思考、讨论、交流,达成共识: 在平面直角坐标系中,以二元一次不等式x-y<6的解为坐标的点都在直线x-y=6的左上方;反过来,直线x-y=6左上方的点的坐标都满足不等式x-y<6.因此,在平面直角坐标系中,不等式x-y<6表示直线x-y=6左上方的平面区域;如图. 类似的:二元一次不等式x-y>6表示直线x-y=6右下方的区域;如图. 直线叫做这两个区域的边界 由特殊例子推广到一般情况: (3)结论:二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 4.二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax +By +C =0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点) 【应用举例】例1 画出不等式44x y +<表示的平面区域. 解:先画直线44x y +=(画成虚线).取原点(0,0),代入x +4y -4,∵0+4×0-4=-4<0,∴原点在44x y +<表示的平面区域内,不等式44x y +<表示的区域如图:归纳:画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法.特殊地,当0≠C 时,常把原点作为此特殊点.变式1、画出不等式1234≤-y x 所表示的平面区域. 变式2、画出不等式1≥x 所表示的平面区域.例2 用平面区域表示.不等式组3122y x x y<-+⎧⎨<⎩的解集.分析:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.解:不等式312y x <-+表示直线312y x =-+右下方的区域,2x y <表示直线2x y =右上方的区域,取两区域重叠的部分,如图的阴影部分就表示原不等式组的解集.归纳:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.变式1、画出不等式04)(12(<+-++)y x y x 表示的平面区域.变式2、由直线02=++y x ,012=++y x 和012=++y x 围成的三角形区域(包括边界)用不等式可表示为 .3.随堂练习1、课本第97页的练习1、2、34.课时小结1.二元一次不等式表示的平面区域.2.二元一次不等式表示哪个平面区域的判断方法. 3.二元一次不等式组表示的平面区域.5.评价设计课本第105页习题3.3[A]组的第1题 【板书设计】课题: §3.3.1.2二元一次不等式(组)与平面区域(2) 【教学目标】1.巩固二元一次不等式和二元一次不等式组所表示的平面区域;能根据实际问题中的已知条件,找出约束条件;2.经历把实际问题抽象为数学问题的过程,体会集合、化归、数形结合的数学思想;3.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新. 【教学重点】理解二元一次不等式表示平面区域并能把不等式(组)所表示的平面区域画出来;【教学难点】把实际问题抽象化,用二元一次不等式(组)表示平面区域. 【教学过程】1.课题导入[复习引入]二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)判断方法:由于对在直线Ax +By +C =0同一侧的所有点(x ,y ),把它的坐标(x ,y )代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点). 随堂练习11、画出不等式2x +y -6<0表示的平面区域.2、画出不等式组⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x 表示的平面区域.2.讲授新课【应用举例】例3 某人准备投资 1 200万兴办一所完全中学,对教育市场进行调查后,他得到了下面的数据表格(以班级为单位):学段 班级学生人数配备教师数硬件建设/万元教师年薪/万元初中 45 2 26/班 2/人 高中40354/班2/人分别用数学关系式和图形表示上述的限制条件.解:设开设初中班x 个,开设高中班y 个,根据题意,总共招生班数应限制在20-30之间, 所以有2030x y ≤+≤考虑到所投资金的限制,得到265422231200x y x y ++⨯+⨯≤ 即 240x y +≤另外,开设的班数不能为负,则0,0x y ≥≥把上面的四个不等式合在一起,得到:203024000x y x y x y ≤+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩用图形表示这个限制条件,得到如图的平面区域(阴影部分)例4 一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐18t ;B(-52,52)C(3,-3)A(3,8)x=3x+y=0x-y+5=063xy生产1车皮乙种肥料需要的主要原料是磷酸盐1t,硝酸盐15t,现库存磷酸盐10t 、硝酸盐66t ,在此基础上生产两种混合肥料.列出满足生产条件的数学关系式,并画出相应的平面区域. 解:设x,y 分别为计划生产甲乙两种混合肥料的车皮数,于是满足以下条件:41018156600x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩在直角坐标系中可表示成如图的平面区域(阴影部分).[补充例题]例1、画出下列不等式表示的区域 (1) 0)1)((≤---y x y x ; (2) x yx 2≤≤ 分析:(1)转化为等价的不等式组; (2)注意到不等式的传递性,由x x 2≤,得0≥x ,又用y -代y ,不等式仍成立,区域关于x 轴对称. 解:(1)10010≤-≤⇒⎩⎨⎧≤--≥-y x y x y x 或⎩⎨⎧≥-≤-1y x y x 矛盾无解,故点),(y x 在一带形区域内(含边界).(2) 由x x 2≤,得0≥x ;当0>y 时,有⎩⎨⎧≥-≤-020y x y x 点),(y x 在一条形区域内(边界);当0≤y ,由对称性得出.指出:把非规范形式等价转化为规范不等式组形式便于求解例2、利用区域求不等式组⎪⎩⎪⎨⎧<--<-+>--015530632032y x y x y x 的整数解分析:不等式组的实数解集为三条直线032:1=--y x l ,0632:2=-+y x l ,01553:3=--y x l 所围成的三角形区域内部(不含边界).设A l l =⋂21,B l l =⋂31,C l l =⋂32,求得区域内点横坐标范围,取出x 的所有整数值,再代回原不等式组转化为y的一元不等式组得出相应的y 的整数值.解:设032:1=--y x l ,0632:2=-+y x l ,01553:3=--y x l ,A l l =⋂21,B l l =⋂31,C l l =⋂32,∴)43,815(A ,)3,0(-B ,)1912,1975(-C .于是看出区域内点的横坐标在)1975,0(内,取x =1,2,3,当x =1时,代入原不等式组有⎪⎪⎪⎩⎪⎪⎪⎨⎧-><-<512341y y y ⇒1512-<<-y ,得y =-2,∴区域内有整点(1,-2).同理可求得另外三个整点(2,0),(2,-1),(3,-1).指出:求不等式的整数解即求区域内的整点是教学中的难点,它为线性规划中求最优整数解作铺垫.常有两种处理方法,一种是通过打出网络求整点;另一种是本题解答中所采用的,先确定区域内点的横坐标的范围,确定x 的所有整数值,再代回原不等式组,得出y 的一元一次不等式组,再确定y 的所有整数值,即先固定x ,再用x 制约y .3.随堂练习21.(1)1+>x y ; (2).y x >; (3).y x >2.画出不等式组⎪⎪⎩⎪⎪⎨⎧<≤≥-≥-+53006x y y x y x 表示的平面区域3.课本第97页的练习44.课时小结进一步熟悉用不等式(组)的解集表示的平面区域.5.评价设计1、课本第105页习题3.3[B]组的第1、2题【板书设计】课题: §3.3.2.1简单的线性规划(1) 【教学目标】1.使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;2.经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;3.培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力.【教学重点】用图解法解决简单的线性规划问题 【教学难点】准确求得线性规划问题的最优解 【教学过程】1.课题导入[复习提问]1、二元一次不等式0>++C By Ax 在平面直角坐标系中表示什么图形?2、怎样画二元一次不等式(组)所表示的平面区域?应注意哪些事项?3、熟记“直线定界、特殊点定域”方法的内涵.2.讲授新课在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题. 1、下面我们就来看有关与生产安排的一个问题:引例:某工厂有A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天8h 计算,该厂所有可能的日生产安排是什么? (1)用不等式组表示问题中的限制条件:设甲、乙两种产品分别生产x 、y 件,又已知条件可得二元一次不等式组:2841641200x y x y x y +≤⎧⎪≤⎪⎪≤⎨⎪≥⎪≥⎪⎩…….(1) (2)画出不等式组所表示的平面区域:如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排. (3)提出新问题:进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?(4)尝试解答:设生产甲产品x 件,乙产品y 件时,工厂获得的利润为z ,则z=2x+3y .这样,上述问题就转化为:当x,y 满足不等式(1)并且为非负整数时,z 的最大值是多少?把z=2x+3y 变形为233z y x =-+,这是斜率为23-,在y 轴上的截距为3z的直线.当z 变化时,可以得到一族互相平行的直线,如图,由于这些直线的斜率是确定的,因此只要给定一个点,(例如(1,2)),就能确定一条直线(2833y x =-+),。

相关文档
最新文档