最新七年级数学上学期期末考试试题
人教版七年级上册数学期末考试试卷含答案
人教版七年级上册数学期末考试试题一、单选题1.下列四个有理数中,绝对值最小的数是( )A .-5B .0C .4D .-92.温度由﹣13℃上升8℃是( )A .5℃B .﹣5℃C .11℃D .﹣11℃3.数据202万用科学记数法表示为( )A .2.02×105B .0.202×107C .20.2×105D .2.02×106 4.已知||1(2)312m m x --+=是关于x 的一元一次方程,则m 的值为( ) A .1m = B .2m =C .2m =-D .2m =± 5.下列方程中,与13x x -=-+的解相同的是( )A .20x +=B .230x -=C .22x x -=D .20x -= 6.陈老师做了一个周长为()24a b +的长方形教具,其中一边长为()a b -,则另一边长为 A .3b B .5a b + C .2a D .35a b -7.如图,点A ,O ,B 在一条直线上,OE℃AB 于点O ,如果℃1与℃2互余,那么图中相等的角有( )A .6对B .5对C .4对D .3对8.若代数式2243(251)ax x y x bx y +-+--+-的值与x 的取值无关,则a b +的值为 A .6 B .-6 C .2 D .-29.如图,点C 把线段AB 从左至右依次分成2:3两部分,点D 是AB 的中点,若CD =2,则线段AB 的长是( )A .10B .15C .20D .2510.一电子跳蚤在数轴上从原点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第2022次落下时,落点处表示的数为()A.-2022 B.2022 C.-1011 D.1011二、填空题11.若点A、B、C、D在数轴上的位置如图所示,则-3的相反数所对应的点是_________.12.计算:11||32-=_________.13.点A、B在数轴上,若数轴上点A表示-1,且AB=2,则点B表示的数是_______.14.某企业对应聘人员进行专业考试,试题由50道不定项选择题组成,评分标准规定:每道题全选对得4分,不选得0分,选错或正确选项不全倒扣2分.已知某人有4道题未选,得了172分,则这个人全选对了_________道题.15.如图,将边长为m的正方形纸片沿虚线剪成两块正方形和两块长方形,若拿掉边长为n的小正方形后,再把剩下的三块图形拼成一块长方形,则这块长方形周长为_________.16.有一组数:(1,1,0),(2,4,7),(3,9,26),(4,16,63),…,按照其中的规律,第n组数为_________.17.若方程x+5=7﹣2(x﹣2)的解也是方程6x+3k=14的解,则常数k=_____.18.如图,将一副三角尺的直角顶点O重合在一起.若℃COB与℃DOA的比是2:7,OP 平分℃DOA,则℃POC=_________度.三、解答题19.计算:(1)(+7)+(﹣2)﹣(﹣5)(2)(﹣2)2 ×(﹣916)÷(﹣32)2 (3)20×34+(﹣20)×12+20×(﹣14)(4)﹣|﹣23|﹣|﹣12×23|+320.解方程:(1)2121136x x +--= (2)1(35)2(5)2x x x --=+.21.先化简,再求值:2222734(2)2(32)a ab b b ab a ab --+---,其中2a =-,2b =.22.某同学在黑板上正确解答了一道整式的计算题,但被另一位同学不慎擦掉了算式中的一部分,如图所示: 22(475)351x x x x +-+=--+.(1)求被擦掉的多项式;(2)若12x =-,求被擦掉多项式的值.23.已知x ,y 为有理数,现规定一种新运算“⊗”,满足2021x y xy ⊗=-.(1)求(25)(4)⊗⊗-的值;(2)记()P a b c =⊗-,Q a b a c =⊗-⊗,请猜想P 与Q 的数量关系,并说明理由.24.如图,已知A 、B 两点在数轴上,点A 表示的数为a ,点B 表示的数为b ,且a 、b 满足2(20)|60|0a b ++-=,点P 以每秒4个单位长度的速度从点A 向右运动.点Q 以每秒3个单位长度的速度从点O 向右运动(点P 、点Q 同时出发).(1)分别求出点A 、B 在数轴上对应的数;(2)经过几秒时,点P 、点Q 分别到原点O 的距离相等?(3)当点P 运动到什么位置时,恰好使AP =2BQ ?25.如图,在同一平面内四个点A ,B ,C ,D .(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论. ℃作射线AC ;℃连接AB ,BC ,BD ,线段BD 与射线AC 相交于点O ;℃在线段AC 上作一条线段CF ,使CF =AC ﹣BD .(2)观察(1)题得到的图形,我们发现线段AB+BC >AC ,得出这个结论的依据是 .26.如图,OB 是℃AOC 的平分线,OD 是℃COE 的平分线.(1)如果℃AOC =70°,℃COE =50°,求℃BOD 的度数;(2)如果℃AOE =160°,求℃BOD 的度数;(3)如果OM 平分℃AOE ,℃COD :℃BOC =2:3,℃COM =15°,求℃BOD 的度数.参考答案1.B 【分析】根据负数的绝对值为负数的相反数,正数的绝对值是其本身,即可求解. 【详解】解:55-=,00=,44=,99-=,且9540>>>,所以绝对值最小的数是0.故选:B .【点睛】本题考查了绝对值的定义,熟练掌握绝对值的定义即可求解.2.B 【分析】根据题意列出算式,计算即可出值.【详解】解:由题意得上升后的温度为:﹣13+8=﹣5℃,故选:B .【点睛】本题考查有理数的加法,熟练掌握运算法则是解题的关键.3.D 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:202万62020000 2.0210==⨯.故选:D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.C 【分析】根据一元一次方程的定义可得到一个关于m 的方程,即可求出m 的值.【详解】解:根据一元一次方程的定义,可得:||11m -=,且20m -≠,可解得2m =-,故选:C .【点睛】本题主要考查一元一次方程的定义,解题的关键是掌握注意x 的系数不等于0. 5.D 【分析】先求出13x x -=-+的解为2x =,然后再分别求出每个选项中方程的解,即可求解.【详解】解:13x x -=-+,移项合并同类项得:24=x ,解得:2x =,A 、20x +=,解得:2x =- ,与13x x -=-+的解不相同,故本选项不符合题意;B 、230x -=,解得:32x = ,与13x x -=-+的解不相同,故本选项不符合题意; C 、22x x -=,解得:2x =- ,与13x x -=-+的解不相同,故本选项不符合题意; D 、20x -=,解得:2x = ,与13x x -=-+的解相同,故本选项符合题意; 故选:D【点睛】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤是解题的关键.6.A 【分析】根据长方形周长公式表示另一边长即可. 【详解】解:由题意得,另一边长为()2432a b a b b +--= 故选:A .【点睛】此题考查了代数式的问题,解题的关键是掌握长方形周长公式.7.B 【分析】根据互余的性质得出相等的角即可得出答案.【详解】解:图中相等的角有1,2,,,COA BOD AOE BOE COD BOE COD AOE ∠=∠∠=∠∠=∠∠=∠∠=∠,共5对 故选:B .【点睛】此题考查了找等角的问题,解题的关键是掌握互余的性质.8.D 【分析】已知多项式合并后,根据结果与x 的取值无关,求出a 与b 的值,代入计算即可求出值.【详解】解:2243(251)ax x y x bx y +-+--+-2243251ax x y x bx y =+-+-+-+2(2)(4)64a x b x y =-++-+由结果与x 的取值无关,得到a ﹣2=0,b+4=0,解得:a =2,b =-4,242a b +=-=-,故选:D .【点睛】此题考查了整式的值与字母无关问题,熟练掌握整式运算法则是解本题的关键. 9.C 【分析】设AC =2x ,则BC =3x ,利用线段中点的性质表示出CD ,列出方程即可解决.【详解】解:设AC =2x ,则BC =3x ,℃AB =AC +BC =5x ,℃点D 是AB 的中点,℃AD =12AB =2.5x , ℃CD =AD−AC =2.5x−2x =0.5x ,℃CD =2,℃0.5x =2,℃x =4,℃AB =5x =20,故选:C .【点睛】本题考查了两点间距离,根据题目的已知并结合图形分析是解题的关键. 10.C【分析】根据题意得:第1次落点处表示的数为1,第2次落点处表示的数为121-=-,第3次落点处表示的数为132-+=,第4次落点处表示的数为242-=-,第5次落点处表示的数为253-+=,第6次落点处表示的数为363-=-,……,由此发现规律,即可求解.【详解】解:根据题意得:第1次落点处表示的数为1,第2次落点处表示的数为121-=-,第3次落点处表示的数为132-+=,第4次落点处表示的数为242-=-,第5次落点处表示的数为253-+=,第6次落点处表示的数为363-=-,……, 由此发现规律,当它跳第偶数次落下时,落点处表示的数为2n - , 所以当它跳第2022次落下时,落点处表示的数为202221011-÷=- .故选:C【点睛】本题主要考查了数字类规律题,数轴上两点间的距离,明确题意,准确得到规律是解题的关键.11.A 【分析】先求出-3的相反数,再根据所得的结果在数轴上找到对应的点即可.【详解】解:℃-3的相反数是3℃-3的相反数3对应的点是A .故答案为:A【点睛】本题考查了相反数的定义,数轴上点所表示的数等知识,关键在于正确理解相反数的意义.12.16【分析】根据绝对值的性质可得1111||3223-=-,即可求解. 【详解】解:11111||32236-=-=. 故答案为:16 【点睛】本题主要考查了绝对值的性质,有理数的加减运算,熟练掌握绝对值的性质,有理数运算法则是解题的关键.13.-3或1##1或-3【分析】分两种情况:当点B 在点A 的右边时,当点B 在点A 的左边时,即可求解.【详解】解:根据题意得:当点B 在点A 的右边时,点B 表示的数是()211+-=;当点B 在点A 的左边时,点B 表示的数是()123--=-;℃点B 表示的数是-3或1.故答案为:-3或1【点睛】本题主要考查了数轴上两点间的距离,利用分类讨论思想解答是解题的关键. 14.44【分析】设这个人全选对了x 道题,那么做错了()504x --道题,根据得了172分,可列方程求解.【详解】解:设这个人全选对了x 道题,根据题意得,()42504172x x ---=,解得44x =.答:这个人全选对了44道题.故答案为:44.【点睛】本题考查一元一次方程的应用,关键设出全选对的题目数,表示出做错的题目数,以分数做为等量关系列方程求解.15.4m 【分析】根据题意和矩形的性质列出代数式解答即可.【详解】解:新长方形的周长=2[(m+n )+(m ﹣n )]=4m .【点睛】本题考查正方形、矩形等知识,解题的关键是理解题意,学会利用所学知识解决实际问题.16.(n ,2n ,31n -)【分析】根据题意可得第1组数为(1,1,0),第2组数为(2,4,7),即()232,2,21- ,第3组数为(3,9,26),即()233,3,31- ,第4组数为(4,16,63),即()234,4,41- ,……,由此发现规律,即可求解. 【详解】解:根据题意得:第1组数为(1,1,0),第2组数为(2,4,7),即()232,2,21- ,第3组数为(3,9,26),即()233,3,31- ,第4组数为(4,16,63),即()234,4,41- ,……,由此发现,第n 组数为(n ,2n ,31n -). 故答案为:(n ,2n ,31n -)【点睛】本题主要考查了数字类的规律题,明确题意,准确得到规律是解题的关键. 17.23【详解】℃x +5=7-2(x -2) ℃x=2.把x=2代入6x +3k =14得,12+3k =14, ℃k=23. 18.20【分析】根据条件可知90AOB COD ∠=∠=︒,并且180COB DOA AOB COD ∠+∠=∠+∠=︒,再根据COB ∠与DOA ∠的比是2:7,可求DOA ∠,再根据角平分线的定义和角的和差关系即可求解.【详解】解:180COB DOA COB COA COB DOB AOB COD ∠+∠=∠+∠+∠+∠=∠+∠=︒, 又COB ∠与DOA ∠的比是2:7,718014027DOA ∴∠=︒⨯=︒+, OP 平分DOA ∠,70DOP ∴∠=︒,20POC ∴∠=︒.故答案为:20.【点睛】本题考查了余角与补角,角平分线的定义,正确认识COB DOA ∠+∠AOB COD =∠+∠ 180=︒ 这一个关系是解题的关键,这是一个常用的关系,需熟记. 19.(1)10;(2)﹣1;(3)0;(4)2.【详解】(1)原式=7﹣2+5=12﹣2=10; (2)原式=﹣4××=﹣1;(3)原式=20×(﹣﹣)=0;(4)原式=﹣﹣+3=﹣1+3=2.【点睛】本题考查有理数的混合运算.解体的关键是掌握运算法则,注意符号. 20.(1)x =38(2)x =6【分析】(1)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案;(2)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案.【详解】(1)去分母得:2(2x+1)﹣(2x ﹣1)=6,去括号得:4x+2﹣2x+1=6,移项得:4x ﹣2x =6﹣2﹣1,合并同类项得:2x =3,系数化为1得:x =32; (2)去分母得:2x ﹣(3x ﹣5)=4(5+x ),去括号得:2x ﹣3x+5=20+4x ,移项得:2x ﹣3x ﹣4x =20﹣5,合并同类项得:﹣5x =15,系数化为1得:x =﹣3.【点睛】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键. 21.222a b -,4-【分析】直接去括号进而合并同类项,再把已知数据代入得出答案.【详解】解:原式2222734264a ab b b ab a ab =--+--+,222a b =-,当2a =-,2b =时,原式222a b =-,22(2)22=--⨯,48=-,4=-.【点睛】此题主要考查了整式的加减——化简求值,解题的关键是正确去括号、合并同类项.22.(1)2724x x -+- (2)274- 【分析】(1)设被擦掉的多项式为M ,根据题意列出多项式并化简即可.(2)将12x =-代入求解即可.(1)解:设被擦掉的多项式为M ,则()22351475M x x x x =--+--+ 22351475x x x x =--+-+-2724x x =-+-.(2) 解:若12x =-, 则2724M x x =-+-21172422⎛⎫⎛⎫=-⨯-+⨯-- ⎪ ⎪⎝⎭⎝⎭274=-. 【点睛】此题考查了整式的加减运算及求值,解题的关键是掌握整式的加减运算及求值的方法、通过合并同类项将整式进行化简.23.(1)6023(2)2021P Q =-,理由见解析【分析】(1)根据新运算可得()()(25)(4)20114⊗-=⊗-⊗-,再次利用新运算,即可求解;(2)根据新运算可得()2021P a b c ab ac =⊗-=--,Q a b a c ab ac =⊗-⊗=-,即可求解.(1)解:()()()()2542520214⊗⊗-=⨯-⊗-)()()20114=-⊗-()()201142021=-⨯--6023=;(2)解:2021P Q =- ,理由如下:℃()()20212021P a b c a b c ab ac =⊗-=--=--,()20212021Q a b a c ab ac ab ac =⊗-⊗=---=-,℃2021P Q =- .【点睛】本题主要考查了有理数的混合运算,整式的混合运算,理解新运算是解题的关键.24.(1)20-、60 (2)207秒或20秒 (3)28或220【分析】(1)根据绝对值和平方的非负性可得200a +=,600b -=,即可求解;(2)设经过x 秒时,点P 、点Q 分别到原点O 的距离相等,分两种情况:当点P 、Q 在点O 两侧时,当点P 与Q 重合时,即可求解;(3)设经过y 秒时,恰好使AP=2BQ .分两种情况:当点Q 在点B 的左侧时,当点Q 在点B 的右侧时,即可求解.(1)解:℃()220600a b ++-=(),且()2200a +≥(),600b -≥,℃200a +=,600b -=,℃20a =-,60b =,℃点A 、B 在数轴上对应的数分别20-、60.(2)解:设经过x 秒时,点P 、点Q 分别到原点O 的距离相等,当点P 、Q 在点O 两侧时,依题意得:2043x x -=, 解得:207x =; 当点P 与Q 重合时,依题意得:4203x x -=,解得:20x, ℃经过207秒或20秒时,点P 、Q 分别到原点O 的距离相等. (3)解:设经过y 秒时,恰好使AP=2BQ .当点Q 在点B 的左侧时,依题意得:()42603y y =-,解得:12y =,℃4122028⨯-=,当点Q 在点B 的右侧时,依题意得:()42360y y =-,解得60y =,℃46020220⨯-=,℃当点P 运动到28或220位置时,恰好使AP=2BQ .【点睛】本题主要考查了数轴上两点间的距离,动点问题,一元一次方程的应用,利用分类讨论和数形结合思想解答是解题的关键.25.(1)℃如图所示,射线AC即为所求,见解析;℃如图所示,线段AB,BC,BD即为所求,见解析;℃如图所示,线段CF即为所求,见解析;(2)根据两点之间,线段最短.【分析】(1)℃连接AC并延长即可;℃连接AB,BC,BD即可;℃以点A为圆心,BD长为半径画弧交AC于F,则线段CF=AC-BD;(2)根据两点之间,线段最短,可得AB+BC>AC.【详解】(1)℃如图所示,射线AC即为所求;℃如图所示,线段AB,BC,BD即为所求;℃如图所示,线段CF即为所求;(2)根据两点之间,线段最短,可得AB+BC>AC.故答案为两点之间,线段最短.【点睛】本题主要考查了复杂作图,解决问题的关键是掌握线段、射线的概念以及线段的性质.解题时注意:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.26.(1)60°(2)80°(3)75°【分析】(1)根据OB平分℃AOC,OD平分℃COE,可得35BOC∠=,25COD∠=,即可求解;(2)根据OB平分℃AOC,OD平分℃COE,可得℃COD=12℃COE ,℃BOC =12℃AOC,从而得到℃BOD==12(℃COE +℃AOC) ,即可求解;(3)设℃COD=2x,则℃BOC=3x,可得℃COE =2℃COD =4x,℃AOC=2℃BOC =6x,从而得到℃AOE=10x,进而得到℃EOM=12℃AOE=5x,再由℃COM=15°,可得到x=15°,即可求解.(1)解:℃OB平分℃AOC,℃AOC=70°,℃1352BOC AOC∠=∠=,℃OD平分℃COE,℃COE=50°,℃1252COD COE∠=∠=,℃℃BOD=℃BOC+℃COD=35°+25°=60°.(2)解:℃OB平分℃AOC,OD平分℃COE,℃℃COD=12℃COE ,℃BOC =12℃AOC℃℃BOD=℃COD+℃BOC=1 2℃COE +12℃AOC=12(℃COE +℃AOC)=12℃AOE=80°.(3)解℃℃COD:℃BOC=2:3,℃设℃COD=2x,则℃BOC=3x,℃OB平分℃AOC,OD平分℃COE,℃℃COE =2℃COD =4x,℃AOC=2℃BOC =6x,℃℃AOE=10x,℃OM平分℃AOE,℃℃EOM=12℃AOE=5x,℃℃EOM-℃COE=℃COM=15°,℃5x-4x=15°,℃x=15°,℃℃BOD=℃COD+℃BOC=2x+3x=75°.。
精品解析七年级上学期期末考试数学试题(含答案) (共4套)
七年级数学(上)期末考试试题一、选择题(每小题2,共12分)1. 下列方程中,是一元一次方程的是()A. =3B. x2+1=5C. x=0D. x+2y=3【答案】C故选C.2. 若a>1,则a,﹣a,从大到小排列正确的是()A. a>﹣a>B. a>>﹣aC. >﹣a>aD. >﹣a>a>【答案】B【解析】∵a>1,∴﹣a<0,0<<1,∴a>>﹣a,故选B.3. 下列各式中,正确的是()A. ﹣(2x+5)=2x+5B. ﹣(4x﹣2)=﹣2x+2C. ﹣a+b=﹣(a﹣b)D. 2﹣3x=(3x+2)【答案】C【解析】A、原式=﹣2x﹣5,故A选项错误;B、原式=﹣2x+1,故B选项错误;C、原式=﹣(a﹣b),故C选项正确;D、原式=﹣(3x﹣2),故D选项错误,故选C.4. 由5个大小相同的正方体组成的几何体如图所示,从正面看到的图形是()A. B. C. D.【答案】A【解析】从正面看易得下面一层有3个正方形,上面一层中间有一个正方形,故选A.5. 在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,则∠AOB的大小为()A. 69°B. 111°C. 159°D. 141°【答案】D【解析】试题分析:如下图,由题意得:∠1=54°,∠2=15°,计算出∠3=90°-54°=36°,再计算∠AOB=36°+90°+15°=141°.故选:D.考点:方位角6. 下列说法中,正确的是()①射线AB和射线BA是同一条射线;②若AB=BC,则点B为线段AC的中点;③同角的补角相等;④点C在线段AB上,M,N分别是线段AC,CB的中点.若MN=5,则线段AB=10.A. ①②B. ②③C. ②④D. ③④【答案】D【解析】①射线AB和射线BA不是同一条射线,错误;②若AB=BC,点B在线段AC上时,则点B为线段AC的中点,错误;③同角的补角相等,正确;④点C在线段AB上,M,N分别是线段AC,CB的中点.若MN=5,则线段AB=10,正确,故选D.【点睛】本题考查了直线、射线、线段;两点间的距离;余角和补角等知识,注意基本概念的掌握是解题的关键.二、填空题(每小题3分,共24分)7. 单项式﹣x2y的次数是_____.【答案】3【解析】单项式的次数是指所有字母指数的和,2+1=3,所以单项式﹣x2y的次数是3,故答案为:3.8. 阅览室某一书架上原有图书20本,规定每天归还图书为正,借出图书为负,经过两天借阅情况如下:(﹣3,+1),(﹣1,+2),则该书架上现有图书_____本.【答案】19【解析】由题意可得20﹣3+1﹣1+2=19本.9. 科学家们发现,太空中距离银河系约2500000光年之遥的仙女星系正在向银河系靠近.其中2500000用科学记数法表示为_____.【答案】2.5×106【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,2500000用科学记数法表示为2.5×106,故答案为2.5×106.10. 如果我们将一副三角尺按如图所示的位置摆放,并且已知∠a=118°28',那么∠B的度数为_____.【答案】61°32'【解析】∠β=180°﹣∠α=180°﹣118°28'=61°32',故答案为:61°32'.【点睛】本题考查了平角的定义,熟知平角的定义是解题的关键.11. 如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是_____.【答案】两点之间线段最短【解析】田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是:两点之间线段最短,故答案为:两点之间线段最短.12. 已知,m,n互为相反数,p、q互为倒数,x的绝对值为2,则代数式+2013pq+的值为_____.【答案】2017【解析】由题意可知,m+n=0,pq=1,x=±2,∴ +2013pq+=0+2013×1+(±2)2=0+2013+4=2017,故答案为:2017.13. 一件商品按成本价提高20%标价,然后打9折出售,此时仍可获利16元,则商品的成本价为_____元.【解析】设成本价为x元,则,解得x=200.14. 如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),把剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则拼得的长方形的周长为_____cm.(用含a的代数式表示)【答案】(4a+16)【解析】根据题意得,长方形的宽为(a+4)﹣(a+1)=3,则拼成得长方形的周长为:2(a+4+a+1+3)=2(2a+8)=(4a+16)cm,故答案为:(4a+16).【点睛】本题主要考查了整式加减的应用,关键是根据题意列出式子.三、解答题(一)(每小题5分,共20分)15. 计算:(2a2b﹣5ab)﹣2(﹣ab+a2b)【答案】﹣3ab【解析】试题分析:去括号后合并同类项即可得.试题解析:原式=2a2b﹣5ab+2ab﹣2a2b=﹣3ab.16. 解方程:﹣=2.【答案】﹣12【解析】试题分析:按去分母、去括号、移项、合并同类项、系数化为1的步骤进行求解即可.试题解析:去分母得,3(x+2)﹣2(2x﹣3)=24,去括号得,3x+6﹣4x+6=24,移项得,3x+6﹣4x+6=24,合并同类项得,﹣x=12,系数化为1得,x=﹣12.17. 计算:﹣14﹣(﹣2)3×﹣16×(﹣+)学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...试题解析:原式=﹣14﹣(﹣8)×﹣8+4﹣6=﹣14+2﹣10=﹣22.18. 已知如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,求∠AOD的度数.【答案】110°【解析】试题分析:首先根据角平分线定义可得∠BOD=2∠BOC=70°,再根据邻补角的性质可得∠AOD的度数.试题解析:∵OC平分∠DOB,∴∠BOD=2∠BOC =2×35°=70°,又∵∠AOB=180°,∴∠AOD=∠AOB﹣∠DOB=180°﹣70°=110°.【点睛】本题主要考查了角平分线定义,关键是掌握角平分线把角分成相等的两部分.四、解答题(二)(每小题7分,共28分)19. 如图,C、D是线段AB上的两点,若CB=4cm,DB=7cm,且D是AC的中点,求AB的长.【答案】10cm【解析】试题分析:根据CB=4cm,DB=7cm可求出DC的长,再根据D是AC的中点可得出AD的长,再根据AB=AD+DB即可求出答案.试题解析:∵CB=4cm,DB=7cm,∴DC=DB﹣CB=3cm,又∵D是AC的中点,∴AD=DC=3cm,∴AB=AD+DB=10cm.20. 列方程解应用题:在某中学矩形的“我的中国梦”征文活动中,七年级和八年级共收到118篇,且七年级收到的征文篇数比八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?【答案】38篇【解析】试题分析:根据“七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇” 设八年级收到的征文有x篇,则七年级收到的征文有(x-2)篇;根据“七年级和八年级共收到征文118篇”列方程,解出方程即可.试题解析:设八年级收到的征文有x篇,则七年级收到的征文有(x﹣2)篇,根据题意得:(x﹣2)+x=118,解得:x=80,∴x﹣2=38,答:七年级收到的征文有38篇.21. 已知m、x、y满足:(1)﹣2ab m与4ab3是同类项;(2)(x﹣5)2+|y﹣|=0.求代数式:2(x2﹣3y2)﹣3()的值.【答案】【解析】试题分析:由同类项的定义可得m的值,由非负数之和为0,非负数分别为0可得出x、y的值,代入所求式子中计算即可得到结果.试题解析:∵﹣2ab m与4ab3是同类项,(x﹣5)2+|y﹣|=0,∴m=3,x=5,y=,则原式=2x2﹣6y2﹣2x2+3y2+3m=﹣3y2+3m=﹣+9=.22. 如图所示是一个长方形.(1)根据图中尺寸大小,用含x的代数式表示阴影部分的面积S;(2)若x=3,求S的值.【答案】(1) 8+2x (2) 14【解析】试题分析:根据图形可知:阴影部分的面积可用长方形的面积减去两个直角三角形的面积.试题解析:(1)由图形可知:S=4×8-×4×8-×4(4-x)=16-8+2x=8+2x(2)将x=3代入上式,S=8+2×3=14五、解答题(三)(每小题8分,共16分)23. 某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:进价(元/千克)售价(元/千克)甲种 5 8乙种9 13(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?【答案】(1) 75千克(2) 495元【解析】试题分析:(1)首先设甲种水果x千克,则乙种水果(140-x)千克,根据进价总数列出方程,求出x的值;(2)根据每种水果的利润得出总利润.试题解析:(1)设购进甲种水果x千克,则购进乙种水果(140﹣x)千克,根据题意得:5x+9(140﹣x)=1000,解得:x=65,∴140﹣x=75(千克),答:购进甲种水果65千克,乙种水果75千克。
【三套打包】最新七年级(上)数学期末考试试题(含答案)
最新七年级(上)期末考试数学试题【答案】一、选择题:(本大题 12 个小题,每小题 4 分,共 48 分)在每个小题的下面,都给出了代号为 A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1. -3的倒数是A .31B .3 C.-31 D .-3 2.据统计,渝北区第二届“讯飞杯”优质课大赛视频网络点击 10500 次,将数 10500 用科学记数法表示为A. 10.5⨯105B. 1.05⨯105C. 0.105⨯105D.1.05⨯1043.将 6-(+3)+(-2) 改写成省略括号的和的形式是A. 6-3-2B.-6-3-2C. 6-3+2D. 6+3-24.计算-3(2x -1) 的结果是A. -6x -1B. -6x +1C. -6x +3D. -6x -3 5.下列各式子中与 2m 2 n 是同类项的是A .-2mnB .3m 2 nC .3m 2 n 2D .-mn 26.下列四个式子中 ,是一元一次方程的是A .-2X =2y - 3B .3x 2-4x= 2C .21-x =1D . x1=2x+6 7.如图,是由一些黑点组成的图,按此规律,第7个图形中,黑点的个数是A .51B .48C .27D .158.若 a = 3, b =1 ,且 a > b ,那么 a -b 的值是A .4B .2C .-4D .4或29.将下列如图的平面图形绕轴 l 旋转一周,可以得到的立体图形是10.如图,张老师在点 O 处观测到小明站位点 A 位于北偏西 54︒ 30' 的方向,同时观测到小刚站在点 B 在南偏东 15︒ 20' 的方向,那么 ∠AOB 的大小是A .69︒50'B .110︒ 10'C .140︒50'D .159︒50'11.下图是一个正方体的表面展开图,已知正方体的每个面都有一个有理数,且相对面上的两个数互为相反数,那么代数式 a -b +c 的值是A .-4B .0C .2D . 412.轮船在静水中速度为每小时 30km, 水流速度为每小时 6km, 从甲码头顺流航行到乙码头,再返回甲码头,共用 5 小时(不计停留时间),求甲、乙两码头间的距离.设两码头间的距离为 x km ,则列出方程正确的是A .(30+6)x +(30-6)x = 5B .30x +6x = 5C .563=+x xD .5630630=-++x x 二、填空题:(本大题 6 个小题,每小题 4 分,共 24 分)请将每小题的答案直接填在答题卡中对应的横线上.13.天气预报中,如果零上 3 C ︒ 记作+3 C ︒ ,那么零下 5 C ︒ 记作 C ︒.14.将多项式n m mn n m 222332+-+按m 的降幂排列为: .15.已知 3a - 2b - 4 = 0 ,则代数式 6a - 4b + 2019= .16.如图,BC ⊥AC ,BC=12,AC=9,AB=15,则点 C 到线段 AB 的距离是 .17.实数 x ,y ,z 在数轴上的位置如图所示,则 |y| - |x| +| z| -| y |= .18.A ,B ,C 三种大米的售价分别为40元、50元、70元,其中B ,C 两种大米的进价为40元、50元,经核算,三种大米的总利润相同,且A ,B 两种大米的销售量之和是C 种大米之和的6倍,则A 种大米的进价是 .三、解答题:(本大题 3 个小题,每小题 10 分,共 30 分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上19.计算:(1)-3+ (-4)⨯2 + 2 ;(2)-12- ( 2)3-4÷(-41).20.解方程:(1) 3x - 2 = x - 7;(2)245331=---x x .21.如图,点C ,E 是线段AB 上两点,点D 为线段AB 的中点,AB = 6,CD =1.(1)求 BC 的长;(2)若 AE: EC =1:3 ,求 EC 的长;四、解答题:(本大题3个小题,22、23每小题题8分,24题10分,共26分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上 22.先化简,再求值:()()2222524325x y xy y x -+-- ,其中 x = -2, y = 3.21.如图,将长方形纸片的一角作折叠,使顶点 A 落在 A' 处, DE 为折痕,将∠BEA' 对折,使得 B' 落在直线 EA' 上,得折痕 EG(1)求∠DEG 的度数;(2) 若 EA' 恰好平分∠DEB ,求∠DEA' 的度数24.如图,已知数轴上点A表示的数为-12 ,点B在点A右边,且OA= 2OB.(1)写出数轴上点 B 表示的数;(2)点 M 为数轴上一点,若 AM - BM = 4 ,求出点 M 表示的数.五、解答题:(本大题2个小题,其中,25题10分,26题12分,共22分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上25.重庆市出租车的起步价是 10 元(起步价是指不超过 3km 行程的出租车价格).超过3km 行程后,其中除 3km 的行程按起步价计费外,超过部分按每千米 2 元计费(不足1km 按 1km 计算).如果仅去程乘出租车而回程时不乘坐此车,并且去程超过 3km,那么顾客还需付回程的空驶费,超过 3km 部分按每千米 0.6 元计算空驶费(即超过部分实际按每千米2.6 元计费).如果往返都乘同一出租车并且中间等候时间不超过 3min,则不收空驶费而加收 3.2 元等候费.现设小云等 4 人从单位到相距 x km(x<12)的解放碑办事,在解放碑停留时间 3 min 内,然后返回单位.现有两种方案:方案一:去时4人乘同一辆出租车,返回都乘公交车(公交车车票为每人 3 元);方案一:4 人乘同一辆出租车往返.(1)若 3<x<12,用含 x 的代数式分别把两种方案的费用表示出来;(2) 如果小云单位到解放碑的距离 x km(x<12),请问选择哪种计费方式更省钱?26.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.(1)可求得 x =______,第 2021 个格子中的数为______;(2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n为前三个格子中的任意两个数,那么所有的|m-n | 的和可以通过计算|6-a|+|6-b|+|a-b|+|a-6| +|b-6|+|b-a| 得到.若m ,n为前8个格子中的任意两个数,求所有的|m-n|的和。
七年级上期末考试数学试题及答案
第一学期期末测试卷初一数学一、选择题1.-2的相反数是【 】 A .-2 B .2 C .21 D .21- 2.近年来,延庆着力打造中国自行车骑游第一大县,推出了8大骑游区域、11条精品骑游线路,涵盖妫河生态走廊、百里山水画廊等景区景点。
同时,县内很多骑游爱好者还自发成立了骑行俱乐部或车队,促进了延庆骑游运动发展,在延庆骑游人数近20000人,将20000用科学记数法表示应为【 】A .2×103B .20×103C .2×104D .0.2×105 3. 下列运算正确的是【 】 A .236-=÷- B .-3+2=-5C .-3-2=-1D .632=⨯-4.下列等式变形正确的是【 】A .如果x=y,那么x-2=y-2 B .如果x 21-=8,那么x=-4 C .如果mx=my ,那么x=y D .如果|x|=|y|,那么x=y5. 下面由8个完全相同的小正方体组成的几何体从正面看是【 】6.下列各项是同类项的是【 】A .2ab 与b a 2B .xy 与y 2C .ab 与ab 21D .ab 5与26ab7.已知2x =-是方程014)1(=-++a x a 的解,则a 的值是【 】 A . -2 B .23 C . 0 D .32 8.如图,这是一条马路上的人行横道线,即斑马线的示意图,请你根据图示判断,在过马路时三条线路AC 、AB 、AD 中最短的是【 】A .ACB .ABC .AD D .不确定正面AB CD9.已知:点C 在直线..AB 上,线段AB=6,点D 是AC 中点,BC=4那么A 、D 之间的距离是【 】A .5 B .2.5 C .5或1 D . 5或2.510. 如图所示的正方体的展开图是【 】二、填空题:11. -5的绝对值是__________,-2的倒数是____________. 12. __________23=,(-3)2=_________ .13. 方程-2x m+1 =4是关于x 的一元一次方程,则m=______,方程的解是_______. 14. 如果m 、n 满足2)3(2++-n m =0,那么 m+n=__________ ,m-n=__________. 15. 如图,图中有________个角(小于180 º),分别是_____________ . 16.计算: 45 º36′+15°14′=__________;60°30′-45°40′=__________.17.数轴上表示-1的点先向右移动4个单位长度,再向左移动5个单位长度对应的数字是____________.18.计算 :3a+4a-2a=_____________,2x+5x-1=___________. 19.单项式z y x 322-的系数是_____________,次数是________. 20.a 是不为1的有理数,我们把11a-称为a 的差倒数....如:2的差倒数是1112=--. 已知113a =-,(1)2a 是1a 的差倒数,那么=2a ;(2)3a 是2a 的差倒数,那么=3a ;(3)4a 是3a 的差倒数,那么=4a ,…,依此类推,那么=2015a . 三、计算:21.()11271832.52⎛⎫+---- ⎪⎝⎭22. (5.6-))5()52()2(-÷-÷-⨯DCBA23.36)()613291(-⨯-+ 24.四、先化简,再求值25.)5(3)3(52222b a ab ab b a +--,其中31=a ,21-=b .五、解方程:(本题共4个小题,26-28每小题4分,29题5分,共17分) 26.4x+7=12x-5 27.6)5(34=--x x 28. 413-x -675-x =1 29. 5.03.02-x -3.04.0+x =1⎥⎦⎤⎢⎣⎡---⨯---32)2()34()3(2六、请按下列要求画图,不写画法30.已知:如图,平面上有A 、B 、C 、D 四点. (1)作射线AD 交直线BC 于点M ;(2)连结AB ,并反向延长AB 至点E ,使AE =12BE .七、补全下列解题过程31.如图所示,点O 是直线AB 上一点,∠BOC=130°,OD 平分∠AOC.求:∠COD 的度数. 解:∵O 是直线AB 上一点 ∴∠AOB= . ∵∠BOC=130°∴∠AOC=∠AOB-∠BOC= . ∵OD 平分∠AOC ∴ ∠COD=21= . 八、列方程解应用题32. 国家规定个人发表文章、出版图书所得稿费的纳税计算方法是: ①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税; ③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税,试根据上述纳税的计算方法作答:(1)如果王老师获得的稿费为2400元,那么应纳税________元,如果王老师获得的稿费为4000元,那么应纳税________元。
2023-2024学年苏科版七年级数学上学期期末考试卷(含解析)
2023-2024学年苏科版七年级数学上学期期末考试卷学校:___________姓名:___________班级:___________考号:___________一、单选题(每小题3分,共24分)A .B .3.在,,…中,已知的最大整数,例如5-1x 2x 3x []2.62=A .1B .28.一副三角板ABC 、DBE ,如图1放置,①在图1的情况下,在内作②在旋转过程中,若平分,③在旋转过程中,两块三角板的边所在直线夹角成④的角度恒为.其中正确的结论个数为( )A .1个B .2个DBC ∠DBF ∠BM DBA ∠BN DBC ABE ∠+∠105︒15.已知直线与直线16.如图,AB OE AB ⊥三、解答题(共52分)(1)直接写出这个几何体的表面积;(2)按要求在方格中画出从这个几何体不同的方向看到的形状图.小墩从郑州西站开始乘坐地铁,在图中12个地铁站点做值勤志愿服务,到约定向郑州火车站方向为正,当天的乘车记录如下(单位:站):(1)请你通过计算说明A 站是哪一站?(2)已知相邻两站之间的平均距离为千米,求小墩在志愿者服务期间乘坐地铁行进的路程是多少千米?21.已知点在线段上,,点、在直线上,点(1)若,,线段在线段上移动.①如图1,当为中点时,求的长;(1)点表示的有理数是 ,点表示的有理数是 ,点1.5C AB 2AC BC =D E AB 18AB =8DE =DE AB E BC AD A C(1)如图1,,,请判断(2)若平分,且为的“分余线(3)如图2,,在的内部作射线的“分余线”.当为的“分余线”时,请直接写出70AOB ∠=︒50AOC ∠=︒OC AOB ∠OC AOB ∠155AOB ∠=︒AOB ∠OC MON ∠答案解析A.B.5-【答案】A【分析】本题考查了一元一次方程的应用,根据解题的关键.【详解】解:设每条边上四个数之和为则我们可以确定其中有三个数的边上的圆圈里的数,再求另外两个空圆圈里的数,,将其填入相应的圆圈中,如图,统计已填入的具体数有没有填入的数有:,2,(2)0(5)3m m ----+=-(2)(4)(6)4m m ---+--=6-5-A.1B.2【答案】D【分析】根据图形以及数字的摆放,第一图可得第二个图可知的下面是5,5的右边是2将正方形展开如图所示,∴的对面是,故选:D .【点睛】本题考查了正方体展开图,相对面上的字,注意数字的摆放是解题的关键.8.一副三角板ABC 、DBE ,如图1放置,(、),将三角板绕点B 逆时针旋转一定角度,如图2所示,且,有下列四个结论:①在图1的情况下,在内作,则平分;②在旋转过程中,若平分,平分,的角度恒为定值;③在旋转过程中,两块三角板的边所在直线夹角成的次数为3次;④的角度恒为.其中正确的结论个数为( )A .1个B .2个C .3个D .4个【答案】C【分析】结合图形根据题意正确进行角的和差计算即可判断.【详解】①如图可得,所以平分,①正确;②当时,设,∵平分,∴,∴ ,,45630D ∠=︒45BAC ∠=︒DBE 090CBE ︒<∠<︒DBC ∠DBF EBF ∠=∠BA DBF ∠BM DBA ∠BN EBC ∠MBN ∠90︒DBC ABE ∠+∠105︒15DBA ABF ∠=∠=︒BA DBF ∠045CBE ︒<∠<︒DBM x ∠=BM DBA ∠x ABM DBM ∠==∠602ABE x ∠=︒-()45602215EBC x x ∠=︒-︒-=-︒∴,当时,设,∵平分,∴,∴,∴,∴,∴,故②正确;③时,时,时故③正确;④当时,当时,故④错误;综上所述,正确的结论为①②③;故选:C .【点睛】本题主要考查了角的和差,角的平分线,旋转的性质,关键根据题意正确进行角的和差计算.二、填空题(每小题3分,共24分)【答案】/7.5EBN x ∠=-︒6027.552.5M BN x x x ∠=+︒-+-︒=︒4590CBE ︒<∠<︒DBM x ∠=BM DBA ∠x ABM DBM ∠==∠602ABE x ∠=︒-215EBC x ∠=-︒60M BE x∠=︒-7.5EBN C BN x ∠=∠=-︒607.552.5M BN x x ∠=︒-+-︒=︒30CBE ∠=︒BD BC ⊥45CBE ∠=︒AB DE ⊥75CBE ∠=︒DB AB ⊥045CBE ︒<∠<︒105D BC ABE ∠+∠=︒4590CBE ︒<∠<︒105D BC ABE ∠+∠>︒1b +1b+【答案】10【分析】本题主要考查了求圆柱的体积,先求出圆柱的底面积,再根据圆柱的体积【详解】解:一个高∴底面面积:102=5dm÷,,,;如图,,,.故答案为:或.【点睛】本题考查了垂线的性质及角的计算,EO CD ⊥ 90EOC ∴∠=︒60AOC ∠=︒ 906030AOE ∴∠=︒-︒=︒EO CD ⊥ 90EOC ∴∠=︒9060150AOE ∴∠=︒+︒=︒30︒150︒【答案】或【分析】分和,两种情况进行讨论求解即可.【详解】解:由题意,得:的运动时间为:秒,的运动时间为:秒;∴运动的时间相同;设运动时间为秒,则:,∵,∴,当时:,∴,,∴,∴,∴,即:;当,在上方时:如图,,2255x y +=2105x y -=90AOM ∠≤︒90AOM ∠>︒OM 180603︒÷︒=ON 90303︒÷︒=,OM ON t 60,30AOM t BON t ∠=︒∠=︒OE AB ⊥90AOE BOE ∠=∠=︒90AOM ∠≤︒COM AOM AOC AOM AOE COE ∠=∠+∠=∠+∠-∠6090156075x t t =+-=+NOE BOE BON ∠=∠-∠9030y t =-3090t y =-()29075x y =-+2255x y +=90AOM ∠>︒ON OD 1180COM BOM BOE EOC AOM AOE COE ∠=∠+∠+∠=︒-∠+∠+∠∴,,∴,∴,∴,即:;当,在下方时:如图2,,∴,,∴,∴,∴,即:;综上:与之间的数量关系为或;故答案为:或.【点睛】本题考查几何图形中角度的计算.正确的识图,理清角之间的和差关系,是解题的关键.三、解答题(共52分)18060901528560x t t =-++=-NOE BOE BON ∠=∠-∠9030y t =-3090t y =-()285290x y =--2105x y -=90AOM ∠>︒ON OD 180COM BOM BOE EOC AOM AOE COE ∠=∠+∠+∠=︒-∠+∠+∠18060901528560x t t =-++=-NOE BOE BON ∠=∠-∠9030y t =-3090t y =-()285290x y =--2105x y -=x y 2255x y +=2105x y -=2255x y +=2105x y -=移项得:,合并得:,解得:.19.如图是由棱长都为的6块小正方体搭成的简单几何体.(1)直接写出这个几何体的表面积;(2)按要求在方格中画出从这个几何体不同的方向看到的形状图.【答案】(1)(2)见解析【分析】本题考查求简单组合体的表面积,以及三视图.熟练掌握三视图的画法,是解题的关键.(1)先数出各个方向正方形的个数,相加后乘一个小正方形的面积即可求解..(2)从正面看得到从左往右4列正方形的个数依次为1,2,1,1;从左面看得到从左往右2列正方形的个数依次为2,1;从上面看得到从左往右4列正方形的个数依次为2,1,1,1,依此画出图形即可.【详解】(1),∴这个几何体的表面积为.(2)如图所示.20.郑州地铁10号线于2023年9月28日开通运营,起于荥阳市郑州西站,途经中原区,止于二七区郑州火车站,线路主要沿中原路、康复后街呈东西向布置,其中的12个站点如图所示.91014312y y -=-++1y -=1y =-1cm 226cm ()211665226cm⨯⨯⨯-⨯=226cm小墩从郑州西站开始乘坐地铁,在图中12个地铁站点做值勤志愿服务,到约定向郑州火车站方向为正,当天的乘车记录如下(单位:站):(1)请你通过计算说明A 站是哪一站?(2)已知相邻两站之间的平均距离为千米,求小墩在志愿者服务期间乘坐地铁行进的路程是多少千米?【答案】(1)A 站是郑州西站(2)小墩在志愿者服务期间乘坐地铁行进的路程是45千米(1)若,,线段在线段上移动.①如图1,当为中点时,求的长;1.518AB =8DE =DE AB E BC AD为中点,,E BC 3CE EF +=设,,则设,,则CE x =DC y =DE CE x =DC y =DE y =-(1)点表示的有理数是 ,点表示的有理数是 ,点A C元;当时,甲的用水量超过,乙的用水量超过但不超过,∴元,当时,甲的用水量超过,乙的用水量不超过,∴元;综上所述,当时,甲,乙两户一个月共缴纳的水费元;当时,甲,乙两户一个月共缴纳的水费元;当时,甲,乙两户一个月共缴纳的水费元.【点睛】本题主要考查了有理数的四则混合计算的实际应用,整式加减计算的实际应用,正确理解题意利用分类讨论的思想求解是解题的关键.24.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从地出发,晚上到达地,约定向东为正方向,当天的航行路程记录如下(单位:千米).,,,,,,,,.(1)请你帮忙确定地位于地的什么方向,距离地有多少千米?(2)救灾过程中,冲锋舟离出发点最远处有_____千米.(3)若冲锋舟每千米耗油0.5升,油箱容量为30升,求冲锋舟当天救灾过程中至少还需补充多少升油?【答案】(1)地位于地东方,距离地有22千米(2)25(3)8升【分析】(1)根据有理数的加法,可得和,再根据向东为正,结合和的符号可判定方向及距离;(2)首先计算每次行程后与出发点的距离,再比较有理数的大小,可得答案;(3)首先计算当天航行的总里程,进而可得当天耗油量,再根据耗油量与已有的油量,可得答案.【详解】(1)解:∵,∴地位于地东方,距离地有22千米;()116x =-2028x <<320m 312m 320m ()()()1222012 1.52202212240122 1.5x x ⨯+-⨯⨯+-⨯⨯+⨯+--⨯⨯242448024843x x=++-++-()76x =+2840x ≤≤320m 312m ()()()1222012 1.522022402x x ⨯+-⨯⨯+-⨯⨯+-⨯2424480802x x=++-+-()248x =+1220x <≤()116x -2028x <<()76x +2840x ≤≤()248x +A B 14+9-8+7-13+6-12+5-2+B A A A B A A (14)(9)(8)(7)(13)(6)(12)(5)(2)22++-+++-+++-+++-++=+B A A(1)如图1,,,请判断70AOB ∠=︒50AOC ∠=︒∴,∵,∴,即:,∴,此时:,故这种情况不存在;综上:当为的“分余线”时,或或100°.【点睛】本题考查角的和差计算.理解并掌握“分余线”的定义,是解题的关键.注意分类讨论.24∠∠=1234155AOB ∠=∠+∠+∠+∠=︒334155∠+∠=︒902434155︒-∠+∠=︒465∠=︒390240∠=︒-∠<︒OC MON ∠88AOC ∠=︒775︒.。
人教版七年级数学上册期末考试试题4套(含答案)
人教版七年级上册数学期末考试(一)(时间: 分钟 满分:120分) 评分——一、选择题:(下列各小题都给出四个选项,其中只有一项是符合题目要求的,每小题3分,共1.-2的绝对值是A .-2B .2C .12D .-122.如图1,已知线段AB ,以下作图不可能的是 A. 在AB 上取一点C ,使AC=BCB. 在AB 的延长线上取一点C ,使BC=ABC. 在BA 的延长线上取一点C ,使BC=ABD.在BA 的延长线上取一点C ,使BC=2AB3. 下列计算正确的是 A. - (23)3=276- B.-(32)2 =94 C. - (32)3=278 D. - (53)3= - 125274.下列方程中,属于一元一次方程的是 A.021=+xB. 3x 2+4y=2C. x 2+3x=x 2-1D.x 2+3x-1=8+5x 5.下列事件中,必然发生的事件是(A )明天会下雨 (B )小明数学考试得99分 (C )今天是星期一,明天就是星期二(D )明年有370天 6.如图,∠AOB=180°,OD 、OE 分别是∠AOC 和∠BOC的平分线,则与线段OD 垂直的射线是A.OAB.OCC.OED.OB 7. 用一个平面去截一个正方体,截面的形状不可能是 A 、梯形 B 、五边形 C 、六边形 D 、七边形8.如果2(x+3)的值与3(1-x)的值互为相反数,那么x 等于A.9B.8C.-9D.-89..某工厂现有工人x 人,若现有人数比两年前原有人数减少35%,则该工厂原有人数为图1O BAOBECDAA %351+xB %351-xC (1+35%)xD (1+35%)x10.如果代数式4y 2-2y +5的值是7,那么代数式2y 2-y+1的值等于 A . 2 B . 3 C .﹣2 D .4 二、耐心填一填:(本大题8小题,每小题3分,计24分)11、若点C 是线段AB 的中点,且AB=10cm,则AC = cm .12、姚明一定不会输给其他任何一个NBA 球员:是 事件(填必然,不可能或不确定)。
七年级第一学期期末考试(数学)试题含答案
七年级第一学期期末考试(数学)(考试总分:120 分)一、单选题(本题共计16小题,总分42分)1.(3分)下列运算结果是a2的是( )A.a+aB.a+2C.a•2D.a•a2.(3分)如图,射线OA表示的方向是( )A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°3.(3分)我国渤海、黄海、东海、南海的海水中含有不少化学元素,其中铝、锰元素总量均约为8×106吨.用科学记数法表示铝、锰元素总量的和约是( )A.8×106吨B.1.6×107吨C.16×106吨D.16×1012吨4.(3分)已知x=5是方程2x−3+a=4的解,则a的值是( )A.3B.2C.-3D.-25.(3分)下列说法不正确...的是( )①a3b的系数是3,次数是3;①近似数304.16精确到了十分位;①多项式−5x+6x2−1是二次三项式;①射线AB与射线BA是同一条射线;①一个角的补角不是锐角就是钝角A.①①①①B.①①①C.①①①D.①①①6.(3分)下列变形不正确...的是( )A.如果a=b,那么a+5=b+5B.如果a=b,那么a−c=b−cC.如果ac=bc,那么a=bD.如果ac =bc,那么a=b7.(3分)已知x3-2m y2与2xy n是同类项,则m−n= ( )A.-1B.0C.1D.28.(3分)如图,数轴上三个点所对应的数分别为a,b,c,则下列结论正确的是( )A.a+b > 0B.a-c > 0C.ac > 0D.|a| > |b|x的值为6,则2x2-5x+6的值为( )9.(3分)已知整式x2−52A.9B.12C.18D.2410.(3分)下列图形中,可能..是如图所示的正方体展开图的是( )A.B.C.D.11.(2分)已知|a|=3,|b|=2,|a−b|=a−b,则a+b=( )A.5或−5B.1或5C.5或−1D.−5或112.(2分)互联网"微商"经营已成为大众创业新途径,某微商将一件商品按进价上调50%标价,再以标价的八折售出,仍可获利30元,则这件商品的进价为( )A.80元B.100元C.130元D.150元13.(2分)如图,将一副三角板叠在一起使直角顶点重合于点O(两块三角板可以在同一平面内自由转动),下列结论一定..成立的是( )A.①BOA > ①DOCB.①BOA+① DOC=180°C.①BOA−①DOC=90°D.①BOC≠①DOA14.(2分)如图,点C是线段AB上一点,点M是线段AB的中点,点N是线段AC的中点,若线段MN的长为4,则线段BC的长度是( )A.4B.6C.8D.1015.(2分)在某市奥林匹克联赛中,实验一中学子再创辉煌,竞赛成绩全市领先.某位同学连续答题40道,答对一题得5分,答错一题扣2分(不答同样算作答错),最终该同学获得144分.请问这位同学答对了多少道题?下面共列出4个方程,其中正确的有( )①设答对了x道题,则可列方程:5x−2(40−x)=144;①设答错了y道题,则可列方程:5(40−y)−2y=144;①设答对题目总共得a分,则可列方程:a5+a−1442=40;①设答错题目总共扣b分,则可列方程:144−b5-b2=40.A.4个B.3个C.2个D.1个16.(2分)在学校温暖课程数字兴趣课中,嘉淇同学将一个边长为a的正方形纸片(如图1)剪去两个相同的小长方形,得到一个""的图案(如图2),将剪下的两个小长方形刚好拼成一个"T"字形(如图3),则"T"字形的外围周长(不包括虚线部分)可表示为( )图1 图2图3A.3a−5bB.5a−8bC.5a−7bD.4a−6b二、填空题(本题共计3小题,总分12分)17.(4分)植树时只要定出两棵树的位置,就能确定这一行树所在的直线,原因是__________.18.(4分)对有理数a,b规定运算"①"的意义为a①b=a+2b,比如:5①7=5+2×7,则方程3x①14=2−x的解为__________ .19.(4分)如图,某花园护栏是用直径为80厘米的半圆形条钢组制而成,且每增加一个半圆形条钢,护栏长度就增加a厘米(相邻两个条钢之间都有交叉,a为正整数),设半圆形条钢的总个数为x(x为正整数).(1).当a=50,x=2时,护栏总长度为__________厘米;(2).当a=60时,护栏总长度为__________厘米(用含x的式子表示,结果要求化简);(3).若护栏的总长度为15米,为尽量减少条钢用量,a的值应为__________厘米.三、解答题(本题共计7小题,总分66分)20.(8分)按要求解答下列各小题.(1).计算:(-1)2021+(-18)×|-29|-4÷(-2);(2).化简:5a2+3b2+2(a2−b2)−(5a2−3b2).21.(8分)嘉淇正在解关于x的方程A:x−2m=−3x+4.(1).用含m的式子表示方程A的解;(2).嘉淇妈妈问:"若方程A与关于x的方程B:m=4-x2的解互为相反数,那么此时方程A的解为多少?"请你帮嘉淇解决妈妈提出的问题.22.(9分)已知A=by2−ay−1,B=2y2+3ay−10y+3.(1).若多项式2A−B的值与字母y的取值无关,求a,b的值;(2).在1的条件下,求(2a2b+2ab2)−[2(a2b−1)+3a2b+2]的值.23.(9分)阅读下列材料:计算:124÷(13−14+112).解法一:原式=124÷13−124÷14+124÷112=124×3−124×4+124×12=1124.解法二:原式=124÷(412−312+112)=124÷212=124×6=14.解法三:原式的倒数=(13−14+112)÷124=(13−14+112)×24=13×24−14×24+112×24=4原式=14 .(1).上述得到的结果不同,你认为解法________是错误的; (2).计算:(12−14+16)×36=________;(3).请你选择合适的解法计算:(−1210)÷(37+215−310−521)24.(10分)已知点O 是直线AB 上一点,①COE=60°,OF 是①AOE 的平分线. (1).如图,当①BOE=80°时,求①COF 的度数;(2).当①COE 和射线OF 在如图所示的位置,且题目条件不变时.①求①COF 与①AOE 之间的数量关系; ①直接写出①BOE-2①COF 的值.25.(10分)甲、乙两城相距800千米,一辆客车从甲城开往乙城,车速为a(0<a <100)千米/小时,同时一辆出租车从乙城开往甲城,车速为90千米/小时,设客车行驶时间为t (小时). (1).当t =5时,客车与乙城的距离为______千米(用含a 的式子表示);(2).已知a =70,丙城在甲、乙两城之间,且与甲城相距260千米,当客车和出租车在甲、乙之间的M 处相遇时,出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种返回乙城的方案:方案一:继续乘坐出租车到丙城,加油后立刻返回乙城(出租车加油时间忽略不计); 方案二:在M 处换乘客车返回乙城.假设客车和出租车的行驶速度始终不变,试通过计算,分析小王选择哪种方案能更快返回到乙城?26.(12分)如图,已知点M是线段AB上一定点,AB=12cm,C,D两点分别从M,B出发,以1cm/s,2cm/s的速度沿直线AB向左运动(C在线段AM上,D在线段BM上).(1).若AM=4cm,当点C,D运动了2s时,AC=______.DM=______.(2).若点C,D运动时,总有MD=2AC,求AM的长;的值。
2023—2024学年最新华东师大新版七年级上学期数学期末考试试卷(附参考答案)
最新华东师大新版七年级上学期数学期末考试试卷考生注意:本试卷共三道大题,26道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分36分)1、《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80元记作+80元,则﹣50元表示()A.收入50元B.收入30元C.支出50元D.支出30元2、港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程总投资1269亿元,将1269亿用科学记数法表示,结果并精确到百亿约为()A.13×1010B.1.2×1011C.1.3×1011D.0.12×1012 3、如图是由5个大小相同的正方体组成的立体图形,其俯视图是()A.B.C.D.4、下列去括号正确的是()A.a﹣(b+c)=a﹣b+c B.a﹣(b﹣c)=a+b﹣cC.a﹣(b﹣c)=a﹣b﹣c D.a﹣(b+c)=a﹣b﹣c5、如图,下列各组条件中,能得到AB∥CD的是()A.∠1=∠3 B.∠2=∠4C.∠B=∠D D.∠1+∠2+∠B=180°6、如图所示的四条射线中,表示南偏西60°的是()A.射线OA B.射线OBC.射线OC D.射线OD7、a,b是有理数,它们在数轴上的对应点的位置如图所示:把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.a<﹣b<b<﹣aC.﹣b<a<﹣a<b D.a<﹣b<﹣a<b8、如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.115°B.110°C.120°D.130°9、下列哪个图形是正方体的展开图()A.B.C.D.10、钟表在1点30分时,它的时针和分针所成的角度是()A.135°B.125°C.145°D.115°11、当x=2时,整式ax3+bx﹣1的值等于﹣100,那么当x=﹣2时,整式ax3+bx﹣1的值为()A.100B.﹣100C.98D.﹣9812、如图,两个平行四边形的面积分别为18、12,两阴影部分的面积分别为a、b(a>b),则(a﹣b)等于()A.4B.5C.6D.7二、填空题(每小题3分,满分18分13、比较大小:﹣﹣14、在数轴上点A表示数1,点B与点A相距3个单位,点B表示数是.15、若2a3b n+3与4a m﹣1b4的和是单项式,则﹣m+n=.16、若关于x、y的二次多项式﹣3x2+y3+nx2﹣4y+3的值与x的取值无关,则n=.17、如图,OP∥QR∥ST,若∠2=100°,∠3=120°,则∠1=.18、由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n个图形中有白色正方形个(用含n的代数式表示).最新华东师大新版七年级上学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,26道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________13、_______ 14、______15、_______ 16、______17、_______ 18、______三、解答题(19、20题每题6分,21、22每题8分,23、24每题9分,25、26每题10分,共计66分,解答题要有必要的文字说明)19、计算:.20、先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.21、有理数a、b、c在数轴上的位置如图.(1)用“>”或“<”填空:c﹣b0,a+b0,c﹣a0;(2)化简:|c﹣b|+3|a+b|﹣|c﹣a|.22、某水泥仓库一周7天内进出水泥的吨数如下(“+”表示进库,“﹣”表示出库):+30、﹣25、﹣30、+28、﹣29、﹣16、﹣15.(1)经过这7天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这7天,仓库管理员结算发现库里还存200吨水泥,那么7天前,仓库里存有水泥多少吨?(3)如果进仓库的水泥装卸费是每吨a元、出仓库的水泥装卸费是每吨b元,求这7天要付多少元装卸费?23、如图,AD∥EF,∠1+∠2=180°.(1)求证:DG∥AB;(2)若DG是∠ADC的角平分线,∠ADB=120°,求∠B的度数.24、如图,C为线段AD上一点,点B为CD的中点,且AD=9cm,BD=2cm.(1)图中共有条线段.(2)求AC的长.(3)若点E在直线AD上,且EA=3cm,求BE的长.25、对于一个四位自然数N,如果N满足各数位上的数字不全相同且均不为0,它的千位数字减去个位数字之差等于百位数字减去十位数字之差,那么称这个数N为“差同数”.对于一个“差同数”N,将它的千位和个位构成的两位数减去百位和十位构成的两位数所得差记为s,将它的千位和十位构成的两位数减去百位和个位构成的两位数所得差记为t,规定:.例:N=7513,因为7﹣3=5﹣1,故:7513是一个“差同数”.所以:s=73﹣51=22,t=71﹣53=18,则:.(1)请判断4378是否是“差同数”.如果是,请求出F(N)的值;(2)若自然数P,Q都是“差同数”,其中P=1000x+10y+616,Q=100m+n+3042(1≤x≤9,0≤y≤8,1≤m≤9,0≤n≤7,x,y,m,n都是整数),规定:,当3F(P)﹣F(Q)能被11整除时,求k的最小值.26、如图1,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.(1)求证:∠BAG=∠BGA;(2)如图2,若过G点作GE∥AB交AD于E,连接CE,CE恰好平分∠BCD,∠1﹣∠2=20°求∠AGE的度数;(3)如图3,线段AG上有一点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线AG上取一点M,使∠PBM=∠DCH,求的值.最新华东师大新版七年级上学期数学期末考试试卷(参考答案)13、>14、﹣2或415、﹣3 16、3 17、40°18、(3n﹣1)三、解答题19、.20、-821、解:(1)>、<、>(2)﹣2a﹣4b22、(1)减少了57吨(2)257吨(3)这7天要付(58a+115b)元装卸费23、解:(1)6 (2)5cm (3)BE的长是4或10cm24、解:(1)证明(略)(2)30°25、解:(1)(2)k的最小值为26、(1)证明(略)(2)65°(3)或5。
人教版七年级数学上册期末考试试卷含答案
人教版数学七年级上册期末考试试题一、选择题(每小题3分,共30分)1.a、b,在数轴上表示如图1,下列判断正确的是()A.0a>+bB.0+b1>C.0-b1<-D.01>a+2.如图2,在下列说法中错误的是()A.射线OA的方向是正西方向B.射线OB的方向是东北方向C.射线OC的方向是南偏东60°D.射线OD的方向是南偏西55°3.下列运算正确的是( )A.2+ C.ab2=ba2-ab=3a53-x5=bx B.abD.a=-)(-bba+4.如果有理数ba,满足0a,则下列说法正确的是( )+b<ab,0>A.0<ba D.0>b,0<,0<a>ba C.0a B.0,0>,0><b5.若0m+的值为( )+-n+m,如n1(2=||2)A.1-B.3- C.3 D.不确定6.若0a,那么( )|>|A.0≠a D.a为任意有理数a C.0a B.0><7.平面内有三个点,过任意两点画一条直线,则可以画直线的条数是( )A.2条B.3条C.4条D.1条或3条8.将长方形的纸ABCD沿AE折叠,得到如图3所示的图形,已知∠CED′=60º.则∠AED的是( )A.60ºB.50ºC.75ºD.55º9.在正方体的表面上画有如图4 a所示的粗线,图4 b是其展开图的示意图,但只在A面上有粗线,那么将图4 a中剩余两个面中的粗线画入图4 b中,画法正确的是()10.一家三口人(父亲、母亲、女儿)准备参加旅游团外出旅游,甲旅行社告知“父母全票,女儿半价优惠”,乙旅行社告知家庭可按团体票计价,即每4收费。
若这两家旅行社每人原价相同,那么优惠条件是人均按全价5()A.甲比乙更优惠B.乙比甲更优惠C.甲与乙相同D.与原价有关二、填空题(每空3分,共30分)11.手枪上瞄准系统设计的数学道理是 。
北京市第二中学教育集团2023-2024学年七年级上学期期末数学试题(含解析)
2023−2024学年度第一学期初一数学期末考试试卷考查目标1.知识:人教版七年级上册《有理数》、《整式的加减》、《一元一次方程》、《几何图形初步》全部内容.2.能力:抽象能力,运算能力,推理能力,几何直观能力,阅读理解能力,实际应用能力.考生须知1.本试卷分为第I 卷、第Ⅱ卷和答题卡,共14页;其中第1卷2页,第Ⅱ卷6页,答题卡6页.全卷共三道大题,28道小题.2.本试卷满分100分,考试时间100分钟.3.在第Ⅰ卷、第Ⅱ卷指定位置和答题卡的密封线内准确填写班级、姓名、考号、座位号.4.考试结束,将答题卡交回.第I 卷 (选择题共16分)一、选择题(以下每题只有一个正确的选项,每小题2分,共16分)1.如图是某几何体的三视图,该几何体是( )A .圆柱B .圆锥C .三棱锥D .长方体2.2023年8月,新一代人造太阳“中国环流三号”首次实现100万安培等离子体电流下的高约束模式运行,标志着我国磁约束核聚变装置运行水平迈入国际前列.将1000000用科学记数法表示应为( )A .B .C .D .3.如图,甲从点出发向北偏东方向走到点,乙从点出发向南偏西方向走到点,则的度数是( )6110⨯51010⨯70.110⨯7110⨯O 50︒A O 20︒B AOB ∠A .B 4.已知,,且A .2或8B 5.如图,A .6.若是关于A .10107.如图,将一刻度尺放在数轴上.70︒29a =5b =AOB AOC ∠∠:36︒2x =A .1B .3C .5D .6第Ⅱ卷 (非选择题共84分)10.多项式是 11.若一个角的补角比它的余角的312.古代名著《算学启蒙》中有一题行一十二日,问良马几何追及之.意思是里.慢马先走12天,快马几天可追上慢马?若设快马程为 .32231a a a -+-15.如图,一个大正方形的四个角落分别放置了四张大小不同的正方形纸片,其中号两张正方形纸片既不重叠也无空隙.已知阴影部分的周长是 .(用含a (1)画直线;(2)连接并延长到(3)画射线、并度量AB BC BC CA CD解:∵,∴,∵,∴90AOB ∠=︒90BOC AOC ∠+∠=︒90COD ∠=︒90BOC BOD ∠+∠=︒依题得:,,.50AOC ∠=︒AOB AOD BOD ∴∠=∠+∠COD AOC BOD =∠-∠+∠1805020=︒-︒+︒150=︒根据上图可知:第一次变换后,朝上的点数为5,9.两点之间,线段最短【分析】本题主要考查了线段的性质,即两点之间,线段最短.【详解】解:亮亮打开导航,显示两地直线距离为,但导航提供的三条可选路线长却分别为,,,能解释这一现象的数学知识是:两点之间,线段最短.故答案为:两点之间,线段最短.10. 三 四【分析】本题考查了多项式的概念,几个单项式的和叫做多项式.多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数.根据多项式的概念解答即可.【详解】解:∵有4个项,最高次项是3次,∴多项式是三次四项式.故答案为;三,四.11.##43度【分析】本题考查了余角和补角的意义,如果两个角的和等于,那么这两个角互为余角,其中一个角叫做另一个角的余角;如果两个角的和等于,那么这两个角互为补角,其中一个角叫做另一个角的补角.设这个角为,根据题意列方程求解即可.【详解】解:设这个角为,由题意,得,解得.故答案为:.12.240x=150x+12×150【分析】设良马x 天能够追上驽马,根据路程=速度×时间结合二者总路程相等,即可得出关于x 的一元一次方程.【详解】解:设良马x 天能够追上驽马.根据题意得:240x=150×(12+x )=150x+12×150.【点睛】本题考查的知识点是一元一次方程的应用,解题关键是根据路程=速度×时间结合二者总路程相等,列出关于x 的一元一次方程.13.2或359km 70km 73km 75km 32231a a a -+-32231a a a -+-43︒90︒180︒x ︒x ︒()1803904x x ︒-︒=︒--︒43x =43︒21.2【分析】本题考查了与线段中点有关的计算,据线段中点的定义求出的长,再根据【详解】解:∵点O 是的中点,∴,OB AB 182OB AB ==及根据绝对值的意义化简绝对值.(1)根据数轴可知a .b ,c 的正负性即可求解.(2)根据数轴可知,,,然后根据绝对值的性质化解求解即可.【详解】(1)解:根据数轴可得:,∴,.故答案为:,(2)根据数轴可得:,,∴24.(1)1040(2)302立方米【分析】本题考查了有理数的混合运算,一元一次方程的应用,找到相等关系是解题的关键.(1)根据题中的收费标准计算;(2)根据“B 家庭2023年水费为1838元”列方程求解.【详解】(1)(元),故答案为:1040;(2)设该家庭年用水量为x 立方米,∵,∴,则:,解得:,答:该家庭年用水量为302立方米.25.(1)见详解0b <0a c +>0b a -<0b a c <<<0c -<0abc ><>0b <0a c +>0b a -<||||||b ac b a ++--()b ac a b =-++--b a c a b=-++-+c=()180572001801040⨯+⨯-=()1805726018014601838⨯+⨯-=<260x >()()1805726018092601838x ⨯+⨯-+-=302x =设,∵射线绕点O 顺时针旋转得到射线∴∵平分,平分AOC α∠=OC 90︒90AOD AOC COD a ∠=∠+∠=+OE AOD ∠OF BOC ∠设,则∵平分,平分∴,则设,则,∵平分,平分∴,设,则∵平分,平分AOC β∠=AOD β∠=+OE AOD ∠OF BOC ∠19022EOD AOD β+︒∠=∠=EOF EOD FOC COD ∠=∠+∠-∠AOC γ∠=90AOD γ∠=︒-OE AOD ∠OF BOC ∠19022EOD AOD γ︒-∠=∠=FOC ∠AOC α∠=AOD AOC ∠=∠-360240BOC AOB AOC ∠=︒-∠-∠=OE AOD ∠OF BOC ∠。
七年级上册数学期末考试试卷及答案
七年级上册数学期末考试试卷及答案七年级上册数学期末考试试卷及答案期末考试对学生一个学期所学知识做全面的检测,下面是店铺为大家整理的七年级数学期末考试卷及答案,希望大家能够认真做题,查漏补缺!更多考试相关内容请及时关注我们店铺!一、选择题(共15小题,每小题3分,满分45分)1. |﹣2|等于( )A.﹣2B.﹣C.2D.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是( )A.1枚B.2枚C.3枚D.任意枚3.下列方程为一元一次方程的是( )A.y+3=0B.x+2y=3C.x2=2xD. +y=24.下列各组数中,互为相反数的是( )A.﹣(﹣1)与1B.(﹣1)2与1C.|﹣1|与1D.﹣12与15.如图,下列图形全部属于柱体的是( )A. B. C. D.6.若关于x的方程mxm﹣2﹣m+3=0是一元一次方程,则这个方程的解是( )A.x=0B.x=3C.x=﹣3D.x=27.已知同一平面内A、B、C三点,线段AB=6cm,BC=2cm,则A、C两点间的距离是( )A.8cmB.84mC.8cm或4cmD.无法确定8.一元一次方程﹣ =1,去分母后得( )A.2(2x+1)﹣x﹣3=1B.2(2x+1)﹣x﹣3=6C.2(2x+1)﹣(x﹣3)=1D.2(2x+1)﹣(x﹣3)=69.为了解我区七年级6000名学生期中数学考试情况,从中抽取了500名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②6000名学生是总体;③每名学生的数学成绩是个体;④500名学生是总体的一个样本.其中正确的判断有( )A.1个B.2个C.3个D.4个10.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于( )A.30°B.45°C.50°D.60°11.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB的大小为( )A.69°B.111°C.141°D.159°12.如图,M是线段AB的中点,点N在AB上,若AB=10,NB=2,那么线段MN的长为( )A.5B.4C.3D.213.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )A.240元B.250元C.280元D.300元14.下列四种说法:①因为AM=MB,所以M是AB中点;②在线段AM的延长线上取一点B,如果AB=2AM,那么M是AB的中点;③因为M是AB的中点,所以AM=MB= AB;④因为A、M、B在同一条直线上,且AM=BM,所以M是AB 中点.其中正确的是( )A.①③④B.④C.②③④D.③④15.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是( )A. B.C. D.二、填空题(共8小题,每小题3分,满分24分)16.单项式﹣ xy2的系数是.17.若x=2是方程8﹣2x=ax的解,则a= .18.计算:15°37′+42°51′=.19.在半径为6cm的圆中,60°的圆心角所对的扇形面积等于cm2(结果保留π).20.如图,在线段AB上有两点C、D,AB=24 cm,AC=6 cm,点D是BC的中点,则线段AD= cm.21.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°,若∠AOC=40°,则∠DOE为度.22.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为.23.观察下面的一列单项式:2x;﹣4x2;8x3;﹣16x4,…根据你发现的规律,第n个单项式为.三、解答题(共7小题,满分51分)24.计算:(1)﹣14﹣5×[2﹣(﹣3)2](2)先化简再求值(5a2+2a﹣1)﹣4(3﹣8a+2a2),其中a=﹣1.25.解方程:(1)2(3﹣y)=﹣4(y+5);(2) = ;(3) ﹣ =1;(4)x﹣ =1﹣ .26.列方程解应用题:根据图中提供的信息,求出一个杯子的价格是多少元?27.列方程解应用题:已知A、B两地相距48千米,甲骑自行车每小时走18千米,乙步行每小时走6千米,甲乙两人分别A、B两地同时出发.(1)同向而行,开始时乙在前,经过多少小时甲追上乙?(2)相向而行,经过多少小时两人相距40千米?28.为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图所示中两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为0.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间为2小时的扇形圆心角的度数.29.已知,如图,∠AOB=150°,OC平分∠AOB,AO⊥DO,求∠COD的度数.30.已知关于x的方程的解是x=2,其中a≠0且b≠0,求代数式的值.四、选做题(共3小题,不计入总分)31.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是(请写出盈利或亏损) 元.32.|x+2|+|x﹣2|+|x﹣1|的最小值是.33.一个盖着瓶盖的瓶子里面装着一些水(如下图所示),请你根据图中标明的数据,计算瓶子的容积.2015-2016学年山东省济南市历下区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分)1.|﹣2|等于( )A.﹣2B.﹣C.2D.【考点】绝对值.【专题】探究型.【分析】根据绝对值的定义,可以得到|﹣2|等于多少,本题得以解决.【解答】解:由于|﹣2|=2,故选C.【点评】本题考查绝对值,解题的关键是明确绝对值的定义.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是( )A.1枚B.2枚C.3枚D.任意枚【考点】直线的性质:两点确定一条直线.【分析】根据直线的性质,两点确定一条直线解答.【解答】解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.3.下列方程为一元一次方程的是( )A.y+3=0B.x+2y=3C.x2=2xD. +y=2【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、正确;B、含有2个未知数,不是一元一次方程,选项错误;C、最高次数是2次,不是一元一次方程,选项错误;D、不是整式方程,不是一元一次方程,选项错误.故选A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.4.下列各组数中,互为相反数的是( )A.﹣(﹣1)与1B.(﹣1)2与1C.|﹣1|与1D.﹣12与1【考点】相反数;绝对值;有理数的乘方.【专题】计算题.【分析】根据相反数得到﹣(﹣1),根据乘方得意义得到(﹣1)2=1,﹣12=﹣1,根据绝对值得到|﹣1|=1,然后根据相反数的定义分别进行判断.【解答】解:A、﹣(﹣1)=1,所以A选项错误;B、(﹣1)2=1,所以B选项错误;C、|﹣1|=1,所以C选项错误;D、﹣12=﹣1,﹣1与1互为相反数,所以D选项正确.故选D.【点评】本题考查了相反数:a的相反数为﹣a.也考查了绝对值与有理数的乘方.5.如图,下列图形全部属于柱体的是( )A. B. C. D.【考点】认识立体图形.【专题】常规题型.【分析】根据柱体的定义,结合图形即可作出判断.【解答】解:A、左边的图形属于锥体,故本选项错误;B、上面的图形是圆锥,属于锥体,故本选项错误;C、三个图形都属于柱体,故本选项正确;D、上面的图形不属于柱体,故本选项错误.故选C.【点评】此题考查了认识立体图形的知识,属于基础题,解答本题的关键是掌握柱体和锥体的定义和特点,难度一般.6.若关于x的方程mxm﹣2﹣m+3=0是一元一次方程,则这个方程的解是( )A.x=0B.x=3C.x=﹣3D.x=2【考点】一元一次方程的定义.【专题】计算题.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.【解答】解:由一元一次方程的特点得m﹣2=1,即m=3,则这个方程是3x=0,解得:x=0.故选:A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.7.已知同一平面内A、B、C三点,线段AB=6cm,BC=2cm,则A、C两点间的距离是( )A.8cmB.84mC.8cm或4cmD.无法确定【考点】两点间的距离.【分析】根据点B在线段AC上和在线段AC外两种情况进行解答即可.【解答】解:如图1,当点B在线段AC上时,∵AB=6cm,BC=2cm,∴AC=6+2=8cm;如图2,当点CB在线段AC外时,∵AB=6cm,BC=2cm,∴AC=6﹣2=4cm.故选:C.【点评】本题考查的是两点间的距离,正确理解题意、灵活运用分情况讨论思想是解题的关键.8.一元一次方程﹣ =1,去分母后得( )A.2(2x+1)﹣x﹣3=1B.2(2x+1)﹣x﹣3=6C.2(2x+1)﹣(x﹣3)=1D.2(2x+1)﹣(x﹣3)=6【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程两边乘以6去分母得到结果,即可作出判断.【解答】解:去分母得:2(2x+1)﹣(x﹣3)=6,故选D【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.9.为了解我区七年级6000名学生期中数学考试情况,从中抽取了500名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②6000名学生是总体;③每名学生的数学成绩是个体;④500名学生是总体的一个样本.其中正确的判断有( )A.1个B.2个C.3个D.4个【考点】总体、个体、样本、样本容量;全面调查与抽样调查.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:①这种调查方式是抽样调查故①正确;②6000名学生的数学成绩是总体,故②错误;③每名学生的数学成绩是个体,故③正确;④500名学生是总体的一个样本,故④正确;故选:C.【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.10.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于( )A.30°B.45°C.50°D.60°【考点】角的计算.【专题】计算题.【分析】从如图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.【解答】解:∵∠AOB=∠COD=90°,∠AOD=150°∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣150°=30°.故选A.【点评】此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.11.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB的大小为( )A.69°B.111°C.141°D.159°【考点】方向角.【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.【点评】此题主要考查了方向角,关键是根据题意找出图中角的度数.12.如图,M是线段AB的中点,点N在AB上,若AB=10,NB=2,那么线段MN的长为( )A.5B.4C.3D.2【考点】两点间的距离.【分析】根据M是AB中点,先求出BM的长度,则MN=BM﹣BN.【解答】解:∵AB=10,M是AB中点,∴BM= AB=5,又∵NB=2,∴MN=BM﹣BN=5﹣2=3.故选C.【点评】考查了两点间的距离,根据点M是AB中点先求出BM 的长度是解本题的关键.13.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )A.240元B.250元C.280元D.300元【考点】一元一次方程的应用.【专题】应用题.【分析】设这种商品每件的进价为x元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可.【解答】解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选:A.【点评】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是根据题意列出方程,难度一般.14.下列四种说法:①因为AM=MB,所以M是AB中点;②在线段AM的延长线上取一点B,如果AB=2AM,那么M是AB的中点;③因为M是AB的中点,所以AM=MB= AB;④因为A、M、B在同一条直线上,且AM=BM,所以M是AB 中点.其中正确的是( )A.①③④B.④C.②③④D.③④【考点】比较线段的长短.【专题】应用题.【分析】根据线段中点的定义:线段上一点,到线段两端点距离相等的点,可进行判断解答.【解答】解:①如图,AM=BM,但M不是线段AB的中点;故本选项错误;②如图,由AB=2AM,得AM=MB;故本选项正确;③根据线段中点的定义判断,故本选项正确;④根据线段中点的定义判断,故本选项正确;故选C.【点评】本题考查了线段中点的判断,符合线段中点的条件:①在已知线段上②把已知线段分成两条相等线段的点.15.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是( )A. B.C. D.【考点】由实际问题抽象出一元一次方程.【分析】轮船沿江从A港顺流行驶到B港,则由B港返回A港就是逆水行驶,由于船速为26千米/时,水速为2千米/时,则其顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26﹣2=24千米/时.根据“轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时”,得出等量关系:轮船从A港顺流行驶到B港所用的时间=它从B港返回A港的时间﹣3小时,据此列出方程即可.【解答】解:设A港和B港相距x千米,可得方程:= ﹣3.故选A.【点评】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度﹣水流速度.二、填空题(共8小题,每小题3分,满分24分)16.单项式﹣ xy2的系数是﹣.【考点】单项式.【分析】根据单项式系数的定义来求解.单项式中数字因数叫做单项式的系数.【解答】解:单项式﹣ xy2的系数是﹣,故答案为:﹣ .【点评】本题考查了单项式系数的定义,确定单项式的系数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数的关键.注意π是数字,应作为系数.17.若x=2是方程8﹣2x=ax的解,则a= 2 .【考点】一元一次方程的解.【分析】把x=2,代入方程得到一个关于a的方程,即可求解.【解答】解:把x=2代入方程,得:8﹣4=2a,解得:a=2.故答案是:2.【点评】本题考查了方程的解的定义,理解定义是关键.18.计算:15°37′+42°51′=58°28′.【考点】度分秒的换算.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.【点评】本题考查了度分秒的换算,比较简单,要注意度分秒是60进制.19.在半径为6cm的圆中,60°的圆心角所对的扇形面积等于6πcm2(结果保留π).【考点】扇形面积的计算.【分析】直接利用扇形面积公式计算即可.【解答】解:=6π(cm2).故答案为6π.【点评】此题主要考查了扇形的面积公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形= .熟记公式是解题的关键.20.如图,在线段AB上有两点C、D,AB=24 cm,AC=6 cm,点D是BC的中点,则线段AD= 15 cm.【考点】比较线段的长短.【专题】计算题.【分析】已知AB和AC的长度,即可求出BC的长度,点D是BC的中点,则可求出CD的长度,AD的长度等于AC的长度加上CD 的长度.【解答】解:因为AB=24cm,AC=6cm,所以BC=18cm,点D是BC中点,所以CD的长度为:9cm,AD=AC+CD=15cm.【点评】本题关键是根据题干中的图形得出各线段之间的关系,然后根据这些关系并结合已知条件即可求出AD的长度.21.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°,若∠AOC=40°,则∠DOE为20 度.【考点】角平分线的定义.【分析】先求出∠BOC=140°,再由OD平分∠BOC,求出∠COD= ∠BOC=70°,即可求出∠DOE=20°.【解答】解:∵∠AOC=40°,∴∠BOC=180°﹣∠AOC=140°,∵OD平分∠BOC,∴∠COD= ∠BOC=70°,∵∠COE=90°,∴∠DOE=90°﹣70°=20°;故答案为:20.【点评】本题考查了角平分线的定义;弄清各个角之间的数量关系是解决问题的关键.22.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为55 .【考点】轴对称的性质.【分析】根据轴对称的性质可得∠B′OG=∠BOG,再根据∠AOB′=70°,可得出∠B′OG的度数.【解答】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=70°,可得∠B′OG+∠BOG=110°∴∠B′OG= ×110°=55°.【点评】本题考查轴对称的性质,在解答此类问题时要注意数形结合的应用.23.观察下面的一列单项式:2x;﹣4x2;8x3;﹣16x4,…根据你发现的规律,第n个单项式为(﹣1)n+1•2n•xn.【考点】单项式.【专题】规律型.【分析】先根据所给单项式的次数及系数的关系找出规律,再确定所求的单项式即可.【解答】解:∵2x=(﹣1)1+1•21•x1;﹣4x2=(﹣1)2+1•22•x2;8x3=(﹣1)3+1•23•x3;﹣16x4=(﹣1)4+1•24•x4;第n个单项式为(﹣1)n+1•2n•xn,故答案为:(﹣1)n+1•2n•xn.【点评】本题考查了单项式的应用,解此题的关键是找出规律直接解答.三、解答题(共7小题,满分51分)24.计算:(1)﹣14﹣5×[2﹣(﹣3)2](2)先化简再求值(5a2+2a﹣1)﹣4(3﹣8a+2a2),其中a=﹣1.【考点】整式的加减—化简求值;有理数的减法;有理数的乘方.【专题】计算题;整式.【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式去括号合并得到最简结果,把a的`值代入计算即可求出值.【解答】解:(1)原式=﹣1﹣5×(2﹣9)=﹣1+35=34;(2)原式=5a2+2a﹣1﹣12+32a﹣8a2=﹣3a2+34a﹣13,当a=﹣1时,原式=﹣3﹣34﹣13=﹣50.【点评】此题考查了整式的加减﹣化简求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.25.解方程:(1)2(3﹣y)=﹣4(y+5);(2) = ;(3) ﹣ =1;(4)x﹣ =1﹣ .【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把y系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:6﹣2y=﹣4y﹣20,移项合并得:2y=﹣26,解得:x=﹣13;(2)去分母得:6x﹣4=3,移项合并得:6x=7,解得:x= ;(3)去分母得:6(3x+4)﹣(7﹣2x)=12,去括号得:18x+24﹣7+2x=12,移项合并得:20x=﹣5,解得:x=﹣0.25;(4)去分母得:6x﹣3(3﹣2x)=6﹣(x+2),去括号得:6x﹣9+6x=6﹣x﹣2,移项合并得:13x=13,解得:x=1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.26.列方程解应用题:根据图中提供的信息,求出一个杯子的价格是多少元?【考点】一元一次方程的应用.【分析】设一个杯子的价格是x元,则一把暖瓶为(43﹣x)元,根据题意列出关于x的方程,求出方程的解即可得到结果.【解答】解:设一个杯子的价格是x元,则一把暖瓶为(43﹣x)元,依题意得:3x+2(43﹣x)=94,解得x=8.答:一个杯子的价格为8元.【点评】本题考查了一元一次方程的应用.关键是根据图,得出保温瓶与杯子的价钱之间的数量关系,再根据数量关系的特点,选择合适的方法进行计算.27.列方程解应用题:已知A、B两地相距48千米,甲骑自行车每小时走18千米,乙步行每小时走6千米,甲乙两人分别A、B两地同时出发.(1)同向而行,开始时乙在前,经过多少小时甲追上乙?(2)相向而行,经过多少小时两人相距40千米?【考点】一元一次方程的应用.【分析】(1)根据题意可以列出相应的方程,本题得以解决;(2)根据题意,分两种情况,一种是相遇前相距40千米,一种是相遇后相距40千米,从而可以分别写出两种情况下的方程,本题得以解决.【解答】解:(1)设同向而行,开始时乙在前,经过x小时甲追上乙,18x﹣6x=48解得,x=4即同向而行,开始时乙在前,经过4小时甲追上乙;(2)设相向而行,经过x小时两人相距40千米,18x+6x=48﹣40或18x+6x=48+40,解得x= 或x=即相向而行,经过小时或小时两人相距40千米.【点评】本题考查一元一次方程的应用,解题的关键是明确题意,列出相应的方程,注意第(2)问有两种情况.28.为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图所示中两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为0.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间为2小时的扇形圆心角的度数.【考点】频数(率)分布直方图;扇形统计图.【分析】(1)根据时间是1小时的有32人,占40%,据此即可求得总人数;(2)利用总人数乘以百分比即可求得时间是0.5小时的一组的人数,即可作出直方图;(3)利用360°乘以活动时间是2小时的一组所占的百分比即可求得圆心角的度数.【解答】解:(1)调查人数=32÷40%=80(人);(2)户外活动时间为0.5小时的人数=80×20%=16(人);补全频数分布直方图见下图:(3)表示户外活动时间2小时的扇形圆心角的度数= ×360°=48°.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.29.已知,如图,∠AOB=150°,OC平分∠AOB,AO⊥DO,求∠COD的度数.【考点】角平分线的定义.【分析】先根据角平分线的性质求出∠AOC的度数,再由AO⊥DO求出∠AOD的度数,根据∠COD=∠AOD﹣∠AOC即可得出结论.【解答】解:∵∠AOB=150°,OC平分∠AOB,∴∠AOC= ∠AOB=75°.∵AO⊥DO,∴∠AOD=90°,∴∠COD=∠AOD﹣∠AOC=90°﹣75°=15°.【点评】本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.30.已知关于x的方程的解是x=2,其中a≠0且b≠0,求代数式的值.【考点】一元一次方程的解;代数式求值.【专题】计算题.【分析】此题把x的值代入,得出与的值,即可得出此题答案.【解答】解:把x=2代入方程得:,∴3(a﹣2)=2(2b﹣3),∴3a﹣6=4b﹣6,∴3a=4b,∴ ,,∴ .【点评】此题考查的是一元一次方程的解,关键在于解出关于a,b的比值.四、选做题(共3小题,不计入总分)31.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是亏损(请写出盈利或亏损) 80 元.【考点】一元一次方程的应用.【分析】设盈利20%的电子琴的成本为x元,设亏本20%的电子琴的成本为y元,再根据(1+利润率)×成本=售价列出方程,解方程计算出x、y的值,进而可得答案.【解答】解:设盈利20%的电子琴的成本为x元,x(1+20%)=960,解得x=800;设亏本20%的电子琴的成本为y元,y(1﹣20%)=960,解得y=1200;∴960×2﹣(800+1200)=﹣80,∴亏损80元,故答案为:亏损;80.【点评】此题主要考查了一元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.32.|x+2|+|x﹣2|+|x﹣1|的最小值是 4 .【考点】绝对值.【分析】根据|x﹣a|表示数轴上x与a之间的距离,因而原式表示:数轴上一点到﹣2,2和1距离的和,当x在﹣2和2之间的1时距离的和最小.【解答】解:|x+2|+|x﹣2|+|x﹣1|表示:数轴上一点到﹣2,2和1距离的和,当x在﹣2和2之间的1时距离的和最小,是4.故答案为:4.【点评】本题主要考查了绝对值的意义,正确理解|x﹣a|表示数轴上x与a之间的距离,是解决本题的关键.33.一个盖着瓶盖的瓶子里面装着一些水(如下图所示),请你根据图中标明的数据,计算瓶子的容积.【考点】圆柱的计算.【专题】计算题.【分析】结合图形,知水的体积不变,从而根据第二个图空着的部分的高度是2cm,可以求得水与空着的部分的体积比为4:2=2:1.结合第一个图中水的体积,即可求得总容积.【解答】解:由已知条件知,第二个图上部空白部分的高为7﹣5=2cm,从而水与空着的部分的体积比为4:2=2:1.由第一个图知水的体积为10×4=40,所以总的容积为40÷2×(2+1)=60立方厘米.【点评】此题的关键是解决不同底的问题,能够有机地把两个图形结合起来,求得水与空着的部分的体积比.下载全文。
浙江省杭州市萧山区2023-2024学年七年级上学期期末数学试题(含答案)
2023学年第一学期期末学业水平测试七年级数学试题卷考生须知:1.本试卷满分120分,考试时间120分钟.2.答题前,在答题纸上写姓名和准考证号,并在试卷首页的指定位置写上姓名和座位号.3.必须在答题纸的对应答题位置上答题,写在其他地方无效.答题方式详见答题纸上的说明.4.如需画图作答,必须用黑色字迹的钢笔或签字笔将图形线条描黑.5.考试结束后,试题卷和答题纸一并上交.试题卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2024的相反数是( )A .2024B .C.D .2.2023年9月23日至10月8日,第19届亚运会在中国浙江杭州举行,亚运会主场馆为杭州奥体中心体育馆,又名“大莲花”.体育馆总建筑面积约为216000平方米,将数字216000用科学记数法表示为( )A .B .C .D .3.下列各数,,,中,负数有()A .1个B .2个C .3个D .4个4.在下列四个数中,最大的数是()A .B .0C .2D .5的值在( )A .8和9之间B .7和8之间C .6和7之间D .5和6之间6.如图,P 是直线l 外一点,A ,B ,C 三点在直线l 上,且于点B ,,则下列结论中正确的是()①线段BP 的长度是点P 到直线l 的距离;②线段AP 的长度是A 点到直线PC 的距离;2024-1202412024-60.21610⨯421.610⨯62.1610⨯52.1610⨯|2|-2(2)-23-3(2)-1-5-3+PB l ⊥90APC ∠=︒③在PA ,PB ,PC 三条线段中,PB 最短;④线段PC 的长度是点P 到直线l 的距离.A .①②③B .③④C .①③D .①②③④7.将一副三角板按如图所示位置摆放,其中与一定相等的是()A .B .C .D .8.古代名著《算学启蒙》中有一题:良马日行二百三十里,缀马日行一百三十里,驾马先行一十一日,问良马几何追及之?意思是:跑得快的马每天走230里,跑得慢的马每天走130里,慢马先走11天,快马几天可追上慢马?若设快马x 天可追上慢马,则可列方程为( )A .B .C .D .9.下列说法正确的是()A .若,则B .若,则C .若,则D .若,则10.把四张形状、大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形的盒子底部,按图甲和图乙两种方式摆放,若长方体盒子底部的长与宽的差a 为2,则图甲和图乙中阴影部分周长之差为()A .4B .3C .2D .1二、填空题:本大题有6个小题,每小题3分,共18分.11.单项式的系数是__________.12.若,则的补角的度数是__________.13.如果,那么的值是__________.α∠β∠230(11)13013011x x -=+⨯230(11)130130x x -=+23013011130x x =-⨯23013011130x x =+⨯a b =a c b c +=-ax ay =33ax ay -=+a b =22ac bc =22ac bc =a b=732a b c -7330α∠=︒'α∠5m n -=337m n --14.如图,直线AE 与CD 相交于点B ,,,则的度数是__________.第14题图15.若单项式与单项式的和仍是一个单项式,则的值是__________.16.设代数式,代数式为常数.观察当x 取不同值时,对应A 的值并列表如下(部分):X …123…A…567…若,则__________.三、解答题:本大题有8个小题,共72分,解答应写出文字说明、证明过程或演算步骤.17.(本题满分6分)(1);(2).18.(本题满分6分)(1);(2).19.(本题满分8分)如图,已知平面上有三点A ,B ,C .用无刻度直尺和圆规作图(请保留作图痕迹);(1)画线段AB ,直线BC ,射线CA ;(2)在线段BC 上找一点E ,使得.20.(本题满分8分)设,,(1)化简:;(2)若x 是8的立方根,求的值.60DBE ∠=︒BF AE ⊥CBF ∠15m xy +61n x y --n m 13x a A +=+33ax A a -=A B =x =(3)(7)--+33232-+÷317x x -=+3141136x x --=-CE BC AB =-223A x x =--22B x x =+-23A B -23A B -21.(本题满分10分)一根竹竿插入一水池底部的淤泥中(如图),竹竿的入泥部分占全长的,淤泥以上的入水部分比入泥部分长米,露出水面部分为米,竹竿有多长?水有多深?22.(本题满分10分)如图,点C 为线段AB 上一点,AC 与CB 的长度之比为3:4,D 为线段AC 的中点.(1)若,求BD 的长;(2)若E 是线段BD 的中点,若,求AB 的长(用含a 的代数式表示).23.(本题满分12分)综合与实践问题情境:“综合与实践”课上,老师提出如下问题:将一直角三角板的直角顶点O 放在直线AB 上,OC ,OD 是三角板的两条直角边,三角板可绕点O 任意旋转,射线OE 平分.当三角板绕点O 旋转到图1的位置时,,试求的度数;数学思考:(1)请你解答老师提出的问题.数学探究:(2)老师提出,当三角板绕点O 旋转到图2的位置时,射线OE 平分,请同学们猜想与之间有怎样的数量关系?并说明理由;深入探究:(3)老师提出,当三角板绕点O 旋转到图3的位置时,射线OE 平分,请同学们猜想与∠BOD 之间有怎样的数量关系?并说明理由.24.(本题满分12分)1512131021AB =CE a =AOD ∠35COE ∠=︒BOD ∠AOD ∠COE ∠BOD ∠AOD ∠COE ∠如图,在数轴上点A 表示数-3,点B 表示数,点C 表示数5,点A 到点B 的距离记为AB .我们规定:AB 的大小可以用位于右边的点表示的数减去左边的点表示的数来表示.例如:.(1)求线段AC 的长;(2)以数轴上某点D 为折点,将此数轴向右对折,若点A 在点C 的右边,且,求点D 表示的数;(3)若点A 以每秒1个单位长度的速度向左运动,点C 以每秒4个单位长度的速度向左运动,两点同时出发,经过t 秒时,,求出t的值.1-(1)(3)2AB =---=4AC =2AC AB =2023学年第一学期期末质量检测七年级数学参考答案一、选择题;(每小题3分,共30分)题号12345678910答案BDBCCABDCA二、填空题:(每小题3分,共18分)11.12.13.814.15.2516.三、解答题:17.解;(1)(2)18.解:(1)(2)19.解:(1)画絨后AB 直线BC 射线CA(2)在线段BC 上找一点E ,使得.20.解:(1)化简:.(2)是8的立方根,,.21.解;没竹竿有x 米,则竹竿入泥部分为米,则淤泥以上的入水部分为米,由题意可得:,解得,则,答:竹竿有3米,则水深为米.22.解:(1)由,设,,,,,解得,,,2-10630︒'()106.5︒150︒5210-7-4x =910x =CE BC AB =-()()222322332A B x x x x -=---+-2224263365x x x x x x =----+=-x 2x ∴=222352106A B x x ∴-=-=-=-15x 1152x ⎛⎫+ ⎪⎝⎭1111355210x x x +++=3x =11115210x +=1110:3:4AC BC =3AC x =4BC x =14AB = AC BC AB +=3421x x ∴+=3x =9AC ∴=12BC =为绕段AC 的中点,,.(2)如图所示.由,设,,,为线段AC 的中点,,,为BD 的中点,,,,,解得,.23.解:(1)由题可知:,,.又平分,..(2),理由如下:设,则.平分,.即.(3),理由如下:设,则,,,..24.解:(1).(2)对折后,点A 在点C 的右边,且,点A 表示的数是9,点D 表示的数是.(3)点A 以每秒1个单位长度的速度向左运动t 秒,点C 以每秒4个单位长度的速度向左运动t 秒,D 1922CD AC ∴==9331222BD CD BC ∴=+=+=:3:4AC BC =3AC m =4BC m =7AB m ∴=D 1322AD AC m ∴==311722BD AB AD a m m ∴=-=-=B 11124BE BD m ∴==115444CE BC BE m m m ∴=-=-=CE a = 54m a ∴=45m a =2875AB m a ∴==90DOC ∠=︒35COE ∠=︒ 903555DOE DOC COE ∴∠=∠-∠=︒-︒=︒OE AOD ∠2110AOD DOE ∴∠=∠=︒180********BOD AOD ∴∠=︒-∠=︒-︒=︒2BOD COE ∠=∠BOD x ∠=180AOD x ∠=︒-OE AOD ∠90DOC ∠=︒ 11909022COE DOC DOE x x ⎛⎫∴∠=∠-∠=︒-︒-= ⎪⎝⎭2BOD COE ∠=∠2360BOD COE ∠+∠=︒AOE x ∠=2AOD x ∠=902BOC x ∠=︒-1802BOD x ∴∠=︒-90COE x ∠=︒+()22901802360COE BOD x x ∴∠+∠=︒++︒-=︒5(3)8AC =--= 4AC =∴∴9(3)32+-=运动后表示的数是,运动后表示的数是.①当点C 在A 的右边时,,,,,.②当C 在A 的左边时,,,,,.(得一个答案给3分,两个答案都对给5分)A ∴3t --C ∴54t -2AB t ∴=+54(3)83AC t t t =----=-2AB AC = 2(2)83t t ∴+=-45t ∴=2AB t =+(3)(54)38AC t t t =--=-=-2AB AC = 2(2)38t t ∴+=-12t ∴=。
湖北省武汉市江岸区2023-2024学年七年级上学期期末数学试题(含解析)
七年级数学考试注意事项:1、考生须诚信考试,遵守考场规则和考试纪律,并自觉服从监考教师和其他考试工作人员管理;2、监考教师发卷后,在试卷指定的地方填写本人准考证号、姓名等信息;考试中途考生不准以任何理由离开考场;3、考生答卷用笔必须使用同一规格同一颜色的笔作答(作图可使用铅笔),不准用规定以外的笔答卷,不准在答卷上作任何标记。
考生书写在答题卡规定区域外的答案无效。
4、考试开始信号发出后,考生方可开始作答。
A .优B .衡5.有理数a 、b 在数轴上的对应点的位置如图所示,下列结论不正确A .0a b +<B .0a b -<A.218︒7.我国古代著作《增删算法统宗》中记载了一首古算诗:A.2B.315.下列四个结论中:①若25-n m b a 与428a b 是同类项,则②若关于x 的多项式(23ax -三、解答题(共817.计算(1)()()34232÷-+⨯-111(1)用含有a、b的代数式表示主卧的面积为厅的面积为______平方米.(直接填写答案)(2)团团圆圆的爸爸想把主卧、次卧铺上木地板,其余部分铺瓷砖,已知每平方米木地板费用为200元,每平方米瓷砖的费用为AM=,则CD=______:(直接填写答案)①若8②线段AB运动时,试判断线段CD的长度是否发生变化?如果不变,果变化,请说明理由.(2)知识迁移:我们发现角的很多规律和线段一样,如图(1)求图1中所有线段的条数为______条:(2)若线段AB从点B开始以2个单位/秒的速度向右运动,同时线段CD从点(1)如图1,已知60AOB ∠=︒,在AOB ∠内存在一条射线OC ,使得AOC ∠是BOC ∠的“绝配角”,此时AOC ∠=______:(直接填写答案)(2)如图2,已知60AOB ∠=︒,若平面内存在射线OC 、OD (OD 在直线OB 的上方),使得AOC ∠是BOC ∠的“绝配角”,BOC ∠与BOD ∠互补,求AOD ∠大小:(3)如图3,若10AOB ∠=︒,射线OC 从OA 出发绕点O 以每秒20︒的速度逆时针旋转,射线OD【分析】本题主要考查了几何图形中角度的计算,根据平角的定义得到48COD ∠=︒,则180228AOD BOC COD ∠+∠=︒+=︒∠.【详解】解:∵58AOC ∠=︒,74BOD ∠=︒,∴18048COD APC BOD =︒--=︒∠∠∠,∴180228AOD BOC COD ∠+∠=︒+=︒∠,故选:B .7.A【分析】设孩童有x 名,根据“每人分4梨,多12梨;每人6梨,恰好分完”,列方程即可得到答案.【详解】解:设孩童有x 名,根据题意可得:4126x x +=,故选:A .【点睛】本题考查了由实际问题抽象出一元一次方程,根据题意列出一元一次方程是解决问题的关键.8.D【分析】本题主要考查了整式加减中的无关型问题,先去括号,然后合并同类项,再根据多项式的值与x 无关,则含x 的项的系数为0,求出a 、b 的值即可得到答案.【详解】解:()()22453243-+----+-x ax y bx x y 224532826x ax y bx x y =-+-++-+()()224833b x a x y =++-++,∵关于x 、y 的多项式()()22453243-+----+-x ax y bx x y 的值与字母x 的取值无关,∴24080b a +=-=,,∴82a b ==-,,∴286b a +=-+=,故选:D .9.C【分析】设“H”型框中的正中间的数为x ,则其他6个数分别为x-8,x-6,x-1,x+1,x+6,x+8,表示出这7个数之和,然后分别列出方程解答即可.-17.(1)56(2)解:当OC 在OB 下方时,∵AOC ∠是BOC ∠的“绝配角”,∴290BOC AOC ∠+=︒∠,∵60AOC AOB BOC BOC ∠=∠+∠=︒+∠,∴212090BOC BOC ++︒=︒∠∠,解得10BOC =-︒∠(舍去);当OC 在AOB ∠内部时,同(1)可得30BOC ∠=︒,∵BOC ∠与BOD ∠互补,∴150BOD ∠=︒,∴90AOD BOD AOB ∠=-=︒∠∠;当OC 在AOB ∠外部时,∵AOC ∠是BOC ∠的“绝配角”,∴290BOC AOC ∠+=︒∠,∴290AOB AOC AOC ++=︒∠∠∠,∴10AOC ∠=︒,∴70AOB A BOC OC ∠+∠=︒∠=∵BOC ∠与BOD ∠互补,∴110BOD ∠=︒,∴50AOD BOD AOB ∠=-=︒∠∠;(3)解:①当09t <≤时,由题意得,20AOC t =︒∠,∠∵OM 平分AOC ∠,ON 平分∴1102AOM AOC t ==︒∠∠,∠当917t <<时,由题意得,360AOC =∠∵OM 平分AOC ∠,ON ∴12AOM AOC ==∠∠∴MON BON ∠=∠-∠(BON AOM =∠-∠-∠②当1718t <<时,由题意得,36020AOC t =︒-∠∵OM 平分AOC ∠,ON 平分∠115当1820t <≤时,由题意得,20360AOC t =︒-︒∠,∠15。
人教版七年级上册数学期末考试试题含答案
人教版七年级上册数学期末考试试卷一、单选题1.下列各组数中,相等的是( )A .()22-与22-B .22-与22-C .()32-与32-D .32-与32- 2.若()1220a a x---=是关于x 的一元一次方程,则a =( ) A .±2 B .2 C .0 D .-23.下列各组单项式中,为同类项的是( )A .a 3与a 2B .212a b 与2ba 2C .2xy 与2xD .﹣3与a4.我国国土面积约为960万平方千米,用科学记数法可表示为( )平方千米. A .59610⨯B .496010⨯C .79.610⨯D .69.610⨯5.下列计算中:①325a b ab +=;②22330ab b a -=;③224246a a a +=;④33532a a -=;⑤若0,a ≤a a -=-,错误..的个数有 ( ) A .1个 B .2个 C .3个 D .4个 6.下列说法:(1)两点之间线段最短;(2)两点确定一条直线;(3)同一个锐角的补角一定比它的余角大90°;(4)A 、B 两点间的距离是指A 、B 两点间的线段;其中正确的有( )A .一个B .两个C .三个D .四个7.下列各图中,可以是一个正方体的平面展开图的是( )A .B .C .D . 8.已知a ,b 在数轴上的位置如图所示,则化简|a ﹣b|+|a+b|的结果是( )A .2aB .﹣2aC .0D .2b9.观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,……,按此规律,图形⑦中星星的颗数是( )A .43B .45C .41D .5310.A 、B 两地相距600 km ,甲车以60 km/h 的速度从A 地驶向B 地,2 h 后,乙车以100 km/h 的速度沿着相同的道路从A 地驶向B 地.设乙车出发x 小时后追上甲车,根据题意可列方程为( )A .60(x +2)=100xB .60x =100(x -2)C .60x +100(x -2)=600D .60(x +2)+100x =600二、填空题11.关于单项式3223a b π-,系数为_______. 12.若x=2是方程8﹣2x=ax 的解,则a= .13.已知代数式2y −3x 的值为−7,则代数式6y −9x +8的值为______.14.已知线段AB 10cm =,点D 是线段AB 的中点,直线AB 上有一点C ,并且BC 2= cm ,则线段DC =______.15.钟表在3点30分时,它的时针与分针所夹的角是_____度.16.一种商品零售价为600元,为适应竞争,商店按零售价的八折销售,则销售价______元.17.按下面的程序计算:若输入x =100,则输出结果是501;若输入x =25,则输出结果是631;若开始输入的数x 为正整数,最后输出结果为781,则开始输入的数x 的所有可能的值为_____.三、解答题18.计算:32112(3)4⎡⎤--⨯--⎣⎦ 19.计算:()()2222533a b ab ab a b --+20.5121136x x +--=. 21.一个角的补角比这个角的余角3倍还多10︒,求这个角的度数.22.先化简,后求值:已知()21302x y -++= 求代数式()222642129xy x x xy ⎡⎤----+⎣⎦的值 23.探索规律:观察下面算式,并解答问题:213=4=2+2135=9=3++21357=16=4+++213579=25=5++++(1)试猜想135791113151719+++++++++=_________;(2)试猜想()()()135********n n n ++++++-++++……=________;(3)请用上述规律计算:10011003100520152017+++++…….(请算出最后数值哦!并写出计算过程)24.列方程解应用题:某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的12倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售?25.如图,线段AB=12,动点P 从A 出发,以每秒2个单位的速度沿射线AB 运动,M 为AP 的中点.(1)出发多少秒后,PB=2AM ?(2)当P 在线段AB 上运动时,试说明2BM ﹣BP 为定值.(3)当P 在AB 延长线上运动时,N 为BP 的中点,下列两个结论:①MN 长度不变;②MA+PN 的值不变,选择一个正确的结论,并求出其值.26.如图,射线OC 、OD 在∠AOB 内部,∠AOB =α,∠COD =β,分别作∠AOC 和∠BOD 的平分线OM 、ON ,(1)当α=130°,β=40°时,请你填空:∠1+∠3=______°,∠MON =______°;(2)聪明的小芳通过探究发现,当射线OC 、OD 的位置在∠AOB 内变化时,∠MON 与α、β之间总满足∠MON =+2αβ,你是否认同她的这一结论?请说明理由;参考答案1.C【分析】根据有理数乘方的意义逐一计算并判断即可.【详解】解:A . ()224-=,22-=-4,所以()22-≠22-,故本选项不符合题意;B . 224-=,22-=-4,所以22-≠22-,故本选项不符合题意;C . ()328-=-,328-=-,所以()32-=32-,故本选项符合题意;D . 382-=,328-=-,所以32-≠32-,故本选项不符合题意.故选C .【点睛】此题考查的是有理数乘方的运算,掌握有理数乘方的意义是解决此题的关键.2.D【分析】根据一元一次方程的定义即可求出结论.【详解】解:∵()1220a a x ---=是关于x 的一元一次方程, ∴1120a a ⎧-=⎨-≠⎩解得:a =-2故选D .【点睛】此题考查的是根据一元一次方程的定义求参数的值,掌握一元一次方程的定义是解决此题的关键.3.B【分析】根据同类项的定义逐个判断即可.【详解】A 、不是同类项,故本选项不符合题意;B 、是同类项,故本选项符合题意;C 、不是同类项,故本选项不符合题意;D 、不是同类项,故本选项不符合题意;故选:B .【点睛】考查了同类项的定义,解题关键是抓住所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同. 4.D【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:根据科学记数法的定义:960万平方千米=9600000平方千米=6平方千米9.610故选D.【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.5.D【详解】解:①3a+2b无法计算,故此选项符合题意;②3ab²−3b²a=0,正确,不合题意;③∵2a²+4a²=6a²,∴原式计算错误,故此选项符合题意;④∵53a−33a=23a,∴原式计算错误,故此选项符合题意;⑤∵a⩽0,−|a|=a,∴原式计算错误,故此选项符合题意;故选D6.C【分析】(1)根据线段的性质即可求解;(2)根据直线的性质即可求解;(3)余角和补角一定指的是两个角之间的关系,同角的补角比余角大90°;(4)根据两点间的距离的定义即可求解.【详解】(1)两点之间线段最短是正确的;(2)两点确定一条直线是正确的;(3)同一个锐角的补角一定比它的余角大90°是正确的;(4)A、B两点间的距离是指A、B两点间的线段的长度,原来的说法是错误的.故选C.【点睛】本题考查了补角和余角、线段、直线和两点间的距离的定义及性质,是基础知识要熟练掌握.7.C【分析】根据正方体的展开图特征逐一判断即可.【详解】A 不是正方体的展开图,故不符合题意;B 不是正方体的展开图, 故不符合题意;C 是正方体的展开图,故符合题意;D 不是正方体的展开图,故不符合题意;故选C .【点睛】此题考查的是正方体的展开图的判断,掌握正方体的展开图特征是解决此题的关键. 8.B【详解】解:由数轴可知a <0<b ,|a |>|b |,所以a -b <0,a +b <0,所以|a ﹣b |=b -a ,|a +b |=-(a +b ),所以|a ﹣b |+|a +b |=(b -a )-(a +b )=b -a -a -b=-2a .故选B .9.C【分析】设图形n 中星星的颗数是a n (n 为正整数),列出各图形中星星的个数,根据数据的变化找出变化规律“215122n n +-”,依此规律即可得出结论. 【详解】解:设图形n 中星星的颗数是a n (n 为正整数),∵a 1=2=1+1,a 2=6=(1+2)+3,a 3=11=(1+2+3)+5,a 4=17=(1+2+3+4)+7,∴a n =1+2+…+n+(2n-1)=(1)2n n ++(2n-1)=215122n n +-,∴a 7=21577122⨯+⨯-=41. 故选:C .【点睛】本题考查了规律型中的图形的变化类,根据图形中数的变化找出变化规律是解题的关键. 10.A【详解】设乙车出发x 小时后追上甲车,根据等量关系“乙车x 小时走的路程=甲车(x+2)小时走的路程”,据此列方程100x=60(x+2).故选A .11.23π- 【分析】根据单项式系数的定义:单项式中的数字因数叫做单项式的系数,即可得出结论.【详解】 解:单项式3223a b π-的系数为:23π- 故答案为:23π-. 【点睛】此题考查的是单项式系数,掌握单项式系数的定义是解决此题的关键,需注意π是数字. 12.2【详解】试题分析:把x=2,代入方程得到一个关于a 的方程,即可求解.解:把x=2代入方程,得:8﹣4=2a ,解得:a=2.故答案是:2.考点:一元一次方程的解.13.-13【解析】【分析】观察题中两个代数式,利用整体求值即可.【详解】解:6y−9x+8=3(2y−3x)+8=-13.【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式的值,然后利用“整体代入法”求代数式的值.14.7cm或3cm【分析】分C在线段AB延长线上,C在线段AB上两种情况作图.再根据正确画出的图形解题.【详解】解:∵点D是线段AB的中点,∴BD=0.5AB=0.5×10=5cm,(1)C在线段AB延长线上,如图.DC=DB+BC=5+2=7cm;(2)C在线段AB上,如图.DC=DB-BC=5-2=3cm.则线段DC=7cm或3cm.15.75【分析】根据时钟3时30分时,时针在3与4中间位置,分针在6上,可以得出分针与时针的夹角是2.5大格,每一格之间的夹角为30,可得出结果.【详解】解:钟表上从1到12一共有12格,每个大格30,∴时钟3时30分时,时针在3与4中间位置,分针在6上,可以得出分针与时针的夹角是2.5大格,∴分针与时针的夹角是2.53075⨯=.故答案为75.【点睛】本题考查了钟面角的有关知识,解题关键是得出钟表上从1到12一共有12格,每个大格30.16.480【分析】用600乘折扣数即可得出结论.【详解】解:销售价为600×80%=480元故答案为:480.【点睛】此题考查的是有理数乘法的应用,掌握实际问题中各个量之间的关系是解决此题的关键.17.1或6或31或156【分析】根据输出的结果确定出x的所有可能值即可.【详解】解:若5x+1=781,解得:x=156;若5x+1=156,解得:x=31;若5x+1=31,解得:x=6;若5x+1=6,解得:x=1,故答案为1或6或31或156.【点睛】此题考查了代数式求值,弄清程序中的运算过程是解本题的关键.18.3 . 4【解析】【分析】先算乘方,再算括号里面的减法,再算乘法,最后算减法.【详解】 原式()1129,4=--⨯-()1129,4=--⨯-()117,4=--⨯-71,4=-+3.4=【点睛】考查有理数的混合运算,掌握运算法则是解题的关键.19.22126a b ab -【分析】先去括号,再合并同类项即可.【详解】()()2222533a b ab ab a b --+22221553a b ab ab a b =---22126a b ab =-.【点睛】本题考查了整式的加减运算,熟练掌握去括号的法则是解题的关键.20.38x =【分析】去分母、去括号、移项、合并同类项、系数化1即可.【详解】 解:5121136x x +--=去分母,得()()251216x x +--=去括号,得102216x x +-+=移项,得102612x x -=--合并同类项,得83x =系数化1,得38 x=【点睛】此题考查的是解一元一次方程,掌握解一元一次方程的一般步骤是解决此题的关键.21.这个角的度数为50︒【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列出方程,然后解方程即可.【详解】解:设这个角的度数是x︒,则()18039010x x-=-+50x=答:这个角的度数为50︒【点睛】本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.22.14【分析】根据非负数的性质分别求出x、y,根据整式的混合运算法则化简,代入计算即可.【详解】由题意得,x-3=0,y+12=0,解得,x=3,y=-12,则2xy2-[6x-4(2x-1)-2xy2]+9 =2xy2-6x+4(2x-1)+2xy2+9 =2xy2-6x+8x-4+2xy2+9=4xy2+2x+5=4×3×(-12)2+2×3+5=14.【点睛】本题考查的是整式的加减混合运算、非负数的性质,掌握整式的加减混合运算法则是解题的关键.23.(1)100;(2)()22n +;(3)768081,过程见解析【分析】(1)根据已知等式,找出运算规律即可得出结论;(2)根据(1)所找规律即可得出结论;(3)根据(1)所找规律求出135999……++++的值,再求出135999100110032017…………++++++++,然后两式相减即可求出结论.【详解】解:(1)221313=4=22+⎛⎫+= ⎪⎝⎭2215135=9=32+⎛⎫++= ⎪⎝⎭22171357=16=42+⎛⎫+++= ⎪⎝⎭221913579=25=52+⎛⎫++++= ⎪⎝⎭∴135791113151719+++++++++=21192+⎛⎫= ⎪⎝⎭100故答案为:100;(2)()()()135********n n n ++++++-++++……=()21232n ++⎡⎤⎢⎥⎣⎦=()22n +故答案为:()22n +;(3)135999……++++=2199********+⎛⎫= ⎪⎝⎭135999100110032017…………++++++++=21201710180812+⎛⎫= ⎪⎝⎭∴10011003100520152017+++++……=()135999100110032017…………++++++++-()135999……++++=1018081250000-=768081【点睛】此题考查的是有理数运算的探索规律题,找出运算规律是解决此题的关键.24.(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获利1950元;(2)第二次乙种商品是按原价打8.5折销售【分析】(1)设第一次购进甲商品x 件,则购进乙商品(12x +15)件,根据题意列出方程即可求出x 的值,然后根据“获利=售价-进价”即可求出结论;(2)设第二次乙种商品是按原价打y 折销售,根据题意列出方程即可求出结论.【详解】解:(1)设第一次购进甲商品x 件,则购进乙商品(12x +15)件 由题意可得:22x +30(12x +15)=6000 解得:x=150∴购进乙商品12×150+15=90件 ∴全部卖完后一共可获利(29-22)×150+(40-30)×90=1950(元)答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获利1950元.(2)设第二次乙种商品是按原价打y 折销售由题意可得:(29-22)×150+(40×10y -30)×90×3-1950=180 解得:y=8.5答:第二次乙种商品是按原价打8.5折销售.【点睛】此题考查的是一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.25.(1)3秒;(2)当P在线段AB上运动时,2BM﹣BP为定值12;(3)选①.【分析】(1)分两种情况讨论,①点P在点B左边,②点P在点B右边,分别求出t的值即可.(2)AM=x,BM=24-x,PB=24-2x,表示出2BM-BP后,化简即可得出结论.(3)PA=2x,AM=PM=x,PB=2x-12,PN=12PB=x-6,分别表示出MN,MA+PN的长度即可作出判断.【详解】解:(1)设出发x秒后PB=2AM,当点P在点B左边时,AM=x,PA=2x,PB=12−2x由题意得,12−2x=2x,解得:x=3;当点P在点B右边时,PA=2x,PB=2x−12,AM=x,由题意得:2x−12=2x,方程无解;综上可得:出发3秒后PB=2AM.(2)∵AM=x,BM=12−x,PB=12−2x,∴2BM−BP=2(12−x)−(12−2x)=12;(3)选①;∵PA=2x,AM=PM=x,PB=2x−12,PN=12PB=x−6,∴①MN=PM−PN=x−(x−6)=6(定值);②MA+PN=x+x−6=2x−6(变化).点睛:本题考查了两点间的距离,解答本题的关键是用含有时间的式子表示出各线段的长度. 26.(1)45°;85°;(2)是,理由见解析【分析】(1)先求出∠BOD+∠AOC,然后根据角平分线的定义可得∠3=∠4=12∠BOD,∠1=∠2=12∠AOC,从而求出∠1+∠3和∠2+∠4,即可求出∠MON;(2)先求出∠BOD+∠AOC,然后根据角平分线的定义可得∠4=12∠BOD,∠2=12∠AOC,从而求出∠2+∠4,即可求出∠MON;【详解】解:(1)∵∠AOB =α=130°,∠COD =β=40°∴∠BOD +∠AOC=∠AOB -∠COD=90°∵ON 、OM 分别平分∠BOD 和∠AOC∴∠3=∠4=12∠BOD ,∠1=∠2=12∠AOC∴∠1+∠3=∠2+∠4=12∠AOC +12∠BOD =12(∠AOC +∠BOD ) =12×90°=45°∴∠MON =∠2+∠4+∠COD=45°+40°=85°故答案为:45°;85°;(2)是,理由如下:∵∠AOB =α,∠COD =β∴∠BOD +∠AOC=∠AOB -∠COD=α-β∵ON 、OM 分别平分∠BOD 和∠AOC∴∠4=12∠BOD ,∠2=12∠AOC∴∠2+∠4=12∠AOC +12∠BOD =12(∠AOC +∠BOD ) =2αβ-∴∠MON =∠2+∠4+∠COD =2αβ-+β =2αβ+【点睛】此题考查的是角的和与差,掌握各个角之间的关系是解决此题的关键.。
2023-2024学年人教新版七年级上册数学期末复习试卷(含答案)
2023-2024学年人教新版七年级上册数学期末复习试卷一.选择题(共12小题,满分36分)1.的绝对值是a,相反数是b,则a+b=( )A.0B.C.D.2.如图是由6个同样大小的正方体摆成的几何体,将正方体①移走后,所得几何体( )A.从正面看改变,从左面看改变B.从上面看不变,从左面看不变C.从上面看改变,从左面看改变D.从上面看改变,从左面看不变3.有理数a、b在数轴上的对应的位置如图所示,则正确的是( )A.a+b<0B.ab>0C.a﹣b>0D.|a|<|b|4.下列算式中,计算结果是负数的是( )A.(﹣2)+5B.|﹣3﹣2|C.3×(﹣3)D.(﹣5)25.若x2﹣3x的值为4,则3x2﹣9x﹣3的值为( )A.1B.9C.12D.156.下列说法正确的是( )A.单项式﹣a的系数和次数都是1B.x5﹣5x2y+2x三次项的系数为5C.单项式的系数和次数分别为,4D.π+4是单项式7.若3m4n|a|与﹣m|b﹣1|n2是同类项,且a<b,则a、b的值为( )A.a=2,b=5B.a=﹣2,b=﹣3C.a=±2,b=5D.a=±2,b=﹣38.若(k﹣2)x|k|﹣1﹣3=0是关于x的一元一次方程,那么k2﹣2k+1的值为( )A.1B.9C.1或9D.09.已知线段AB=10cm,点C是线段AB上一点,BC=4cm,点M和点N分别是线段AB 和线段BC的中点,则线段MN的长度是( )A.8cm B.7cm C.5cm D.3cm10.大车平均速度每小时80公里,小车平均速度每小时100公里,则大车和小车行驶完同一条路的时间之比是( )A.80:100B.100:80C.4:5D.5:411.如图,在某世博园内从花城丝路A处看见福建厦门园C在其北偏东62°的方向上,从丝路起点B处看见福建厦门园C在其北偏东13°的方向上(花城丝路与丝路起点约在同一直线上),则从福建厦门园C处看A,B两处的视角∠ACB的度数为( )A.13°B.26°C.49°D.62°12.如图,表中给出的是某月的月历,任意用“H”型框选中7个数(如阴影部分所示),则这7个数的和不可能是( )A.63B.70C.98D.105二.填空题(共6小题,满分18分)13.随着通讯市场竞争的日益激烈,某通讯公司的手机市话收费按原标准每分钟降低了a元后,再次下调了30%,现在的收费标准是每分钟b元,则原收费标准每分钟为 元.14.写出一个只含字母a、b的三次三项式,并按字母a的降幂排列是 .15.已知a、b、c、d是有理数,|a﹣b|≤8,|c﹣d|≤17,且|a﹣b﹣c+d|=25,则|b﹣a|﹣|d﹣c|= .16.的值是 .17.x=2是方程x﹣m=1的解,则m= .18.七棱柱有 个面, 个顶点.三.解答题(共7小题,满分66分)19.计算:(1);(2).20.解方程:8x=.21.“整体思想”是中学数学学习中的一种重要思想,它在多项式的化简与求值中应用极为广泛,例如把(a+b)看成一个整体:4(a+b)+3(a+b)=(4+3)(a+b)=7(a+b),请应用整体思想解答下列问题:(1)化简:5(m+n)2﹣7(m+n)2+3(m+n)2;(2)已知a﹣2b=2,2b﹣c=﹣5,c﹣d=9,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.22.某中学对10名七年级男学生进行了引体向上的测试,以做4个为基准进行记录,超过的次数用正数表示,不足的次数用负数表示.他们的成绩记录如表:+1+3﹣10+1﹣1+1+2+2﹣1(1)学校规定:做4个(含4个)以上者为达标.这10名男学生中,达标的占百分之几?(2)在这次测试中,这10名男学生做引体向上次数最多与次数最小相差几次?23.如图是广告公司设计的商标图案,若每个小长方形的长为x,宽为y.(1)求阴影部分面积;(2)当x=2,y=1时,阴影部分面积是多少?24.如图,数轴上A、B两点表示的数分别为a,b,且点A在点B的左边,|a|=5,a+b=20,ab<0.(1)求a,b的值;(2)现有一动点P从点A出发,以每秒3个单位长度的速度向右运动,当PA=3PB时,求P运动的时间.(3)若点P从点A出发,以每秒3个单位长度的速度向右运动,同时数轴上另一动点Q 从点B出发,以每秒2个单位长度的速度向左运动.经过多长时间,两动点在数轴上相距10个单位长度?25.如图,已知OM平分∠AOC,ON平分∠BOC.(1)如果∠AOB=100°,∠BOC=40°,求∠MON的度数;(2)如果∠AOB=α,试求∠MON的度数.参考答案与试题解析一.选择题(共12小题,满分36分)1.解:根据题意可得,a=|﹣|=,b=﹣(﹣)=,故a+b==.故选:D.2.解:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;主视图发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;左视图没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;俯视图发生改变.故选:D.3.解:由题意可得:a<0<b,且|a|>|b|,故选项D不符合题意;∴a+b<0,故选项A符合题意;ab<0,故选项B不符合题意;a﹣b<0,故选项C不符合题意;故选:A.4.解:∵(﹣2)+5=3>0,∴选项A不符合题意;∵|﹣3﹣2|=5>0,∴选项B不符合题意;∵3×(﹣3)=﹣9<0,∴选项C符合题意;∵(﹣5)2=25>0,∴选项D不符合题意.故选:C.5.解:由题意可知,x2﹣3x=4,∴3x2﹣9x﹣3=3(x2﹣3x)﹣3=3×4﹣3=9.故选:B.6.解:A、单项式﹣a的系数是﹣1,次数是1,原说法错误,故此选项不符合题意;B、x5﹣5x2y+2x三次项的系数为﹣5,原说法错误,故此选项不符合题意;C、单项式的系数和次数分别为,3,原说法错误,故此选项不符合题意;D、π+4是单项式,原说法正确,故此选项符合题意;故选:D.7.解:∵3m4n|a|与﹣m|b﹣1|n2是同类项,∴|a|=2,|b﹣1|=4,解得:a=±2,b=5或﹣3,又∵a<b,∴a=±2,b=5.故选:C.8.解:∵(k﹣2)x|k|﹣1﹣3=0是关于x的一元一次方程,∴k﹣2≠0且|k|﹣1=1,解得:k=﹣2,∴k2﹣2k+1=(﹣2)2﹣2×(﹣2)+1=9,故选:B.9.解:∵AB=10cm点M是AB的中点,∴BM=AB=5(cm),∵BC=4cm,点N是BC的中点,∴BN=BC=2cm,∴MN=BM﹣BN=3cm,∴线段MN的长度为3cm.故选:D.10.解:设该条路的长度为S,则:=,即大车和小车行驶完同一条路的时间之比是5:4.故选:D.11.解:由题意得:∠CAB=90°﹣62°=28°,∠ABC=90°+13°=103°,∴∠ACB=180°﹣∠CAB﹣∠ABC=49°.故选:C.12.解:设最中间的数为x,∴这7个数分别为x﹣8、x﹣6、x﹣1、x、x+1、x+6、x+8,∴这7个数的和为:x﹣8+x﹣6+x﹣1+x+x+1+x+6+x+8=7x,当7x=63时,此时x=9,当7x=70时,此时x=10,当7x=98时,此时x=14,当7x=105时,此时x=15,由图可知:14的左没有数字,则这7个数的和不可能是98.故选:C.二.填空题(共6小题,满分18分)13.解:根据题意知原收费标准每分钟为+a=(+a)元,故答案为:(+a).14.解:由题意得:a3+a2b+a(答案不唯一),故答案为:a3+a2b+a.15.解:∵|a﹣b|≤8,|c﹣d|≤17,∴|a﹣b|+|c﹣d|≤8+17=25.∵|a﹣b﹣c+d|=|(a﹣b)﹣(c﹣d)|=25,∴a﹣b与c﹣d符号相反,并且|a﹣b|=8,|c﹣d|=17,∴|b﹣a|﹣|d﹣c|=|a﹣b|﹣|c﹣d|=8﹣17=﹣9.故答案为:﹣9.16.解:原式=(﹣3)×(﹣)×××(﹣)=﹣(3×)×(×)=﹣1×1=﹣1,故答案为:﹣1.17.解:把x=2代入方程得:2﹣m=1,解得:m=1,故答案为:1.18.解:七棱柱有2个底面,7个侧面,因此有9个面,七棱柱有14个顶点,故答案为:9,14.三.解答题(共7小题,满分66分)19.解:(1)原式=×(﹣24)﹣×(﹣24)﹣×(﹣24)=﹣9+4+18=13;(2)原式=﹣1÷25×+=﹣+=.20.解:8x=,系数化为1得:x=.21.解:(1)原式=5(m+n)2﹣7(m+n)2+3(m+n)2=(5﹣7+3)(m+n)2=(m+n)2.(2)原式=a﹣c+2b﹣d﹣2b+c=(a﹣2b)+(2b﹣c)+(c﹣d).当a﹣2b=2,2b﹣c=﹣5,c﹣d=9时,原式=2﹣5+9=6.22.解:(1)7÷10=,答:这10名男学生中,达标的占;(2)3﹣(﹣1)=3+1=4(次),答:这10名男学生做引体向上次数最多与次数最小相差4次.23.解:(1)如图,S阴影=S矩形ABCD﹣S△ABE﹣S△AHF﹣S△ECG=4x×4y﹣x×4y﹣×3x×3y﹣×3x×3y=16xy﹣2xy﹣xy﹣xy=5xy.(2)当x=2,y=1时,5xy=5×2×1=10.∴阴影部分面积为:10.24.解:(1)∵|a|=5,∴a=5或a=﹣5,∵A,B两点在数轴上对应的数分别为a,b,且点A在点B的左边,∴a<b,∵ab<0,∴a<0,b>0,∴a=﹣5,∵a+b=20,∴﹣5+b=20,∴b=25,答:a、b的值分别是﹣5、25.(2)设运动的时间为t秒,由(1)得,点A、B表示的数分别是﹣5、25,∴AB=25﹣(﹣5)=30,根据题意得3t=3(30﹣3t)或解3t=3(3t﹣30),解得t=7.5或t=15,答:当PA=3PB时,点P运动时间为7.5秒或15秒.(3)设经过x秒,两动点在数轴上相距10个单位长度,根据题意得3t+2t+10=30或3t+2t﹣10=30,解得t=4或t=8,答:经过4秒或8秒两动点在数轴上相距10个单位长度.25.解:(1)∵OM平分∠AOC,ON平分∠BOC,∴,,∵∠AOB=100°,∠BOC=40°,∴∠AOC=∠AOB+∠BOC=140°,∴,,∴∠MON=∠MOC﹣∠NOC=70°﹣20°=50°;(2)∵OM平分∠AOC,ON平分∠BOC,∴,,∵∠AOB=α,∴∠MON=∠MOC﹣∠NOC=∠AOC﹣∠BOC=∠AOB=∠α.。
最新人教版七年级数学上册期末考试卷及答案【可打印】
最新人教版七年级数学上册期末考试卷及答案【可打印】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.若分式的值为0, 则x的值为()A. 0B. 1C. ﹣1D. ±12.如图, 过△ABC的顶点A, 作BC边上的高, 以下作法正确的是()A. B.C. D.3. 在平面直角坐标系中, 点A(﹣3, 2), B(3, 5), C(x, y), 若AC∥x 轴, 则线段BC的最小值及此时点C的坐标分别为()A. 6, (﹣3, 5)B. 10, (3, ﹣5)C. 1, (3, 4)D. 3, (3, 2)4.互联网“微商”经营已成为大众创业新途径, 某微信平台上一件商品标价为200元, 按标价的五折销售, 仍可获利20元, 则这件商品的进价为()A. 120元 B. 100元 C. 80元 D. 60元5.如图在正方形网格中, 若A(1, 1), B(2, 0), 则C点的坐标为()A. (-3, -2)B. (3, -2)C. (-2, -3)D. (2, -3)6.如图, 在△ABC中, ∠ABC, ∠ACB的平分线BE, CD相交于点F, ∠ABC=42°, ∠A=60°, 则∠BFC的度数为()A. 118°B. 119°C. 120°D. 121°7. 下列各组数中, 能作为一个三角形三边边长的是()A. 1, 1, 2B. 1, 2, 4C. 2, 3, 4D. 2, 3, 58.用图象法解某二元一次方程组时, 在同一直角坐标系中作出相应的两个一次函数的图象(如图所示), 则所解的二元一次方程组是()A. B.C. D.9.如图, 在△ABC中, AB=AC, D是BC的中点, AC的垂直平分线交AC, AD, AB于点E, O, F, 则图中全等三角形的对数是()A. 1对B. 2对C. 3对D. 4对10. 计算的结果是()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 的算术平方根是________.2.如图, 在△ABC中, BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°, 则∠A=________.3. 有4根细木棒, 长度分别为2cm、3cm、4cm、5cm, 从中任选3根, 恰好能搭成一个三角形的概率是__________.4. 如果方程(m-1)x|m|+2=0是表示关于x的一元一次方程, 那么m的取值是________.5. 如图, AD∥BC, ∠D=100°, CA平分∠BCD, 则∠DAC=________度.5. 若的相反数是3, 5, 则的值为_________.三、解答题(本大题共6小题, 共72分)1. 解方程组:2. 若关于x、y的二元一次方程组的解满足x+y>0, 求m的取值范围.3. 如图, △ABC中, AB=AC, 点E, F在边BC上, BE=CF, 点D在AF的延长线上, AD=AC,(1)求证: △ABE≌△ACF;(2)若∠BAE=30°, 则∠ADC= °.4. 某住宅小区有一块草坪如图所示. 已知AB=3米, BC=4米, CD=12米, DA =13米, 且AB⊥BC, 求这块草坪的面积.5. 为使中华传统文化教育更具有实效性, 军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动, 围绕“在诗词、国画、对联、书法、戏曲五种传统文化中, 你最喜爱哪一种?(必选且只选一种)”的问题, 在全校范围内随机抽取部分学生进行问卷调查, 将调查结果整理后绘制成如图所示的不完整的统计图, 请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生, 请你估计该中学最喜爱国画的学生有多少名?6. 某市环保局决定购买A.B两种型号的扫地车共40辆, 对城区所有公路地面进行清扫. 已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨, 2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.(1)求A.B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?(2)已知A型扫地车每辆价格为25万元, B型扫地车每辆价格为20万元, 要想使环保局购买扫地车的资金不超过910万元, 但每周处理垃圾的量又不低于1400吨, 请你列举出所有购买方案, 并指出哪种方案所需资金最少?最少资金是多少?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.B2.A3.D4.C5.B6.C7、C8、D9、D10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1.22.40°3.4.-15.40°6.2或-8三、解答题(本大题共6小题, 共72分)1.2.m>﹣23、(1)证明见解析;(2)75.4.36平方米5.(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)40,30;(2)购买方案见解析, 方案一所需资金最少, 900万元.。
2023—2024学年最新人教版七年级上学期数学期末考试试卷(含答卷)
最新人教版七年级上学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、﹣2022的绝对值是()A.﹣2022B.2022C.D.2、与﹣ab是同类项的为()A.2abc B.2ab2C.ab D.3、将代数式﹣2(x﹣3y+1)去括号后,得到的正确结果是()A.﹣2x+3y﹣1B.﹣2x﹣6y+2C.﹣2x+6y﹣2D.﹣2x+5y﹣2 4、若∠A=38°15′,∠B=38.15°,则()A.∠A>∠B B.∠A<∠B C.∠A=∠B D.无法确定5、若x=1是方程2x+a=0的解,则a=()A.1B.2C.﹣1D.﹣26、下列说法中不正确的是()A.连接两点间的线段叫做这两点的距离B.过两点有且只有一条直线C.两点之间线段最短D.点B在线段AC上,如果AB=BC,则点B是线段AC的中点7、某同学解方程2x﹣3=ax+3时,把x的系数a看错了,解得x=﹣2,他把x的系数a看成了下列哪个数?()A.5B.6C.7D.88、某中学已连续多年获评全国文明校园,如图是一个正方体的展开图,则该正方体表面与“校”相对面上的汉字是()A.全B.国C.文D.明9、下列等式的变形中,正确的是()A.如果a+c=b+c,那么a=b B.如果|a|=|b|,那么a=bC.如果ax=ay,那么x=y D.如果a=b,那么10、《孙子算经》是我国古代重要的数学著作,书中记载这样一个问题;今有三人共车,二车空;二人共车,九人步,问人几何?这个问题的意思是:今有若干人乘车,每三人乘一车,恰好剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,则乘车人数为()A.15B.35C.39D.41二、填空题(每小题3分,满分18分)11、一次数学测试,如果95分为优秀,以95分为基准简记,例如106分记为+11分,那么86分应记为分.12、如果x+y=3,则(x+y)2+2x+2y+1=.13、若单项式x a+2y4与﹣2x3y2b和仍为一个单项式,则(a﹣b)2023的值是.14、如图,某海域有三个小岛A,B,O,在小岛O处观测到小岛A在它北偏西60°的方向上,观测到小岛B在它南偏西38°的方向上,则∠AOB的度数是.15、如图,四边形ABCD的面积为8,五边形EFGHI的面积为14,两个阴影部分的面积分别为a,b(a<b),则b﹣a的值为.16、如果关于x的方程2x+1=3和方程的解相同,那么k的值为.第14题第15题最新人教版七年级上学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(1)﹣30﹣11﹣(﹣10)+(﹣12);(2).18、先化简,再求值:3(2a2﹣ab+1)﹣2(a2﹣ab)+7,其中a=﹣2,b=3.19、已知多项式2x2+my﹣12与多项式nx2﹣3y+6的差中,不含有x,y,求m+n+mn的值.20、如图,点C为线段AB的中点,点E为线段AB上的一点,点D为线段AE的中点.(1)若线段AB=m,CE=n,|m﹣10|+|n﹣3|=0,求m,n的值;(2)在(1)的条件下,求线段DC的长.21、某校学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了香蕉和苹果共80千克,了解到这些水果的种植成本共720元,还了解到如下信息.水果香蕉苹果成本(元/千克)812售价(元/千克)9.616(1)求采摘的香蕉和苹果各多少千克?(2)若把这80kg的水果按照上表给的售价全部销售完毕,那么总共可赚多少元?22、如图,已知∠AOB=90°,∠BOC=60°.(1)求∠AOC的补角的度数;(2)若OE平分∠AOB,OF平分∠BOC,求∠EOF的度数.23、已知a,b,c在数轴上的位置如图所示:(1)填空:a,b之间的距离为;b、c之间的距离为;(2)化简:|b﹣c|+|a﹣c|﹣|a+c|+|a|;(3)已知:a能够使(a+3)2﹣1取到最小值,b是最小的正整数,c满足|c+2|=1,求(2)式的值.24、已知关于a的方程2(a﹣2)=a+4的解也是关于x的方程2(x﹣3)﹣b=7的解.(1)求a、b的值;(2)若点A、B在数轴上表示的数分别为(1)中的a,b,点P、Q分别从A、B两点背向而行,P的速度为每秒1个单位,Q的速度为每秒2个单位,问经过多少时间PQ的距离为20?(3)如图,在(2)的条件下射线BQ绕着点B顺时针旋转,速度为每秒1度,射线AP绕着点A逆时针旋转,速度为每秒2度,当射线AP旋转完一周时两条射线同时停止运动.若射线BQ先转动30秒,射线AP才开始转动,当射线AP转动几秒时,射线BQ与AP互相平行?25、如图,两条直线AB,CD相交于点O,且∠AOC=∠BOD=90°,射线OM从OB开始绕O点逆时针方向旋转,速度为每秒15°,射线ON同时从OD开始绕O点顺时针方向旋转,速度为每秒12°,运动时间为t秒(0<t<12,本题出现的角均不大于平角).(1)当t=2时,∠AOM的度数为度,∠NOM的度数为度;(2)t为何值时,∠AOM=∠AON;(3)当射线OM在∠BOC的内部时,探究是不是一个定值?若是,请求出这个定值.。
山东省枣庄市2023-2024学年七年级上学期期末考试数学试题(含答案)
学业综合素养监测七年级数学试题2024.1亲爱的同学:这份试卷将记录你的自信、沉着、智慧和收获.请认真审题,看清要求,仔细答题.预祝你取得好成绩!请注意:1.选择题答案用铅笔涂在答题卡上,如不用答题卡,请将答案填在表格里.2.填空题、解答题不得用铅笔或红色笔填写.3.考试时,不允许使用科学计算器.4.试卷分值:120分.第Ⅰ卷(选择题 共30分)一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.每小题3分,共30分.1.下列变形中,不正确的是()A .若,则B .若,则C .若,则 D .若,则2.如图,两个扇形统计图,女生人数多的学校是()A .甲校B .乙校C .甲、乙两校女生人数一样多D .无法确定3.若与的和是单项式,则的值为()A .1 B . C .2 D .4.下列调查方式合适的是()A .为了解東庄市初中学生吃早餐的情况,抽取几所城区学校的初中学生B .为了解全校学生元旦假期做数学实践作业的时间,小英同学在网上向10位好友做了调查C .为了解“神舟十四号”载人飞船发射前零部件的状况,检测人员采用了普查的方式D .为了解一个家庭8位成员的睡眠时间,采用抽样调查的方式5.指南针是野外生存的必备工具之一.若指南针上的定向箭头指向南偏东(如图),现把定向箭头绕着点按顺时针方向旋转,此时定向箭头的指向是( )x y =33x y +=+22x y -=-x y =x y =x y m m =x y m m=x y =4a x y -344b x y ()41a b -1-2-28︒O 180︒A .北偏西B .北偏东C .北偏西D .北偏东6.若方程和的解相同,则的值为( )A .2B .C .8D .7.如图,已知线段,延长至点,使为线段的中点,若,则的值为( )A .6 B.5 C .4 D .38.某校在践行“安全你我同行”的宣传活动中,交通安全组有8人,消防安全组有7人.应从消防安全组调多少人到交通安全组,才能使交通安全组的人数是消防安全组的2倍,设从消防安全组调人到交通安全组,则可列方程( )A .B .C .D .9.如图下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中共有6个小圆圈,第②个图形中共有9个小圆圈,第③个图形中共有12个小圆圈,…,按此规律,则第⑨个图形中小圆圈的个数为( )A .60B .63C .66D .6910.某水果商贩用530元从批发市场购进橘子、苹果、香蕉、荔枝各100千克,并将这批水果全部售出,下图分别是橘子、苹果、荔枝售出后的总利润和四种水果售出的利润率.下列结论:①香蕉的进价为每千克1.5元;②橘子的进价与苹果的进价一样;③四种水果的销售共有695元:④若下一次进货时的进价与进货数量不变,且橘子、香蕉和荔枝的售价不变,要想四种水果的总利润为175元,则苹果的售价每千克应提高0.1元.其中正确的结论有()28︒28︒62︒62︒56310x x --=+2310m x --=m 2-8-AB a =AB C 2.BC AB D =AC 2BD =a x 827x x +=⨯-()827x x +=-827x x -=⨯+()827x x -=+A .①②③B .②④C .①④D .①③④二、填空题(本题满分3分,共18分)11.计算的结果是______.12.建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,这样做的道理是______.13.用度表示为______.14.枣庄某学校需要建造新的自行车停车棚,于是采用抽样调查的方式了解骑自行车的情况,拟定以下步骤:①从每班随机抽取10人进行调查;②设计骑自行车情况的调查问卷:③用样本估计总体;④整理收集的数据.正确排序应是______.15.用一根长为的铁丝围成一个长方形,使得该长方形的长比宽多,则此长方形的面积为______.16.如图,平分.则______.三、解答题(本题共8道大题,满分72分)17.(本题满分10分)(1)解方程:;(2)18.(本题满分6分)若化简关于的整式得到的结果是一个三次二项式,求的值.19.(本题满分8分)如图,三点在同一直线上,点在的延长线上,且.(1)请用圆规在图中确定点的位置;(保留作图痕迹)(2)比较线段的大小:______(填“>”“<”或“=”);(3)若,求的长.20.(本题满分8分)32202414(1)2⎡⎤⎫⎛-⨯-+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦30936'︒''10m 1.4m 2m 115,,5COD COD COB OB ∠=︒∠=∠AOD ∠AOD ∠=7335x x -=+2151136x x -+-=,x y ()32222x a x xy bx xy y ++--+32a b +,,A B C D AC CD AB =D AC BD :2:5,14AB BC AC ==AD阅读材料:“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.例如:若,求的值;我们将作为一个整体代入,则原式.请你仿照上面的解题方法,完成下面的问题:(1)如果,求的值;(2)若,求的值.21.(本题满分8分).如图,为直线上一点,平分平分,求的度数.22.(本小题8分)在数学综合与实践课上,老师以“点外卖”为主题,请同学们分析和解决问题:相较于自己做一顿饭较高的时间成本,点外卖不仅可以节省大量的时间,也可以满足年轻人对于“吃”的需求.某餐厅打算在平台和平台根据点餐金额采用不同的优惠策略:在平台实施方案如下:平台一次性点餐金额优惠措施不超过50元无优惠超过50元,但不超过150元减10元超过150元减30元在平台实施方案如下:平台一次性点餐金额优惠措施不超过50元的部分无优惠超过50元,但不超过150元的部分打8折超过150元的部分打6折(1)若小明点餐金额为60元,那么在平台和平台上的实际付款金额分别是多少?(2)小明点了超过50元,但不超过150元的午餐,发现在两个平台上优惠后的价格相同,那么小明点的午餐没优惠时价格是多少?23.(本小题12分)某中学积极落实国家“双减”教育政策,决定增设“礼仪”“陶艺”“园艺”“厨艺”及“编程”等五门校本课程以提升课后服务质量,促进学生全面健康发展.为优化师资配备,学校面向七年级参与课后服务的部分学生开展了“你选修哪门课程(要求必须选修一门且只能选修一门)?”的随机问卷调查,21x x +=2221186x x ++2x x +()2211861188x x =++=3a b +=5a b --22220,28a ab b ab +=+=224a b ab ++O AB 50,COE OD ∠= ,AOC OF ∠BOE ∠DOF ∠M e M M e e M e并根据调查数据绘制了如下两幅不完整的统计图:请结合上述信息,解答下列问题:(1)共有多少名学生参与了本次问卷调查?并补全调查结果条形统计图;(2)“陶艺”在扇形统计图中所对应的圆心角是多少度?(3)若全校共有1500名学生,请根据七年级的选修情况估计全校选修园艺的大约有多少人?24.(本小题12分)线段的计算和角的计算有紧密联系,它们之间的解法可以互相迁移.下面是某节课的学习片段,请完成探索过程:(1)课上,老师提出问题:如图①,点是线段上一点,分别是线段、的中点,当时,求线段的长度.下面是小泽根据老师的要求进行的分析及解答过程,请你补全解答过程:未知线段己知线段……因为分别是线段的中点,所以,______,______,因为,所以______.线段中点的定义线段的和、差等式的性质(2)小泽举一反三,发现有些角度的计算也可以用相似的方法进行转化如图②,已知是角内部的一条射线,分别是的平分线.求的度数.请同学们尝试解决该问题.(3)同组的小丽同学很善于思考,她提出新的问题:如果(2)中其他条件不变,将射线绕点旋转到O AB C D 、AO BO 16AB =CD ,C D AO BO 、CD CO DO =+1122AO =+12=16AB =CD =80,AOC OB ∠=︒,OD OE ,AOB BOC ∠∠DOE ∠OB O的外部,则的度数是______.七年级数学试题参考答案一、选择题(每小题3分,共30分)题号12345678910选项C D B C A B C B A D二、填空题(每小题3分,共18分)11.; 12.经过两点有且只有一条直线: 13.; 14.②①④③15.5.76; 16.三、解答题(本题共8道大题,满分72分)17.解:(1)(2)18.解:原式由题意得.19.解:(1)如图所示,以点为圆心,长为半径画弧交的延长线于点,即为所求,(2),,;故答案为=;(3),,,AOC ∠DOE ∠14-30.16︒120︒7335x x -=+48x =2x =()()221516x x --+=42516x x ---=45621x x -=++9x -=9x =-322223x ax x xy y =+--+()()322221x a b x a xy y =+-+-+20,210a b a -=-=1,12a b ∴==332219128a b ⎫⎛∴+=+= ⎪⎝⎭C AB ACD AB CD = AB BC CD BC ∴+=+AC BD ∴=:2:5,14AB BC AC == 2425AB AC ∴==+4CD ∴=,故答案为:18.20.解:(1),;(2),;21.解:平分平分,,,22.解:(1),在平台实际付款金额为(元),在平台上的实际付款金额为(元);(2)设小明点的午餐没优惠时价格是元,,,解得,小明点的午餐没优惠时价格是100元.23.解:(1)参与了本次问卷调查的总人数为:(人),解:(1)参与了本次问卷调查的总人数为:(人),选修“厨艺”的人数为:(人).选修“园艺”的人数为:(人).补全条形统计图,如图所示:18AD AC CD ∴=+=3a b += ()55532a b a b ∴--=-+=-=22220,28a ab b ab +=+= 222242220828a b ab a ab b ab ∴++=+++=+=OD ,AOC OF ∠BOE ∠11,22COD AOC EOF BOE ∴∠=∠∠=∠50COE ∠=︒ 180130AOC BOE COE ∴∠+∠=︒-∠=︒()1652COD EOF AOC BOE ∴∠+∠=∠+∠=︒6550115DOF COD COE EOF ∴∠=∠+∠+∠=︒+︒=︒5060150<< ∴M 601050-=e ()5060500.858+-⨯=m 50150m <≤ ()10500.850m m ∴-=+-100m =∴3025%120÷=3025%120÷=5412018360︒⨯=︒1203033151824----=(2),答:“陶艺”在扇形统计图中所对应的圆心角是;(3)(人),答:估计全校选修园艺的大约有300人.24.解:(1)分别是线段的中点,,,,,,故答案为:;(2)分别是的平分线,,,,;(3)分别是的平分线,,分三种情况:第一种情况:如图1,3336099120⨯=︒︒99︒241500300120⨯=,C D AO BO 、CD CO DO ∴=+1122AO BO =+12AB =16AB = 8CD ∴=,,8BO AB ,OD OE ,AOB BOC ∠∠11,22DOB AOB EOB BOC ∴∠=∠∠=∠DOE DOB EOB∴∠=∠+∠1122AOB BOC =∠+∠()12AOB BOC =∠+∠12AOC =∠80AOC ∠=︒ 1402DOB AOB ∴∠=∠=︒,OD OE ,AOB BOC ∠∠80AOC ∠=︒11,22DOB AOB EOB BOC ∴∠=∠∠=∠DOE EOB DOB∠=∠-∠;第二种情况,如图2,同理可得:;第三种情况,如图3,综上的度数是或1122BOC AOB =∠-∠()12BOC AOB =∠-∠12AOC =∠40=︒1402DOE EOB DOB AOC ∠=∠-∠=∠=︒DOE DOB EOB ∠=∠+∠1122AOB BOC =∠+∠()13602AOC =︒-∠()1360802=⨯︒-︒12802=⨯︒140=︒DOE ∠40︒140︒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.选择题(每小题3分,共30分)1.﹣2019的倒数是( )A .2019B .20191C .20191-D .﹣20192.下列各数:3%2072214.31010010001.15-π;;;;;⋅⋅⋅,有理数的个数有( ) A .3个B .4个C .5个D .6个3.如图,检测4个排球,其中质量超过标准的克数记为正数,不足的克数记为负数,从轻重的角度,下列最接近标准的是( )A .B .C .D .4.如图是一个正方体的表面展开图,则这个正方体是( )A .B .C .D .5.公元820年左右,中亚细亚的数学家阿尔花拉子米曾写过一本名叫《对消与还原》的书,重点讨论方程的解法,这本书对后来数学发展产生了很大的影响。
其中的“还原”指的是解方程的哪个步骤?( )A .去分母B .移项C .合并同类项D .系数化为16.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .经过两点,有且仅有一条直线D .两点之间,线段最短7..如图,赵老师在点O 处观测到小明站位点A位于北偏西54°30'的方向,同时观测到小刚站位点B 在南偏东15°20'的方向,那么∠AOB 的大小是( )A .69°50'B .110°10'C .140°50'D .159°50'8.下列四个算式:①﹣2﹣3=﹣1;②2﹣|﹣3|=﹣1;③(﹣2)3=﹣6;④6-312-=÷.其中,正确的算式有( )A .0个B .1个C .2个D .3个9.如图,已知线段AB 长度为a ,CD 长度为b ,则图中所有线段的长度和为( )A .3a +bB .3a ﹣bC .a +3bD .2a +2b10.下列说法:①若C 是AB 的中点,则AC =BC ;②若AC =BC ,则点C 是AB 的中点;③若OC 是∠AOB 的平分线,则∠AOC =∠AOB ;④若∠AOC =∠AOB ,则OC 是∠AOB 的平分线,其中正确的有( )A .1个B .3个C .2个D .4个二.填空题(每小题3分,共18分)11.某地某天早晨的气温是﹣3℃,中午上升了8℃,到了夜间又下降了6℃,那么这天夜间的气温是℃.12.“美丽中国”2019大同国际马拉松赛9月15日在文瀛湖广场开赛,来自世界各地13065名选手在大同秋日宜人的风景中,用激情奔跑感受了这座古都的魅力风情。
数13065用科学记数法可表示为。
13.比较大小:5.1-511-(用“=,<,>”填空)14.互联网“微商”经营已经成为大众创业的一种新途径,某互联网平台上一件商品的标价为200元,按标价的六折销售,仍可获利20%,则这件商品的进价为元。
15.按图中的程序计算,若输出的值为﹣1,则输入的数为.16.用同样大小的正方形按下列规律摆放,将重叠部分涂上颜色,下面的图案中,第一个图形(n =1)时有3个正方形,第二个图形有7个正方形……那么第2019个图案中正方形的个数是.三.解答题(共52分)17.(4分)[]243--2315.0-1-1-)()(⨯⨯ 18.(6分)解方程(1))()(x x x 3-525-7-15+= (2)153223=---x x 19.(5分)先化简,再求值:3(2a 2b ﹣ab 2)﹣3(﹣ab 2+3a 2b ),其中a =﹣1,b =2.20.(6分)如图,平面内有A 、B 、C 、D 四点.按下列语句画图.(1)画直线AB ,射线BD ,线段BC ;(2)连接AC ,交射线BD 于点E .21.(7分)如图,C为线段AD上一点,点B为CD的中点,且AD=8cm,BD=2cm.(1)求AC的长。
(2)若点E在直线AD上,且EA=3cm,求BE的长。
22.(6分)为弘扬尊老敬老爱老的传统美德,丰富离退休职工的精神文化生活,2019年11月16日,某工厂组织离退休职工进行了游览华严寺一日游活动.工厂统一租车前往.如果单独租用30座客车若干辆,刚好坐满;如果单独租用45座客车,可少租一辆,且余15个座位,求参加此次活动的人数是多少?23.(8分)探究:哪些特殊的角可以用一副三角板画出?在①135°,②120°,③75°,④25°中,小明同学利用一副三角板画不出来的特殊角是;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图①,他先用三角板画出了直线EF,然后将一副三角板拼接在一起,其中45°角(∠AOB)的顶点与60°角(∠COD)的顶点互相重合,且边OA、OC都在直线EF上.固定三角板COD 不动,将三角板AOB绕点O按顺时针方向旋转一个角度α,当边OB与射线OF第一次重合时停止.①当OB平分∠EOD时,求旋转角度α;②是否存在∠BOC=2∠AOD?若存在,求旋转角度α;若不存在,请说明理由.24.(10分)某市出租车的收费标准是:起步价10元(起步价指小于等于3千米行程的出租车价),行程在3千米到5千米(即大于3千米小于等于5千米)时,超过3千米的部分按每千米1.3元收费(不足1千米按1千米计算),当超过5千米时,超过5千米的部分按每千米2.4元收费(不足1千米按1千米计算).(Ⅰ)若某人乘坐了2千米的路程,则他应支付的费用为___元;若乘坐了4千米的路程,则应支付的费用为___元;若乘坐了8千米的路程,则应支付的费用为___元;(Ⅱ)若某人乘坐了x(x>5且为整数)千米的路程,则应支付的费用为___元(用含x的代数式表示);(Ⅲ)若某人乘车付了15元的车费,且他所乘路程的千米数为整数,那么请你算一算他乘了多少千米的路程?[]61671-9-23121-1-.17=+=⨯⨯=原式数学参考答案一.选择题(每小题3分,共30分)1~5.CBDCB 6~10 DCCAC二.填空题(每小题3分,共18分)11. -1 12.4103065.1⨯ 13. < 14. 100 15. 14 16. 8075三.解答题(共52分)评分标准仅供参考………………(1分) ………………(3分)………………(4分)18.解:(1)去括号得:15﹣7+5x =2x +5﹣3x ,………………(1分)移项合并得:6x =﹣3……………………………(2分)解得:x =﹣;……………………………(3分)(2) 去分母得:5(x ﹣3)﹣2(2x - 3)=10,…………………………(1分)去括号得:5x ﹣15﹣4x +6=10,……………………………(2分)移项合并得:x =19.……………………………(3分)19.解:原式=6a 2b ﹣3ab 2+3ab 2﹣9a 2b =﹣3a 2b ,………(3分)当a=﹣1,b=2时,原式=﹣6.………(5分)20.解:(1)如图所示,直线AB,射线BD,线段BC即为所求;………(3分)(2)连接AC,点E即为所求.………(6分)21.(1)∵点B为CD的中点.∴CD=2BD.∵BD=2cm,∴CD=4cm.∵AC=AD-CD且AD=8cm,CD=4cm,∴AC=4cm;…………………(3分)(2)当E在点A的左边时,则BE=BA+EA且BA=6cm,EA=3cm,∴BE=9cm …………………(5分)当E在点A的右边时,则BE=AB-EA且AB=6cm,EA=3cm,∴BE=3cm.…………………(7分)22.解:设租用30座客车x辆,则45座客车为(x﹣1)辆.………(1分)30x=45(x﹣1)﹣15,………(4分)解得:x=4,…………………(5分)4×30=120(人)答:参加此次活动的人数是120人.……………(6分)23.解:【解答】解:(1)选④;…………………………(2分)(2)①∵∠COD=60°,∴∠EOD=180°-∠COD=180°-60°=120°,∵OB平分∠EOD,∴∠EOB=21∠EOD=21×120°=60°,∵∠AOB=45°,∴α=∠EOB-∠AOB=60°-45°=15°;…………………………(4分)②当OA在OD的左侧时,则∠AOD=120°-α,∠BOC=135°-α,∵∠BOC=2∠AOD,∴135°-α=2(120°-α),∴α=105°;……………………………………(6分)当OA在OD的右侧时,则∠AOD=α-120°,∠BOC=135°-α,∵∠BOC=2∠AOD,∴135°-α=2(α-120),∴α=125°,综上所述,当α=105°或125°时,存在∠BOC=2∠AOD.……(8分)24.(Ⅰ)由题意可得:某人乘坐了2千米的路程,他应支付的费用为:10元;乘坐了4千米的路程,应支付的费用为:10+(4−3)×1.3=11.3(元),乘坐了8千米的路程,应支付的费用为:10+2×1.3+3×2.4=19.8(元),故答案为:10;11.3,19.8;……(3分)(Ⅱ)由题意可得:10+1.3×2+2.4(x−5)=2.4x+0.6;故答案为:2.4x+0.6或12.6+2.4(x−5)……(6分)(Ⅲ)若走5千米,则应付车费:10+1.3×2=12.6(元),∵12.6<15,∴此人乘车的路程超过5千米,……………(7分)因此,由(Ⅱ)得2.4x+0.6=15,……………(8分)解得:x=6 ……………(9分)答:此人乘车的路程为6千米。
……………(10分)。