核磁共振波谱分析法
核磁共振波谱法
• 例:外磁场 B0=4.69T (特斯拉,法定计量单位) • 1H 的共振频率为
H 0 2.6810 s 4.69 2 2 3.14
8 1 1
2.001510 s 200.15 MHz
8
1
(1s 1Hz)
1
放在外磁场 B0=2.35T =100MHz
13C 19F ,31P 6 9 15 。
(3)I为整数即质量数为偶数,电荷数为奇数的核,有自旋 现象,研究较少。如14N7。
实践证明,核自旋与核的质量数,质 子数和中子数有关
质量数为 原子序数 自旋量子 偶数 为偶数 数为0
质量数为 原子序数 自旋量子 偶数 为奇数 数为1,2,3 自旋量子 原子序数 质量数为 数为 为奇或偶 1/2,3/2,5/ 奇数 数 2 无自旋
12C ,32S 6 1 16O , 6 8
有自旋
14N 7
有自旋
1H , 13C 1 6 19F ,31P 9 1 5
2、核磁矩u
原子核具有质量并带正 电荷,大多数核有自旋现象, 在自旋时产生磁矩,磁矩的 方向可用右手定则确定,核磁 矩和核自旋角动量P都是矢 量,方向相互平行,且磁矩随 角动量的增加成正比地增加 =P
—磁旋比,不同的核具有不同的磁旋比,对某
元素是定值。是磁性核的一个特征常数。 P为普朗克常数。
• 例:H原子H=2.68×108T-1· S-1(特[斯拉]-1 · 秒-1) C13核的C =6.73×107 T-1· S-1
核的自旋角动量是量子化的,与核的自旋量
子数 I 的关系如下:
• (2)对自旋量子数I=1/2的不同核来说,若同时 放入一固定磁场中,共振频率取决于核本身磁 矩的大小, 大的核,发生共振所需的照射频率 也大;反之,则小。例:13C的共振频率为:
核磁共振波谱法
图谱解析步骤
(1)区分出杂质峰、溶剂峰等 (2)计算不饱和度
(3)根据积分曲线确定谱图中各峰组所对应的氢原子数目, 对氢原子进行分配
(4)对每个峰的,J进行分析。
(5)推出若干结构单元,最后组合为几种可能的结构式
(6)对推出的结构进行指认
图谱解析
化合物 C10H12O2
3 2
2
5
8
7
6
5
4
核磁共振波谱法
目录
核磁共振谱法(NMR)
谱图分析
核磁共振谱法
简介
核磁共振(NMR)是指在某个静磁场中物质的原 子核系统受到相应频率为或兆赫(MHz)为 107~108µm的长波电磁波的作用时,原子核在磁能 级间发生跃迁的共振现象。
核磁共振谱通常可分为氢谱(1H-NMR)和碳谱 (13C-NMR)。NMR与红外、紫外光谱一样,实 际上都是吸收光谱,只是NMR相应的波长位于无 线电波范围。物质吸收电磁波的能量较小,从而 引起的只是电子及核在其自旋态能级之间的跃迁。
3
2
1
0
=(2*10-12)/2=5
δ 3.0和δ 4.30三重峰和三重峰
O—CH2CH2—相互偶合峰 δ 2.1单峰三个氢,—CH3峰
结构中有氧原子,可能具有:
δ 7.3芳环上氢,单峰烷基单取代 正确结构:
a b O c CH2CH2 O C CH3
O C CH 3
影响化学位移的因素 1.局部屏蔽效应
诱导效应:电子云密度降低,电子屏蔽小,增大
CH3F CH3Cl CH3Br CH3I 4.26 3.05 2.68 2.16 共轭效应 p-共轭,减小;-共轭, 增加
3.57 5.87
分析化学核磁共振波谱法
分析化学核磁共振波谱法分析化学核磁共振波谱法(Nuclear Magnetic Resonance Spectroscopy, NMR)是一种非常重要的分析技术,广泛应用于有机化学、生物化学等领域。
本文将从基本原理、仪器设备、样品制备和应用等方面对NMR进行分析。
基本原理核磁共振波谱法是基于核磁共振现象的,核磁共振是指在外加静磁场和射频磁场的作用下,原子核能级的分裂现象。
当样品中的核磁共振活性核被置于静磁场中时,它会分裂成若干个子能级,对应着不同的共振频率。
这些频率可以测量并转换为核磁共振谱图,从而确定样品中不同核的化学环境和相对位置。
仪器设备核磁共振仪包括主磁场、射频系统和梯度线圈等部分。
主磁场是核磁共振仪的核心组成部分,它通过产生一个稳定且均匀的静磁场使样品中的核磁共振现象能够发生。
射频系统用于产生能与样品中核的共振频率相匹配的射频脉冲,从而激发样品中的核磁共振信号。
梯度线圈用于产生梯度磁场,使样品中不同位置的核有不同的共振频率,从而可以对核的位置进行定位。
样品制备样品的制备是进行核磁共振分析的关键步骤,其中要求样品的纯度和浓度都需要达到一定的要求。
通常,为了提高样品的分析效果,可以进行特定的样品制备,例如通过标记原子核来增强信号强度,或者通过选择性的核磁共振脉冲来增强特定核的信号。
应用核磁共振波谱法在许多领域具有重要的应用价值。
在有机化学中,核磁共振波谱法常用于确定分子的结构和化学环境,从而帮助确定分子的组成和结构。
在生物化学中,核磁共振波谱法可以用于研究生物大分子(如蛋白质、核酸等)的结构和功能,从而帮助理解生物反应的机理。
此外,核磁共振波谱法还可以应用于材料科学、医学和环境科学等领域。
总结通过分析化学核磁共振波谱法的基本原理、仪器设备、样品制备和应用等方面,可以看出核磁共振波谱法是一种重要而常用的分析技术。
它可以提供关于化合物结构、分子环境和分子动力学等方面的信息,对于解决化学和生物化学中的许多问题具有不可替代的作用。
核磁共振波谱分析法-质子核磁共振波谱
CH3
H=3.2~4.0 H=2.2~3.2 H=1.8 H=2.1 H=2~3
02:02:01
各类有机化合物的化学位移
②烯烃 端烯质子:H=4.8~5.0 内烯质子:H=5.1~5.7 与烯基,芳基共轭:H=4~7
③芳香烃 芳烃质子:H=6.5~8.0 供电子基团取代–OR, –NR2 时:H=6.5~7.0 吸电子基团取代–COCH3,–CN时:H=7.2~8.0
1:2:1
1:1
峰裂分数
1:3:3:1
HH
CCH
HH
CH3 C CH3
1:6:15:20:15:6:1
H
1H核与n个不等价1H核相邻时,裂分峰数:
(n+1)( n´+1)…个;
1:2:1 1:1
Hb Ha Hc CCC
C
Hd
(nb+1)(nc+1)(nd+1)=2×2 × 2=8 Ha裂分为8重峰
02:02:01
偶合峰的判断
(1)偶合常数( J 值)相等
(2)峰形 通常两组相互偶
合的峰都是相应“内 侧”峰偏高,而“外 侧”峰偏低,在偶合 信号的强峰上画一对 相应的斜线,形成屋 顶形状。
02:02:01
四、化学等价与磁等价
1. 化学等价(化学位移等价)
若分子中两个相同原子(或两个相同基团)处于相同 的化学环境,其化学位移相同,它们是化学等价的。 化学不等价例子:
02:02:01
单键的磁各向异性效应
沿键轴方向为去屏蔽效应。链烃中δCH>δCH2>δCH3
甲基上的氢 被碳取代后,去 屏蔽效应增大, 共振频率移向低 场。
核磁共振波谱法 目的与要求
核磁共振波谱法目的与要求
核磁共振波谱法(Nuclear Magnetic Resonance Spectroscopy)
是一种用于研究物质的分子结构和化学性质的分析技术。
它利用物质中原子核的磁共振现象来获取关于分子中原子核的信息。
该技术广泛应用于有机化学、药物化学、生物化学等领域。
核磁共振波谱法的目的是通过测定样品的核磁共振谱图,获得关于样品中原子核种类、相对数量、结构以及它们之间的化学环境等信息。
核磁共振波谱法的要求包括:
1. 样品纯度:被测样品的纯度对核磁共振波谱的分析结果有很大影响。
样品应尽量纯净,确保不会受到其他杂质的干扰。
2. 溶剂选择:通过溶解样品以提高其溶解度,并且在选择溶剂时要考虑溶剂的磁性,以避免对谱图的解释造成误导。
3. 参数设置:通过调整核磁共振实验中的参数,如脉冲序列、扫描时间等,可以优化信号强度和分辨率,从而得到更准确的谱图。
4. 仪器校准:核磁共振仪器的校准对于获得准确的波位和能量单位是非常重要的。
仪器应定期进行校准,以确保结果的精确性和可靠性。
5. 数据分析:对获得的核磁共振波谱进行仔细的数据处理和分析,包括峰识别、积分、峰面积比较等,以获得关于样品结构和化学环境的详细信息。
总之,核磁共振波谱法的目的是通过测定并分析核磁共振谱图,
获取样品中原子核的相关信息,并且在样品制备、参数设置、仪器校准和数据分析等方面要求细致和准确。
核磁共振波谱法
(3)
式中,m1、m2 分为化合物 1 和化合物 2 的分子数;
W1、W2 分别为其质量;
M1、M2 分别为其分子质量。
由式(2)和(3)可知,核磁共振波普定量分析法可采用绝对定量和相对定量两种模式。
在绝对定量模式下,将已精密称定重量的样品和内标混合配置溶液,测定,通过比较样品特征峰的峰面积与内标
为一常数d 来表示化学位移:
式中 n s 为样品中核磁的共振频率; n r 为参照物中核磁的共振频率; n o 为仪器的输出频率,MHz;
d
=(n
s-n no
r)
+d
r
d r 为参照物的化学位移值。
因此也可用氚代溶液中残留的质子信号作为化学位移参考值。
常用的化学位移参考物是四甲基硅烷(TMS),其优点是化学惰性;单峰;信号处在高场,与绝大部分样品信号之 间不会互相重叠干扰;沸点很低(27oC),容易去除,有利于样品回收。而对于水溶性样品,常用 3-三甲基硅基丙酸钠 -d4(TSP)或 2,2-二甲基-2-硅戊基-5-磺酸钠(DSS),其化学位移值也非常接近零。DSS 的缺点是其三个亚甲基质子有 时会干扰被测样品信号,适宜用作外参考。
注意一些重要的试验条件,如溶剂种类、样品浓度、化学位移参照物、测定温度等的影响。对于结构复杂或结构未知
的样品,通常需要结合其他分析手段,如质谱等功能确定结构。
2.定量分析
与其他和相比,1H 核磁共振波谱更适用与定量分析。在合适的实验条件下,两个信号的积分面积(或强度)正比
于产生这些信号的质子数:
A1 A2
化学位移仅表示了核磁的电子环境,即和外电子云对核产生的屏蔽作用。这种磁核见的相互作用很小,对化学位 移没有影响,但对谱峰的形状有着重要的影响。这种核磁之间的相互干扰称为自旋耦合,有自旋耦合产生的多数谱峰 现象称为自旋分裂。裂分间距(赫兹)称为耦合常数 J,耦合常数与外磁场无光。耦合也可发生在氢核和其他核(I≠0) 中,如 19F、13C 和 31P 等。
核磁共振波谱法
核磁共振波谱法核磁共振(NMR)波谱是一种基于特定原子核在外磁场中吸收了与其裂分能级间能量差相对应的射频场能量而产生共振现象的分析方法。
核磁共振波谱通过化学位移值、谱峰多重性、偶合常数值、谱峰相对强度和在各种二维谱及多维谱中呈现的相关峰,提供分子中原子的连接方式、空间的相对取向等定性的结构信息。
核磁共振定量分析以结构分析为基础,在进行定量分析之前,首先对化合物的分子结构进行鉴定,再利用分子特定基团的质子数与相应谱峰的峰面积之间的关系进行定量测定。
带正电荷的原子核在作自旋运动时,可产生磁场和角动量,其磁性用核磁矩µ表示,角动量P的大小与自旋量子数I有关(核的质量数为奇数,I为半整数;核的质量数为偶数,I为整数或0),其空间取向是量子化的;µ也是一个矢量,方向与P的方向重合,空间取向也是量子化的,取决于磁量子数m的取值(m=I, I-1,……-I,共有2I+1个数值)。
对于1H、13C 等 I =1/2 的核,只有两种取向,对应于两个不同的能量状态,粒子通过吸收或发射相应的能量在两个能级间跃迁。
当自旋量子数I≠0的磁核处于一个均匀的外磁场H0中时,磁核因受到磁场的作用力而围绕着外磁场方向作旋转运动,同时仍然保持本身的自旋。
这种运动方式称为拉摩进动。
原子核的进动频率由下式决定:其中γ为旋磁比,是原子核的基本属性之一。
不同原子核的γ值不同,其值越大,核的磁性越强,在核磁共振中越容易被检测。
如果提供一个射频场,其ν满足:其中h为普朗克常数,则:即射频场的频率正好等于在磁场H0中的核进动频率,那么核就能吸收这一射频场的能量,导致在两个能级间跃迁,产生核磁共振现象。
核磁共振波谱是一专属性较好但灵敏度较低的分析技术。
低灵敏度的主要原因是基态和激发态的能量差非常小,通常每十万个粒子中两个能级间只差几个粒子(当外磁场强度约为2 T时)。
核磁共振波谱仪常见的有两类核磁共振波谱仪:经典的连续波(CW)波谱仪和现代的脉冲傅里叶变换(PFT)波谱仪,目前使用的绝大多数为后者。
核磁共振波谱法原理
核磁共振波谱法原理核磁共振波谱法(NMR)是一种重要的分析化学技术,它通过对样品中原子核在外加磁场和射频辐射作用下的共振现象进行研究,从而获取样品的结构和性质信息。
核磁共振波谱法在有机化学、生物化学、药物研究等领域有着广泛的应用。
本文将介绍核磁共振波谱法的原理及其在化学分析中的应用。
1. 原子核的磁矩。
在外加磁场中,原子核会产生磁矩,这是核磁共振现象的基础。
原子核的磁矩可以用经典物理学的观点来解释,即原子核自身带有一个自旋角动量,从而产生磁矩。
在外加磁场中,原子核的磁矩会发生取向,而不同原子核的磁矩大小和取向会受到化学环境的影响。
2. 核磁共振现象。
当样品置于外加磁场中,并且受到特定频率的射频辐射时,原子核会吸收能量并发生共振。
这种共振现象会导致原子核的磁矩发生瞬时的翻转,当射频辐射停止时,原子核会释放吸收的能量。
核磁共振现象的频率和强度与原子核的化学环境息息相关,因此可以用来获取样品的结构和性质信息。
3. 核磁共振波谱图。
通过对样品施加不同的外加磁场强度和射频辐射频率,可以得到核磁共振波谱图。
核磁共振波谱图通常以化学位移(chemical shift)为横坐标,以吸收峰的强度为纵坐标。
化学位移反映了原子核在分子中的化学环境,不同化学环境的原子核会出现在不同的化学位移位置上;吸收峰的强度则反映了样品中不同类型原子核的相对丰度。
4. 应用领域。
核磁共振波谱法在化学分析中有着广泛的应用。
它可以用来确定有机分子的结构,鉴定化合物的纯度,研究化学反应的动力学过程等。
在生物化学和药物研究领域,核磁共振波谱法也被广泛应用于蛋白质结构研究、药物分子的相互作用研究等方面。
总之,核磁共振波谱法凭借其高分辨率、非破坏性、对样品数量要求低等优点,成为了化学分析领域中不可或缺的重要手段。
通过对核磁共振波谱法的原理和应用的深入理解,我们可以更好地利用这一技术手段来解决化学和生物领域的问题,推动科学研究和技术创新的发展。
核磁共振波谱分析法
2.为什么用TMS作为基准?
(1) 12个氢处于完全相同的化学环境,只产生一个尖峰; (2)屏蔽强烈,位移最大。与有机化合物中的质子峰不重迭; (3)化学惰性;易溶于有机溶剂;沸点低,易回收。
位移的表示方法
与裸露的氢核相比, TMS的化学位移最大,但规
定 TMS=0,其他种类氢核的
δ 7.3芳环上氢,单峰烷基单取代
O C CH3
正确结构:
ab
Oc
CH2CH2 O C CH3
δ3.0 δ 4.30
δ2.1
谱图解析与结构确定(2)
C7H16O3,推断其结构
9
δ 5.30 1
δ 3.38 δ 1.37 6
结构确定(2)
C7H16O3, u=1+7+1/2(-16)=0 a. δ3.38和δ 1.37 四重峰和三重峰
偶数 奇数
1,2,3….
奇数 奇数或偶数 1/2;3/2;5/2….
其中I=1/2的核是研究与测定的主要对象
由于原子核是带正电荷的粒子,因此在自旋时会产生 磁矩,角动量和核磁矩都是矢量,其方向平行。
若原子核存在自旋,产生核磁矩:
自旋角动量: p h I (I 1)
2
I:自旋量子数; h:普朗克常数;
h 0 ΔE
2
H0
讨 论:
共振条件: 0 = H0 / (2 ) (1)对于同一种核 ,磁旋比 为定值, H0变,射频频率变。 (2)不同原子核,磁旋比 不同,产生共振的条件不同,需 要的磁场强度H0和射频频率不同。 (3) 固定H0 ,改变(扫频) ,不同原子核在不同频率处 发生共振(图)。也可固定0 ,改变H0 (扫场)。扫场方式
第十六章 核磁共振波普法
磁铁的作用 磁铁的种类
产生一个外加磁场 永久磁铁、电磁铁和超导磁铁三种
永久磁铁(2.35T) 最高频率100MHz 优点:场强稳定,耗电少 缺点:对温度变化敏感,需长时间才达到稳定。
电磁铁(2.35T)→ 优点:对温度不敏感,很快达到稳定 缺点:功耗大,需冷却。
超导磁铁 优点:可达到很高的磁场强度 缺点:运行需消耗液氮和液氦,维护费用较高。
核
天然丰度 /(%)
自旋量子 数I
1H 99.98
1/2
2H 0.015
1
12C
98.9
0
13C 1.108
1/2
14N 99.35
1
15N 0.365
1/2
16O 99.76
0
17O 0.0039
5/2
19F
100
1/2
31P
100
1/2
磁矩μ/β
2.7927 0.8574
0 0.7023 0.4037 -0.2830
B有效 B0 B B B0
B有效 B0 B B0 B0 B0 1
σ为屏蔽常数 表征核外电子云产生感应磁场对抗外加磁场的能力。
33
1、1H核核外电子云密度越大,σ越大,则对抗外加磁场的能 力越大。 2、σ与化学环境有关,化学环境主要是指1H核核外电子以及 该1H核周围相近的其它核核外电子的运动情况。
化学位移大小的表示 采用相对值表示(相对于标准(参考))。
测定化学位移的参考标准化合物一般用四甲基硅烷(TMS)。
CH3
H3C Si CH3
CH3
36
采用四甲基硅烷(TMS)为标准的优点:
●在NMR1H谱中只有一个尖峰。 ●分子中氢核周围的电子云密度很大,一般其它化合物的 1H峰都出现在TMS峰的左侧,便于谱图解析; ●TMS是化学惰性物质,易溶于大多数有机溶剂中,且沸 点低(27℃ ),易用蒸馏法从样品中除去。
第五章 核磁共振波谱分析法
四、脉冲傅里叶变换核磁共振仪
不是通过扫场或扫 频产生共振; 恒定磁场,施加全 频脉冲,产生共振, 采集产生的感应电 流信号,经过傅里 叶变换获得一般核 磁共振谱图。
五、样品处理方法
对样品及样品瓶的要求 1)样品:样品要纯;通常为1-3mg(低灵敏度NMR仪需 10-30mg)、不含氧和灰尘。如含氧,则可能N2或He 或抽真空除之。 2)样品管:通常以硼硅酸盐玻璃制成。对1H谱,瓶 外径约5 mm;对13C 谱,因其自然丰度低,瓶外径 约为10 mm。管长15-20 cm,加入样品约为管长 1/8-1/6。 对溶剂的要求 固体样品的谱峰很宽,应选择适当溶剂配成溶液 (浓度:0.1-0.5 mol/L)后再测定。不含质子、沸 点低、不与样品缔合、溶解度好。 位移试剂 可使各种质子发生顺磁性或反磁性位移,从而将 各种质子信号分开,这对解析复杂光谱有帮助。
△E=E2 -E1= μB0 -(-μB0 ) = 2μB0 μ为自旋核产生的磁矩;B0外加磁感应强度 △E与核磁矩及外磁场强度成正比, B0越大, 能级 分裂越大, △E越大
(二)核磁共振
△E= 2μB0=hν ν=ν0=γB0/2π ν质子发生共振需要的射频电磁波的频率 γ磁旋比 ; B0外加磁感应强度;ν0共振时的进动频率 I=1/2的同一核来说,因磁矩为一定值,γ—为常数, 所以发生共振时,照射频率的大小取决于外磁场强度 的大小。外磁场强度增加时,为使核发生共振,照射 频率也相应增加;反之,则减小。 对自旋量子数I=1/2的不同核来说,若同时放入一固 定磁场中,共振频率取决于核本身磁矩的大小, μ大 的核,发生共振所需的照射频率也大;反之,则小。 照射频率固定,磁矩大的核共振所需磁场强度小。
5.自旋耦合与自旋分 裂现象:CH3CH2OH中有
核磁共振波谱分析法-谱图解析与化合物结构确定
a O b CH2 C O CH2CH3 a CH2 O A
哪个正确? 正确:B 为什么?
O b C CH2CH3 B
谱图解析与结构(4)
化合物 C8H8O2,推断其结构
10
9
8
7
6
5
4
3
结构(4)确定过程
• 第四节 谱图解析与结构确定
analysis of spectrograph and structure determination
• 第五节
13C
13C核磁共振波谱
nuclear magnetic resonance
结束
<3000 cm-1, -C-H
饱和烃
两种质子 1:3或3:9 -CH3 :-C(CH3)9 无裂分,无相邻质子
谱图解析 (2)C8H14O4
1700cm-1, C=0, 醛,酮,排除羧酸, 醇,酚 <3000 cm-1, -C-H 饱和烃,无芳环 1.三种质子 4:4:6 2.裂分,有相邻质子; 3. =1.3(6H) 两个 CH3 裂分为3, 相邻C有2H; CH3-CH24. =2.5(4H) ,单峰, CO-CH2CH2-CO5. =4.1(4H) 低场(吸电子),
O CH2CH3
正确结构: HC O CH2CH3
O CH2CH3
谱图解析与结构(3)
化合物 C10H12O2,推断结构
δ7.3 δ2.3 δ 5.21 5H δ1.2 3H
2H
2H
结构(3)确定过程
化合物 C10H12O2,
=1+10+1/2(-12)=5
核磁共振波谱法
核磁共振波谱法
新方法、新技术如二维核磁共振谱(2D-NMR) 等不停涌现和完善,使NMR波谱在化学、医药、 生物学和物理化学等领域应用愈为广泛。
第4页
第二节 核磁共振基本原理
一1.、自原旋子分核类自旋
原子核含有质量并带正电荷,大多数核有自旋现象,在 自旋时产生磁矩,磁矩方向可用右手螺旋定则确定,核 磁矩和核自旋角动量P都是矢量,方向相互平行。核自旋特 征用自旋量子数I来描述,核自旋按I为零、半整数及整数分 为三种类型:
屏蔽效应越强,即值越大, 共振信号越在高场出现。
核磁共振波谱法
CH3CH2Cl
第28页
化学位移:
chemical shift
屏蔽作用使氢核产生共振需要更 大外磁场强度(相对于裸露氢核), 来抵消屏蔽影响。
因为屏蔽效应存在,不 一样化学环境氢核共振频率 不一样,这种现象称为化学 位移。
核磁共振波谱法
为了防止溶剂本身信号干扰!
核磁共振波谱法
第24页
16.3 化学位移
屏蔽效应 化学位移表示 化学位移影响原因 不一样类别质子化学位移
核磁共振波谱法
第25页
实现核磁共振要满足特定核共振条件:
2
H0
同一个核,磁旋比相同。固定
了磁场强度,全部1H必定含有相
同共振频率。在NMR波谱上就
只有一个吸收信号。
第11页
2.共振吸收条件
核有自旋(磁性核)
v0 = v: 照射频率等于核进动频率
吸收电磁波能量E等于ΔE,即: E = hv0 =ΔE
代入式 E = E2 - E1 =
h 2
H0
得:
0
2
H0
当v0 =v时,照射电磁波就与核磁矩发生作用,使处于低 能级核吸收电磁波能量跃迁到高能级,核磁矩对H0取向发生 倒转。这种现象叫做核磁共振。
核磁共振波谱分析原理
核磁共振波谱分析原理
核磁共振波谱分析(NMR)是一种基于核磁共振现象的分析
技术,用于确定分子结构和化学环境。
原理很简单:原子核具有自旋,当这些原子核处于外加磁场中时,会存在基态和激发态之间的能级差。
当外加磁场的强度等于能级差时,原子核会发生能级间的跃迁,而产生共振吸收信号。
核磁共振波谱分析基于这个原理,首先将样品置于强磁场中,使各个原子核的自旋方向与强磁场方向发生共线。
然后通过施加射频脉冲,使部分自旋发生共振吸收,从而产生强度较大的共振信号。
这些信号会被NMR仪器接收并处理,最终转换成
核磁共振波谱。
在核磁共振波谱图上,横轴表示共振频率,纵轴表示吸收强度。
通过对波谱图的分析,可以确定不同核的化学位移,从而推断其所处的化学环境和分子结构。
同时,核磁共振波谱还可以提供有关化学键长、化学键角和空间构型等信息。
核磁共振波谱分析在有机化学、生物化学、材料科学等领域有着广泛的应用。
它是一种无损分析方法,可以用来鉴定化合物、研究反应动力学、分析混合物等。
同时,核磁共振波谱分析还可以用来定量分析样品中不同核的含量,并通过不同核之间的耦合情况推断化学结构。
总之,核磁共振波谱分析是一种非常有用的分析技术,可以提供丰富的化学信息,对于科学研究和实际应用具有重要意义。
第十四章 核磁共振波谱法
第三节 化学位移
一、屏蔽效应
理想化的、裸露的氢核;满足共振条件:
0 = H0 / (2 )
核外电子及其他因素对抗外 加磁场的现象称为屏蔽效应
H =(1- )H0
σ称为屏蔽常数
2
(1 )H0
23
讨论
①在H0一定时(扫频),屏蔽常数σ大的氢核,进 动频率ν小,共振峰(共振吸收峰)出现在核磁共 振谱的低频端(右端);反之,出现在高频端(左 端)。
在氢核附近有电负性(吸电子作用)较大的原子 成基团时,则氢核的电子云密度降低,抗磁屏蔽 减弱,信号峰在低场出现。
-O-H,
大
低场
-C-H,
小
高场
26
2.磁各向异性或称远程屏蔽效 是化学键,尤其是π 键产生的感应磁场,
其强度及正负具有方向性,使在分子中所 处的空间位置不同的质子,所受的屏蔽作 用不同,导致不同区域内的质子移向高场 和低场的现象。
12
第二节 核磁共振仪
一、连续波核磁共振仪 组成:磁铁、探头、射频发生器、射频接收器、
扫描发生器、信号放大及记录仪 磁铁:产生一个恒定的、均匀的磁场。磁场强度
增加,灵敏度增加。
永久磁铁:提供0.7046T(30MHz)或1.4092T(60MHz)
的场强。特点是稳定,耗电少,不需冷却,但对室 温的变化敏感,因此必须将其置于恒温槽内,再置 于金属箱内进行磁屏蔽。恒温槽不能断电,否则要 将温度升到规定指标要2~3天。
(2)双键(C=O及C=C): 双键的π电子形成结面, 结面电子在外加磁场诱导 下形成电子环流,从而产 生感应磁场。双键上下为 两个锥形的屏蔽区,双键 平面上为去屏蔽区
29
(3)叁键:碳—碳叁键的π电子 以键轴为中心呈对称分布(共四 块电子云),在外磁场诱导下, π电子可以形成绕键轴的电子环 流,从而产生感应磁场。在键轴 方向上下为正屏蔽区;与键轴垂 直方向为负屏蔽区,与双键的磁 各向异性的方向相差90。。炔氢 有一定的酸性,其外围电子云密 度较低,但它处于三键的正屏蔽 区。故其化学位移δ值小于烯氢
核磁共振波谱法详细解析
♫概述
二、NMR与UV、IR的区别
1.照射的电磁辐射频率不同,引起的跃迁类型不同
UV-Vis 200-760nm 紫外可见光 价电子跃迁 IR 2.5-25µm 红外线 振动-转动能级跃迁
NMR 0.6-30m 无线电波 原子核自旋能级跃迁
2.测定方法不同:
UV、IR--测定A(T) NMR --共振吸收法
三、化学位移的影响因素
➢ 内部因素(分子结构因素):局部屏蔽效 应、磁各向异性效应和杂化效应等
➢ 外部因素:分子间氢键和溶剂效应等。
三、化学位移的影响因素
1. 局部屏蔽效应:氢核核外成键电子云产生的抗磁 屏蔽效应(相邻基团的电负性影响)。
• 电负性↑,吸电子能力↑ ,H核电子云密度↓,↓
(去磁屏蔽效应),δ↑
1H-NMR:
⑴质子类型(-CH3, -CH2,=CH,Ar-H)和所处 的化学环境;
⑵ H分布情况 ; ⑶ 核间的关系。 ✓ 缺点:不含H基团无 NMR信号, 化学环境相近
的烷烃,难区别
13C-NMR:丰富的C骨架信息
第一节 基本原理
一 、原子核的自旋 1.自旋分类
原子核:质子和中子组成的带正电荷的粒子。
例:I=1/2时, 2 1 1 2 即:m1, m1
2
2
2
顺磁场 低能量
逆磁场 高能量
氢核磁矩的取向
例:I=1时,
2113个取向,
即: m = 1,0,-1
I=1 氢核磁矩的取向
➢ 核磁矩在外磁场空间的取向不是任意的,是量子 化的,这种现象称为空间量子化。
➢ 用μZ表示不同取向核磁矩在外磁场方向的投影。
• 对于同一核,H0不同时,ν不同,不便于比较,采 用相对值δ与H0无关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11:21:53
2.氢键效应
形成氢键后1H核屏蔽作用减少,氢键属于去屏蔽效应。 使共振吸收移向低场。
H H3CH2C O H O CH2CH3 CCl4 5.72ppm 3.7ppm O H O H H O O CH3 CCl4 7.45ppm 4.37ppm
11:21:53
例: 醇羟基 酚 胺 0.5~5 4~7 0.5~5
氢原子核的外面有电子,它们对磁场的磁力线有排斥 作用。对原子核来讲,周围的电子起了屏蔽(Shielding) 效应。核周围的电子云密度越大,屏蔽效应就越大,要相 应增加磁场强度才能使之发生共振。核周围的电子云密度 是受所连基团的影响,故不同化学环境的核,它们所受的
屏蔽作用各不相同,它们的核磁共振信号亦就出现在不同
在强磁场中,原子核发生能级分裂(能级极小:在1.41T磁场中, 磁能级差约为2510-3J),当吸收外来电磁辐射(10-9-10-10nm,4900MHz)时,将发生核能级的跃迁----产生所谓NMR现象。
射频辐射─原子核(强磁场下,能级分裂)-----吸收──能级跃迁 ──NMR 与UV-vis和红外光谱法类似,NMR也属于吸收光谱,只是研究 的对象是处于强磁场中的原子核对射频辐射的吸收。
11:21:53
核磁共振在仪器、实验方法、理论和应用等方面有着飞
跃的进步。谱仪频率已从30MHz发展到900MHz。1000MHz 谱仪亦在加紧试制之中。仪器工作方式从连续波谱仪发展到
脉冲-傅里叶变换谱仪。随着多种脉冲序列的采用,所得谱
图已从一维谱到二维谱、三维谱甚至更高维谱。所应用的学 科已从化学、物理扩展到生物、医学等多个学科。核磁共振
11:21:53
常见结构单元化学位移范围
O ~2.1 H3C C
~3.0 H 3C
H
N
~ 1 .8 H CCC 3
~3.7 H3C O H C
~0.9 H3C C
O C OH
H C O
C
15 14 13 12 11 10 9
8
7
6
5
4
3
2
1
0
¯ Ñ » §Î » Ò Æ
11:21:53
标样浓度(四甲基硅烷 TMS) : 1%;
溶剂:1H谱 四氯化碳,二硫化碳; 氘代溶剂:氯仿,丙酮、苯、二甲基亚砜的氘代物;
11:21:53
第二节 核磁共振与化学位移
nuclear magnetic resonance and chemical shift
一、核磁共振与化学位移
nuclear magnetic resonance and chemical shift
的位臵。此位臵的差异即叫化学位移。
11:21:53
CH3CH2OH
高分辨
11:21:53
吸收峰数 峰的位臵 峰的面积
多少种不同化学环境质子 质子类型 每种质子数目
一、核磁共振与化学位移
nuclear magnetic resonance and chemical shift
1.屏蔽作用与化学位移
成像技术还可以与断层扫描技术(CT)结合为临床诊断和生理
学、医学研究提供重要数据,总而言之,核磁共振已成为最 重要的仪器分析手段之一。
11:21:53
核磁共振是当前应用于诊断早期病变的临床医学影像 技术,这种检查对患者和检查者都是安全可靠的 .核磁共振 成像技术是一种非介入探测技术,相对于X-射线透视技术 和放射造影技术,MRI对人体没有辐射影响,相对于超声 探测技术,核磁共振成像更加清晰,能够显示更多细节, 此外相对于其他成像技术,核磁共振成像不仅仅能够显示 有形的实体病变,而且还能够对脑、心、肝等功能性反应
进行精确的判定。在帕金森氏症、阿尔茨海默氏症、癌症
等疾病的诊断方面,MRI技术都发挥了非常重要的作用。
11:21:53
磁共振最常用的核是氢原子核质子(1H),因为它 的信号最强,在人体组织内也广泛存在。影响磁共振影 像因素包括:(a)质子的密度;(b)弛豫时间长短;(c)血 液和脑脊液的流动;(d)顺磁性物质;(e)蛋白质。磁共振 影像灰阶特点是,磁共振信号愈强,则亮度愈大,磁共 振的信号弱,则亮度也小,从白色、灰色到黑色。各种 组织磁共振影像灰阶特点如下;脂肪组织,松质骨呈白 色;脑脊髓、骨髓呈白灰色;内脏、肌肉呈灰白色;液 体,正常速度流血液呈黑色;骨皮质、气体、含气肺呈 黑色。
理想化的、裸露的氢核;满足共振条件: 0 = H0 / (2 ) 产生单一的吸收峰; 实际上,氢核受周围不断运动着的电子影响。在外磁场作 用下,运动着的电子产生相对于外磁场方向的感应磁场,起 到屏蔽作用,使氢核实际受到的外磁场作用减小: H=(1- )H0 :屏蔽常数。 越大,屏蔽效应越大。 0 = [ / (2 ) ](1- )H0 屏蔽的存在,共振需更强的外磁场(相对于裸露的氢核)。
第十三章
核磁共振波谱分析法
nuclear magnetic resonance spectroscopy; NMR
11:21:53
一、概述
NMR是研究原子核对射频辐射(Radio-frequency Radiation)的吸 收,它是对各种有机和无机物的成分、结构进行定性分析的最 强有力的工具之一,有时亦可进行定量分析。 (测定有机化合物的结构, 1 HNMR── 氢原子的位臵、环境以 及官能团和C骨架上的H原子相对数目)
羧酸
二聚体形式(双分子的氢键)
10~13
11:21:53
分子内氢键同样可以影响质子的共振吸收
-二酮的烯醇式可以形成分子内氢键 该羟基质子的化学位移为11~16
11:21:53
介质的影响
不同溶剂,使样品分子所受的磁感强度不同;不同溶
剂分子对溶质分子有不同的作用,因此介质影响δ值。值得 指出的是,当用氘代氯仿作溶剂时,有时加入少量氘代苯, 利用苯的磁各向异性,可使原来相互重叠的峰组分开。这 是一项有用的实验技术.
11:21:53
第一节 核磁共振基本原理
principles of nuclear magnetic resonance 一、原子核的自旋 atomic nuclear spin 二、核磁共振现象 nuclear magnetic resonance 三、核磁共振条件 condition of nuclear magnetic resonance 四、核磁共振波谱仪 nuclear magnetic resonance spectrometer
X, : X, 电子云密度, 屏蔽效应, 共振在较低磁场发生,
11:21:53
吸电子基团越多,
Cl CH2 H Cl2 CH H Cl3 C H
这种影响越大 3.05
5.30
7.27 基团距离越远,受到的影响越小
11:21:53
CH3 CH2 CH2 Br 1.25 1.69 3.30
11:21:53
化学位移:
chemical shift
0 = [ / (2 ) ](1- )H0
由于屏蔽作用的存在,氢核产生 共振需要更大的外磁场强度(相对 于裸露的氢核),来抵消屏蔽影响。
在有机化合物中,各 种氢核 周围的电子云密度 不同(结构中不同位臵) 共振频率有差异,即引起 共振吸收峰的位移,这种 现象称为化学位移。
11:21:53
4.各类有机化合物的化学位移
①饱和烃
-CH3: CH3=0.791.10ppm -CH2: CH2 =0.981.54ppm -CH: CH= CH3 +(0.5 0.6)ppm H=3.2~4.0ppm H=2.2~3.2ppm H=1.8ppm H=2.1ppm H=2~3ppm
-C-H,
大
低场
11:21:53
小
高场
诱导效应
(电负性对化学位移的影响)
CH3X 不同化学位移与-X的电负性 化合物 电负性
(ppm)
CH3X
CH3F
CH3OH
CH3Cl
CH3Br
CH3I
(X) 4.0(F) 3.5(O) 4.26 3.40
3.1(Cl) 2.8(Br) 2.5(I) 3.05 2.68 2.16
碳杂化轨道电负性:SP>SP2>SP3
1) 烯碳sp2杂化比sp3杂化,与氢相连的碳原子从sp3 (碳 碳单链)到sp2(碳碳双键),s电子的成分从25%增加至 33%, C-H键电子更靠近碳,对质子的屏蔽
如: 乙烷质子 =0.96 乙烯质子 =5.84 2)炔碳为sp杂化,相对sp2和sp3杂化的C-H键电子更靠 近碳, 使质子周围的电子云密度减少, 质子共振吸收向低 场移动.但炔氢谱峰相对烯氢处于较高场,芳环氢谱峰相对 于烯氢处于较低场,则因另有较重要的影响因素所致。
11:21:53
分子的磁性质
原子核 : 带正电荷的粒子 当它的质量数和原子序数有一个是奇数时,它就和电子一样 有自旋运动,产生磁矩。 例:11H, 136C,199F 和 3115P 有自旋现象。
12 6C
和 168O 没有自旋现象。
11:21:53
样品的制备:
试样浓度:5-10%;需要纯样品15-30 mg; 傅立叶变换核磁共振波谱仪需要纯样品1 mg ;
二、影响化学位移的因素
factors influenced chemical shift
1.电负性--去屏蔽效应
与质子相连元素的电负性越 强,吸电子作用越强,价电子偏 离质子,屏蔽作用减弱,信号峰 在低场出现。
-CH3 , =1.6~2.0,高场; -CH2I, =3.0 ~ 3.5,
-O-H,
11:21:53
历史:
1924年Pauli预言了NMR的基本理论:有些核同时具有自旋 和磁量子数,这些核在磁场中会发生分裂; 1946年,Harvard 大学的Purcel和Stanford大学的Bloch各自 首次发现并证实NMR现象,并于1952年分享了Nobel奖; 1953年Varian开始商用仪器开发,并于同年做出了第一台高 分辨NMR仪。1956年,Knight发现元素所处的化学环境对 NMR信号有影响,而这一影响与物质分子结构有关。 1991年诺贝尔化学奖授予R.R. Ernst教授,以表彰他对二维 核磁共振理论及傅里叶变换核磁共振的贡献。这两次诺贝尔奖 的授予,充分地说明了核磁共振的重要性。