第一章 有理数(解析版)

合集下载

第一章 有理数单元检测卷(解析版)

第一章 有理数单元检测卷(解析版)

第1章《有理数》一、选择题(共36分)1.2023的相反数是( )A .12023B .2023-C .2023D .12023-【答案】B【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:2023的相反数是2023-,故选:B .【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2.中国是最早采用正负数表示相反意义的量、并进行负数运算的国家.若收入500元记作500+元,则支出237元记作( )A .237+元B .237-元C .0元D .474-元【答案】B【分析】根据相反意义的量的意义解答即可.【详解】∵收入500元记作500+元,∴支出237元记作237-元,故选B .【点睛】本题考查了相反意义的量,正确理解定义是解题的关键.3.2022年河南省凭借6.13万亿元的经济总量占据全国各省份第五位,占全国的5.0%,将数据“6.13万亿”用科学记数法表示为( )A .86.1310´B .106.1310´C .126.1310´D .146.1310´【答案】C【分析】科学记数法的表示形式为10n a ´的形式,其110a £<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:将数据“6.13万亿”用科学记数法表示为126.1310´.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ´的形式,其中110a £<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.下列说法正确的是( )A .0既是正数又是负数B .0是最小的正数C .0既不是正数也不是负数D .0是最大的负数【答案】C【分析】根据有理数的分类判断即可.【详解】∵0既不是正数也不是负数,故选C.【点睛】本题考查了零的属性,熟练掌握0既不是正数也不是负数是解题的关键.5.点A 为数轴上表示3的点,将点A 向左移动9个单位长度到B ,点B 表示的数是( )A .2B .−6C .2或−6D .以上都不对【答案】B【分析】根据数轴上的平移规律即可解答【详解】解:∵点A 是数轴上表示3的点,将点A 向左移9个单位长度到B ,∴点B 表示的数是:396-=-,故选B .【点睛】本题主要考查了数轴及有理数减法法则,掌握数轴上的点左移减,右移加是解题关键.6.哈尔滨市2023年元旦的最高气温为2℃,最低气温为8-℃,那么这天的最高气温比最低气温高( )A .10-℃B .6-℃C .6℃D .10℃【答案】D【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可.【详解】解:根据题意,得:()282810--=+=,\这天的最高气温比最低气温高10℃,故选:D .【点睛】本题考查了有理数的减法的应用,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.7.把()()()()8452--++---写成省略加号的形式是( )A .8452-+-+B .8452---+C .8452--++D .8452--+【答案】B 【分析】观察所给的式子,要写成省略加号的形式,即是将式子中的括号去掉即可.【详解】解:根据有理数的加减混合运算的符号省略法则化简,得,()()()()28452845---+---=--++.故选:B .【点睛】本题考查有理数的加减混合运算,熟练掌握去括号的法则:括号前是正号,去括号时,括号里面的各项都不改变符号;括号前是负号,去括号时,括号里面的各项都要改变符号是解题的关键.8.下列各对数中,不相等的一对数是( )A .()33-与33-B .33-与33C .()43-与43-D .()23-与23【答案】C【分析】根据有理数的乘方和绝对值的概念,逐一计算即可.【详解】解:()3327-=-,3327-=-,2727-=-,故A 不符合题意;3327-=,3327=,2727=,故B 不符合题意;()4381-=,4381-=-,8181¹-,故C 符合题意;()239-=,239=,99=,故D 不符合题意,故选:C .【点睛】本题考查了有理数的乘方和绝对值的概念,熟练掌握计算法则是解题的关键.9.用四舍五入法按要求对0.30628分别取近似值,其中错误的是( )A .0.3(精确到0.1)B .0.31(精确到0.01)C .0.307(精确到0.001)D .0.3063(精确到0.0001)【答案】C【分析】根据近似数的精确度对各选项进行判断即可.【详解】解:0.30628精确到0.1是0.3,A 选项正确,不符合题意;0.30628精确到0.01是0.31,B 选项正确,不符合题意;0.30628精确到0.001是0.306,C 选项错误,符合题意;0.30628精确到0.0001是0.3063,D 选项正确,不符合题意.【点睛】本题考查了近似数的精确度,熟练掌握四舍五入法及精确度的概念是解题的关键.10.若计算式子1(27)()3-W V 的结果为最大,则应分别在 ,△中填入下列选项中的( )A .+,-B .´,-C .¸,-D .-,¸【答案】D【分析】将四个选项中的运算符号分别代入式子中进行运算,通过比较结果即可得出结论.【详解】解:当选取A 选项的符号时,111(27)()99333+--=+=;当选取B 选项的符号时,111(27)()1414333´--=+=;当选取C 选项的符号时,12113(27)()37321¸--=+=;当选取D 选项的符号时,1(27)()5(3)153-¸-=-´-=,∵1113151493321>>>,当选取D 选项的符号时,计算式子1(27)(3-W V 的结果最大,故选:D .【点睛】本题主要考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键.11.如图,点A 、B 均在数轴上,且点,A B 所对应的实数分别为a 、b ,若0a b +>,则下列结论一定正确的是( )A .0ab >B .0a b ->C .0a b >D .0b >【答案】B【分析】根据0a b +>,可知,a b 可能同号,也可能异号,而a b >恒成立,即可求解.【详解】∵0a b +>,∴a b >-,即在数轴上,b -在a 的左侧,∴0b b a <<-<或0b b a -<<<,∴,a b 可能同号,也可能异号,而a b >恒成立,∴0a b ->一定正确,【点睛】本题考查了数轴上点的位置及其大小关系,熟练掌握数轴上右边的数总比左边的数大是解题的关键.12.若a 、b 互为相反数,c 、d 互为倒数,m 的倒数是它本身,则232cd m a b m+++的值为A .5B .5或2C .5或1-D .不确定【答案】C 【分析】根据相反数,倒数的性质,可得0,1a b cd +== ,1m =± ,再代入,即可求解.【详解】解:∵a 、b 互为相反数,c 、d 互为倒数,∴0,1a b cd +== ,∵m 的倒数是它本身,∴1m =± ,∴21m = ,当1m = 时,2331221051cd m a b m ´+++=´++=,当1m =- 时,2331221011cd m a b m ´+++=´++=--,∴232cd m a b m+++的值为5或1-.故选:C【点睛】本题主要考查了相反数,倒数的性质,熟练掌握一对互为相反数的和等于0,互为倒数的两个数的乘积为1是解题的关键.二、填空题(共18分)13.6-等于_____.【答案】6【分析】根据绝对值的定义进行求解即可.【详解】解:66-=,故答案为:6.【点睛】本题主要考查了求一个数的绝对值,熟知正数和0的绝对值是它本身,负数的绝对值是它的相反数是解题的关键.14.某种试剂的说明书上标明保存温度是(102)±℃,请你写出一个适合该试剂保存的温度:___________℃.【答案】10(答案不唯一)【分析】根据正数和负数的定义即可解答.【详解】解:由题意,可知适合该试剂的保存温度为8~12℃,在此温度范围内均满足条件.故答案为10(答案不唯一).【点睛】本题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.15.把2.674精确到百分位约等于______.【答案】2.67【分析】把千分位上的数字进行四舍五入即可.【详解】解:2.674 2.67».故答案为:2.67.【点睛】本题主要考查了近似数,解题的关键是熟练掌握定义,经过四舍五入得到的数叫近似数.16.计算:()14877-¸´=_____________.【答案】4849-【分析】根据有理数的乘除运算法则,从左往右依次计算即可.【详解】解:()111484874877749-¸´=-´´=-,故答案为:4849-.【点睛】本题考查了有理数的乘除运算.解题的关键在于明确运算顺序.易错点是先计算乘法然后计算除法.17.已知实数m ,n 在数轴上的对应点的位置如图所示,则m _______n .(填“<”、“>”或“=”)【答案】<【分析】根据在数轴上右边的数据大于左边的数据即可得出答案.【详解】解: m Q 在n 的左边,m n \<,故答案为:<.【点睛】此题考查了实数与数轴,正确掌握数轴上数据大小关系是解题关键.18.若()2180x y ++-=,则x y -的值为______.【答案】9-【分析】利用非负数的性质得出x y ,的值,代入计算得出答案.【详解】解:()2180x y ++-=Q ,1080x y \+=-=,,解得:18x y =-=,,189x y \-=--=-,故答案为:9-.【点睛】本题考查了非负数的性质,掌握非负数的意义和性质是正确解答的关键.三、解答题(共66分)19.(6分)计算:(1)23(22)(21)+---;(2)(3)(2)16(8)-´-+¸-.【答案】(1)22(2)4【分析】(1)利用加法的运算律进行求解即可;(2)先计算乘除,再计算加减即可求解.【详解】(1)解:23(22)(21)+---232221=-+22=;(2)解:(3)(2)16(8)-´-+¸-()62=+-4=.【点睛】本题考查了有理数的混合运算,解题的关键是掌握相应的运算法则.20.(6分)将下列各数在数轴上表示出来,并用“<”连接.2153,|3|,2,0,,(222----+【答案】详见解析,25312()0|3|222-<-<-+<<<-【分析】由绝对值,相反数,有理数的乘方的概念,找到各数在数轴上对应点的位置即可.【详解】解:25312(0|3|222-<-<-+<<<-.【点睛】本题考查数轴的概念,相反数,绝对值,有理数的乘方的概念,关键是准确确定各数在数轴上对应点的位置.21.(6分)计算:()()21125|2|953--´--+-¸.【答案】26-【分析】原式先算乘方及绝对值,再算乘除,最后算加减即可得到结果.【详解】解:()()21125|2|953--´--+-¸41227=---26=-.【点睛】此题考查了有理数的混合运算,其运算顺序为:先乘方,再乘除,最后加减,有括号先算括号里边的,同级运算从左到右依次进行,熟练掌握运算法则是解题关键.22.(6分)数学老师布置了一道思考题:115626æöæö-¸-ç÷ç÷èøèø,小明仔细思考了一番,用了一种不同方法解决了这个问题,小明解法如下:原式的倒数为()151156226626æöæöæö-¸-=-´-=ç÷ç÷ç÷èøèøèø,所以11516262æöæö-¸-=ç÷ç÷èøèø.(1)请你判断小明的解答是否正确(2)请你运用小明的解法解答下面的问题计算:111112346æöæö-¸-+ç÷ç÷èøèø【答案】(1)小明的解答正确(2)13-【分析】(1)正确,利用倒数的定义判断即可;(2)求出原式的倒数,即可确定出原式的值.【详解】(1)解:小明的解答正确,理由为:一个数的倒数的倒数等于原数;(2)解:111134612æöæö-+¸-ç÷ç÷èøèø()11112346æö=-+´-ç÷èø()()()111121212346=´--´-+´-432=-+-3=-,∴11111123463æöæö-¸-+=-ç÷ç÷èøèø.【点睛】本题主要考查了有理数乘法和除法计算,熟练掌握相关计算法则是解题的关键.23.(6分)如果a ,b ,c 是非零有理数,求式子222||||||||a b c abc a b c abc -+++的所有可能的值.【答案】3±或5±【分析】根据绝对值的性质和有理数的除法法则分情况讨论即可.【详解】解:根据题意,当000a b c >>>,,时,22222215||||||||a b c abc a b c abc -+++=++-=;当000a b c >><,,时,22222213||||||||a b c abc a b c abc -+++=+-+=;当000a b c ><>,,时,22222213||||||||a b c abc a b c abc -+++=-++=;当000a b c <>>,,时,22222213||||||||a b c abc a b c abc -+++=-+++=;当000a b c <<>,,时,22222213||||||||a b c abc a b c abc -+++=--+-=-;当000a b c ><<,,时,22222213||||||||a b c abc a b c abc -+++=---=-;当000a b c <><,,时,22222213||||||||a b c abc a b c abc -+++=-+--=-;当000a b c <<<,,时,22222215||||||||a b c abc a b c abc -+++=---+=-;综上所述,式子222||||||||a b c abc a b c abc -+++的所有可能的值为3±或5±.【点睛】本题考查了有理数的乘法和绝对值的性质,熟练掌握绝对值的性质以及有理数的除法法则是解题的关键.24.(8分)某工厂一周内,计划每天生产自行车100辆,实际每天生产量如下表(以计划量为标准,增加的车辆记为正数,减少的车辆记为负数):星期周一周二周三周四周五周六周日增减(辆)1-+32-+4+75-10-(1)生产量最多的一天比最少的一天多生产多少辆?(2)本周一共生产了多少辆自行车?【答案】(1)17辆;(2)696辆.【分析】(1)由表可知,生产最多的一天为()1007+辆,最少的一天为()10010-,两者相减即可;(2)先用100乘以7,再将多生产或少生产的数量相加,两者相加即可.【详解】(1)()()10071001071017+--=+=(辆)∴生产量最多的一天比最少的一天多生产17辆;(2)()100713247510´+-+-++--7004=-696=(辆)∴本周一共生产了696辆自行车.【点睛】本题考查了正数和负数、有理数的四则运算在实际问题中的应用,根据表中数据正确列式,是解题的关键.25.(8分)如图,在数轴上有A、B、C三个点,请回答下列问题.(1)A、B两点间距离是,B、C两点间距离是,A、C两点间距离是.(2)若将点A向右移动5个单位到点D,B、C、D这三点所表示的数哪个最大?最大数比最小数大多少?【答案】(1)3 ;4;7(2)C点表示的数最大,最大数比最小数大4【分析】(1)根据数轴上两点之间的距离公式进行解答即可;(2)求出点D表示的数,然后再进行比较即可.【详解】(1)解:点A表示的数为4-,点B表示的数为1-,点C表示是数为3,则()AB=---=-+=,14143()31314BC=--=+=,()AC=--=+=,34347故答案为:3;4;7.-+=,点B表示的数为1-,点C表示(2)解:将点A向右移动5个单位到点D,则点D表示是数为451是数为3,>>-,∵311∴表示最大数的是点C,表示最小数的是点B()--=+=,31314∴最大数比最小数大4.【点睛】本题主要考查了用数轴上点表示有理数,数轴上两点之间的距离,解题的关键是数形结合找出点A、B、C在数轴上所表示的有理数.26.(10分)数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离=-.AB a b利用数形结合思想回答下列问题:(1)数轴上表示2和6两点之间的距离是 ,数轴上表示1和4-的两点之间的距离是 .(2)数轴上表示x 和3-的两点之间的距离表示为 .数轴上表示x 和6的两点之间的距离表示为 .(3)若x 表示一个有理数,则14x x -++的最小值= .(4)若x 表示一个有理数,且134x x ++-=,则满足条件的所有整数x 的是 .(5)若x 表示一个有理数,当x 为 ,式子234x x x ++-+-有最小值为 .【答案】(1)4,5(2)3x +,6x -(3)5(4)1-或0或1或2或3(5)3,6【分析】(1)根据数轴上A 、B 两点之间的距离AB a b =-列式计算即可;(2)根据数轴上A 、B 两点之间的距离AB a b =-列式计算即可;(3)根据数轴上两点之间的距离的意义可知x 在4-与1之间时,14x x -++有最小值5;(4)根据数轴上两点之间的距离的意义可知当x 在1-与3之间时(包含1-和3),134x x ++-=,然后可得满足条件的所有整数x 的值;(5)根据数轴上两点之间的距离的意义可知当3x =时,234x x x ++-+-有最小值,最小值为2-到4的距离,然后可得答案.【详解】(1)解:数轴上表示2和6两点之间的距离是264-=,数轴上表示1和4-的两点之间的距离是()145--=,故答案为:4,5;(2)解:数轴上表示x 和3-的两点之间的距离表示为()33x x --=+,数轴上表示x 和6的两点之间的距离表示为6x -;故答案为:3x +,6x -;(3)解:根据数轴上两点之间的距离的意义可知:14x x -++可表示为点x 到1与4-两点距离之和,∴当x 在4-与1之间时,14x x -++有最小值5,故答案为:5;(4)解:根据数轴上两点之间的距离的意义可知:134x x ++-=表示为点x 到1-与3两点距离之和为4,∴当x 在1-与3之间时(包含1-和3),134x x ++-=,∴满足条件的所有整数x 的是1-或0或1或2或3;故答案为:1-或0或1或2或3;(5)解:根据数轴上两点之间的距离的意义可知:234x x x ++-+-可看作是数轴上表示x 的点到2-、3、4三点的距离之和,∴当3x =时,234x x x ++-+-有最小值,最小值为2-到4的距离,即246--=,故答案为:3,6.【点睛】本题考查了数轴上两点之间的距离公式,绝对值的几何意义,正确理解数轴上两点之间的距离以及绝对值的几何意义是解题的关键.27.(10分)【概念学习】规定:求若干个相同的有理数(均不等0)的除法运算叫做除方,如333¸¸,()()()()2222-¸-¸-¸-等.类比有理数的乘方,我们把333¸¸记作3③,读作“3的圈3次方”,()()()()2222-¸-¸-¸-记作()2-④,读作“2-的圈4次方”.一般地,把()0n aa a a a ¸¸¸××׸¹1442443个记作,读作“a 的圈n 次方”.【初步探究】(1)直接写出计算结果:4=③______,412æö-=ç÷èø______.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(此处不用作答)(2)试一试:仿照上面的算式,将下列运算结果直接写成乘方幂的形式()3-=④______;5=⑥______;12æö=ç÷èø⑤______.(3)想一想:将一个非零有理数a 的圈n 次方写成乘方幂的形式等于______.(4)比较:()9-⑤______()3-⑦(填“>”“<”或“=”)【灵活应用】(5)算一算:211334æöæö-¸-´-ç÷ç÷èøèø⑤④.【答案】(1)14,4;(2)213æö-ç÷èø,415æöç÷èø,32;(3)21n a -æöç÷èø;(4)>;(5)163【分析】(1)根据题目给出的定义,进行计算即可;(2)将有理数除法转化为乘法,再写成幂的形式即可;(3)从(2)中总结归纳相关规律即可;(4)将两数变形,求出具体值,再比较大小即可;(5)先将除方转化为乘方,再运用有理数混合运算的方法进行计算即可.【详解】解:(1)144444=¸¸=③,411111422222æöæöæöæöæö-=-¸-¸-¸-=ç÷ç÷ç÷ç÷ç÷èøèøèøèøèø,故答案为:14,4;(2)()()()()()21333333æö--¸-¸-¸-=-è=ç÷ø④;4155555555æö=¸¸¸¸¸=ç÷èø⑥31111112222222æö=¸¸¸¸=ç÷èø⑤;故答案为:213æö-ç÷èø,415æöç÷èø,32;(3)a 的圈n 次方为:21...n n a a a a a a -æö¸¸¸¸=ç÷èø1442443个;(4)()31172999æö-=-=-ç÷èø⑤,()51124333æö-=-=-ç÷èø⑦,∵729243>,∴11729243->-,∴()9-⑤>()3-⑦,故答案为:>;(5)211334æöæö-¸-´-ç÷ç÷èøèø⑤④()232334=-¸-´()92716=-¸-´163=.【点睛】本题考查了有理数的除法运算,乘方运算,以及有理数混合运算,正确理解相关运算法则是解题的关键.。

1.4.2 有理数的除法-七年级数学人教版(上)(解析版)

1.4.2 有理数的除法-七年级数学人教版(上)(解析版)

第一章有理数1.4.2有理数的除法一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.–1÷12的运算结果是A.–12B.12C.–2 D.2【答案】C【解析】–1÷12=–1×2=–2.故选C.2.如果两个有理数的和除以它们的积,所得的商为零,那么这两个有理数A.互为相反数但不等于零B.互为倒数C.有一个等于零D.都等于零【答案】A3.下列运算结果不一定为负数的是A.异号两数相乘B.异号两数相除C.异号两数相加D.奇数个负因数的乘积(没有因数为0)【答案】C【解析】A.异号两数相乘得负,故A不符合题意;B.异号两数相除得负,故B不符合题意;学科*网C.异号两数相加取绝对值较大的加数的符号,故不一定得负,符合题意;D.奇数个负因数的乘积(没有因数为0)得负,故D不符合题意.故选C.4.计算–4÷49×94⎛⎫-⎪⎝⎭的结果是A.4 B.–4 C.814D.–814【答案】C【解析】−4÷49×94⎛⎫-⎪⎝⎭=−4×94×(−94)=814;故选C.学科*网5.算式(–34)÷()=–2中的括号内应填A.–323B2.C.–383D8.【答案】D【解析】(–34)÷()=–2中的括号内应填(–34)÷(–2)=38,故选D.6.下列计算中,正确的是①(–800)÷(–20)=–(800÷20)=–40;②0÷(–2011)=0;③(+18)÷(–6)=+(18÷6)=3;④(–0.72)÷0.9=–(0.72÷0.9)=–0.8.A.①②③B.①③④C.①②④D.②④【答案】D二、填空题:请将答案填在题中横线上.7.化简:2018=________,6416-=________,2.70.9--=________,–183--=________.【答案】0,–4,3,–6【解析】因为0除以一个不为0的数商等于0,所以0 2018=,因为–64和16的公因数是16,所以644 16-=-,因为–2.7和–0.9的公因数是–0.9,所以2.73 0.9-=-,因为–18和–3的公因数是–3,所以–1863-=--,故答案为:0,–4,3,6-.8.在–1,2,–3,0,5这五个数中,任取两个数相除,其中商最小是________.【答案】–59.两个有理数,它们的商是–1,则这两个有理数的关系是________.【答案】互为相反数【解析】两个有理数,商是−1,则这个有理数的关系是互为相反数.故答案为:互为相反数.学科*网三、解答题:解答应写出文字说明、证明过程或演算步骤.10.计算:(1)0.9÷313;(2)(–34)÷5;(3)–18÷(–145);(4)–32324÷(–112).【答案】(1)27100;(2)–320;(3)10;(4)952.【解析】(1)0.9÷319310=×32710100=,(2)(–34)÷5=–34×15=–320,(3)–18÷(–145)=18×59=10,(4)–32324÷(–112)=9524×12=952.11.计算:(1)103+(310–815)÷(–720);(2)–1–(1–12)÷3×|3–9|;(3)125+(2.4×56–34×23)÷212;(4)(–3–112)÷[334÷(2–313)×115].【答案】(1)4;(2)–2;(3)2;(4)4 3 .【解析】(1)103+(310–815)÷(–720)=103+(–730)×(–207)=103+23=4.(2)–1–(1–12)÷3×|3–9|=–1–12×13×6=–1–1 =–2.(3)125+(2.4×56–34×23)÷212=125+125×56×25–34×23×25=125+45–15=2.(4)(–3–112)÷[334÷(2–313)×115]=–92÷34131435⎡⎤⎛⎫÷-⨯⎪⎢⎥⎝⎭⎣⎦=–92÷15311445⎡⎤⎛⎫⨯-⨯⎪⎢⎥⎝⎭⎣⎦=–98 227⎛⎫⨯-⎪⎝⎭=43.学科*网12.讲完“有理数的除法”后,老师在课堂上出了一道计算题:1513÷(–8).不一会儿,不少同学算出了答案,老师把班上同学的解题过程归类写到黑板上.方法一:原式=463×(–18)=–4624=–11112;方法二:原式=(15+13)×(–18)=15×(–18)+13×(–18)=–153124⨯+=–11112;方法三:原式=(16–23)÷(–8)=16÷(–8)–23÷(–8)=–2+112=–11112.对这三种方法,大家议论纷纷,你认为哪种方法最好?请说出理由,并说说本题对你有何启发.【答案】方法三最好,理由见解析.。

第一章 有理数 考点3 数轴(解析版)

第一章 有理数   考点3 数轴(解析版)

第一章有理数(解析板)3、数轴知识点梳理数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向.(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大.同步练习一.选择题(共11小题)1.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④【考点】数轴.【分析】数轴可知b<0<a,|b|>|a|,求出ab<0,a﹣b>0,a+b<0,根据以上结论判断即可.【解答】解:∵从数轴可知:b<0<a,|b|>|a|,∴①正确;②错误,∵a>0,b<0,∴ab<0,∴③错误;∵b<0<a,|b|>|a|,∴a﹣b>0,a+b<0,∴a﹣b>a+b,∴④正确;即正确的有①④,故选:B.【点评】本题考查了数轴,有理数的乘法、加法、减法等知识点的应用,关键是能根据数轴得出b<0<a,|b|>|a|.2.数轴上A、B、C三点所代表的数分别是a、1、c,且|c﹣1|﹣|a﹣1|=|a﹣c|.若下列选项中,有一个表示A、B、C三点在数轴上的位置关系,则此选项为何?()A.B.C.D.【考点】数轴;绝对值.【分析】从选项数轴上找出a、B、c的关系,代入|c﹣1|﹣|a﹣1|=|a﹣c|.看是否成立.【解答】解:∵数轴上A、B、C三点所代表的数分别是a、1、c,设B表示的数为b,∴b=1,∵|c﹣1|﹣|a﹣1|=|a﹣c|.∴|c﹣b|﹣|a﹣b|=|a﹣c|.A、b<a<c,则有|c﹣b|﹣|a﹣b|=c﹣b﹣a+b=c﹣a=|a﹣c|.正确,B、c<b<a则有|c﹣b|﹣|a﹣b|=b﹣c﹣a+b=2b﹣c﹣a≠|a﹣c|.故错误,C、a<c<b,则有|c﹣b|﹣|a﹣b|=b﹣c﹣b+a=a﹣c≠|a﹣c|.故错误.D、b<c<a,则有|c﹣b|﹣|a﹣b|=c﹣b﹣a+b=c﹣a≠|a﹣c|.故错误.故选:A.【点评】本题主要考查了数轴及绝对值.解题的关键是从数轴上找出a、B、c的关系,代入|c﹣1|﹣|a﹣1|=|a﹣c|是否成立.3.在数轴上表示﹣2的点与表示3的点之间的距离是()A.5B.﹣5C.1D.﹣1【考点】数轴.【分析】根据正负数的运算方法,用3减去﹣2,求出在数轴上表示﹣2的点与表示3的点之间的距离为多少即可.【解答】解:3﹣(﹣2)=2+3=5.所以在数轴上表示﹣2的点与表示3的点之间的距离为5.故选:A.【点评】此题主要考查了正负数的运算方法,关键是根据在数轴上表示﹣2的点与表示3的点之间的距离列出式子.4.若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B之间的距离是()A.﹣4B.﹣2C.2D.4【考点】数轴.【分析】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.【解答】解:AB=|﹣1﹣3|=4.故选:D.【点评】本题考查了数轴,主要利用了两点间的距离的表示,需熟记.5.在数轴上,与表示数﹣5的点的距离是2的点表示的数是()A.﹣3B.﹣7C.±3D.﹣3或﹣7【考点】数轴.【分析】符合条件的点有两个,一个在﹣5点的左边,一个在﹣5点的右边,且都到﹣5点的距离都等于2,得出算式﹣5﹣2和﹣5+2,求出即可.【解答】解:数轴上距离表示﹣5的点有2个单位的点表示的数是﹣5﹣2=﹣7或﹣5+2=﹣3.故选:D.【点评】本题主要考查了数轴,当要求的点在已知点的左侧时,用减法;当要求的点在已知点的右侧时,用加法.6.已知三个数a+b+c=0,则这三个数在数轴上表示的位置不可能是()A.B.C.D.【考点】数轴.【分析】根据a+b+c=0可判断三个数中一定有一个正数和一个负数,讨论:若第三个数为负数,根据绝对值的意义得到两负数表示的点到原点的距离等于正数到原点的距离;若第三个数为正数,则两正数表示的点到原点的距离等于负数到原点的距离,然后利用此特征对各选项进行判断.【解答】解:已知a+b+c=0,A.由数轴可知,a>0>b>c,当|a|=|b|+|c|时,满足条件.B.由数轴可知,a>b>0>c,当|c|=|a|+|b|时,满足条件.C.由数轴可知,a>c>0>b,当|b|=|a|+|c|时,满足条件.D.由数轴可知,a>0>b>c,且|a|<|b|+|c|时,所以不可能满足条件.故选:D.【点评】考查了数轴.用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.7.如图所示的图形为四位同学画的数轴,其中正确的是()A.B.C.D.【考点】数轴.【分析】根据数轴的概念判断所给出的四个数轴哪个正确.【解答】解:A没有原点,故此选项错误;B、单位长度不统一,故此选项错误;C、没有正方向,故此选项错误;D、符合数轴的概念,故此选项正确.故选:D.【点评】本题主要考查了数轴的概念:规定了原点、正方向和单位长度的直线叫数轴.特别注意数轴的三要素缺一不可.8.如图,半径为1的圆从表示3的点开始沿着数轴向左滚动一周,圆上的点A与表示3的点重合,滚动一周后到达点B,点B表示的数是()A.﹣2πB.3﹣2πC.﹣3﹣2πD.﹣3+2π【考点】数轴.【分析】线段AB=2πr=2π,点A到原点的距离为3,则点B到原点的距离为2π﹣3,点B在原点的左侧,因此点B所表示的数为﹣(2π﹣3)=3﹣2π,于是得出答案.【解答】解:由题意得:AB=2πr=2π,点A到原点的距离为3,则点B到原点的距离为2π﹣3,∵点B在原点的左侧,∴点B所表示的数为﹣(2π﹣3)=3﹣2π,故选:B.【点评】考查实数的意义,数轴等知识,理解符号和绝对值是确定一个数在数轴上位置的两个必要条件.9.如图,数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD.若A,D两点所表示的数分别是﹣5和6,则线段BD的中点所表示的数是()A.6B.5C.3D.2【考点】数轴.【分析】首先设出BC,根据2AB=BC=3CD表示出AB、CD,求出线段AD的长度,即可得出答案.【解答】解:设BC=6x,∵2AB=BC=3CD,∴AB=3x,CD=2x,∴AD=AB+BC+CD=11x,∵A,D两点所表示的数分别是﹣5和6,∴11x=11,解得:x=1,∴AB=3,CD=2,∴B,D两点所表示的数分别是﹣2和6,∴线段BD的中点表示的数是2.故选:D.【点评】题目考查了数轴的有关概念,利用数轴上的点、线段相关性质,考察学生对数轴知识的掌握情况,题目难易程度适中,适合学生课后训练.10.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边B.介于A、B之间C.介于B、C之间D.在C的右边【考点】数轴;绝对值.【分析】由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为4、1,即可得出a=±4、b=±1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论.【解答】解:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原点O与A、B的距离分别为4、1,∴a=±4,b=±1,∵b=a+3,∴a=﹣4,b=﹣1,∵c=b+5,∴c=4.∴点O介于B、C点之间.故选:C.【点评】本题考查了数值以及绝对值,解题的关键是确定a、b、c的值.本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键.11.如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A.﹣6B.6C.0D.无法确定【考点】数轴;相反数.【分析】根据数轴上点的位置,利用相反数定义确定出B表示的数即可.【解答】解:∵数轴上两点A,B表示的数互为相反数,点A表示的数为﹣6,∴点B表示的数为6,故选:B.【点评】此题考查了数轴,以及相反数,熟练掌握相反数的性质是解本题的关键.二.填空题(共17小题)12.如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为﹣6.【考点】数轴.【分析】先根据已知条件可以确定线段AB的长度,然后根据点B、点C关于点A对称,设设点C所表示的数为x,列出方程即可解决.【解答】解:设点C所表示的数为x,∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.故答案为:﹣6.【点评】本题主要考查实数与数轴的对应关系和轴对称的性质,熟练掌握对称性质是解本题的关键.13.如果数轴上的点A对应的数为﹣1,那么与A点相距3个单位长度的点所对应的有理数为﹣4或2.【考点】数轴.【分析】考虑在A点左边和右边两种情形解答问题.【解答】解:在A点左边与A点相距3个单位长度的点所对应的有理数为﹣4;在A点右边与A点相距3个单位长度的点所对应的有理数为2.故答案为﹣4或2.【点评】此题考查数轴上点的位置关系,注意分类讨论.14.如图,数轴上A、B两点所表示的数分别是﹣4和2,点C是线段AB的中点,则点C 所表示的数是﹣1.【考点】数轴.【分析】根据A、B两点所表示的数分别为﹣4和2,利用中点公式求出线段AB的中点所表示的数即可.【解答】解:∵数轴上A,B两点所表示的数分别是﹣4和2,∴线段AB的中点所表示的数=(﹣4+2)=﹣1.即点C所表示的数是﹣1.故答案为:﹣1【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.15.已知a,b,c在数轴上的位置如图所示,化简:|a﹣b|+|b+c|+|c﹣a|=2b+2c﹣2a.【考点】数轴;绝对值.【分析】去绝对值符号的关键是判断绝对值符号里面的数的符号,根据题意确定了符号,容易去绝对值符号.【解答】解:根据图形,a﹣b<0,b+c>0,c﹣a>0,所以|a﹣b|+|b+c|+|c﹣a|=b﹣a+b+c+c ﹣a=2b+2c﹣2a.故答案是:2b+2c﹣2a.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.16.电影《哈利•波特》中,小哈利波特穿越墙进入“站台”的镜头(如示意图的Q站台),构思奇妙,能给观众留下深刻的印象.若A、B站台分别位于﹣,处,AP=2PB,则P站台用类似电影的方法可称为“1或6站台”.【考点】数轴.【分析】先根据两点间的距离公式得到AB的长度,再根据AP=2PB求得AP的长度,再用﹣加上该长度即为所求.【解答】解:AB=﹣(﹣)=,AP=×=,P:﹣+==1;或AP=×2=,P:﹣+=6.故P站台用类似电影的方法可称为“1或6站台”.故答案为:1或6.【点评】此题考查了数轴,关键是用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.17.在数轴上与﹣2所对应的点相距4个单位长度的点表示的数是2或﹣6.【考点】数轴.【分析】由于题目没有说明该点的具体位置,故要分情况讨论.【解答】解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣6,故答案为:2或﹣6【点评】本题考查数轴,涉及有理数的加减运算、分类讨论的思想.18.如图,数轴上,点A表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,点A2019表示的数是﹣3029.【考点】数轴.【分析】奇数次移动是左移,偶数次移动是右移,第n次移动3n个单位.每左移右移各一次后,点A右移3个单位,故第2018次右移后,点A向右移动3×(2018÷2)个单位,第2019次左移2019×3个单位,故点A2019表示的数是3×(2018÷2)﹣2019×3+1.【解答】解:第n次移动3n个单位,第2019次左移2019×3个单位,每左移右移各一次后,点A右移3个单位,所以A2019表示的数是3×(2018÷2)﹣2019×3+1=﹣3029.故答案为:﹣3029.【点评】本题考查数轴上点的移动规律,确定每次移动方向和距离的规律,以及相邻两次移动的后的实际距离和方向是解答次题的关键.19.在数轴上,点A表示的数是3+x,点B表示的数是2﹣x,且A,B两点的距离为8,则x= 3.5或﹣4.5.【考点】数轴.【分析】分两种情况:①当点A在点B左侧时,②当点A在点B右侧时,分别根据距离为8,列方程求解.【解答】解:①当点A在点B左侧时,2﹣x﹣(3+x)=8,解得:x=﹣4.5;②当点A在点B右侧时,3+x﹣(2﹣x)=8,解得:x=3.5.故答案为:3.5或﹣4.5【点评】本题考查了一元一次方程的应用以及数轴的知识,解答本题的关键是读懂题意,注意分情况列方程求解.20.数轴上A、B两点之间的距离为3,若点A表示数2,则B点表示的数为﹣1或5.【考点】数轴.【分析】分点B在点A的左边和右边两种情况分别求解可得.【解答】解:当点B在点A的左边的时候,点B表示的数为2﹣3=﹣1;当点B在点A的右边的时候,点B表示的数为2+3=5;所以点B表示的数为﹣1或5,故答案为:﹣1或5.【点评】本题主要考查数轴,解题的关键是掌握数轴上两点间的距离及分类讨论思想的运用.21.数轴上表示﹣3的点与表示7的点之间的距离是10.【考点】数轴.【分析】数轴上两点间的距离,即两点对应的数的差的绝对值.【解答】解:数轴上表示﹣3的点与表示7的点之间的距离是7﹣(﹣3)=10.故答案为:10.【点评】此题考查了数轴上两点间的距离的求法.22.一条数轴上有点A、B、C,其中点A、B表示的数分别是﹣16、9,现以点C为折点,将数轴向右对折,若点A对应的点A′落在点B的右边,并且A′B=3,则C点表示的数是﹣2.【考点】数轴.【分析】设出点C所表示的数,根据点A、B所表示的数,可以表示出AC的距离,在根据A′B=3,表示出A′C,由折叠得,AC=A′C,列方程求解即可.【解答】解:设点C所表示的数为x,则AC=x+16,BC=9﹣x,∵A′B=3,B点表示的数为9,∴点A′表示的数为9+3=12,根据折叠得,AC=A′C∴x+16=12﹣x,解得,x=﹣2,故答案为:﹣2.【点评】考查数轴表示数的意义,掌握数轴上两点之间的距离公式是解决问题的关键,点A、B在数轴上表示的数为a、b,则A、B两点之间的距离为AB=|a﹣b|.23.如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,点A4表示的数,是7,如果点A n与原点的距离不小于20,那么n的最小值是13.【考点】数轴.【分析】序号为奇数的点在点A的左边,各点所表示的数依次减少3,序号为偶数的点在点A的右侧,各点所表示的数依次增加3,于是可得到A13表示的数为﹣17﹣3=﹣20,A12表示的数为16+3=19,则可判断点A n与原点的距离不小于20时,n的最小值是13.【解答】解:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1﹣3=﹣2;第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为﹣2+6=4;第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4﹣9=﹣5;第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为﹣5+12=7;第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7﹣15=﹣8;…则A7表示的数为﹣8﹣3=﹣11,A9表示的数为﹣11﹣3=﹣14,A11表示的数为﹣14﹣3=﹣17,A13表示的数为﹣17﹣3=﹣20,A6表示的数为7+3=10,A8表示的数为10+3=13,A10表示的数为13+3=16,A12表示的数为16+3=19,所以点A n与原点的距离不小于20,那么n的最小值是13.故答案为7,13.【点评】本题考查了规律型问题,认真观察、仔细思考,找出点表示的数的变化规律是解决问题的关键.24.在数轴上与表示数﹣1的点的距离为3个单位长度的点所表示的数是﹣4或2.【考点】数轴.【分析】此题可借助数轴用数形结合的方法求解.由于点与﹣1的距离为3,那么应有两个点,记为A1,A2,分别位于﹣1两侧,且到﹣1的距离为3,这两个点对应的数分别是﹣1﹣3和﹣1+3,在数轴上画出A1,A2点如图所示.【解答】解:因为点与﹣1的距离为3,所以这两个点对应的数分别是﹣1﹣3和﹣1+3,即为﹣4或2.故答案为﹣4或2.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.25.已知在数轴上,位于原点左边的点A到原点的距离是5,那么点A所表示的数是﹣5.【考点】数轴.【分析】根据题意求出点A表示的数即可.【解答】解:根据题意得:A点表示的数为﹣5.故答案为:﹣5.【点评】此题考查了数轴,解题是注意:数轴上点A到原点的距离等于5个单位的数有5与﹣5,题中点A位于原点左边这个条件.26.a、b、c在数轴上的对应点的位置如图所示,下列式子:①a+b>0;②a+b>a+c;③bc >ac;④ab>ac.其中正确的有(填上序号)①②③④【考点】数轴.【分析】先确定a,b,c的关系,再运用不等式的性质判定大小.【解答】解:由数轴上数的位置可得c<0<b<a,①a+b>0;正确,②a+b>a+c;正确,③bc>ac,正确,④ab>ac正确,所以4个式子都正确,故选答案为:①②③④【点评】本题主要考查了数轴及不等式的性质,解题的关键是运用不等式的性质判定大小.27.数轴上到原点的距离小于3个单位长度的点中,表示整数的点共有7个.【考点】有理数;数轴.【分析】利用数形结合的思想,结合数轴观察即可得出正确结果.【解答】解:画出数轴,如下图从数轴上可以看到,若|a|<3.5,则﹣3.5<a<3.5,表示整数点可以有:﹣3,﹣2,﹣1,0,1,2,3共七个故答案为7.【点评】本题考查的是绝对值的概念,结合数轴理解绝对值的定义更为简单.28.在数轴上,与表示﹣1的点距离为3的点所表示的数是2或﹣4.【考点】数轴.【分析】此类题注意两种情况:要求的点可以在已知点的左侧或右侧.【解答】解:若点在﹣1的左面,则点为﹣4;若点在﹣1的右面,则点为2.故答案为:2或﹣4.【点评】注意:要求的点在已知点的左侧时,用减法;要求的点在已知点的右侧时,用加法.三.解答题(共9小题)29.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.【考点】数轴.【分析】(1)根据路程除以速度等于时间,可得答案;(2)根据相遇时P,Q的时间相等,可得方程,根据解方程,可得答案;(3)根据PO与BQ的时间相等,可得方程,根据解方程,可得答案.【解答】解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19(秒),(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则10÷2+x÷1=8÷1+(10﹣x)÷2,解得x=.故相遇点M所对应的数是.(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上,则:8﹣t=10﹣2t,解得:t=2.②动点Q在CB上,动点P在OB上,则:8﹣t=(t﹣5)×1,解得:t=6.5.③动点Q在BO上,动点P在OB上,则:2(t﹣8)=(t﹣5)×1,解得:t=11.④动点Q在OA上,动点P在BC上,则:10+2(t﹣15)=t﹣13+10,解得:t=17.综上所述:t的值为2、6.5、11或17.【点评】本题考查了数轴,一元一次方程的应用,利用PO与BQ的时间相等得出方程是解题关键,要分类讨论,以防遗漏.30.在数轴上表示下列各数:0,﹣4.2,,﹣2,+7,,并用“<”号连接.【考点】数轴.【分析】先分别把各数化简为0,﹣4.2,,﹣2,7,,再在数轴上找出对应的点,注意在数轴上标数时要用原数,最后比较大小的结果也要用化简的原数.【解答】解:这些数分别为0,﹣4.2,,﹣2,7,,在数轴上表示出来如图所示,根据这些点在数轴上的排列顺序,从左至右分别用“<”连接为:﹣4.2<﹣2<0<<+7.【点评】由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.31.如图,已知A,B两点在数轴上,点A在原点O的左边,表示的数为﹣10,点B在原点的右边,且BO=3AO.点M以每秒3个单位长度的速度从点A出发向右运动.点N 以每秒2个单位长度的速度从点O出发向右运动(点M,点N同时出发).(1)数轴上点B对应的数是30,点B到点A的距离是40;(2)经过几秒,原点O是线段MN的中点?(3)经过几秒,点M,N分别到点B的距离相等?【考点】数轴.【分析】(1)根据点A表示的数为﹣10,OB=3OA,可得点B对应的数,点B对应的数减去点A对应的数就是点B到点A的距离;(2根据题意列方程解答即可;(3)根据题意分M,N在B点同侧异侧列方程解答即可.【解答】解:(1)因为点A表示的数为﹣10,OB=3OA,所以OB=3OA=30,30﹣(﹣10)=40.故B对应的数是30,点B到点A的距离是40,故答案为:30,40;(2)设经过y秒,原点O是线段MN的中点,根据题意得﹣10+3y+2y=0,解得y=2.答:经过2秒,原点O是线段MN的中点;(3)设经过x秒,点M、点N分别到点B的距离相等,根据题意得3x﹣40=30﹣2x或﹣10+3x=2x,解得x=14或x=10.答:经过14秒或10秒,点M、点N分别到点B的距离相等.【点评】此题主要考查了一元一方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.32.【阅读理解】点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{A,B}的奇点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.【知识运用】如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.(1)数3所表示的点是{M,N}的奇点;数﹣1所表示的点是{N,M}的奇点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?【考点】数轴.【分析】(1)根据定义发现:奇点表示的数到{M,N}中,前面的点M是到后面的数N 的距离的3倍,从而得出结论;根据定义发现:奇点表示的数到{N,M}中,前面的点N是到后面的数M的距离的3倍,从而得出结论;(2)点A到点B的距离为80,由奇点的定义可知:分4种情况列式:①PB=3P A;②P A =3PB;③AB=3P A;④P A=3AB;可以得出结论.【解答】解:(1)5﹣(﹣3)=8,8÷(3+1)=2,5﹣2=3;﹣3+2=﹣1.故数3所表示的点是{M,N}的奇点;数﹣1所表示的点是{N,M}的奇点;(2)30﹣(﹣50)=80,80÷(3+1)=20,30﹣20=10,﹣50+20=﹣30,﹣50﹣80÷3=﹣76(舍去),﹣50﹣80×3=﹣290(舍去).故P点运动到数轴上的﹣30或10位置时,P、A和B中恰有一个点为其余两点的奇点.故答案为:3;﹣1.【点评】本题考查了数轴及数轴上两点的距离、动点问题,认真理解新定义:奇点表示的数是与前面的点A的距离是到后面的数B的距离的3倍,列式可得结果.33.【新知理解】如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB=3π+3;(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC=BD;(填“=”或“≠”)【解决问题】如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N是线段OC的圆周率点,求MN的长;(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.【考点】数轴;一元一次方程的应用.【分析】(1)根据线段之间的关系代入解答即可;(2)根据线段的大小比较即可;(3)由题意可知,C点表示的数是π+1,设M点离O点近,且OM=x,根据长度的等量关系列出方程求得x,进一步得到线段MN的长度;(4)根据圆周率伴侣线段的定义可求D点所表示的数.【解答】解:(1)∵AC=3,BC=πAC,∴BC=3π,∴AB=AC+BC=3π+3.故答案为:3π+3;(2)∵点D、C都是线段AB的圆周率点且不重合,∴BC=πAC,AD=πBD,∴设AC=x,BD=y,则BC=πx,AD=πy,∵AB=AC+BC=AD+BD,∴x+πx=y+πy,∴x=y∴AC=BD故答案为:=.(3)由题意可知,C点表示的数是π+1,M、N均为线段OC的圆周率点,不妨设M点离O点近,且OM=x,x+πx=π+1,解得x=1,∴MN=π+1﹣1﹣1=π﹣1;(4)设点D表示的数为x,如图1,若CD=πOD,则π+1﹣x=πx,解得x=1;如图2,若OD=πCD,则x=π(π+1﹣x),解得x=π;如图3,若OC=πCD,则π+1=π(x﹣π﹣1),解得x=π++2;如图4,若CD=πOC,则x﹣(π+1)=π(π+1),解得x=π2+2π+1;综上,D点所表示的数是1、π、π++2、π2+2π+1.【点评】本题主要考查了数轴和一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.34.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(结果保留π)(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是无理数(填“无理”或“有理”),这个数是﹣2π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3.第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?【考点】正数和负数;数轴.【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)利用圆的半径以及滚动周数即可得出滚动距离;(3)①利用滚动的方向以及滚动的周数即可得出A点移动距离变化;②利用绝对值的性质以及有理数的加减运算得出移动距离和A表示的数即可.【解答】解:(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是无理数,这个数是﹣2π;故答案为:无理,﹣2π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;故答案为:4π或﹣4π;(3)∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3,∴第4次滚动后,A点距离原点最近;第3次滚动后,A点距离原点最远.【点评】此题主要考查了数轴的应用以及绝对值的性质和圆的周长公式应用,利用数轴得出对应数是解题关键.35.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、。

上海市六年级(下)数学同步讲义 第1讲 有理数(解析版)

上海市六年级(下)数学同步讲义 第1讲 有理数(解析版)

有理数内容分析有理数是初中数学六年级下学期第一章第一节的内容.重点是有理数的相关概念辨析,利用对数轴的理解对有理数进行大小比较,绝对值的化简等.难点是绝对值的化简及运算.本讲会在讲解有理数的意义和数轴的知识之后,学习一些绝对值的基础知识,并会在下一讲中,着重讲解绝对值相关的化简及运算.知识结构模块一:有理数的意义知识精讲1、正数和负数在现实生活中,用正数和负数表示具有相反意义的量.2、有理数的概念整数和分数统称为有理数.3、有理数的分类按意义分:⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数正分数分数负分数;按符号分:⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数零负整数负有理数负分数.注意:(1)零既不是正数,也不是负数,零是正数和负数的分界;(2)零和正数统称为非负数;零和负数统称为非正数.【例1】下列说法错误的是()A.盈利2000元和亏损100元是相反意义的量B.向西走5千米和向北走5千米是相反意义的量C.增加20人和减少10人是相反意义的量D.支出600元和收入800元是相反意义的量【答案】B【解析】B答案错误,向西走5千米和向东走5千米是相反意义的量.【总结】考察正数、负数表示的意义.【例2】如果5-米表示向南走5米,那么下列各数分别表示什么意义?(1)8+米;(2)3-米;(3)0米;(4)6米.【答案】(1)向北走8米;(2)向南走3米;(3)停留在原地;(4)向北走6米.【解析】向南为负数,则向北为正数.【总结】考察正数、负数表示的意义.【例3】下列说法错误的是()A.正整数、0、负整数统称整数B.0既不是正数,也不是负数例题解析2/ 17C.有理数包括正数和负数D.有理数包括整数和分数【答案】C【解析】C答案错误,有理数包括正数和负数和0.【总结】考察有理数的分类.【例4】判断题:(1)小数都是有理数;()(2)大于负数的数是正数;()(3)有理数中不是正数就是负数.()【答案】(1)×;(2)×;(3)×【解析】(1)小数分为有限小数和无限小数,而无限小数分为无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为有理数,无限不循环小数为无理数;(2)大于负数的数也可以是0;(3)有理数分为正数、负数、0.【总结】考察有理数的分类,注意0既不属于正数也不属于负数.【例5】若人口增加2万人,记作+2万人,那么人口减少1万人,记作______.【答案】-1万人.【解析】增加为+,则减少为-.【总结】考察正负数的意义.-元表示______.【例6】若盈利100元记作+100元,则50【答案】亏损50元【解析】盈利为+,则亏损为-.【总结】考察正负数的意义.【例7】把下列各数填入它所属的圈内:11,18-,5-,215,158-,0.3, 5.67-,π,0,5.5555,20-,0.3,567.【答案】正整数:11,567;负数:18-,5-,158-, 5.67-,20-;正分数:215,0.3,5.5555,0.3;非负数:11,215,0.3,π,0,5.5555,0.3,567;有理数:11,18-,5-,215,158-,0.3, 5.67-,0,5.5555,20-,0.3,567;非负有理数:11,215,0.3,0,5.5555,0.3,567.【解析】有理数分为整数和分数,注意无限不循环小数属于无理数.【总结】考察实数的分类.【例8】六(2)班在一次期中测验中,数学平均分为87分,若把高于平均分的部分记为正数,小智得93分,应记为多少?小方被记为9-分,他实际得分是多少?【答案】+6;78.【解析】小智得93分,记为93-87=6;小方记作-9分,则他实际得分为87-9=78分.【总结】考察正负数的意义及简单运算.【例9】a-表示的数一定是()A.负数B.正数C.正数或负数D.正数或负数或0【答案】D【解析】因为a有可能为正数、负数、0,则a-可能是正数或负数或0.【总结】考察正负数的意义.【例10】按照一定的规律填数:(1)1,2-,4,8-,16,______,______,______;(2)1,2-,3,4,5-,6,7,8-,9,______,______,…,______(第2017个数).4/ 17【答案】(1)-32,64,-128;(2)10,-11,2017.【解析】(1)可找出规律:后面的数字是前面的数字的2倍,第奇数个数字为正数,第偶数个数字为负数.则可得答案.(2)可找出规律:除了1之外,后面的符号规律是一负两正. ()67232016312017=÷=÷- 则第2017个数正数,为2017. 【总结】考察数字找规律.1、 数轴规定了原点、正方向和单位长度的直线叫做数轴. 任何一个有理数都可以用数轴上的一个点表示. 在数轴上表示的数,右边的数总比左边的数大. 2、 相反数只有符号不同的两个数,我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.互为相反数的两个数的和为零. 零的相反数是零.在数轴上,表示互为相反数的两个点位于原点的两侧,并且与原点的距离相等.【例11】 填空:(1)数轴的三要素是______、______、______;(2)在数轴上表示的两个数,______边的数总比______边的数小;例题解析模块二:数轴知识精讲6 / 17A B C DE 012(3)正数都_____0,负数都______0,正数______负数.(填“>”、“ < ”或“=”) 【答案】(1)原点、正方向、单位长度;(2)左,右;(3)>;< ;>. 【解析】考察数轴的基本要素.【例12】 在下图所示的数轴上,写出A 、B 、C 、D 、E 各点分别表示什么数. 【答案】10.50 1.5 1.25A B C D E ==-===-,,,,. 【解析】考察数轴上数字的表示方法.【例13】 下列说法正确的是( )A .任何有理数一定都有相反数,但不一定都有倒数B .任何有理数一定都有倒数,但不一定都有相反数C .任何有理数一定既有相反数,也有倒数D .任何一个正有理数的倒数都比1小 【答案】A【解析】任何有理数一定有相反数,但是除了0之外都有倒数.D 答案错误,如0.5的倒数 为2,比1大.【总结】考察相反数和倒数的意义.【例14】 判断题:(1)数轴上原点及原点右边的点表示的是非负数.( ) (2)一个数的相反数的相反数是它本身.( ) (3)正数和负数互为相反数.( ) 【答案】(1)√;(2)√;(3)×【解析】0和正数统称为非负数;1(正数)和-2(负数)不是互为相反数. 【总结】考察相反数的意义.【例15】 7的相反数是______, 3.2-是______的相反数. 【答案】-7;3.2【解析】正数的相反数是在数字前面加负号,负数的相反数是去掉数字前面的负号. 【总结】考察相反数的表示方法.【例16】 先画出数轴,然后在数轴上画出表示3-、32-、0、2及它们的相反数的点,并将它们从小到大排列起来.【答案】A 、B 、C 、D 、E 、F 、G 所代表的数字分别为3-、32-、0、2、3、32、-2它们从小到大排列为3-<-2<32-<0<32<2<3.【解析】考察数轴上有理数的表示方法.【例17】 数轴上到原点距离为2个单位的点表示的数有______,是______; 数轴上到表示1的点的距离为2个单位的点表示的数为______. 【答案】2个;2和-2;3和-1 【解析】可利用画数轴得到答案.【总结】考察对绝对值几何意义的理解及运用,注意两解的讨论.【例18】 到原点距离不大于1的数有( ) A .2个B .3个C .4个D .无数个【答案】D【解析】数轴上-1到1之间的实数有无数个. 【总结】考察实数比较大小.【例19】 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,那么所有满足条件的点B 与原点O 的距离之和等于多少?【答案】12.【解析】设A 点表示的有理数为x ,B 点表示的有理数为y .因为A 点与原点O 的距离为3,则3=x ,∴3=x 或-3 又因为A 、B 两点之间的距离为1,则1=-x y ,即1±=-x y ,8 / 17abOA B C D 因为3=x 或-3,所以B 点表示的有理数有四种情况:4-=y 或-2或2或4. 所有满足条件的点B 与原点O 的距离之和为124224=+-++- 【总结】考察数轴上有理数的表示和有理数的加法.【例20】a 、b 在数轴上的位置如图所示,M a b =+,N a b =-+,H a b =-,G a b =--, 求它们的大小关系.(用“>”连接) 【答案】M N H G >>>. 【解析】由数轴可得:0<<a b ,则0>--=b a G ,0<+=b a M ,0<+-=b a N ,0>-=b a H 【总结】考察数轴上有理数的大小比较.【例21】 数轴上表示的数是整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2017厘米的线段AB ,则线段AB 盖住的整点的有多少个? 【答案】2018个或2017个【解析】当A 、B 为整点时,线段AB =2017盖住的整点个数是2018个; 当A 、B 分别不是整点时,线段AB =2017盖住的整点个数是2017个. 【总结】考察数轴上有理数的表示,综合性较强,注意分类讨论.【例22】 如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d ,且210d a -=,那么数轴的原点应是哪个点?【答案】B【解析】若原点为A ,则07a d ==,,此时72=-a d ,和已知不符,排除; 若原点为B ,则34a d =-=,,此时102=-a d ,和已知相符,正确. 【总结】考察数轴上有理数的表示.模块三:绝对值基础1、 绝对值的概念一个数在数轴上所对应的点与原点的距离,叫做这个数的绝对值.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零. 2、 绝对值的数学表达用符号a 表示数a 的绝对值. ()()()0000a a a a a a >⎧⎪==⎨⎪-<⎩3、 有理数的比较大小正数大于零,零大于负数,正数大于负数; 两个负数,绝对值大的反而小.【例23】 5的绝对值是______,记作_______;3-的绝对值是______,记作______. 【答案】5;5;3;3-.【解析】考察绝对值的求法和记法.【例24】 5.3=______,213=______,0=______, 2.6-=_______. 【答案】5.3;321;0;2.6.【解析】考察绝对值的求法.【例25】 3-的倒数的绝对值是______.知识精讲例题解析10 / 17【答案】31.【解析】-3的倒数是31-,则其绝对值是31.【总结】考察绝对值和倒数的求法.【例26】 判断题:(1)如果一个数的绝对值是它本身,那么这个数是0或1.( ) (2)如果说“一个数的绝对值是负数”,那么这句话是错的.( ) (3)如果一个数的绝对值是它的相反数,那么这个数是负数.( ) 【答案】(1)×;(2)√;(3)×.【解析】(1)如果一个数的绝对值是它本身,那么这个数是0或正数.(3)如果一个数的绝对值是它的相反数,那么这个数是负数或0. 【总结】考察绝对值的求法.【例27】 绝对值等于12的数是______,绝对值小于3的整数是______,绝对值不大于4的非负整数有______个. 【答案】12±;210±±,,;5 【解析】绝对值不大于4的非负整数有0、1、2、3、4,共5个. 【总结】考察绝对值的求法,注意对非负整数的理解.【例28】 当3x =时,7x -一定等于4-吗? 【答案】不一定.【解析】由题意可得:x 为3或-3.当x =3时,47-=-x ;当3-=x 时,107-=-x . 【总结】考察绝对值的求法.【例29】 若0a b +=,则a 与b 的关系是( )A .不相等B .异号C .互为倒数D .0a b ==【答案】D【解析】两个非负数相加等于0,则这两个数都需为0. 【总结】考察绝对值的非负性.【例30】 数a 在数轴上的位置如图所示,试把a ,a 的相反数,a 的倒数和a 的倒数的绝对值用“<”联结起来. 【答案】aa a a 11-<-<<. 【解析】∵01<<-a , ∴10<-<a ,11-<a,11>-a∴aa a a 11-<-<< 【总结】考察实数比较大小.【习题1】 任意写出5个正数与5个负数,分别把它们填入相应的大括号里.正数:{ } 负数:{}【答案】正数:1、3.5、4.2、6、7.8等,负数:5 3.26110.8-----、、、、等. 【解析】考察有理数的分类.【习题2】 关于数字0,下面说法中,错误的是( ) A .是整数,也是有理数 B .既不是正整数,也不是负整数 C .是整数,也是自然数随堂检测0 1a12 / 17D .既不是自然数,也不是有理数 【答案】D【解析】0属于有理数,也属于整数,也属于自然数. 【总结】考察有理数的分类.【习题3】 写出小于5的所有非负整数______________________________; 写出大于162-的所有负数________________________________.【答案】0、1、2、3、4; -6、-5、-4、-3、-2、-1【解析】考察有理数比较大小,注意准确理解题目中的要求.【习题4】 填空:223+=______, 4.3-=______,6--=______. 【答案】322;4.3;-6. 【解析】考察绝对值的求法.【习题5】 如果a 的相反数是最大的负整数,b 是绝对值最小的数,则a b +=______. 【答案】1【解析】由题意可得:1=a ,0=b ,则1=+b a 【总结】考察有理数比较大小.【习题6】 比较大小: (1)37-和25-;(2)311-和0.273-. 【答案】(1)5273-<-;(2)273.0113->-. 【解析】(1)因为5273>,所以5273-<-; (2)因为273.0113<,所以273.0113->-. 【总结】考察有理数比较大小.A BC D 0【习题7】 如图,数轴上A 、B 、C 、D 四个点分别表示数a 、b 、c 、d ,用“<”连接:1a 、1b 、1c 、1d:_____________________. 【答案】ab dc 1111<<<. 【解析】因为b a c d <<<<0, 所以011<<d c ,011>>ba , 所以ab dc 1111<<<. 【总结】考察有理数的比较大小.【习题8】 计算:111111201720162016201520172015-+---. 【答案】0. 【解析】111111201720162016201520172015-+--- 0201712015120161201512017120161201712015120161201512017120161=+--+-=⎪⎭⎫ ⎝⎛---+-=【总结】考察有理数的大小比较及有理数的绝对值的求法.【习题9】 若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于2,求a b c d m +++的值. 【答案】3或-1.【解析】由题意可得:0=+b a ,1=cd ,2±=m 所以()13210-=±++=+++或m cd b a14 / 17【总结】考察相反数、倒数、绝对值的定义,注意分类讨论.【习题10】 已知4x =,5y =,且x > y ,则x + y =______. 【答案】-1或-9.【解析】由题意可得:45x y ==-,或45x y =-=-,, 所以91--=+或y x .【总结】考察绝对值的求法和有理数比较大小.【作业1】 关于 2.2-,下面说法正确的是( )A .是负数,不是有理数B .不是分数,是有理数C .是负数,也是分数D .是负数,不是分数【答案】C【解析】有限小数属于分数,也属于有理数 【总结】考察有理数分类.【作业2】 把下列各数分别填到相应的横线上:1-,0.3505-,0,2,56-,33.33%.正数:____________________________; 负数:____________________________; 非负数:____________________________; 非正有理数数:____________________________.课后作业【答案】正数:2,33.33%;负数:1-,0.3505-,56-;非负数:0,2,33.33%;非正有理数数:1-,0.3505-,0,56-.【解析】考察有理数的分类.【作业3】 3π-的倒数是_______,相反数是______,绝对值是______. 【答案】π-31;3-π;3-π. 【解析】考察倒数、相反数、绝对值的求法.【作业4】 若x < 0,则23x x x-=______.【答案】-1.【解析】因为0<x ,所以223313333x x x x x xxxxx-----====-. 【总结】考察绝对值的求法.【作业5】 比较大小,用“<”连接:89-、1112-、1415-.【答案】1411815129-<-<-. 【解析】因为•=8.098,•=691.01211,•=39.01514, 所以1514121198<<, 所以1411815129-<-<-. 【总结】考察负数的比较大小,绝对值大的反而小.16 / 17ABC【作业6】 绝对值大于10且不大于15的负整数的和是_______. 【答案】-65.【解析】绝对值大于10且不大于15的负整数有-11、-12、-13、-14、-15,则其和为-65. 【总结】考察绝对值的运用.【作业7】 填空(填“>”,“<”或“=”):(1)若1a a=-,则a ______0;(2)若0a >,0b >,a b ->-,则a ______b . 【答案】(1)<;(2)<. 【解析】(1)当0<a 时,1-=-=aaa a ; (2)因为ab ->-,所以0a b <<,所以b a <. 【总结】考察有理数比较大小和绝对值运算.【作业8】 如图,数轴上A 、B 、C 四个点分别表示数a 、b 、c , 化简:b a b c a b c -++---. 【答案】b 3-.【解析】由题意可得:0>a ,0<b ,0<c ,0>+b a ,0<-a c ,0>-c b 所以b a b c a b c -++---()()()b a b c a b c =--+---- 3b a b c a b c b =----+-+=-. 【总结】考察绝对值的化简.【作业9】 解方程:931x --=. 【答案】13=x 或5x =.【解析】49=-x ,则49=-x 或4-, 所以13=x 或5x =. 【总结】考察含绝对值的方程的求法,综合性较强,注意分类.【作业10】 比较大小:(提示:分类讨论).(1)a 与a -; (2)a 与1a. 【答案】见解析.【解析】(1)当0=a 时,a a -=; 当0<a 时,a a -<; 当0>a 时,a a ->.(2)令aa 1=,则1±=a , 当1-<a 时,a a 1<; 当1-=a 时,a a 1=; 当01<<-a 时,a a 1>; 当10<<a 时,a a 1<; 当1=a 时,a a 1=; 当1>a 时,aa 1>. 【总结】考察有理数比较大小,综合性较强,注意分类讨论.。

2020年浙教新版七年级上册数学《第1章有理数》单元测试卷(解析版)(可编辑修改word版)

2020年浙教新版七年级上册数学《第1章有理数》单元测试卷(解析版)(可编辑修改word版)

2020 年浙教新版七年级上册数学《第1 章有理数》单元测试卷一.选择题(共10 小题)1.如果+30%表示增加30%,那么﹣10%表示()A.增加20% B.增加10% C.减少10% D.减少20% 2.在﹣2,0,﹣0.5,3,中,负数的个数是()A.1 B.2 C.3 D.43.在﹣,+,﹣3,2,0,4,5,﹣1 中,非负数有()A.4 个B.5 个C.6 个D.7 个4.下列说法错误的是()A.整数和分数统称有理数B.正分数和负分数统称分数C.正数和负数统称有理数D.正整数、负整数和零统称整数5.有理数a、b 在数轴上的位置如图所示,则化简|a﹣b|﹣2|a|的结果为()A.﹣a﹣b B.3a﹣b C.a+b D.2a﹣b6.点A 在数轴上表示的数是2,已知AB 的长度等于3,则点B 表示的数是()A..﹣1 B..3 C..5 D.﹣.1 或57.﹣的相反数是()A. B. C.﹣ D.﹣8.在2,,﹣2,0 中,互为相反数的是()A.0 与2 B.与2 C.2 与﹣2 D.与﹣29.下列正确的是()A.若|a|=|b|,则a=b B.若a2=b2,则a=bC.若a3=b3,则a=b D.若|a|=a,则a>010.已知a、b、c 都为整数,且满足|a﹣b|2019+|b﹣c|2020=1,则|a﹣b|+|b﹣c|﹣|a﹣c|的结果是()A .1B .2 或 1C .0D .1 或 0二.填空题(共 8 小题)11. 如果存款 600 元记作+600 元,那么取款 400 元记作元.12. 如果水位上升 5 米记作+5 米,那么水位下降 6 米可记作米.13.在有理数 1.7,﹣17,0,﹣5,﹣0.001, ,2003,3.14,π,﹣1 中负分数有 ;自然数有;整数有 .14. 在有理数集合中,最小的正整数是 a ,最大的负整数是 b ,则 a ﹣|b |= .15. 已知数轴上表示数 a 的点到原点的距离是 3 个单位长度,则﹣a +|a |的值为.16. 已知 A 、B 是数轴上的点,点 A 向左移动 7 个单位长度后与点 B 重合.若点 B 表示的数是﹣3,则点 A 表示的数是. 17. 如果 a =﹣a ,那么 a =.18. ﹣1的相反数是 .三.解答题(共 8 小题)19. 某检修小组从 A 地出发,在东西方向的线路上检修线路,如果规定向东方向行驶为正,向西方向行驶为负,一天行驶记录如下(单位:km ):﹣4,+7,﹣9,+8,+5,﹣3,+1,﹣5.(1) 求收工时的位置;(2) 若每 km 耗油量为 0.5 升,则从出发到收工共耗油多少升?20. 空气质量指数是国际上普遍采用的定量评价空气质量好坏的重要指标,空气质量指数不超过 50 则空气质量评估为优.下表记录了我市 11 月某一周 7 天的空气质量指数变化情况.规定:空气质量指数 50 记为零,空气质量指数超过 50 记为正,空气质量指数低于50记为负.解答以下问题:(1) 根据表格可知,星期四空气质量指数为,星期六比星期二空气质量指数高;(2) 求这一周 7 天的平均空气质量指数. 21.把下面的有理数填在相应的大括号里:(友情提示:将各数用逗号分开)5,,0,5,20%,﹣3.1,6正数集合{ …};负数集合{ …};整数集合{ …};分数集合{ …};22.把下列各数填入相应的大括号内:﹣13.5,2,0,0.128,﹣2.236,3.14,+27,﹣15%,﹣1,,26负数集合{ …}整数集合{ …}分数集合{ …}23.如图,数轴上A 点表示的数是﹣2,B 点表示的数是5,C 点表示的数是10.(1)若要使A、C 两点所表示的数是一对相反数,则“原点”表示的数是:.(2)若此时恰有一只老鼠在B 点,一只小猫在C 点,老鼠发现小猫后立即以每秒一个单位的速度向点A 方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A 之间的距离;②小猫逮住老鼠时的“位置”恰好在,求时间t.24.如图,数轴上有三个点A、B、C,它们可以沿着数轴左右移动,请回答:(1)点A、B、C 分别表示的数是.(2)将点B 向右移动三个单位长度后到达点D,点D 表示的数是.(3)移动点A 到达点E,使B、C、E 三点的其中任意一点为连接另外两点之间线段的中点,请直接写出所有点A 移动的距离和方向.25.已知|x+y﹣3|=﹣2x﹣2y,求(x+y)3的值.26.已知|x﹣1|=2,求|1+x|﹣5 的值.2020 年浙教新版七年级上册数学《第1 章有理数》单元测试卷参考答案与试题解析一.选择题(共10 小题)1.如果+30%表示增加30%,那么﹣10%表示()A.增加20% B.增加10% C.减少10% D.减少20%【分析】找到和“增加”具有相反意义的量,直接得答案.【解答】解:∵增加和减少是互为相反意义的量,若“+”表示“增加”,那么“﹣”表示“减少”,∴﹣10%表示减少了10%.故选:C.【点评】本题考查了用正负数表示具有相反意义的量.找到和“增加”具有相反意义的量是解决本题的关键.2.在﹣2,0,﹣0.5,3,中,负数的个数是()A.1 B.2 C.3 D.4【分析】根据题目中个各数,可以判断哪个数是负数,从而可以解答本题.【解答】解:∵在﹣2,0,﹣0.5,3,中,负数是﹣2,﹣0.5,∴在﹣2,0,﹣0.5,3,中,负数的个数是2 个,故选:B.【点评】本题考查正数和负数,解题的关键是明确负数的定义,可以判断一个数是否为负数.3.在﹣,+,﹣3,2,0,4,5,﹣1 中,非负数有()A.4 个B.5 个C.6 个D.7 个【分析】根据非负数的定义即可解决问题.【解答】解:在﹣,+,﹣3,2,0,4,5,﹣1 中,非负数有+,2,0,4,5,一共5 个.故选:B.【点评】本题考查有理数的分类,解题的关键是熟练掌握有理数的分类,属于中考常考题型.4.下列说法错误的是()A.整数和分数统称有理数B.正分数和负分数统称分数C.正数和负数统称有理数D.正整数、负整数和零统称整数【分析】根据有理数的定义和分类对各选项分析判断后利用排除法求解.【解答】解:A、整数和分数统称有理数正确,不符合题意;B、正分数和负分数统称分数正确,不符合题意;C、应为正数、负数和零统称有理数,符合题意;D、正整数、负整数和零统称整数正确,不符合题意.故选:C.【点评】本题考查了有理数的分类和相关概念,是基础题,需熟记.5.有理数a、b 在数轴上的位置如图所示,则化简|a﹣b|﹣2|a|的结果为()A.﹣a﹣b B.3a﹣b C.a+b D.2a﹣b【分析】先根据数轴确定出a、b 的正负情况,然后求出a﹣b<0,根据绝对值的性质去掉绝对值号,再合并同类项即可得解.【解答】解:根据题意得a<0,b>0,∴a﹣b<0,∴|a﹣b|﹣2|a|=b﹣a+2a=a+b.故选:C.【点评】本题考查了绝对值的性质,合并同类项,数轴的知识,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是0.6.点A 在数轴上表示的数是2,已知AB 的长度等于3,则点B 表示的数是()A..﹣1 B..3 C..5 D.﹣.1 或5【分析】分点B 在点A 的左侧或右侧两种情况,再由数轴上两点间的距离等于数轴上的点所对应的较大的数减去较小的数即可得出结果.【解答】解:若点B 在A 的左侧,则点B 表示的数是2﹣3=﹣1,若点B 在点A 的右侧,则点B 表示的数是2+3=5,∴点B 表示的数是﹣1 或5,故选:D.【点评】本题考查了数轴上点的位置与两点间的距离,到一个点的距离是一个定值的点所对应的数的求法为左减右加是解题的关键.7.﹣的相反数是()A. B. C.﹣ D.﹣【分析】根据相反数的定义直接求得结果.【解答】解:﹣的相反数是.故选:B.【点评】本题主要考查了相反数的性质,解题的关键是明确只有符号不同的两个数互为相反数,0 的相反数是0.8.在2,,﹣2,0 中,互为相反数的是()A.0 与2 B.与2 C.2 与﹣2 D.与﹣2【分析】根据相反数的定义,只有符号不同的两个数是互为相反数解答.【解答】解:2 与﹣2 互为相反数.故选:C.【点评】本题主要考查了相反数的定义,是基础题,比较简单,熟记相反数的定义是解题的关键.9.下列正确的是()A.若|a|=|b|,则a=b B.若a2=b2,则a=bC.若a3=b3,则a=b D.若|a|=a,则a>0【分析】跟绝对值的特点,可判断A、D,根据乘方相等,可得底数的关系,可判断B、C.【解答】解:A、若|a|=|b|,则a=b 或a+b=0,故A 错误;B、若a2=b2,则a=b 或a+b=0,故B 错误;C、若a3=b3,则a=b,故C 正确;D、若|a|=a,则a≥0,故D 错误;故选:C.【点评】本题考查了有理数的乘方,底数相等,立方相等,注意平方相等,底数相等或互为相反数,绝对值相等,绝对值表示的数相等或互为相反数.10.已知a、b、c 都为整数,且满足|a﹣b|2019+|b﹣c|2020=1,则|a﹣b|+|b﹣c|﹣|a﹣c|的结果是()A.1 B.2 或1 C.0 D.1 或0【分析】根据绝对值的意义列方程组即可求解.【解答】解:∵a、b、c 都为整数,∴a﹣b 和b﹣c 都为整数,根据已知得,或,得b=c,|a﹣b|=1 或a=b,|b﹣c|=1所以|a﹣b|+|b﹣c|﹣|a﹣c|=|a﹣b|﹣|a﹣b|=0或|a﹣b|+|b﹣c|﹣|a﹣c|=|b﹣c|﹣|b﹣c|=0.故选:C.【点评】本题主要考查了绝对值,解决本题的关键是分情况列方程组.二.填空题(共8 小题)11.如果存款600 元记作+600 元,那么取款400 元记作﹣400 元.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵存款600 元记作+600 元,∴取款400 元记作﹣400元.故答案为:﹣400.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.如果水位上升5 米记作+5 米,那么水位下降6 米可记作﹣6 米.【分析】根据在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示解答.【解答】解:如果水位上升5 米记作+5 米,那么水位下降6 米可记作﹣6 米,故答案为:﹣6.﹣5 ,﹣ 【点评】本题考查了正数和负数,具有相反意义的量都是互相依存的两个量,它包含两个要素,一是它们的意义相反,二是它们都是数量.13.在有理数 1.7,﹣17,0,﹣5,﹣0.001, ,2003,3.14,π,﹣1 中负分数有 0.001 ;自然数有 0,2003;整数有 ﹣17,0,2003,﹣1 .【分析】按照有理数的分类填写:有理数.【解答】解:在有理数 1.7,﹣17,0,﹣5,﹣0.001,,2003,3.14,π,﹣1 中负分数有﹣5,﹣0.001;自然数有 0,2003;整数有﹣17,0,2003,﹣1. 故答案为:﹣5,﹣0.001;0,2003;﹣17,0,2003,﹣1.【点评】本题考查了有理数的有关定义,认真掌握整数、分数、正整数、负分数、自然数的定义与特点.注意正整数和自然数的区别;注意 0 是整数,也是自然数,但不是正数.14. 在有理数集合中,最小的正整数是 a ,最大的负整数是 b ,则 a ﹣|b |= 0.【分析】先依据有理数的相关概念求得 a 、b 的值,然后代入计算即可.【解答】解:∵最小的正整数是 a ,最大的负整数是 b ,∴a =1,b =﹣1.∴a ﹣|b |=1﹣1=0. 故答案为:0.【点评】本题主要考查的是有理数、绝对值,代数式求值,求得 a 、b 的值是解题的关键.15. 已知数轴上表示数 a 的点到原点的距离是 3 个单位长度,则﹣a +|a |的值为 0 或 6.【分析】根据绝对值的定义可得 a 的值,从而问题可解.【解答】解:数轴上表示数 a 的点到原点的距离是 3 个单位长度∴|a |=3∴a =3 或 a =﹣3当 a =3 时,﹣a +|a |=﹣3+3=0 当 a =﹣3 时,﹣a +|a |=3+3=6 故答案为:0 或 6.1【点评】本题考查了绝对值的定义及其简单计算,明确绝对值的定义并正确列式,是解题的关键.16. 已知 A 、B 是数轴上的点,点 A 向左移动 7 个单位长度后与点 B 重合.若点 B 表示的数是﹣3,则点 A 表示的数是 4 .【分析】根据左移减,由点 A 向左移动 7 个单位长度后与点 B 重合,点 B 表示的数是﹣3, 列出算式﹣3+7 计算即可求解. 【解答】解:﹣3+7=4. 故点 A 表示的数是 4. 故答案为:4.【点评】考查了数轴,关键是熟悉左移减右移加的知识点是解题的关键.17. 如果 a =﹣a ,那么 a = 0.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解;如果 a =﹣a ,那么 a =0, 故答案为:0.【点评】本题考查了相反数,解题的关键是掌握相反数的定义.18. ﹣1 的相反数是 .【分析】根据相反数的定义分别填空即可. 【解答】解:﹣1的相反数是 1. 故答案为:1.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义. 三.解答题(共 8 小题)19. 某检修小组从 A 地出发,在东西方向的线路上检修线路,如果规定向东方向行驶为正,向西方向行驶为负,一天行驶记录如下(单位:km ):﹣4,+7,﹣9,+8,+5,﹣3,+1,﹣5.(1) 求收工时的位置;(2) 若每 km 耗油量为 0.5 升,则从出发到收工共耗油多少升?【分析】(1)利用正负数加法运算的法则,即可求出结论;(2)不管朝什么方向走,都要耗油,故耗油量只跟路程有关,即各数据绝对值之和.【解答】解:(1)﹣4+(+7)+(﹣9)+(+8)+(+5)+(﹣3)+(+1)+(﹣5)=﹣4+7﹣9+8+5﹣3+1﹣ 5=0km.答:收工时回到出发地A 地.(2)(|﹣4|+|+7|+|﹣9|+|+8|+|+5|+|﹣3|+|+1|+|﹣5|)×0.5=(4+7+9+8+5+3+1+5)×0.5=42×0.5=21(升).答:从出发到收工共耗油21 升.【点评】本题考查了正数和负数的加法运算,解题的关键是:(1)牢记负数加法运算的法则;(2)耗油跟路程有关,与正负无关,即用到绝对值相加.20.空气质量指数是国际上普遍采用的定量评价空气质量好坏的重要指标,空气质量指数不超过50 则空气质量评估为优.下表记录了我市11 月某一周7 天的空气质量指数变化情况.规定:空气质量指数50 记为零,空气质量指数超过50 记为正,空气质量指数低于50记为负.解答以下问题:(1)根据表格可知,星期四空气质量指数为32 ,星期六比星期二空气质量指数高32 ;(2)求这一周7 天的平均空气质量指数.【分析】(1)根据空气质量指数50 记为零,与50 相加可得星期四的指数,星期六﹣星期二可得星期六比星期二空气质量指数高的指数;(2)将表中数据相加后计算平均数与50 相加可得结论.【解答】解:(1)星期四空气质量指数为:50+(﹣18)=32,星期六比星期二空气质量指数高:+28﹣(﹣4)=32,故答案为:32,32;(2)50+(+18﹣4﹣1﹣18﹣10+28+29),=50+6,=56,答:这一周7 天的平均空气质量指数为56.5, ,0,5,20%, 6 ,20%,﹣ 3.1 ﹣13.5,0.128,﹣2.236,3.14,﹣15%, ,26【点评】本题考查了正数和负数.解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.21. 把下面的有理数填在相应的大括号里:(友情提示:将各数用逗号分开)5, ,0,5,20%,﹣3.1,6正数集合{ …};负数集合{ ﹣ 3.1 …};整数集合{ 5,0,5,6 …};分数集合{…};【分析】根据有理数的分类,可得答案.【解答】解:正数集合{5,,0,5,20%,6,…};负数集合{﹣3.1,…};整数集合{5,0,5,6,…};分数集合{,20%,﹣3.1,…}.故答案为:5,,0,5,20%,6;﹣3.1;5,0,5,6;,20%,﹣3.1.【点评】本题考查了有理数.解题的关键是掌握有理数的分类方法.22. 把下列各数填入相应的大括号内:﹣13.5,2,0,0.128,﹣2.236,3.14,+27,﹣15%,﹣1,,26负数集合{ ﹣13.5,﹣2.236,﹣15%,﹣1 …}整数集合{ 2,0,+27,﹣1 …}分数集合{ …}【分析】利用负数,整数,分数的定义判断即可.【解答】解:负数集合{﹣13.5,﹣2.236,﹣15%,﹣1…}整数集合{ 2,0,+27,﹣1…}分数集合{﹣13.5,0.128,﹣2.236,3.14,﹣15%,,26 …}故答案为:{﹣13.5,﹣2.236,﹣15%,﹣1…};{ 2,0,+27,﹣1…};{﹣13.5,0.128,﹣2.236,3.14,﹣15%,,26 …}.【点评】此题考查了有理数,熟练掌握各自的定义是解本题的关键.23.如图,数轴上A 点表示的数是﹣2,B 点表示的数是5,C 点表示的数是10.(1)若要使A、C 两点所表示的数是一对相反数,则“原点”表示的数是: 4 .(2)若此时恰有一只老鼠在B 点,一只小猫在C 点,老鼠发现小猫后立即以每秒一个单位的速度向点A 方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A 之间的距离;②小猫逮住老鼠时的“位置”恰好在原点,求时间t.【分析】(1)根据相反数的意义,求出“原点”到两点的距离,在利用该距离求得“原点”的位置即可;(2)①根据两点的距离直接表示即可;②利用到点的距离相等时,小猫逮到老鼠,列出关于t 的方程,求出t 的值,再求出该位置即可.【解答】解:(1)根据相反数的意义,可知“原点”到两点的距离分别为:(10+2)÷2=6,∴“原点”表示的数为:﹣2+6=4,故答案为:4;(2)①老鼠在移动过程中与点A 之间的距离为:7﹣t,小猫在移动过程中与点A 之间的距离为:12﹣2t;②根据题意,得:7﹣t=12﹣2t,解得:t=5,此时小猫逮到老鼠的位置是:5﹣5=0,即在原点,故答案为:原点.【点评】本题主要考查相反数与数轴的综合应用,解决第(2)小题的②时,能利用小猫逮到老鼠时,它们的位置距离点A 相等列出方程式关键.24.如图,数轴上有三个点A、B、C,它们可以沿着数轴左右移动,请回答:(1)点A、B、C 分别表示的数是﹣4、﹣2、3 .(2)将点B 向右移动三个单位长度后到达点D,点D 表示的数是 1 .(3)移动点A 到达点E,使B、C、E 三点的其中任意一点为连接另外两点之间线段的中点,请直接写出所有点A 移动的距离和方向.【分析】(1)根据数轴上的点的对应性即可求解;(2)将点B 向右移动三个单位长度后到达点D,则点D 表示的数为﹣2+3=1;(3)分类讨论:当点A 向左移动时,则点B 为线段AC 的中点;当点A 向右移动并且落在BC 之间,则A 点为BC 的中点;当点A 向右移动并且在线段BC 的延长线上,则C 点为BA 的中点,然后根据中点的定义分别求出对应的A 点表示的数,从而得到移动的距离.【解答】解:(1)(1)点A、B、C 分别表示的数是﹣4、﹣2、3.(2)将点B 向右移动三个单位长度后到达点D,点D 表示的数是﹣2+3=1;(3)当点A 向左移动时,则点B 为线段AC 的中点,∵线段BC=3﹣(﹣2)=5,∴点A 距离点B 有 5 个单位,∴点A 要向左移动3 个单位长度;当点A 向右移动并且落在BC 之间,则 A 点为BC 的中点,∴A 点在B 点右侧,距离B 点2.5 个单位,∴点A 要向右移动4.5 单位长度;当点A 向右移动并且在线段BC 的延长线上,则C 点为BA 的中点,∴点A 要向右移动12 个单位长度;故答案为:(1)﹣4,﹣2,3;(2)1.【点评】本题考查了数轴:数轴三要素(原点、正方向和单位长度);数轴上左边的点表示的数比右边的点表示的数要小.也考查了平移的性质.25.已知|x+y﹣3|=﹣2x﹣2y,求(x+y)3的值.【分析】先根据|x+y﹣3|=﹣2x﹣2y=﹣2(x+y)≥0,得到x+y≤0,再根据绝对值的性质即可得出x+y 的值,再根据立方的定义即可求解.【解答】解:∵|x+y﹣3|=﹣2x﹣2y=﹣2(x+y)≥0,∴x+y≤0,﹣(x+y)+3=﹣2(x+y),x+y=﹣3,(x+y)3=(﹣3)3=﹣27.【点评】本题主要考查了绝对值的性质以及乘方的运用,解题时注意:任意一个有理数的绝对值是非负数.26.已知|x﹣1|=2,求|1+x|﹣5 的值.【分析】根据绝对值的性质求出x 的值,代入代数式计算即可.【解答】解:∵|x﹣1|=2,∴x﹣1=±2,解得,x=3 或﹣1,当x=3 时,|1+x|﹣5=﹣1,当x=﹣1 时,|1+x|﹣5=﹣5.【点评】本题考查的是绝对值的概念和性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是0 是解题的关键.。

人教版初一数学(七年级)课程讲义第一章:有理数的意义(解析版)

人教版初一数学(七年级)课程讲义第一章:有理数的意义(解析版)

人教版初一数学(七年级)课程讲义第一章:有理数的意义(解析版)【例题1】体育课上,华英学校对九年级男生进行了引体向上测试,以能做7个为标准,超过的次数记为正数,不足的次数记为负数,其中8名男生的成绩如下:2,-1,0,3,-2,-3,1,0(1) 这8名男生有百分之几达到标准?(2) 他们共做了多少引体向上?【答案】(1)62.5%;(2)56个【解析】(1)由题意可知:正数或0表示达标,而正数或0的个数共有5个,所以百分率为:; 答:这8名男生有62.5%达到标准.(2)(7+2)+(7-1)+7+(7+3)+(7-2)+(7-3)+(7+1)+7=56(个)答:他们共做了引体向上56个.讲解用时:3分钟解题思路:解题时要注意对正负数的意义准确理解教学建议:一定要先引导学生弄清“基准”是什么.难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【练习1.1】中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示( )A .支出20元B .收入20元C .支出80元D .收入80元【答案】C5100%62.5%8⨯=【解析】解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C.讲解用时:2分钟解题思路:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.教学建议:解题关键是引导学生理解“正”和“负”的相对性,确定一对具有相反意义的量.难度: 3 适应场景:当堂例题例题来源:无年份:2019【例题2】如图所示是几位同学所画的数轴,其中正确的是 ( )A.(1)(2)(3) B.(2)(3)(4) C.只有(2) D.(1)(2)(3)(4) 【答案】C【解析】对数轴的三要素掌握不清.(1)中忽略了单位长度,相邻两整点之间的距离不一致;(3)中负有理数的标记有错误;(4)图中漏画了表示方向的箭头.讲解用时:3分钟解题思路:数轴是一条直线,可以向两端无限延伸;数轴的三要素:原点、正方向、单位长度缺一不可.教学建议:对学生强调数轴的三要素难度: 3 适应场景:当堂例题例题来源:无年份:2019【练习2.1】填空:(1)数轴上离原点5个单位长度的点表示的数是________;(2)从数轴上观察,-3与3之间的整数有________个.【答案】±5;5个.【解析】画出数轴,即可观察出离原点5个单位长度的点表示的数是±5,同时可以数出-3与3之间的整数有5个讲解用时:2分钟解题思路:准确画出数轴,即可得出答案教学建议:熟练掌握数轴的画法及数轴的三要素难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【例题3】如图,数轴上有A ,B ,C ,D 四个点,其中表示2的相反数的点是( )A .点AB .点BC .点CD .点D【答案】A【解析】解:∵表示2的相反数的点,到原点的距离与2这点到原点的距离相等,并且与2分别位于原点的左右两侧,∴在A ,B ,C ,D 这四个点中满足以上条件的是A .故选A .讲解用时:3分钟解题思路:考查相反数的定义:只有符号不同的两个数互为相反数.根据定义,结合数轴进行分析.教学建议:引导学生观察总结互为相反数的两个数在数轴上的位置特点:分别位于原点的左右两侧,并且到原点的距离相等.难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【练习3.1】51-的相反数是( ) A .5 B .51 C .51-D.-5 【答案】B【解析】根据相反数的概念:只有符号不同的两个数互为相反数即可得出答案为B讲解用时:3分钟解题思路:解决这类问题的关键是抓住互为相反数的特征“只有符号不同”,所以只要将原数的符号变为相反的符号,即可求出其相反数.教学建议:熟练掌握相反数的定义.难度: 3 适应场景:当堂例题 例题来源:无年份:2019 【例题4】当a≠0时,请解答下列问题:(1)求a a的值;(2)若b≠0,且0=+b b a a ,求ab ab的值.【答案】 (1)1±;(2)1-.【解析】解:(1)当a >0时,a a=1;当a <0时,a a=﹣1;(2)∵0=+b ba a,∴a ,b 异号,当a >0,b <0时,ab ab=﹣1;当a <0,b >0时,ab ab=﹣1;讲解用时:3分钟解题思路:(1)利用绝对值的代数意义化简即可求出值;(2)根据有理数的乘法法则和绝对值的代数意义化简即可求出值;教学建议:利用绝对值的代数意义化简是解本题的关键. 难度: 3 适应场景:当堂例题 例题来源:无 年份:2019【练习4.1】计算:已知|x|=32,|y|=21,且x <y <0,求6÷(x ﹣y )的值.【答案】﹣36.【解析】解:∵|x|=32,|y|=21,且x <y <0,∴x=﹣32,y=﹣21,∴6÷(x ﹣y )=6÷(﹣32+21) =﹣36.讲解用时:4分钟解题思路:直接利用绝对值的性质结合有理数混合运算法则计算得出答案. 教学建议:利用绝对值的性质和有理数混合运算,正确得出x ,y 的值是解题关键.难度: 3 适应场景:当堂练习 例题来源:无 年份:2019【例题5】如图,数轴上的三点A ,B ,C 分别表示有理数a,b,c ,化简|a ﹣b|﹣|a+c|+|b ﹣c|.【答案】2c【解析】解:由数轴得,c>0,a<b<0,因而a﹣b<0,a+c<0,b﹣c<0.∴原式=b﹣a+a+c+c﹣b=2c.讲解用时:3分钟解题思路:由数轴可知:c>0,a<b<0,所以可知:a﹣b<0,a+c<0,b﹣c <0.根据负数的绝对值是它的相反数可求值.教学建议:此题主要是考查学生对数轴和绝对值的理解,要求学生要对这些概念性的东西牢固掌握.难度: 3 适应场景:当堂例题例题来源:无年份:2019【练习5.1】已知|a﹣1|=9,|b+2|=6,且a+b<0,求a﹣b的值.【答案】0或﹣12.【解析】解:∵|a﹣1|=9,|b+2|=6,∴a=﹣8或10,b=﹣8或4,∵a+b<0,∴a=﹣8,b=﹣8或4,当a=﹣8,b=﹣8时,a﹣b=﹣8﹣(﹣8)=0,当a=﹣8,b=4时,a﹣b=﹣8﹣4=﹣12.综上所述,a﹣b的值为0或﹣12.讲解用时:3分钟解题思路:本题考查了垂线段,利用垂线段最短是解题关键.教学建议:引导学生掌握绝对值的性质,熟记运算法则和性质并判断出a、b的对应情况是解题的关键.难度: 3 适应场景:当堂练习例题来源:无年份:2019【例题6】有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.【答案】(1)<,<,>;(2)﹣2b.【解析】解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.讲解用时:3分钟解题思路:(1)根据数轴判断出a、b、c的正负情况,然后分别判断即可;(2)去掉绝对值号,然后合并同类项即可.教学建议:必须让学生熟记三种位置角的形状.难度: 3 适应场景:当堂例题例题来源:无年份:2019【练习6.1】已知a、b、c都是负数,且0-+-+-=,则x + y + z______0.(填x a y b z c“>”、“<”、“=”).【答案】<【解析】利用绝对值的非负性,可得出x=a,y=b,z=c,则x+y+z=a+b+c<0讲解用时:4分钟解题思路:本题考查了绝对值的性质,准确识图观察出a、b、c的正负情况是解题的关键.教学建议:利用绝对值的非负性去掉绝对值符号是解此题的关键.难度: 3 适应场景:当堂练习例题来源:无年份:2019【例题7】已知:a=3,|b|=2,求(a+b)3的值.【答案】125或1.【解析】解:∵|b|=2,∴b=±2,当b=2时,(a+b)3=(3+2)3=125;当b=﹣2时,(a+b)3=(3﹣2)3=1,综上所述,(a+b)3的值为125或1.讲解用时:3分钟解题思路:利用绝对值的代数意义求出b的值,代入原式计算即可求出值.教学建议:熟练掌握绝对值的代数意义是解本题的关键.难度: 3 适应场景:当堂例题例题来源:无年份:2019【练习7.1】数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:①数轴上表示2和5两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是.②数轴上表示x和﹣2的两点之间的距离表示为|.数轴上表示x和5的两点之间的距离表示为.③若x表示一个有理数,则|x﹣1|+|x+3|的最小值=.④若x表示一个有理数,且|x+3|+|x﹣2|=5,则满足条件的所有整数x的是.⑤若x表示一个有理数,当x为,式子|x+2|+|x﹣3|+|x﹣5|有最小值为.若﹣1<x<4,化简|x+1|+|4﹣x|.【答案】① 3,4;②|x+2|,|5﹣x|;③4;④﹣3或﹣2或﹣1或0或1或2;⑤3,7;【解析】解:①数轴上表示2和5两点之间的距离是5﹣2=3,数轴上表示1和﹣3的两点之间的距离是1﹣(﹣3)=4,故答案为:3,4;②数轴上表示x和﹣2的两点之间的距离表示为|x﹣(﹣2)|=|x+2|,数轴上表示x和5的两点之间的距离表示为|5﹣x|,故答案为:|x+2|,|5﹣x|;③当x<﹣3时,|x﹣1|+|x+3|=1﹣x﹣x﹣3=﹣2x﹣2,当﹣3≤x≤1时,|x﹣1|+|x+3|=1﹣x+x+3=4,当x>1时,|x﹣1|+|x+3|=x﹣1+x+3=2x+2,在数轴上|x﹣1|+|x+3|的几何意义是:表示有理数x的点到﹣3及到1的距离之和,所以当﹣3≤x≤1时,它的最小值为4,故答案为:4;④当x<﹣3时,|x+3|+|x﹣2|=﹣x﹣3+2﹣x=﹣2x﹣1=5,解得:x=﹣3,此时不符合x<﹣3,舍去;当﹣3≤x≤2时,|x+3|+|x﹣2|=x+3+2﹣x=5,此时x=﹣3或x=﹣2或0或1或2;当x>2时,|x+3|+|x﹣2|=x+3+x﹣2=2x+1=5,解得:x=2,此时不符合x>2,舍去;当x=0时,|x+3|+|x﹣2|=5;当x=1时,|x+3|+|x﹣2|=5;当x=﹣1时,|x+3|+|x﹣2|=5;故答案为:﹣3或﹣2或﹣1或0或1或2;⑤∵设y=|x+2|+|x﹣3|+|x﹣5|,i、当x≥5时,y=x+2+x﹣3+x﹣5=3x﹣6,∴当x=5时,y最小为:3x﹣6=3×5﹣6=9;ii、当3≤x<5时,y=x+2+x﹣3+5﹣x=x+4,∴当x=3时,y最小为7;iii、当﹣2≤x<3时,y=x+2+3﹣x+5﹣x=10﹣x,∴此时y最小接近7;iiii、当x<﹣2时,y=﹣x﹣2+3﹣x+5﹣x=6﹣x,∴此时y最小接近8;∴y的最小值为7.故答案为:3,7.讲解用时:4分钟解题思路:①②在数轴上A、B两点之间的距离AB=|a﹣b|,依此即可求解;④根据绝对值的性质去掉绝对值号,然后计算即可得解;③首先将原式变形为y=|x﹣1|+|x+3|,然后分别从当x≥1时,当﹣3≤x<1时,当x<﹣3时去分析,根据一次函数的增减性,即可求得y的最小值;④当x<﹣3时,当﹣3≤x≤2时,当x>2时,当x=﹣1,当x=1,当x=0去分析,根据一次函数的增减性,即可求得答案;⑤当x≥5时,当3≤x<5时,当﹣2≤x<3时,当x<﹣2时去分析,根据一次函数的增减性,即可求得y的最小值.教学建议:本题考查了数轴,绝对值的性质,读懂题目信息,理解数轴上两点间的距离的表示是解题的关键.注意分类思想的运用.难度: 3 适应场景:当堂练习例题来源:无年份:2019课后作业【作业1】下列说法正确的是()A. 一个数的绝对值一定比0大B. 一个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. 最小的正整数是1【答案】D【解析】A、一个数的绝对值一定比0大,有可能等于0,故此选项错误;B、一个数的相反数一定比它本身小,负数的相反数,比它本身大,故此选项错误;C、绝对值等于它本身的数一定是正数,0的绝对值也等于其本身,故此选项错误;D、最小的正整数是1,正确.讲解用时:4分钟难度: 2 适应场景:练习题例题来源:无年份:2019【作业2】一只可爱的小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,小虫爬行的各段路程(单位:cm)依次记为:+5,-3,+10,-8,-6,+12,-10,在爬行过程中,如果小虫每爬行1cm就奖励2粒芝麻,那么小虫一共可以得到多少粒芝麻?【答案】108【解析】小虫爬行的总路程为:|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm) .小虫得到的芝麻数为54×2=108(粒) .讲解用时:4分钟难度: 4 适应场景:练习题例题来源:无年份:2019【作业3】同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.如|x﹣3|的几何意义是数轴上表示有理数3的点与表示有理数的点之间的距离.试探索:(1)求|5﹣(﹣2)|=.(2)若|x﹣3|=|x+1|,则x=.【答案】(1)7;(2)1.【解析】解:(1)|5﹣(﹣2)|=|5+2|=7,故答案为:7;(2)由题意得:x﹣3+x+1=0,解得:x=1,故答案为:1;讲解用时:5分钟难度: 3 适应场景:练习题例题来源:无年份:2019。

(必考题)初中七年级数学上册第一章《有理数》经典习题(含答案解析)

(必考题)初中七年级数学上册第一章《有理数》经典习题(含答案解析)

1.若12a = ,3b =,且0a b <,则+a b 的值为( ) A .52 B .52- C .25± D .52± D 解析:D【分析】根据a b判断出a 和b 异号,然后化简绝对值,分两种情况求解即可. 【详解】 ∵0a b< ∴a 和b 异号又∵12a =,3b = ∴12a =,3b =-或12a =-,3b = 当12a =,3b =-时,15322+-=-a b = 当12a =-,3b =时,15322+-+=a b = 故选D .【点睛】 本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据a b判断出a 和b 异号. 2.有理数a 、b 在数轴上,则下列结论正确的是( )A .a >0B .ab >0C .a <bD .b <0C解析:C【分析】根据数轴的性质,得到b >0>a ,然后根据有理数乘法计算法则判断即可.【详解】根据数轴上点的位置,得到b >0>a ,所以A 、D 错误,C 正确;而a 和b 异号,因此乘积的符号为负号,即ab <0所以B 错误;故选C .【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a 和b 的位置正确判断a 和b 的大小.3.下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有( )A .4个B .3个C .2个D .1个B 解析:B【分析】根据有理数的减法运算法则对各小题分析判断即可得解.【详解】①减去一个数等于加上这个数的相反数,故本小题正确;②互为两个相反数的两数相加得零,故本小题正确;③减数是负数时,差大于被减数,故本小题错误;④如果两个数的绝对值相等,这两个数可能相等,也可能互为相反数,故本小题正确; 综上所述,正确的有①②④共3个.故选B .【点睛】本题考查了相反数的定义,有理数的减法,是基础题,熟记运算法则是解题的关键. 4.下列各式中,不相等的是( )A .(﹣5)2和52B .(﹣5)2和﹣52C .(﹣5)3和﹣53D .|﹣5|3和|﹣53|B 解析:B【分析】本题运用有理数的乘方,相反数以及绝对值的概念进行求解.【详解】选项A :22(5)(5)(5)5-=--=选项B :22(5)(5)(5)525-=--==;25(55)25-=-⨯=-∴22(5)5-≠-选项C :3(5)(5)(5)(5)125-=---=-;35(555)125-=-⨯⨯=-∴33(5)5-=-选项D :35555555125-=-⨯-⨯-=⨯⨯=;35(555)125125-=-⨯⨯=-= ∴3355-=-故选B .【点睛】本题考查了有理数的乘方,相反数(只有正负号不同的两个数互称相反数),绝对值(一个有理数的绝对值是这个有理数在数轴上的对应点到原点的距离),其中正数和零的绝对值是其本身,负数的绝对值是它的相反数.5.已知n 为正整数,则()()2200111n -+-=( )A.-2 B.-1 C.0 D.2C解析:C【解析】【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案.【详解】∵n为正整数,∴2n为偶数.∴(-1)2n+(-1)2001=1+(-1)=0故选C.【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1.6.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A.点C B.点D C.点A D.点B B解析:B【分析】由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A,2所对应的点是B,3对应的点是C,4对应的点是D,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.7.绝对值大于1小于4的整数的和是()A.0 B.5 C.﹣5 D.10A解析:A【解析】试题绝对值大于1小于4的整数有:±2;±3.-2+2+3+(3)=0.故选A.8.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A .1,2B .1,3C .4,2D .4,3A 解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30, 30+4×3=42,故选A .点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.9.将(-3.4)3,(-3.4)4,(-3.4)5从小到大排列正确的是( )A .(-3.4)3<(-3.4)4<(-3.4)5B .(-3.4)5<(-3.4)4<(-3.4)3C .(-3.4)5<(-3.4)3<(-3.4)4D .(-3.4)3<(-3.4)5<(-3.4)4C解析:C【解析】(-3.4)3、 (-3.4)5的积为负数,且(-3.4)3的绝对值小于 (-3.4)5的绝对值,所以(-3.4)3>(-3.4)5 ;(-3.4)4的积为正数,根据正数大于负数,即可得(-3.4)5<(-3.4)3<(-3.4)4,故选C.10.计算2136⎛⎫--- ⎪⎝⎭的结果为( ) A .-12 B .12 C .56 D .56A 解析:A【分析】根据有理数加减法法则计算即可得答案.【详解】2136⎛⎫--- ⎪⎝⎭=2136-+ =12-. 故选:A .【点睛】本题考查有理数的加减,有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,一个数同零相加,仍得这个数,有理数减法法则:减去一个数,等于加上这个数的相反数.11.绝对值大于1且小于4的所有整数的和是()A.6 B.–6 C.0 D.4C解析:C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C.12.如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作().A.+0.02克B.-0.02克C.0克D.+0.04克B解析:B【解析】-0.02克,选A.13.如果a,b,c为非零有理数且a + b + c = 0,那么a b c abca b c abc+++的所有可能的值为(A.0 B.1或- 1 C.2或- 2 D.0或- 2A解析:A【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(-1)+(-1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(-1)+(-1)+1=0,综上,a b c abca b c abc+++的值为0,故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.14.下面说法中正确的是()A.两数之和为正,则两数均为正B.两数之和为负,则两数均为负C.两数之和为0,则这两数互为相反数D.两数之和一定大于每一个加数C 解析:C【详解】A. 两数之和为正,则两数均为正,错误,如-2+3=1;B. 两数之和为负,则两数均为负,错误,如-3+1=-2;C. 两数之和为0,则这两数互为相反数,正确;D. 两数之和一定大于每一个加数,错误,如-1+0=-1,故选C.【点睛】根据有理数加法法则:绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.可得出结果.15.计算(-2)2018+(-2)2019等于( )A.-24037B.-2 C.-22018D.22018C解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.1.已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d=___________.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.2.在整数5-,3-,1-,6中任取三个数相乘,所得的积的最大值为______.90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解详解:所得乘积最大为:(-5)×(-3)×6=5×3×6=90故答案为90点睛:本题考查了有理数的乘法以及有理数的大小比较熟解析:90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解.详解:所得乘积最大为:(-5)×(-3)×6,=5×3×6,=90.故答案为90.点睛:本题考查了有理数的乘法以及有理数的大小比较,熟记运算法则并准确列出算式是解题的关键.3.截至格林尼治标准时间2020年6月7日10时,全球累计报告新冠肺炎确诊病例达7000000例;其中累计死亡病例超过40万例,数据7000000科学记数法表示为_____.7×106【分析】根据科学记数法形式:a×10n 其中1≤a <10n 为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是解析:7×106【分析】根据科学记数法形式:a×10n ,其中1≤a <10,n 为正整数,即可求解.【详解】解:7000000科学记数法表示为:7×106.故答案为:7×106.【点睛】本题考查科学记数法,解决本题的关键是把一个大于10的数记成a×10n 的形式,其中a 是整数数位只有一位的数,n 是正整数,这种记数法叫做科学记数法.[科学记数法形式:a×10n ,其中1≤a <10,n 为正整数.4.若有理数a ,b 满足()26150a b -+-=,则ab =__________.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab 的值再把ab 的值代入ab 中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=解析:90【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a ,b 的值,再把a 、b 的值代入ab 中即可解出本题.【详解】解:依题意得:|a-6|=0,(b-15)2=0,∴a-6=0,b-15=0,∴a=6,b=15,∴ab=90.故答案是:90.【点睛】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0.5.计算1-2×(32+12)的结果是 _____.-18【分析】先算乘方再算括号然后算乘法最后算加减即可【详解】解:1-2×(3+)=1-2×(9+)=1-2×=1-19=-18故答案为-18【点睛】本题考查了含乘方的有理数四则混合运算掌握相关运算解析:-18【分析】先算乘方、再算括号、然后算乘法、最后算加减即可.【详解】解:1-2×(32+12)=1-2×(9+12)=1-2×19 2=1-19=-18.故答案为-18.【点睛】本题考查了含乘方的有理数四则混合运算,掌握相关运算法则是解答本题的关键.6.某电视塔高468 m,某段地铁高-15 m,则电视塔比此段地铁高_____m.483【分析】根据有理数减法进行计算即可【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483m故答案为:483【点睛】本题考查了有理数减法根据题意列出式子是解题的关键解析:483【分析】根据有理数减法进行计算即可.【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483 m.故答案为:483.【点睛】本题考查了有理数减法,根据题意列出式子是解题的关键.7.若两个不相等的数互为相反数,则两数之商为____.-1【分析】设其中一个数为a (a≠0)它的相反数为-a然后作商即可【详解】解:设其中一个数为a(a≠0)则它的相反数为-a所以这两个数的商为a÷(-a)=-1故答案为:-1【点睛】本题考查了相反数和解析:-1【分析】设其中一个数为a(a≠0),它的相反数为-a,然后作商即可.【详解】解:设其中一个数为a (a ≠0),则它的相反数为-a ,所以这两个数的商为a÷(-a)=-1.故答案为:-1.【点睛】本题考查了相反数和除法法则,根据题意设出这两个数是解决此题的关键.8.有理数a ,b ,c 在数轴上的位置如图所示:填空:+a b ________0,1b -_______0,a c -_______0,1c -_______0.<<<>【分析】数轴上右边表示的数总大于左边表示的数左边的数为负数右边的数为正数;根据有理数减法法则进行判断即可【详解】由题图可知所以故答案为:<<<>【点睛】考核知识点:有理数减法掌握有理数减法法解析:< < < >【分析】数轴上右边表示的数总大于左边表示的数.左边的数为负数,右边的数为正数;根据有理数减法法则进行判断即可.【详解】由题图可知01b a c <<<<,所以0,10,0,10a b b a c c +<-<-<->故答案为:<,<,<,>【点睛】考核知识点:有理数减法.掌握有理数减法法则是关键.9.若m ﹣1的相反数是3,那么﹣m =__.2【分析】根据只有符号不同的两个数互为相反数可得关于m 的方程根据解方程可得m 的值再根据在一个数的前面加上负号就是这个数的相反数可得答案【详解】解:由m-1的相反数是3得m-1=-3解得m=-2-m=解析:2【分析】根据只有符号不同的两个数互为相反数,可得关于m 的方程,根据解方程,可得m 的值,再根据在一个数的前面加上负号就是这个数的相反数,可得答案.【详解】解:由m-1的相反数是3,得m-1=-3,解得m=-2.-m=+2.故选:A .【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.10.A ,B ,C 三地的海拔高度分别是50-米,70-米,20米,则最高点比最低点高______米.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【解析:90【分析】先根据有理数的大小比较法则得出最高点和最低点,再列出运算式子,计算有理数的减法即可得.【详解】因为205070>->-,所以最高点的海拔高度为20米,最低点的海拔高度70-米,则20(70)207090--=+=(米),即最高点比最低点高90米,故答案为:90.【点睛】本题考查了有理数的大小比较法则、有理数减法的实际应用,依据题意,正确列出运算式子是解题关键.11.点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位长度到达点B ,则这两点所表示的数分别是____________和___________.-4【解析】试题解析:-4【解析】试题两点的距离为8,则点A 、B 距离原点的距离是4,∵点A ,B 互为相反数,A 在B 的右侧,∴A 、B 表示的数是4,-4.1.计算:(﹣1)2014+15×(﹣5)+8 解析:8【分析】先算乘方,再算乘法,最后算加法,由此顺序计算即可.【详解】原式=1+15×(﹣5)+8=1﹣1+8=8. 【点睛】此题考查有理数的混合运算,注意运算的顺序与符号的判定.2.小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,-8,12,-6,11,14,-3(超过30分钟的部分记为“+”,不足30分钟的部分记为“-”)(1)小李跑步时间最长的一天比最短的一天多跑几分钟?(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米? 解析:(1)22分钟;(2)24千米.【分析】(1)时间差=标准差的最大值-标准差的最小值;(2)先计算出一周的总运动时间,利用路程,速度,时间的关系计算即可.【详解】(1)()14822--=(分钟).故小李跑步时间最长的一天比最短的一天多跑22分钟.(2)()30710812611143240⨯+-+-++-=(分钟),0.124024⨯=(千米).故这七天他共跑了24千米.【点睛】本题考查了有理数的混合运算,熟练运用标准差计算时间差,标准时间计算总时间是解题的关键.3.给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式. (可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;解析:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维.4.计算:(1)5721()()129336--÷-(2)22115()(3)(12)23-+÷-⨯---⨯解析:(1)37;(2)50.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】(1)原式=572()(36)15282437 1293--⨯-=-++=.(2)原式=15(3)(3)(14)2145650-+⨯-⨯---⨯=-++=.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.。

浙教新版七年级(上)数学 第1章 有理数 单元测试卷 (解析版)

浙教新版七年级(上)数学 第1章 有理数 单元测试卷 (解析版)

第1章有理数单元测试卷一、选择题(共10小题).1.下列语句正确的是()A.“向左看”和“向右看”是相反意义的量B.“+16m“表示向前走了16mC.“盈利”和“支出”是相反意义的量D.“向东走20m”和“向西走20m”是相反意义的量2.﹣|﹣3|=()A.﹣3B.﹣C.D.33.﹣2的相反数是()A.﹣2B.2C.D.﹣4.下列各种数轴的画法中,正确的是()A.B.C.D.5.﹣2,0,3,﹣3这四个数中最大的是()A.3B.0C.﹣2D.﹣36.如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是()A.﹣4B.﹣2C.0D.47.在数﹣3,﹣2,0,3中,大小在﹣1和2之间的数是()A.﹣3B.﹣2C.0D.38.下列说法正确的是()A.最小的正有理数是1B.最小的正整数是1C.0是最小的有理数D.有理数由正数和负数组成9.某科学考察队攀登珠峰的过程中,在海拔每上升100米,气温就下降0.6℃的低温和缺氧的情况下,成功登上海拔8844.43米的地球最高点.而此时海拔5200米处的温度为﹣4℃,峰顶的温度为()(结果保留整数)A.﹣26℃B.﹣22℃C.﹣18℃D.22℃10.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在()A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边二、填空题(共8小题).11.若飞机上升500m记为+500m.则飞机下降1000m记为.12.9的相反数是.13.计算:|﹣2|=.14.写出一个比﹣4大的负无理数.15.已知123456789101112…997998999是由连续整数1至999排列组成的一个数,在该数中从左往右数第2013位上的数字为.16.如图,直径为单位2的圆从原点沿着数轴无滑动的逆时针滚动两周到达A点,则点A 表示的数是.17.绝对值不大于2020的所有整数的和是.18.有一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212…请观察它们的构成规律,用你发现的规律写出第8个等式为.三、解答题(本题包括6小题,共46分)19.把下列各数填在相应的集合里:﹣7,,﹣3.68,0,﹣5,+98,0.3.正数集合:{…};负数集合:{…};正整数集合:{…};负整数集合:{…};正分数集合:{…};负分数集合:{…}.20.(1)在数轴上表示下列各数,并比较它们的大小:﹣1.5,﹣3,1,﹣5;(2)求出(1)中各数的绝对值,并比较它们绝对值的大小.21.利用数轴比较﹣3,2,0,﹣1,,﹣4的大小,并用“<”把它们连结起来.22.甲地的海拔高度为30m,乙地的海拔高度为10m.丙地的海拔高度为﹣5m,那么这三个地方中,最低的是哪一处?最高处是哪一处?两地海拔高度相差多少米?23.七年级一班老师布置了一项任务,要求每名同学剪一个面积为100cm2的正方形.允许可以有3cm2的误差,抽查了6名同学的正方形,超过规定的面积记为正数,不足的记为负数,检查结果如下表(单位:cm2):1号2号3号4号5号6号+1.31﹣1.5+0.8﹣3.6+1.8﹣1.8(1)指出不符合要求的正方形;(2)指出符合要求的正方形中哪个是最好的?24.下面两个多位数1248624…,6248624…都是按照如下方法得到的:将第一位数字乘以2;若积为一位数,将其写在第2位上.若积为两位数,将其个位数字写在第2位上对第2位数字再进行如上操作,得到第三位数字…下面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数.求这个多位数前100位的所有数字之和?参考答案一、选择题(本题包括10小题,每小题3分,共30分)1.下列语句正确的是()A.“向左看”和“向右看”是相反意义的量B.“+16m“表示向前走了16mC.“盈利”和“支出”是相反意义的量D.“向东走20m”和“向西走20m”是相反意义的量【分析】根据正负数的定义,即可解决问题.解:A.“左”和“右”是相反意义的量,故原说法错误;B.“+16m“表示向前走了16m,说法错误,因为说明“﹣”是向后退;C.盈利”和“亏本”是相反意义的量,故原说法错误;D.“向东走20m”和“向西走20m”是相反意义的量.说法正确.故选:D.2.﹣|﹣3|=()A.﹣3B.﹣C.D.3【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.解:根据负数的绝对值等于它的相反数,得﹣|﹣3|=﹣3.故选:A.3.﹣2的相反数是()A.﹣2B.2C.D.﹣【分析】根据只有符号不同的两个数叫做互为相反数解答.解:﹣2的相反数是2.故选:B.4.下列各种数轴的画法中,正确的是()A.B.C.D.【分析】根据数轴的三要素判断即可.解:数轴是规定了原点、正方向、单位长度的直线,选项A没有正方向,因此选项A不正确;选项B的数轴无正方向、单位长度,因此选项B不正确;选项C的数轴单位长度不统一,因此选项C不正确;选项D的数轴,符合数轴的意义,正确;故选:D.5.﹣2,0,3,﹣3这四个数中最大的是()A.3B.0C.﹣2D.﹣3【分析】先比较数的大小,再求出答案即可.解:﹣3<﹣2<0<3,即最大的是3,故选:A.6.如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是()A.﹣4B.﹣2C.0D.4【分析】如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点.解:如图,AB的中点即数轴的原点O.根据数轴可以得到点A表示的数是﹣2.故选:B.7.在数﹣3,﹣2,0,3中,大小在﹣1和2之间的数是()A.﹣3B.﹣2C.0D.3【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.解:∵﹣3<﹣1,﹣1<0<2,3>2,∴大小在﹣1和2之间的数是0.故选:C.8.下列说法正确的是()A.最小的正有理数是1B.最小的正整数是1C.0是最小的有理数D.有理数由正数和负数组成【分析】有理数包括正有理数,0和负有理数,据此逐一判断即可.解:A.没有最小的有理数,故本选项不合题意;B.最小的正整数是1,故本选项符合题意;C.有最小的有理数,故本选项不合题意;D.有理数由正有理数,0和负有理数组成,故本选项不合题意.故选:B.9.某科学考察队攀登珠峰的过程中,在海拔每上升100米,气温就下降0.6℃的低温和缺氧的情况下,成功登上海拔8844.43米的地球最高点.而此时海拔5200米处的温度为﹣4℃,峰顶的温度为()(结果保留整数)A.﹣26℃B.﹣22℃C.﹣18℃D.22℃【分析】由于“海拔每上升100米,气温就下降0.6℃”,因此应先求得峰顶与珠峰大本营的高度差,进而求得两地的温度差,最后依据珠峰大本营的温度计算出峰顶的温度.解:由题意知:峰顶的温度=﹣4﹣(8844.43﹣5200)÷100×0.6≈﹣26(℃).故选:A.10.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在()A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.解:∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,又∵AB=BC,∴原点O的位置是在点B、C之间且靠近点B的地方.故选:C.二、填空题(本题包括8小题,每小题3分,共24分)11.若飞机上升500m记为+500m.则飞机下降1000m记为﹣1000m.【分析】根据正负数的定义,即可解决问题.解:飞机上升500m记为+500m,那么飞机下降1000m,记作﹣1000m,故答案为:﹣1000m.12.9的相反数是﹣9.【分析】求一个数的相反数,即在这个数的前面加负号.解:根据相反数的概念,则9的相反数是﹣9.13.计算:|﹣2|=2.【分析】根据绝对值定义去掉这个绝对值的符号.解:∵﹣2<0,∴|﹣2|=2.故答案为:2.14.写出一个比﹣4大的负无理数.【分析】本题需先根据已知条件,写出一个负数并且是无理数即可求出答案.解:∵写一个比﹣4大的负无理数,首先写出一个数是无理数,再写出它是负数∴如﹣等.故答案为:﹣(答案不唯一).15.已知123456789101112…997998999是由连续整数1至999排列组成的一个数,在该数中从左往右数第2013位上的数字为7.【分析】根据已知得出第2013个数字是第608个3位数的第3位,进而得出即可.解:∵共有9个1位数,90个2位数,900个3位数∴2013﹣9﹣180=1824,∴=608,∵此608是继99后的第608个数∴此数是707,第三位是7故从左往右数第2013位上的数字为7.故答案为:7.16.如图,直径为单位2的圆从原点沿着数轴无滑动的逆时针滚动两周到达A点,则点A 表示的数是﹣4π.【分析】滚动两周的距离为2π×2=4π,即点A所表示的数的绝对值是4π,在原点的左侧为负数,因此可得答案.解:由题意可知,点A所表示的数在原点的左侧,且到原点的距离为4π,因此,点A表示的数是﹣4π,故答案为:﹣4π.17.绝对值不大于2020的所有整数的和是0.【分析】先求出绝对值不大于2020的整数,再相加即可.解:绝对值不大于2020的整数有0,±1,±2,±3,…,±2020,和为0+1+(﹣1)+2+(﹣2)+…+2020+(﹣2020)=0,故答案为:0.18.有一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212…请观察它们的构成规律,用你发现的规律写出第8个等式为82+92+722=732.【分析】观察不难发现,两个连续自然数的平方和加上它们积的平方,等于比它们的积大1的数的平方,然后写出即可.解:∵12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212,…,∴第8个等式为:82+92+(8×9)2=(8×9+1)2,即82+92+722=732.故答案为:82+92+722=732.三、解答题(本题包括6小题,共46分)19.把下列各数填在相应的集合里:﹣7,,﹣3.68,0,﹣5,+98,0.3.正数集合:{,+98,0.3…};负数集合:{,+98,0.3…};正整数集合:{+98…};负整数集合:{﹣7…};正分数集合:{,0.3…};负分数集合:{﹣3.68,﹣5…}.【分析】根据有理数的定义及其分类可得.解:在﹣7,,﹣3.68,0,﹣5,+98,0.3中,把下列各数填在相应的集合里:﹣7,,﹣3.68,0,﹣5,+98,0.3.正数集合:{,+98,0.3…};负数集合:{﹣7,﹣3.68,﹣5…};正整数集合:{+98…};负整数集合:{﹣7…};正分数集合:{,0.3…};负分数集合:{﹣3.68,﹣5…}.故答案为:,+98,0.3;,+98,0.3;+98;﹣7;,0.3;﹣3.68,﹣5.20.(1)在数轴上表示下列各数,并比较它们的大小:﹣1.5,﹣3,1,﹣5;(2)求出(1)中各数的绝对值,并比较它们绝对值的大小.【分析】(1)先在数轴上表示各个数,再比较即可;(2)先求出绝对值,再比较即可.解:(1),﹣5<﹣3<﹣1.5<1;(2)﹣1.5的绝对值是1.5,﹣3的绝对值是3,1的绝对值是1,﹣5的绝对值是5,5>3>1.5>1.21.利用数轴比较﹣3,2,0,﹣1,,﹣4的大小,并用“<”把它们连结起来.【分析】根据数轴上的点与实数是一一对应的关系,数轴上的点比较大小的方法是左边的数总是小于右边的数,即可得出答案.解:如图所示:.22.甲地的海拔高度为30m,乙地的海拔高度为10m.丙地的海拔高度为﹣5m,那么这三个地方中,最低的是哪一处?最高处是哪一处?两地海拔高度相差多少米?【分析】根据有理数大小比较即可得出最低处和最高处,再用最高处减去最低处即可得出两地海拔差.解:∵30>10>﹣15,∴丙地的海拔最低,甲地的海拔最高;30﹣(﹣15)=30+15=45(m),即丙地与甲地海拔高度相差45米.23.七年级一班老师布置了一项任务,要求每名同学剪一个面积为100cm2的正方形.允许可以有3cm2的误差,抽查了6名同学的正方形,超过规定的面积记为正数,不足的记为负数,检查结果如下表(单位:cm2):1号2号3号4号5号6号+1.31﹣1.5+0.8﹣3.6+1.8﹣1.8(1)指出不符合要求的正方形;(2)指出符合要求的正方形中哪个是最好的?【分析】(1)绝对值>3的就都是不合格的,据此判断即可;(2)对值越小质量越好,越大质量越差,据此判断即可.解:(1)∵|﹣3.6|>3,∴4号同学的正方形不符合要求;(2)∵在1.31,﹣1.5,+0.8,﹣3.6,+1.8,﹣1.8中,+0.8的绝对值最小,∴3号同学的正方形是最好的.24.下面两个多位数1248624…,6248624…都是按照如下方法得到的:将第一位数字乘以2;若积为一位数,将其写在第2位上.若积为两位数,将其个位数字写在第2位上对第2位数字再进行如上操作,得到第三位数字…下面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数.求这个多位数前100位的所有数字之和?【分析】先按照规律依次写出这个多位数,发现循环规律,再算出循环部分有多少组,再分开头两位数,中间循环部分和末尾两个数字,求和即可.解:当第1位数字是3时,仍按如上操作得到一个多位数36248624862486…,观察发现,这个多位数前100位中前两个为36,接着均是2486循环出现,∵(100﹣2)÷4=24…2,∴这个多位数开头两个为36,中间有24组2486,最后两个数为24,∴这个多位数前100位的所有数字之和为:(3+6)+(2+4+8+6)×24+(2+4)=9+480+6=495.∴这个多位数前100位的所有数字之和为495.。

人教版七年级上册数学单元测试试卷《第一章-有理数》(含答案解析)

人教版七年级上册数学单元测试试卷《第一章-有理数》(含答案解析)

人教版七年级上册数学单元测试试卷第一章《有理数》第Ⅰ卷考试时间:120分钟总分:100分得分:一、选择题(共10题,每小题2分,共20分)1.(2分)用科学记数法表示2500000000是()A.2.5×109B.0.25×10C.2.5×1010D.0.25×10102.(2分)-2022的倒数是()A.-2022B.2022C.12022-D.120223.(2分)下列各组数中,互为相反数的是()A.43和34-B.13和0.333-C.a 和a -D.14和44.(2分)温度由﹣3℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃5.(2分)下列说法错误的是()A.开启计算器使之工作的按键是ONB.输入 5.8-的按键顺序是C.输入0.58的按键顺序是58⋅D.按键6987-=能计算出6987--的结果6.(2分)小时候我们常常唱的一首歌“小燕子穿花衣,年年春天来这里”,研究表明小燕子从北方飞往南方过冬,迁徙路线长达25000千米左右,将数据25000用科学记数法表示为()A.32510⨯B.42.510⨯C.52.510⨯D.50.2510⨯7.(2分)若a 、b 为有理数,0a <,0b >,且a b >,那么a ,b ,a -,b -的大小关系是()A.b a b a -<<<-B.b b a a <-<<-C.a b b a<-<<-D.a b b a<<-<-8.(2分)a、b 两数在数轴上的位置如图所示,下列结论正确的是()A.a>b B.|a|=﹣a C.a<﹣b D.|a|>|b|9.(2分)小明家的汽车在阳光下暴晒后车内温度达到了60℃,打开车门后经过8min 降低到室外同温32℃,再启动空调关车门,若每分钟降低4℃,降到设定的20℃共用时间是()A.13minB.12minC.11minD.10min10.(2分)已知4,5x y ==,且x y >,则2x y -的值为()A.13-B.13+C.3-或13+D.3+或13-二、填空题(共10题;每题2分,共20分)11.(2分)45-的倒数是.12.(2分)比较大小:15-16-(填“>”“<”或“=”)13.(2分)如果向东走35米记作+35米,那么向西走50米记作米。

人教版初中七年级数学上册第一章《有理数》经典题(含答案解析)

人教版初中七年级数学上册第一章《有理数》经典题(含答案解析)

1.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个A解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A .【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.2.若b<0,刚a ,a+b ,a-b 的大小关系是( )A .a<a <+b -b aB .<a<a-b a+bC .a<<a-b a+bD .<a<a+b a-b D 解析:D【分析】根据有理数减法法则,两两做差即可求解.【详解】∵b<0∴()0a a b b -+=->,()0a b a b --=->∴()a a b >+,()a b a ->∴()()a b a a b ->>+故选D .【点睛】本题考查了有理数减法运算,减去一个负数等于加上这个数的相反数.3.某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( )A .B 处比A 处高B .A 处比B 处高C .A ,B 两处一样高D .无法确定B解析:B【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高.【详解】根据题意,得: ()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+=A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------=∵1.5>0∴A B h h >故选B .【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.4.如图是北京地铁一号线部分站点的分布示意图,在图中以正东为正方向建立数轴,有如下四个结论:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14;上述结论中,所有正确结论的序号是( )A .①②③B .②③④C .①④D .①②③④D解析:D【分析】 数轴上单位长度是统一的,利用图象,根据两点之间单位长度是否统一,判断即可.【详解】:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6,故①说法正确;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12,故②说法正确;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7,故③说法正确;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14,故④说法正确.故选:D .【点睛】本题考查了数轴表示数,数轴的三要素是:原点,正方向和单位长度,因此本题的关键是确定原点的位置和单位长度.5.已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( )A .-13B .+13C .-3或+13D .+3或-1C 解析:C【分析】 由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x-y 即可得答案.【详解】 ∵4x =,5y =,∴x=±4,y=±5,∵x >y ,∴y=-5,当x=4,y=-5时,2x-y=2×4-(-5)=13,当x=-4,y=-5时,2x-y=2×(-4)-(-5)=-3,∴2x-y 的值为-3或13,故选:C .【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x ,y 的值是解答此题的关键.6.计算4(8)(4)(1)+-÷---的结果是( )A .2B .3C .7D .43C 解析:C【分析】先计算除法、将减法转化为加法,再计算加法可得答案.【详解】=++解:原式421=,7故选:C.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.7.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.8.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A.点C B.点D C.点A D.点B B解析:B【分析】由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A,2所对应的点是B,3对应的点是C,4对应的点是D,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.9.绝对值大于1小于4的整数的和是()A.0 B.5 C.﹣5 D.10A解析:A【解析】试题绝对值大于1小于4的整数有:±2;±3.-2+2+3+(3)=0.故选A.10.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|D解析:D【分析】根据绝对值的定义进行分析即可得出正确结论.【详解】选项A、B、C中,a与b的关系还有可能互为相反数,故选项A、B、C不一定成立,D.若a=﹣b,则|a|=|b|,正确,故选D.【点睛】本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.11.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为()A.312⎛⎫⎪⎝⎭米B.512⎛⎫⎪⎝⎭米C.612⎛⎫⎪⎝⎭米D.1212⎛⎫⎪⎝⎭米C解析:C 【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为(12)2米,那么依此类推得到第六次后剩下的绳子的长度为(12)6米.【详解】∵1-12=12,∴第2次后剩下的绳子的长度为(12)2米;依此类推第六次后剩下的绳子的长度为(12)6米. 故选C .【点睛】 此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.12.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .2C 解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.13.下列分数不能化成有限小数的是( )A .625B .324C .412D .116C 解析:C【分析】首先,要把分数化成最简分数,再根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数.【详解】A 、625的分母中只含有质因数5,所以625能化成有限小数; B 、31248=,18的分母中只含有质因数2,所以324能化成有限小数; C 、41123=,13的分母中含有质因数3,所以412不能化成有限小数; D 、116的分母中只含有质因数2,所以116能化成有限小数.故选:C .【点睛】此题主要考查判断一个分数能否化成有限小数的方法,根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;否则就不能化成有限小数.14.某市11月4日至7日天气预报的最高气温与最低气温如表:其中温差最大的一天是( )A .11月4日B .11月5日C .11月6日D .11月7日C解析:C【分析】运用减法算出每一天的温差,再进行比较即可.【详解】11月4日的温差为19415-=(℃);11月5日的温差为12(3)15--=(℃);11月6日的温差为20416-=(℃);11月7日的温差为19514-=(℃).所以温差最大的一天是11月6日.故选C .【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.15.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元C 解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.1.在有理数3.14,3,﹣12,0,+0.003,﹣313,﹣104,6005中,负分数的个数为x,正整数的个数为y,则x+y的值等于__.4【解析】负分数为:﹣﹣3共2个;正整数为:36005共2个则x+y=2+2=4故答案为4【点睛】本题主要考查了有理数的分类熟记有理数的分类是解决此题的关键解析:4【解析】负分数为:﹣12,﹣313,共2个;正整数为: 3, 6005共2个,则x+y=2+2=4,故答案为4.【点睛】本题主要考查了有理数的分类,熟记有理数的分类是解决此题的关键.2.在整数5-,3-,1-,6中任取三个数相乘,所得的积的最大值为______.90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解详解:所得乘积最大为:(-5)×(-3)×6=5×3×6=90故答案为90点睛:本题考查了有理数的乘法以及有理数的大小比较熟解析:90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解.详解:所得乘积最大为:(-5)×(-3)×6,=5×3×6,=90.故答案为90.点睛:本题考查了有理数的乘法以及有理数的大小比较,熟记运算法则并准确列出算式是解题的关键.3.在数轴上,若点A与表示3-的点相距6个单位,则点A表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.4.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a由题意得:-1<a<3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a,由题意得:-1<a<3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念.5.若两个不相等的数互为相反数,则两数之商为____.-1【分析】设其中一个数为a (a≠0)它的相反数为-a然后作商即可【详解】解:设其中一个数为a(a≠0)则它的相反数为-a所以这两个数的商为a÷(-a)=-1故答案为:-1【点睛】本题考查了相反数和解析:-1【分析】设其中一个数为a(a≠0),它的相反数为-a,然后作商即可.【详解】解:设其中一个数为a(a≠0),则它的相反数为-a,所以这两个数的商为a÷(-a)=-1.故答案为:-1.【点睛】本题考查了相反数和除法法则,根据题意设出这两个数是解决此题的关键.6.定义一种正整数的“H运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H运算”的结果是22,经过2次“H运算”的结果为11,经过3次“H运算”的结果为46,那么数28经过2020次“H运算”得到的结果是_________.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】⨯⨯=;解:第1次:280.50.57⨯+=;第2次:371334⨯=;第3次:340.517⨯+=;第4次:3171364⨯⨯⨯⨯⨯⨯=;第5次:640.50.50.50.50.50.51⨯+=;第6次:311316⨯⨯⨯⨯=,等于第5次.第7次:160.50.50.50.51所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.7.截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学解析:051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.【详解】解:1051万=10510000=1.051×107.故答案为:1.051×107.【点睛】本题考查了科学记数法-表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,8.在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________.-5【分析】所给的五个数中最大的数是5绝对值最小的负数是-1所以取两个相除其中商最小的是:5÷(-1)=-5【详解】∵-3<-1<0<2<5所给的五个数中最大的数是5绝对值最小的负数是-1∴任取两个解析:-5【分析】所给的五个数中,最大的数是5,绝对值最小的负数是-1,所以取两个相除,其中商最小的是:5÷(-1)=-5.【详解】∵-3<-1<0<2<5,所给的五个数中,最大的数是5,绝对值最小的负数是-1,∴任取两个相除,其中商最小的是:5÷(-1)=-5,故答案为:-5.【点睛】本题主要考查有理数的大小比较和有理数除法,解决本题的关键是要熟练掌握有理数大小比较和有理数除法法则.9.已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米.5×108【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;当原数 解析:5×108【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】150 000 000将小数点向左移8位得到1.5,所以150 000 000用科学记数法表示为:1.5×108,故答案为1.5×108.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,1a b =- 则原式=0+1-(-1)=2.故答案为:2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11.绝对值小于4.5的所有负整数的积为______.24【分析】找出绝对值小于45的所有负整数求出之积即可【详解】解:绝对值小于45的所有负整数为:-4-3-2-1∴积为:故答案为:24【点睛】此题考查了有理数的乘法以及绝对值熟练掌握运算法则是解本题解析:24【分析】找出绝对值小于4.5的所有负整数,求出之积即可.【详解】解:绝对值小于4.5的所有负整数为:-4,-3,-2,-1,∴积为:4(3)(2)(1)24-⨯-⨯-⨯-=,故答案为:24.【点睛】此题考查了有理数的乘法,以及绝对值,熟练掌握运算法则是解本题的关键.1.计算(1)2125824(3)3-+-+÷-⨯ (2)71113()2461224-+-⨯ 解析:(1)113-;(2)-19 【分析】(1)有理数的混合运算,先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的;(2)使用乘法分配律使得计算简便.【详解】解:(1)2125824(3)3-+-+÷-⨯=114324()33-++⨯-⨯ =8433-+- =113- (2)71113()2461224-+-⨯ =7111324242461224-⨯+⨯-⨯ =-28+22-13=-19【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 2.计算(1) ()375244128⎛⎫---⨯- ⎪⎝⎭ (2) ()212382455-+--÷-⨯解析:(1)47;(2)4925【分析】 (1)根据乘法分配律,求出算式的值是多少即可;(2)先计算乘方及绝对值运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解: ()375244128⎛⎫---⨯- ⎪⎝⎭=18+14+15=47(2)()212|38|2455-+--÷-⨯ =11452455⎛⎫-+-⨯-⨯⎪⎝⎭ =24125+ 4925= 【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.3.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦解析:(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--, 52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.4.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭. 解析:12-. 【分析】 根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可.【详解】 原式311222⎛⎫=-++-=- ⎪⎝⎭.【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键.。

人教版七年级上册数学第一章 有理数含答案解析

人教版七年级上册数学第一章 有理数含答案解析

人教版七年级上册数学第一章有理数含答案一、单选题(共15题,共计45分)1、有理数在数轴上对应点的位置如图所示,下列各式正确的是( )A. B. C. D.2、世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为A.5B.6C.7D.83、餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿kg,这个数据用科学记数法表示为()A.5×10 10kgB.50×10 9kgC.5×10 9kgD.0.5×10 11kg4、点在数轴上距离原点3个单位长度,将向右移动4个单位长度,再向左移动2个单位长度,此点表示的数是()A.1B.5C.-5或1D.5或-15、在下列各数中,比﹣1小的数是()A.1B.-1C.-2D.06、下列比较两个有理数的大小正确的是()A.﹣3>﹣1B.C.D.7、实数a在数轴上对应的点的位置如图所示,化简|a+3|的结果是()A.a+3B.a-3C.-a-3D.-a+38、在数轴上,表示数的点到原点的距离是个单位长度,数是的倒数,则()A. 或B. 或C. 或D. 或9、﹣2016的倒数是()A.2016B.-2016C.D.10、下列运算中,结果最小的是()A.1-(-2)B.1-|-2|C.1×(-2)D.1÷(-2)11、一个数的绝对值等于它本身,这样的数是()A.0B.0和1C.正数D.非负数12、计算2﹣(﹣3)×4的结果是()A.20B.﹣10C.14D.﹣2013、我们常用的数是十进制数,而计算机程序处理数据使用的只有数码0和1的二进制数,这二者可以相互换算,如将二进制数1011换算成十进制数应为:1×23+0×22+1×21+1×20=11.按此方式,则将十进制数7换算成二进制数应为()A.101B.110C.111D.110114、用四舍五入法按要求把2.0503分别取近似数,其中错误的是()A.2.1(精确到0.1)B.2.05(精确到0.001)C.2.05(精确到百分位)D.2.050(精确到千分位)15、如果一个数的平方与这个数的差等于0,那么这个数是()A.0B.﹣1C.1或0D.﹣1或1二、填空题(共10题,共计30分)16、小明在超市买一食品,外包装上印有“总净含量(300±5)g”的字样。

2020年人教版七年级数学上册《第1章有理数》单元测试卷(解析版)

2020年人教版七年级数学上册《第1章有理数》单元测试卷(解析版)

2020年人教版七年级数学上册《第1章有理数》单元测试卷一.选择题(共10小题)1.在0.2、﹣2、10、、﹣2.5、﹣3.3中,负数的个数有()A.3个B.4个C.5个D.6个2.下列说法正确的有()①正有理数是正整数和正分数的统称;②整数是正整数和负整数的统称;③有理数是正整数、负整数、正分数、负分数的统称;④0是偶数,但不是自然数;⑤偶数包括正偶数、负偶数和零.A.1个B.2个C.3个D.4个3.学校、小明家、书店依次坐落在一条南北走向的大街上,学校在小明家南边20m,书店在小明家北边100m.小明同学从家里出发,向北走了50m,接着又向南走了70m,此时小明的位置是()A.在家B.在书店C.在学校D.不在上述地方4.﹣9的相反数是()A.B.﹣C.9D.﹣95.﹣8的绝对值是()A.﹣8B.C.8D.﹣6.下列说法正确的是()A.0既不是正数也不是负数B.最小的正数0C.绝对值等于3的数是3D.任何有理数都有倒数7.下列四个地方:死海(海拔﹣400米),卡达拉低地(海拔﹣133米),罗讷河三角洲(海拔﹣2米),吐鲁番盆地(海拔﹣154米).其中最低的是()A.死海B.卡达拉低地C.罗讷河三角洲D.吐鲁番盆地8.如果a、b异号,且a+b<0,则下列结论正确的是()A.a>0,b>0B.a<0,b<0C.a,b异号,且正数的绝对值较大D.a,b异号,且负数的绝对值较大9.若x的相反数是3,|y|=6,且x+y<0,则x﹣y的值是()A.3B.3或﹣9C.﹣3或﹣9D.﹣910.(﹣3)﹣(﹣4)+7的计算结果是()A.0B.8C.﹣14D.﹣83二.填空题(共8小题)11.如果节约6吨水记作+6吨,那么浪费2吨水记作吨.12.下列各数﹣2,3,,﹣5.4,|﹣9|,0,4中,属于整数的有个,属于负数的有个.13.点A表示数轴上的一个点,将点A向右移动10个单位,再向左移动6个单位,终点恰好是原点,则点A表示的数是.14.﹣(﹣2.8)=,﹣2.6是的相反数.15.已知a,b,c的位置如图所示,则|a|+|a+b|﹣|c﹣b|=.16.0.2的倒数是.17.大于而不大于的整数有,所有整数之积为.18.如图,在3×3的幻方的九个空格中,填入9个数字,使得处于同一横行,同一竖行,同一斜对角线上的三个数的和都相等,按以上规则的幻方中,则同一竖行的三个数的和为.三.解答题(共8小题)19.某公司6天内货品进出仓库的吨数如下:(“+”表示进库,“﹣”表示出库)+31,﹣31,﹣16,+35,﹣38,﹣20(1)经过这6天,仓库里的货品是(填“增多了”或“减少了”)(2)经过这6天,仓库管理员结算发现仓库还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?20.把下列各数填在相应的表示集合的大括号里:﹣2.4,3,2.008,﹣,1,﹣0.,0,﹣(﹣2.28),3.14,﹣|﹣4|正有理数集合:{…};负有理数集合:{…};整数集合:{…};负分数集合:{…}.21.滴滴打车是一种网上约车方式,更方便人们出行,小明国庆节第一天下午营运全是在安庆某大道南北走向的公路上进行的,如果向南记作“﹣”,向北记作“+”.他这天下午行车情况如下:(单位:千米,每次行车都有乘客)﹣10,+5,﹣2,+8,﹣6,﹣4,+7,+8请回答:(1)小明将最后一名乘客送到目的地时,小明在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若小明的出租车每千米耗油0.06升,每升汽油6.5元,这八次出车共耗油费多少元?22.【观察与归纳】(1)观察下列各式的大小关系:|﹣2|+|3|>|﹣2+3||﹣8|+|3|>|﹣8+3||﹣2|+|﹣3|=|﹣2﹣3||0|+|﹣6|=|0﹣6|归纳:|a|+|b||a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)【理解与应用】(2)根据上题中得出的结论,若|m|+|n|=9,|m+n|=1,求m的值.23.若n=1﹣+﹣+﹣+,求n的负倒数.24.在数轴上表示数:﹣2.5,0,2,|﹣|,﹣1.然后按从小到大的顺序用“<“连接起来.25.在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数字之和相等,得到的3×3的方格称为一个三阶幻方.在图中的空格处填上合适的数字,使它构成一个三阶幻方.26.已知a﹣b=5且a>4,b<6,求|a﹣4|+|b﹣6|﹣5的值.2020年人教版七年级数学上册《第1章有理数》单元测试卷参考答案与试题解析一.选择题(共10小题)1.在0.2、﹣2、10、、﹣2.5、﹣3.3中,负数的个数有()A.3个B.4个C.5个D.6个【分析】根据小于0的是负数即可求解.【解答】解:在0.2、﹣2、10、、﹣2.5、﹣3.3中,负数有﹣2、﹣π、﹣2.5、﹣3.3,负数的个数有4个.故选:B.【点评】此题主要考查了正数和负数的意义,判断一个数是正数还是负数,关键是看它比0大还是比0小.2.下列说法正确的有()①正有理数是正整数和正分数的统称;②整数是正整数和负整数的统称;③有理数是正整数、负整数、正分数、负分数的统称;④0是偶数,但不是自然数;⑤偶数包括正偶数、负偶数和零.A.1个B.2个C.3个D.4个【分析】按照有理数的分类对各项进行逐一分析即可.【解答】解:①正有理数是正整数和正分数的统称是正确的;②整数是正整数、0和负整数的统称,原来的说法是错误的;③有理数是正整数、0、负整数、正分数、负分数的统称,原来的说法是错误的;④0是偶数,也是自然数,原来的说法是错误的;⑤偶数包括正偶数、负偶数和零是正确的.故说法正确的有2个.故选:B.【点评】考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.3.学校、小明家、书店依次坐落在一条南北走向的大街上,学校在小明家南边20m,书店在小明家北边100m.小明同学从家里出发,向北走了50m,接着又向南走了70m,此时小明的位置是()A.在家B.在书店C.在学校D.不在上述地方【分析】根据题意,以小明家为原点,向北为正方向,在数轴上用点表示各个地方的位置,按照小明所走的方向与距离即可得答案.【解答】解:根据题意,以小明家为原点,向北为正方向,20米为一个单位,在数轴上用点分别表示学校、家、书店的位置,如图所示:0+50﹣70=﹣20∴此时小明的位置是在学校故选:C.【点评】本题考查了数轴的运用,注意结合题意,在数轴上用点表示各个地方的位置,是解题的关键.4.﹣9的相反数是()A.B.﹣C.9D.﹣9【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣9的相反数是9,故选:C.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.5.﹣8的绝对值是()A.﹣8B.C.8D.﹣【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣8的绝对值为|﹣8|=8.故选:C.【点评】本题考查了绝对值的性质,熟记一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.6.下列说法正确的是()A.0既不是正数也不是负数B.最小的正数0C.绝对值等于3的数是3D.任何有理数都有倒数【分析】根据有理数的分类和绝对值的非负性进行分析即可.【解答】解:0既不是正数也不是负数,故A正确.没有最小的正数,故B错误.绝对值等于3的数是3和﹣3,故C错误.0是有理数,但是0没有倒数,故D错误.故选:A.【点评】本题考查了有理数的定义及相关的基本性质,解题的关键是掌握有理数的分类及相关的基本性质.7.下列四个地方:死海(海拔﹣400米),卡达拉低地(海拔﹣133米),罗讷河三角洲(海拔﹣2米),吐鲁番盆地(海拔﹣154米).其中最低的是()A.死海B.卡达拉低地C.罗讷河三角洲D.吐鲁番盆地【分析】根据有理数大小的比较解答即可.【解答】解:﹣400<﹣154<﹣133<﹣2所以最低的是死海.故选:A.【点评】本题考查了有理数大小的比较,解题的关键是明确两个负数比较大小,绝对值大的反而小.8.如果a、b异号,且a+b<0,则下列结论正确的是()A.a>0,b>0B.a<0,b<0C.a,b异号,且正数的绝对值较大D.a,b异号,且负数的绝对值较大【分析】两数异号,两数之和小于0,说明两数都是负数或一正一负,且负数的绝对值大.综合两个条件可选出答案.【解答】解:∵a+b<0,∴a,b同为负数,或一正一负,且负数的绝对值大,∵a,b异号,∴a、b异号,且负数的绝对值较大.故选:D.【点评】此题主要考查了有理数的乘法和加法,解题的关键是熟练掌握计算法则,正确判断符号.9.若x的相反数是3,|y|=6,且x+y<0,则x﹣y的值是()A.3B.3或﹣9C.﹣3或﹣9D.﹣9【分析】首先根据相反数,绝对值的概念分别求出x、y的值,然后代入x﹣y,即可得出结果.【解答】解:x的相反数是3,则x=﹣3,|y|=6,y=±6,∵且x+y<0,∴y=﹣6,∴x﹣y=﹣3﹣(﹣6)=3.故选:A.【点评】此题主要考查绝对值的性质以及相反数的定义.需注意的是互为相反数的两个数绝对值相等.10.(﹣3)﹣(﹣4)+7的计算结果是()A.0B.8C.﹣14D.﹣83【分析】根据有理数的加减混合运算即可求解.【解答】解:(﹣3)﹣(﹣4)+7=﹣3+4+7=8故选:B.【点评】本题考查了有理数的加减混合运算,解决本题的关键是计算过程中注意符号.二.填空题(共8小题)11.如果节约6吨水记作+6吨,那么浪费2吨水记作﹣2吨.【分析】节约与浪费具有相反意义,节约6吨水用正数表示,则浪费记作负数,据此可解.【解答】解:节约与浪费具有相反意义,节约6吨水记作+6吨,那么浪费2吨水记作﹣2吨.故答案为:﹣2.【点评】本题考查了正数和负数的意义,比较简单.12.下列各数﹣2,3,,﹣5.4,|﹣9|,0,4中,属于整数的有5个,属于负数的有2个.【分析】根据整数的定义,负数的定义,可得答案.【解答】解:在﹣2,3,,﹣5.4,|﹣9|,0,4中,属于整数的有﹣2,3,|﹣9|,0,4共5个;属于负数的有﹣2,﹣5.4共2个.故答案为:5;2【点评】本题考查了有理数,负数时小于零的数,注意带符号的数不一定是负数.13.点A表示数轴上的一个点,将点A向右移动10个单位,再向左移动6个单位,终点恰好是原点,则点A表示的数是﹣4.【分析】设点A表示的数是x,根据向右移动用加法,向左移动用减法,列方程并求解即可.【解答】解:设点A表示的数是x,由题意得:x+10﹣6=0∴x=﹣4故答案为:﹣4.【点评】本题考查了数轴上的点所表示的数,正确列出方程,是解题的关键.14.﹣(﹣2.8)= 2.8,﹣2.6是 2.6的相反数.【分析】根据相反数的定义分别填空即可.【解答】解:﹣(﹣2.8)=2.8,﹣2.6是2.6的相反数.故答案为:2.8,2.6.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.15.已知a,b,c的位置如图所示,则|a|+|a+b|﹣|c﹣b|=﹣2a﹣c.【分析】通过数轴判断a,c,b的相对大小,可知b<a<0<c,且|b|>|c|>|a|,从而确定绝对值里代数式的值的符号,再去掉绝对值,最后实现化简.【解答】解:由数轴可知b<a<0<c,且|b|>|c|>|a|,∴a+b<0,c﹣b>0,∴|a|+|a+b|﹣|c﹣b|=﹣a﹣(a+b)﹣(c﹣b)=﹣a﹣a﹣b﹣c+b=﹣2a﹣c.故答案为:﹣2a﹣c.【点评】本题考查的是利用数轴比较数的大小,并进行化简,利用数轴判断绝对值内代数式的符号是解题关键.16.0.2的倒数是5.【分析】利用倒数的定义求解即可.【解答】解:0.2的倒数是5.故答案为:5.【点评】本题主要考查了倒数,解题的关键是熟记倒数的定义.17.大于而不大于的整数有﹣2,﹣1,0,1,所有整数之积为0.【分析】找出符合条件的所有的整数,然后再根据有理数的乘法运算法则进行计算即可.【解答】解:大于而不大于的整数有﹣2,﹣1,0,1.(﹣2)×(﹣1)×0×1=0.故答案为:﹣2,﹣1,0,1;0.【点评】本题主要考查了有理数大小比较,注意:负数都小于0,两个负数比较大小,其绝对值大的反而小.18.如图,在3×3的幻方的九个空格中,填入9个数字,使得处于同一横行,同一竖行,同一斜对角线上的三个数的和都相等,按以上规则的幻方中,则同一竖行的三个数的和为15.【分析】使得处于同一横行,同一竖行,同一斜对角线上的三个数的和都相等,则由已知的2x+x+1=4+x+x+1,即可求出x,进而求出同一竖行的三个数的和值.【解答】解:由题意得,2x+x+1=4+x+x+1,解得x=5将x=5代入4+x+x+1得4+5+5+1=15故同一竖行的三个数的和为15故答案为15.【点评】此题比较简单,主要考查了有理数的加法,主要多观察表格中的数值找出规律即可以求解.三.解答题(共8小题)19.某公司6天内货品进出仓库的吨数如下:(“+”表示进库,“﹣”表示出库)+31,﹣31,﹣16,+35,﹣38,﹣20(1)经过这6天,仓库里的货品是减少了(填“增多了”或“减少了”)(2)经过这6天,仓库管理员结算发现仓库还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?【分析】(1)根据有理数的加法法则计算;(2)根据(1)的计算结果解答;(3)求出公司6天内货品进出仓库的吨数的和,计算即可.【解答】解:(1)+31+(﹣31)+(﹣16)+(+35)+(﹣38)+(﹣20)=﹣39(吨),∴经过这6天,仓库里的货品减少了,故答案为:减少了;(2)460+39=499(吨),答:6天前仓库里有货品499吨;(3)(31+31+16+35+38+20)×5=855(元),答:这6天要付855元装卸费.【点评】本题考查的是正数和负数,掌握有理数的加法法则,正数和负数的意义是解题的关键.20.把下列各数填在相应的表示集合的大括号里:﹣2.4,3,2.008,﹣,1,﹣0.,0,﹣(﹣2.28),3.14,﹣|﹣4|正有理数集合: ,,1,﹣(﹣), …};负有理数集合:{ ﹣2.4,﹣,﹣0.,﹣|﹣4| …};整数集合:{ 3,0,﹣|﹣4| …};负分数集合:{ ﹣2.4,﹣,﹣0. …}.【分析】根据正负有理数、整数、负分数的定义,直接填空即可.【解答】解:正有理数集合:{ 3,2.008,1,﹣(﹣2.28),3.14…};负有理数集合:{﹣2.4,﹣,﹣0.,﹣|﹣4|…};整数集合:{ 3,0,﹣|﹣4|…};负分数集合:{﹣2.4,﹣,﹣0.…}.故答案为:{ 3,2.008,1,﹣(﹣2.28),3.14…};{﹣2.4,﹣,﹣0.,﹣|﹣4|…};{ 3,0,﹣|﹣4|…};{﹣2.4,﹣,﹣0.…}.【点评】本题考查了有理数的分类,题目难度不大.记住有理数的分类及相关定义是解决本题的关键.21.滴滴打车是一种网上约车方式,更方便人们出行,小明国庆节第一天下午营运全是在安庆某大道南北走向的公路上进行的,如果向南记作“﹣”,向北记作“+”.他这天下午行车情况如下:(单位:千米,每次行车都有乘客)﹣10,+5,﹣2,+8,﹣6,﹣4,+7,+8请回答:(1)小明将最后一名乘客送到目的地时,小明在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若小明的出租车每千米耗油0.06升,每升汽油6.5元,这八次出车共耗油费多少元?【分析】(1)根据题意计算行车情况的和,再进行判断即可;(2)算出总里程求出所耗油的费用即可.【解答】解:(1)﹣10+5﹣2+8﹣6﹣4+7+8=6(千米),答:小明在下午出车的出发地的正北方向,距下午出车的出发地6千米;(2)(10+5+2+8+6+4+7+8)×0.06×6.5=50×0.06×6.5=19.5(元),答:这八次出车共耗油费19.5元.【点评】此题主要考查有理数的混合运算、正负数的运用,理解正负数的意义,认真审题明确何时与符号有关系,何时与绝对值有关系是解题的关键.22.【观察与归纳】(1)观察下列各式的大小关系:|﹣2|+|3|>|﹣2+3||﹣8|+|3|>|﹣8+3||﹣2|+|﹣3|=|﹣2﹣3||0|+|﹣6|=|0﹣6|归纳:|a|+|b|≥|a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)【理解与应用】(2)根据上题中得出的结论,若|m|+|n|=9,|m+n|=1,求m的值.【分析】(1)根据提供的关系式得到规律即可;(2)根据(1)中的结论分当m为正数,n为负数时和当m为负数,n为正数时两种情况分类讨论即可确定答案.【解答】解:(1)根据题意得:|a|+|b|≥|a+b|,故答案为:≥;(2)由上题结论可知,因为|m|+|n|=9,|m+n|=1,|m|+|n|≠|m+n|,所以m、n异号.当m为正数,n为负数时,m﹣n=9,则n=m﹣9,|m+m﹣9|=1,m=5或4;当m为负数,n为正数时,﹣m+n=9,则n=m+9,|m+m+9|=1,m=﹣4或﹣5;综上所述,m为±4或±5.【点评】本题考查了绝对值的知识,解题的关键是能够根据题意分类讨论解决问题,难度不大.23.若n=1﹣+﹣+﹣+,求n的负倒数.【分析】1=1+,=+,=+,=+,=+,=+,=+,由此求得n的值,即可求出负倒数.【解答】解:∵n=1﹣+﹣+﹣+,=(1+)﹣(+)+(+)﹣(+)+(+)﹣(+)+(+)=1+﹣﹣++﹣﹣++﹣﹣++=1+=,∴n 的负倒数是﹣. 【点评】此题考查有理数的加减混合运算,认真审题,找出规律,是解决此类问题的关键所在.24.在数轴上表示数:﹣2.5,0,2,|﹣|,﹣1.然后按从小到大的顺序用“<“连接起来.【分析】根据题意先画出图形,再根据数轴上右面的数比左面的数大来解答.【解答】解:如图:按从小到大的顺序用“<”连接:.【点评】本题考查了有理数的大小比较,数轴,把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.25.在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数字之和相等,得到的3×3的方格称为一个三阶幻方.在图中的空格处填上合适的数字,使它构成一个三阶幻方.【分析】根据三个数的和为2+3+4=9,依次列式计算即可求解.【解答】解:2+3+4=9,9﹣6﹣4=﹣1,9﹣6﹣2=1,9﹣2﹣7=0,9﹣4﹣0=5,如图所示:【点评】本题考查了有理数的加法,根据表格,先求出三个数的和是解题的关键,也是本题的突破口.26.已知a﹣b=5且a>4,b<6,求|a﹣4|+|b﹣6|﹣5的值.【分析】先根据绝对值的定义化简,再根据有理数的加减法法则计算即可.【解答】解:∵a﹣b=5且a>4,b<6,∴|a﹣4|+|b﹣6|﹣5=a﹣4﹣6﹣b﹣5=a﹣b﹣9=5﹣9=﹣4.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.。

人教版七年级上册 第1章 有理数 单元练习试题(解析版)

人教版七年级上册 第1章 有理数 单元练习试题(解析版)

第1章有理数一、选择题1.小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在()A.家B.学校C.书店D.不在上述地方2.下列各对数中,互为相反数的是()A.+(﹣5.2)与﹣5.2B.+(+5.2)与﹣5.2C.﹣(﹣5.2)与5.2D.5.2与+(+5.2)3.在|x|、|x+100|、﹣x2+100、﹣x2﹣1中,一定不是0的有()个.A.1B.2C.3D.44.下列各组数中,数值相等的是()A.32和23B.﹣23和(﹣2)3C.﹣32和(﹣3)2D.﹣3×22和(﹣3×2)25.如果a+b>0,a•b<0,那么()A.a>0,b>0B.a、b异号且负数的绝对值较大C.a<0,b<0D.a、b异号且负数的绝对值较小6.由点组成的正方形,每条边上的点数n与总点数s的关系如图所示,则当n=60时,计算s的值为()A.220B.236C.240D.216二、填空题7.﹣的倒数为,相反数为,绝对值是.8.用科学记数法表示13040000应记作,若保留3个有效数字,则近似值为.9.如果数轴上的点A对应的数为﹣1.5,那么与A点相距3个单位长度的点所对应的有理数为.10.倒数是它本身的数是;相反数是它本身的数是;绝对值是它本身的数是.11.比较大小:﹣3.14﹣π,.12.把下列各数填入相应的大括号里:﹣2,,2.3,0,,5,,2005,﹣0.3.整数集合:{};非负整数集合:{};负分数集合:{}.13.如果|x+8|=5,那么x=;绝对值大于2而不大于5的整数有个.14.计算:(﹣4)2017×(﹣0.25)2019=;(﹣2)200+(﹣2)201=.15.31=3,32=9,33=27,34=81,…试猜想32018的末位数字是.16.若|x﹣5|=4,则x=;若|a﹣b|=b﹣a,则b a.(比较大小)17.若1<|x﹣2|<4,则这样的整数x是.三、解答题18.(1)15+(﹣)﹣15﹣(﹣0.25);(2)(﹣81)÷÷(﹣32);(3)29×(﹣12);(4)25×﹣(﹣25)×+25×(﹣);(5)3+50÷22×(﹣)﹣1;(6).19.已知|x+1|=4,(y+2)2=4,求x+y的值.20.如图,是一个“有理数转换器”(箭头是指数进入转换器的路径,方框是对进入的数进行转换的转换器)(1)当小明输入3;﹣4;;﹣201这四个数时,这四次输出的结果分别是?(2)你认为当输入什么数时,其输出结果是0?(3)你认为这个“有理数转换器”不可能输出什么数?(4)有一次,小明在操作的时候,输出的结果是2,你判断一下,小明可能输入的数是什么数?参考答案与试题解析一、选择题1.小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在()A.家B.学校C.书店D.不在上述地方【分析】以家为坐标原点建立坐标系,根据题意即可确定小明的位置.【解答】解:根据题意:小明从家出来向北走了50米,又向北走了﹣70米,即向南走了20米,而学校在家南边20米.故此时,小明的位置在学校.故选:B.2.下列各对数中,互为相反数的是()A.+(﹣5.2)与﹣5.2B.+(+5.2)与﹣5.2C.﹣(﹣5.2)与5.2D.5.2与+(+5.2)【分析】首先把选项中的数化简,再根据相反数的定义进行分析即可.【解答】解:A、+(﹣5.2)=﹣5.2与﹣5.2不是相反数,故此选项错误;B、+(+5.2)=5.2与﹣5.2是相反数,故此选项正确;C、﹣(﹣5.2)=5.2与5.2不是相反数,故此选项错误;D、5.2与+(+5.2)=5.2不是相反数,故此选项错误;故选:B.3.在|x|、|x+100|、﹣x2+100、﹣x2﹣1中,一定不是0的有()个.A.1B.2C.3D.4【分析】直接利用绝对值的定义以及偶次方的性质得出答案.【解答】解:|x|、|x+100|、﹣x2+100、﹣x2﹣1中,一定不是0的有﹣x2﹣1.故选:A.4.下列各组数中,数值相等的是()A.32和23B.﹣23和(﹣2)3C.﹣32和(﹣3)2D.﹣3×22和(﹣3×2)2【分析】原式各项利用乘方的意义计算得到结果,即可做出判断.【解答】解:A、32=9,23=8,数值不相等;B、﹣23=(﹣2)3=﹣8,数值相等;C、﹣32=﹣9,(﹣3)2=9,数值不相等;D、﹣3×22=﹣12,(﹣3×2)2=36,数值不相等,故选:B.5.如果a+b>0,a•b<0,那么()A.a>0,b>0B.a、b异号且负数的绝对值较大C.a<0,b<0D.a、b异号且负数的绝对值较小【分析】根据有理数的乘法法则得出a、b异号,根据有理数的加法法则得出正数的绝对值大于负数的绝对值,即可得出选项.【解答】解:∵a•b<0,∴a、b异号,∵a+b>0,∴正数的绝对值大于负数的绝对值,故选:D.6.由点组成的正方形,每条边上的点数n与总点数s的关系如图所示,则当n=60时,计算s的值为()A.220B.236C.240D.216【分析】观察可得规律:n每增加一个数,s就增加四个.【解答】解:n=2时,s=4=1×4;n=3时,s=8=2×4;n=4时,s=12=3×4;…;n=60时,s=(60﹣1)×4=236.二、填空题7.﹣的倒数为﹣,相反数为,绝对值是.【分析】根据乘积为1的两个数互为倒数,只有符号不同的两个数互为相反数,负数的绝对值是它的相反数,可得答案.【解答】解:根据倒数、相反数和绝对值的定义得:﹣的倒数是﹣,相反数是,绝对值是.故答案为:﹣,,.8.用科学记数法表示13040000应记作 1.304×107,若保留3个有效数字,则近似值为1.30×107.【分析】一个大于10的数就记成a×10的n次方,其中1≤|a|<10,n是正整数,像这样的计数法叫做科学记数法.科学记数法表示的数的有效数字就是前边a的有效数字,就是从左边第一个不是0的数起,后边的所有的数字都是这个数的有效数字.【解答】解;用科学记数法表示13 040 000应记作1.304×107,若保留3个有效数字,则近似值为1.30×107.9.如果数轴上的点A对应的数为﹣1.5,那么与A点相距3个单位长度的点所对应的有理数为 1.5或﹣4.5.【分析】此题注意考虑两种情况:当点在已知点的左侧;当点在已知点的右侧.根据题意先画出数轴,便可直观解答.【解答】解:如图所示:与A点相距3个单位长度的点所对应的有理数为1.5或﹣4.5.10.倒数是它本身的数是±1;相反数是它本身的数是0;绝对值是它本身的数是非负数.【分析】根据乘积为1的两个数互为倒数,可得倒数等于它本身的数,根据只有符号不同的两个数互为相反数,可得答案;根据非负数的绝对值是它本身,可得答案.【解答】解:倒数是它本身的数是±1;相反数是它本身的数是0;绝对值是它本身的数故答案为:1或﹣1,0,非负数.11.比较大小:﹣3.14>﹣π,>.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:|﹣3.14|=3.14,|﹣π|=π,∵3.14<π,∴﹣3.14>﹣π;=﹣,∵<,∴>.故答案为:>、>.12.把下列各数填入相应的大括号里:﹣2,,2.3,0,,5,,2005,﹣0.3.整数集合:{﹣2,0,5,2005,…};非负整数集合:{0,5,2005,…};负分数集合:{,,﹣0.3,…}.【分析】根据有理数的分类标准进行分类便可.【解答】解:根据题意得,整数集合:{﹣2,0,5,2005,…};非负整数集合:{ 0,5,2005,…};负分数集合:{,,﹣0.3,…}.故答案为:﹣2,0,5,2005,…;0,5,2005,…;,,﹣0.3,…13.如果|x+8|=5,那么x=3或﹣13;绝对值大于2而不大于5的整数有6个.【分析】根据绝对值的性质,由|x+8|=5可得x+8=±5,据此可得x的值;根据绝对值的几何意义得到绝对值大于2且不大于5的整数有﹣5,﹣4,﹣3,3,4,5.【解答】解:∵|x+8|=5,∴x+8=±5,即x+8=5或x+8=﹣5,解得x=3或x=﹣13;绝对值大于2且不大于5的整数有﹣5,﹣4,﹣3,3,4,5共6个.故答案为:3或﹣13;6.14.计算:(﹣4)2017×(﹣0.25)2019=;(﹣2)200+(﹣2)201=﹣2200.【分析】首先把(﹣0.25)2019化为(﹣0.25)2017×(﹣0.25)2,再利用积的乘方计算(﹣4)2017×(﹣0.25)2017,进而可得第一个空格答案;把(﹣2)201化成(﹣2)200×(﹣2)再进行计算即可得到第二个空格的答案.【解答】解:(﹣4)2017×(﹣0.25)2019=(﹣4)2017×(﹣0.25)2017×(﹣0.25)2=[﹣4×(﹣0.25)]2017×(﹣0.25)2===;(﹣2)200+(﹣2)201=(﹣2)200+(﹣2)200×(﹣2)=﹣(﹣2)200=﹣2200.故答案为:;﹣2200.15.31=3,32=9,33=27,34=81,…试猜想32018的末位数字是9.【分析】先根据已知条件得出规律,再根据规律得出答案即可.【解答】解:∵31=3,32=9,33=27,34=81,35=243,…,2018÷4=672…2,∴32018的末位数字是9,故答案为:9.16.若|x﹣5|=4,则x=9或1;若|a﹣b|=b﹣a,则b>a.(比较大小)【分析】根据绝对值的性质进行解答便可.【解答】解:∵|x﹣5|=4,∴x﹣5=4,或x﹣5=﹣4,解得,x=9,或x=1;∵|a﹣b|=b﹣a,∴a﹣b<0,∴a<b,即b>a.故答案为:9或1;>.17.若1<|x﹣2|<4,则这样的整数x是﹣1或0或4或5.【分析】根据有理数的大小求出大于1且小于4的整数,得|x﹣2|的方程,再根据绝对值的性质转化方程并解方程便可.【解答】解:∵大于1且小于4的整数有2与3两个数,又∵1<|x﹣2|<4,∴|x﹣2|=2或|x﹣2|=3,∴x﹣2=2,或x﹣2=﹣2,或x﹣2=3,或x﹣2=﹣3,∴x=4,或x=0,或x=5,或x=﹣1,故答案为:﹣1或0或4或5.三、解答题18.(1)15+(﹣)﹣15﹣(﹣0.25);(2)(﹣81)÷÷(﹣32);(3)29×(﹣12);(4)25×﹣(﹣25)×+25×(﹣);(5)3+50÷22×(﹣)﹣1;(6).【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘除法可以解答本题;(3)根据乘法分配律可以解答本题;(4)根据乘法分配律可以解答本题;(5)根据有理数的乘方、有理数的乘除法和减法可以解答本题;(6)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【解答】解:(1)15+(﹣)﹣15﹣(﹣0.25)=15+(﹣)+(﹣15)+=[15+(﹣15)]+[()+]=0+0=0;(2)(﹣81)÷÷(﹣32)=81×××=;(3)29×(﹣12)=(30﹣)×(﹣12)=30×(﹣12)﹣×(﹣12)=﹣360+0.5=﹣359.5;(4)25×﹣(﹣25)×+25×(﹣)=25×+25×+25×(﹣)=25×[+(﹣)]=25×1=25;(5)3+50÷22×(﹣)﹣1=3+50÷4×(﹣)﹣1=3+50××(﹣)﹣1=3+(﹣)﹣1=;(6)=÷()×16=÷﹣=﹣==﹣.19.已知|x+1|=4,(y+2)2=4,求x+y的值.【分析】根据绝对值的性质与有理数的乘方求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:∵|x+1|=4,(y+2)2=4,∴x+1=4,或x+1=﹣4,y+2=2或y+2=﹣2,解得x=3或x=﹣5,y=0或y=﹣4,∴x=3,y=0时,x+y=3+0=3;x=3,y=﹣4时,x+y=3﹣4=﹣1;x=﹣5,y=0时,x+y=﹣5+0=﹣5;x=﹣5,y=﹣4时,x+y=﹣5﹣4=﹣9.20.如图,是一个“有理数转换器”(箭头是指数进入转换器的路径,方框是对进入的数进行转换的转换器)(1)当小明输入3;﹣4;;﹣201这四个数时,这四次输出的结果分别是?(2)你认为当输入什么数时,其输出结果是0?(3)你认为这个“有理数转换器”不可能输出什么数?(4)有一次,小明在操作的时候,输出的结果是2,你判断一下,小明可能输入的数是什么数?【分析】(1)先判断出3、﹣4、、201与2的大小,再根据所给程序图找出合适的程序进行计算即可;(2)由此程序可知,当输出0时,因为0的相反数及绝对值均为0,所以应输入0;(3)由(1)中输出的各数可找出规律;(4)设输入的数为x,分2<x<7、0≤x≤2、当x<0及x≥7四种情况进行讨论,按输入程序进行解答.【解答】解:(1)∵3>2,∴输入3时的程序为:(3﹣5)=﹣2<0,∴﹣2的相反数是2>0,2的倒数是,∴当输入3时,输出;当输入﹣4时,∵﹣4<2,∴﹣4的相反数是4>0,4的倒数是,∴当输入﹣4时,输出;当输入时,<2,∴其相反数是﹣,其绝对值是,∴当输入时,输出;当输入﹣201时,﹣201<2,∴其相反数是201>0,其倒数是,∴当输入﹣201时,输出;(2)∵输出数为0,0的相反数及绝对值均为0,当输入5的倍数时也输出0.∴应输入0或5n(n为自然数);(3)由(1)中输出的各数均为非负数可知,输出的数应为非负数,不可能输出负数;(4)∵输出的数为2,设输入的数为x,①当2<x<7时,(x﹣5)<0,其相反数是5﹣x>0,其倒数是=2,解得x=;②当0≤x≤2时,其相反数是﹣x<0,其绝对值是x=2,故x=2;③当x<0时,其相反数为﹣x>0,其倒数是﹣=2,x=﹣.④当x≥7时,按①的程序可知x=+…5n.总上所述,x的可能值为:,2,﹣…x=+…5n.。

人教版七年级上册数学 第一章《有理数》第1讲 有理数 (答案+解析)

人教版七年级上册数学 第一章《有理数》第1讲  有理数 (答案+解析)

人教版七年级上册数学第一章《有理数》第1讲有理数(答案+解析)数轴。

在数轴上所表示的数,右边的数总比左边的数大,即从数轴的左边到右边所对应的数逐渐变大,所以正数都大于0,负数都小于0,正数大于负数。

概念剖析:①、画数轴时数轴的三要素原点、正方向、单位长度缺一不可;②、数轴的方向不一定都是水平向右的,数轴的方向可以是任意的方向;③、数轴上的单位长度没有明确的长度,但单位长度与单位长度要保持相等;④、有理数在数轴上都能找到点与之对应,一般地,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度;表示数a -的点在原点的左边,与原点的距离是a 个单位长度。

⑤、在数轴上求任意两点a 、b 的距离L,则有公式a b L b a L -=-=或,这两个公式选择那个都一样。

知识点四:相反数如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数。

0的相反数是0,互为相反的两个数,在数轴上位于原点的两则,并且与原点的距离相等。

概念剖析:①、“如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数”,不要茫然的认为“如果两个数符号不同,那么其中一个数就叫另一个数的相反数”。

②、显然,数a 的相反数是a -,即a 与a -互为相反数。

要把它与倒数区分开。

③、互为相反数的两个数在数轴上对应的点一个在原点的左边,一个在原点的右边,且离原点的距离相等,也就是说它们关于原点对称。

④、在数轴上离某点的距离等于a 的点有两个。

⑤、如果数a 和数b 互为相反数,则a +b =0;)0(1≠-=ab b a 或)0(1≠-=ab ab ; ⑥、求一个数的相反数,只要在这个数的前面加上“—”即可;例如b a -的相反数是a b -;知识窗口:①一个数前面加上“—”号,该数就成了它的相反数;②一个数前面的符号确定方法:奇数个负号相当于一个负号,偶数个负号相当于一个正号,而与正号的个数无关。

知识点五:绝对值数轴上表示数a 的点与原点的距离叫做数a 的绝对值。

人教版七年级数学上册第一章《有理数》全章练习题题(含答案解析)

人教版七年级数学上册第一章《有理数》全章练习题题(含答案解析)
创新应用 ★11.如图所示的是两个正方体纸盒的表面展开图,请分别在标有字母的正方形内填入适当 的数,使得它们折成正方体后相对面上的两个数互为相反数.
能力提升 1.C 2.D
参考答案
1.2.2 数轴
能力提升 1.在数轴上,原点及原点右边的点表示的数是( )
A.正数
B.整数
C.非负数
D.非正数
2.数轴上的点 A 与原点距离 6 个单位长度,则点 A 表示的数为( )
A.6 或-6
B.6
C.-6
D.3 或-3
3.在数轴上,表示-17 的点与表示-10 的点之间的距离是( )
A.27 个单位长度 B.-27 个单位长度
参考答案
能力提升 1.C 在数轴上,原点及原点右边的点表示的数是 0 和正数. 2.A 3.C 4.D 5.4 -6 6.2 7.7 符合条件的点有-3,3,-2,2,-1,1,0,共 7 个. 8.-5 或 1 画出数轴,找出-2 表示的点,与该点距离 3 个单位长度的点有两个,分别表示 -5,1. 9.分析:从图中可见墨迹盖住两段,一段是在-8~-3 之间,另一段在 4~9 之间. 解:-8~-3 之间的整数有-4,-5,-6,-7;4~9 之间的整数有 5,6,7,8.
D.Q 站点与 R 站点之间
5. 在 数 轴 上 , 表 示 数 -6,2.1,- ,0,-4 ,3,-3 的 点 中 , 在 原 点 左 边 的 点 有
个,
表示的点与原点的距离最远.
7
6.点 M 表示的有理数是-1,点 M 在数轴上向右移动 3 个单位长度后到达点 N,则点 N 表示的有
理数是 .
5 -0.8 0 -2 -3
整数
分数
负整数

第一章 有理数单元综合检测(解析版)

第一章 有理数单元综合检测(解析版)

第一章有理数单元综合检测满分:100分时间:60分钟一、选择题(共10小题,满分30分)1.2023的相反数是( )A.2023B.2023-C.12023D.2023±【分析】根据互为相反数的两数之和为0和只有符号不同的两个数是相反数进行判断即可.【解析】2023的相反数是2023-;故选:B.2.下列说法正确的是( )A.有理数分为正数、负数和零B.分数包括正分数、负分数和零C.一个有理数不是整数就是分数D.整数包括正整数和负整数【分析】直接利用有理数的有关定义分析判断即可.【解析】A、有理数包括正有理数、负有理数和零,故此选项错误;B、分数包括正分数、负分数,故此选项错误;C、一个有理数不是整数就是分数,故此选项正确;D、整数包括正整数、负整数0和零,故此选项错误.故选:C.3.下列各组数中互为相反数的是( )A.12-与2-B.1-与(1)-+C.(3)--与3-D.2与|2|-【分析】符号不同,绝对值相等的两个数互为相反数,据此即可得出答案.【解析】12-与2-不是相反数,则A不符合题意;(1)1-+=-,则B不符合题意;(3)3--=,它与3-互为相反数,则C符合题意;|2|2-=,则D不符合题意;故选:C.4.北京与巴黎的时差为7小时,例如:北京时间13:00,同一时刻的巴黎时间是早上6:00.笑笑和霏霏分别在北京和巴黎,她们相约在各自当地时间13:00~22:00之间选择一个时刻开始通话,这个时刻可以是北京时间( )A.14:00B.16:00C.21:00D.23:00【分析】根据巴黎时间比北京时间早7小时解答即可.【解析】由题意得,巴黎时间比北京时间早7小时,当巴黎时间为13:00,则北京时间为20:00;当北京时间为22:00,则巴黎时间为15:00;所以这个时间可以是北京时间的20:00到22:00之间,故选:C.5.下列各组数中,互为倒数的有( )①12和(2)-;②115-和56-;③|4|--和14-;④0和0;⑤1和1-;⑥3.2和516.A.1组B.2组C.3组D.4组【分析】对于①,11(2)(2)1122´-=-´=-¹,据此即可作出判断;接下来利用同样的方法,判断其它几个.注意:0没有倒数.【解析】对于①,11(2)(2)1122´-=-´=-¹,故①不互为倒数,对于②,1565(1)(15656-´-=´=,故②互为倒数,对于③,111(|4|)()(4)()41444--´-=-´-=´=,故③互为倒数,对于④,0没有倒数,故④不互为倒数,对于⑤1,1(1)11´-=-¹,故⑤不互为倒数,对于⑥,51653.2116516´=´=,故⑥互为倒数,故互为倒数的两个数有3组.故选:C.6.下列等式成立的是( )A .235222´=B .236222´=C .238222´=D .239222´=【分析】将2322´进行运算后判断即可.【解析】232352222+´==,故选:A .6. 计算20212022(2)(2)-+-的结果是( )A .2-B .2C .20212D .20212-【分析】根据乘法分配律计算即可求解.【解析】20212022(2)(2)-+-20212021(2)(2)(2)=-+-´-2021(12)(2)=-´-20211(2)=-´-20212=.故选:C .7. 下列说法不正确的是( )A .0.5-不是分数B .0是整数C .12不是整数D .2-是既是负数又是整数【分析】利用有理数的分类对各选项进行分析,即可得出结果.【解析】A 、0.5-是负分数,也是分数,故A 说法错误,符合题意;B 、0是整数,正确,故B 说法正确,不符合题意;C 、12是分数,不是整数,故C 说法正确,不符合题意;D 、2-是负数,也是负整数,故D 说法正确,不符合题意.故选:A .8. 袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年艰苦努力,目前我国杂交水稻种植面积达2.4亿亩,每年增产的粮食可以养活8000万人,将数据8000万用科学记数法表示为810n ´,则n 的值为( )A .7B .8C .9D .10【分析】科学记数法的表示形式为10n a ´的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10…时,n 是正数;当原数的绝对值1<时,n 是负数.【解析】8000Q 万780000000810==´,7n \=,故选:A .9. 定义一种正整数n 的“T ”运算:①当n 为奇数时,结果为31n +;②当n 为偶数时,用n 连续除以2,直到结果为奇数停止,并且运算重复进行.例如,当18n =时,运算过程如下:若21n =,则第2021次“T ”运算的结果是( )A .1B .2C .3D .4【分析】根据题意,可以写出前几次输出的结果,然后即可发现数字的变化规律,从而可以得到2021次“T ”运算的结果.【解析】由题意可得,当21n =时,第1次输出的结果为64,第2次输出的结果为1,第3次输出的结果为4,第4次输出的结果为1,第5次输出的结果为4,¼,\从第2次开始,这列数以1,4不断循环出现,(20211)2202021010-¸=¸=Q ,2021\次“T ”运算的结果4,故选:D .二.填空题(共6小题,满分16分)11.(3分) 一次数学测试,如果96分为优秀,以96分为基准简记,例如106分记为10+分,那么85分应记为 11- 分.【分析】高于96分记作正数,那么低于96分记作负数,85比96低11分,故记作11-.【解析】859611-=-,故答案为:11-.10. (3分)写出所有比 3.5-大的负整数: 3-,2-,1- .【分析】根据负整数的意义写出即可.【解析】比 3.5-大的负整数有3-,2-,1-.故答案为:3-,2-,1-.13.(3分)计算:21(0.4)3-¸-= 256 .【分析】直接利用有理数的除法运算法则计算得出答案.【解析】原式5235=¸5532=´256=.故答案为:256.14.(3分)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为3,则235a b m cd ++-= 26. .【分析】直接利用互为相反数以及倒数、绝对值的性质分别化简得出答案.【解析】a Q 、b 互为相反数,c 、d 互为倒数,m 的绝对值为3,0a b \+=,1cd =,3m =±,29m =,则235a b m cd ++-0391=+´-271=-26=.故答案为:26.15. (3分)近似数1.25万是精确到 百 位.【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解析】1.25万中,5在百位上,则精确到了百位.故答案为:百.16. (3分)如图,数轴上A ,B 两点所表示的数分别为a ,b ,有下列各式:①(1)(1)0a b -->;②(1)(1)0a b -+>;③(1)(1)0a b ++>.其中,正确式子的序号是 ①②? .【分析】因为数轴上右边的数总比左边的大,大数减小数差为正,小数减大数差为负.再根据乘法运算同号得正,异号得负.【解析】1a <Q ,10a \-<.1b <Q ,10b \-<.(1)(1)0a b \-->.\①正确,故①符合题意.1b <-Q ,(1)0b \--<.即10b +<,(1)(1)0a b \-+>.\②正确,故②符合题意.0a >Q ,10a \+>,又1b <-Q ,10b \+<,(1)(1)0a b \++<.\③错误.故③不合题意.故答案为:①②?.三.解答题(共8小题,满分42分)17.(4分) 计算:221(3)[2(6)(4)]4-+´´---.【分析】先算乘方,再算乘法,最后算加减;如果有括号,要先做括号内的运算.【解析】221(3)[2(6)(4)]4-+´´---19(1216)4=+´--19(28)4=+´-97=-2=.18.(8分)计算:(1)626172((()5353-+-´-+-´;(2)20232241(1)(3)||4(2)9-+-´--¸-.【分析】(1)先算乘法,再算加减即可;(2)先算乘方,再算乘除,最后算加减即可.【解析】(1)原式434255=-+-10434555=-+-63455=--405=-8=-;(2)原式11916169=-+´-¸111=-+-1=-.19.(8分)计算:(1)7531()(96436+-¸-;(2)22222(3)()4|4|3-+-´--¸-.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可;(2)先算乘方和去绝对值,然后算乘除法、最后算加减法.【解析】(1)7531()()96436+-¸-753()(36)964=+-´-753(36)(36)(36)964=´-+´--´-28(30)27=-+-+31=-;(2)22222(3)()4|4|3-+-´--¸-249(1643=-+´--¸4(6)4=-+--14=-.20. (6分)兴趣小组遇到这样一个问题:任意选取一个数,用这个数乘以2后加8,然后除以4,再减去一开始选取的数的12,则结果为多少?小组内4位成员分别令这个数为5-、3、4-、2发现结果一样.(1)请从上述4个数中任取一个数计算结果.(2)有一个成员猜想:无论这个数是几,其计算结果都一样,这个猜想对吗?请说明理由.如果你觉得这个猜想不对,请你提出一个新的猜想.【分析】(1)令这个数为3,根据已知条件列式计算即可;(2)设取的有理数为a ,根据已知条件列式计算,发现结果是定值,所以猜想正确.【解析】(1)令这个数为3,则1(328)43144 1.522´+¸-´=¸-=;(2)猜想正确,理由是:设取的有理数为a ,则:1111(28)224222a a a a +-=+-=,所以猜想是正确的.21. (8分)3-,2.5,0,4+,32-.(1)画数轴并在数轴上标出上面各数;(2)把上面各数用“>”连接起来.【分析】(1)在数轴上表示各数即可;(2)根据在数轴上右边的点表示的数大于左边的点表示的数从大到小的顺序用“>”连接起来即可.【解析】(1)如图所示:(2)根据在数轴上右边的点表示的数大于左边的点表示的数,可得34 2.5032+>>>->-.22. (6分)已知有理数a 、b 、c 在数轴上的位置.(1)a b + < 0;a c + 0;b c - 0;(用“>,<,=”填空)(2)试化简||2||||a b a c b c +-+--.【分析】(1)根据数轴确定a ,b ,c 的范围,即可解答;(2)根据绝对值的性质,即可解答.【解析】(1)由数轴可得:0c a b <<<,且||||a b >,0a b \+<,0a c +<,0b c ->,故答案为:<;<;>;(2)0a b +<Q ,0a c +<,0b c ->,||2||||a b a c b c \+-+--2()()a b a c b c =--++--22a b a c b c=--++-+23a b c =-+.23.(6分)有10袋小麦,每袋以90kg 为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如表:袋号12345678910重量()kg 1+1+ 1.5+1- 1.2+ 1.3+ 1.3- 1.2- 1.8+ 1.1+(1)请通过计算说明这10袋小麦总计超过多少kg 或不足多少kg ?(2)若每千克小麦2.5元,求10袋小麦一共可以卖多少元?【分析】(1)“正”和“负”相对,超过的千克数记为正数,不足的千克数记为负数,把称重记录的数据相加,和为正说明超过了,和为负说明不足;(2)先求10袋小麦的总重量,即乘单价即可求解.【解析】(1)11 1.51 1.2 1.3 1.3 1.2 1.8 1.1 5.4()kg +++-++--++=.故这10袋小麦总计超过5.4kg ;(2)(9010 5.4) 2.52263.5´+´=(元).故10袋小麦一共可以卖2263.5元.24.(6分)阅读理解:观察等式1122133-=´+,2255133-=´+¼发现,一对有理数a ,b 满足1a b ab -=+,那么我们把这对有理数a ,b 叫做“共生有理数对”,记为[a ,]b .如:有理数对[1,1]3和[5,2]3都是“共生有理数对”.(1)下列四对有理数中,不是“共生有理数对”的是 D .A .[3,12B .[3-,2]C .1[5,2]3-D .[2-,13-(2)若[4,1]m -是“共生有理数对”,请你求出该“共生有理数对”.(3)若[x ,1]x -是“共生有理数对”,请你判断[1x -,]x -是不是“共生有理数对”,并说明理由.【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义,构建方程即可解决问题;(3)根据“共生有理数对”的定义即可解决问题.【解析】(1)A .113222-=Q ,11131112222´+=+=,[3\,12是“共生有理数对”;B .325--=-Q ,321615-´+=-+=,[3\-,2]是“共生有理数对”,C .Q 1213()5315--=,12213()11531515´-+=-+=,1[5\,2]3-是“共生有理数对”;D.212(133 ---=-Q,1222()111333-´-+=+=,[2 \-,1]3-不是“共生有理数对”.故答案为:D;(2)[4Q,1]m-是“共生有理数对”,4(1)4(1)1m m\--=-+,解得85m=,则831155m-=-=.\该“共生有理数对”是[4,35;(3)[1x-,]x-是“共生有理数对”,理由:[xQ,1]x-是“共生有理数对”,(1)(1)1x x x x\--=-+,(1)0x x\-=,1()1x x---=Q,(1)1(1)1011x x x x--+=-+=+=,1()(1)1x x x x\---=--+,[1x\-,]x-是“共生有理数对”.。

人教版七年级数学上册第一章 有理数 解答题复习(一)解析版

人教版七年级数学上册第一章 有理数 解答题复习(一)解析版

第1章有理数解答题复习(一)1.计算:﹣5×2+3÷﹣(﹣1).2.有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.3.计算:(﹣2)3+×8.4.计算:(﹣6)2×(﹣).5.计算:23×(1﹣)×0.5.6.计算:(﹣2)2×(1﹣).7.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下我们称使等式a﹣b=ab+1成立的一对有理数“a,b”为共生有理数对”,记为(a,b)(1)通过计算判断数对“﹣2,1,“4,”是不是“共生有理数对”;(2)若(6,a)是“共生有理数对”,求a的值;(3)若(m,n)是“共生有理数对”,则“﹣n,﹣m”“共生有理数对”(填“是”或“不是”),并说明理由;(4)如果(m,n)是“共生有理数对”(其中n≠1),直接用含n的代数式表示m.8.在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC=1,如图所示,设点A,B,D,C所对应数的和是p.(1)①若以B为原点.写出点A,D,C所对应的数,并计算p的值;②若以D为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=x,p=﹣71,求x.9.如图,在一条不完整的数轴上从左到右有点A,B.将线段AB沿数轴向右移动,移动后的线段记为A′B′,按要求完成下列各小题(1)若点A为数轴原点,点B表示的数是4,当点A′恰好是AB的中点时,数轴上点B′表示的数为.(2)设点A表示的数为m,点A′表示的数为n,当原点在线段A′B之间时,化简回|m|+|n|+|m ﹣n|.10.阅读材料题:求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公约数的一种方法﹣﹣更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也.以等数约之”,意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.例如:求91与56的最大公约数解:91﹣56=3556﹣35=2135﹣21=1421﹣14=714﹣7=7所以,91与56的最大公约数是7请用以上方法解决下列问题:(1)求108与45的最大公约数;(2)求三个数78、104、143的最大公约数.11.计算2×(﹣5)+22﹣3÷.12.已知,数轴上三个点A、O、B.点O是原点,固定不动,点A和B可以移动,点A表示的数为a,点B表示的数为b.(1)若AB移动到如图所示位置,计算a+b的值.(2)在图的情况下,B点不动,点A向左移动3个单位长,写出A点对应的数a,并计算b﹣|a|.(3)在图的情况下,点A不动,点B向右移动15.3个单位长,此时b比a大多少?请列式计算.13.如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是.(2)经过几秒,点M、点N分别到原点O的距离相等?14.计算:﹣14﹣×[2﹣(﹣3)2].15.观察下列各式的计算过程:①1+8=32;②1+8+16=52;③1+8+16+24=72;④1+8+16+24+32=92.(1)第6个算式为;(2)用含n的代数式表示第n个等式,并验证其正确性.16.计算:(﹣2)3×8×()3+8÷.17.计算:(1)(﹣2)3÷+3×|1﹣(﹣2)2|(2)﹣12﹣(﹣)÷×[﹣2+(﹣3)2].18.计算6÷(﹣)时,李明同学的计算过程如下,原式=6÷(﹣)+6÷=﹣12+18=6.请你判断李明的计算过程是否正确,若不正确,请你写出正确的计算过程,另用正确方法计算()÷(﹣)+36÷()的值.19.计算:已知|x|=,|y|=,且x<y<0,求6÷(x﹣y)的值.20.(﹣1)4﹣{﹣[()2+0.4×(﹣1)]÷(﹣2)2}.第1章有理数解答题复习(一)参考答案与试题解析1.【分析】直接利用有理数的混合运算法则计算得出答案.【解答】解:原式=﹣10+9+1=0.【点评】此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.2.【分析】(1)根据有理数的加减法可以解答本题;(2)根据题目中式子的结果,可以得到□内的符号;(3)先写出结果,然后说明理由即可.【解答】解:(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1××6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.【点评】本题考查有理数的混合运算,解答本题得关键是明确有理数混合运算的计算方法.3.【分析】先求(﹣2)3=﹣8,再求×8=4,即可求解;【解答】解:(﹣2)3+×8=﹣8+4=﹣4;【点评】本题考查有理数的计算;熟练掌握幂的运算是解题的关键.4.【分析】原式先计算乘方运算,再利用乘法分配律计算即可求出值.【解答】解:原式=36×(﹣)=18﹣12=6.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.5.【分析】原式先计算括号中的减法运算,再计算乘方运算,最后算乘法运算即可得到结果.【解答】解:原式=8××=3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.6.【分析】直接利用有理数乘方运算法则化简,进而去括号求出答案.【解答】解:(﹣2)2×(1﹣)=4×(1﹣)=4×=1.【点评】此题主要考查了有理数的混合运算,正确掌握运算法则是解题关键.7.【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义,构建方程即可解决问题;(3)根据“共生有理数对”的定义即可判断;(4)根据“共生有理数对”的定义即可解决问题.【解答】解:(1)﹣2﹣1=﹣3,﹣2×1+1=1,∴﹣2﹣1≠﹣2×1+1,∴(﹣2,1)不是“共生有理数对”;∵4﹣=,,∴(4,)是共生有理数对;(2)由题意得:6﹣a=6a+1,解得a=;(3)是.理由:﹣n﹣(﹣m)=﹣n+m,﹣n•(﹣m)+1=mn+1,∵(m,n)是“共生有理数对”,∴m﹣n=mn+1,∴﹣n+m=mn+1,∴(﹣n,﹣m)是“共生有理数对”;故答案为:是;(4)∵(m,n)是“共生有理数对”,∴m﹣n=mn+1,即mn﹣m=﹣(n+1),∴(n﹣1)m=﹣(n+1),∴.【点评】本题考查有理数的混合运算、“共生有理数对”的定义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.【分析】(1)①根据以B为原点,则A,D,C所对应的数分别为:﹣2,3,4,进而得到p的值;②以D为原点,A,D,C所对应的数分别为:﹣5,﹣3,1,进而得到p的值;(2)用x的代数式分别表示A,D,C所对应的数,根据题意列方程解答即可.【解答】解:(1)①点A,D,C所对应的数分别为:﹣2,3,4;p=﹣2+3+4=5;②若以D为原点,P=﹣3﹣5+1=﹣7;(2)由题意,A,B,C,D表示的数分别为:﹣6﹣x,﹣4﹣x,﹣1﹣x,﹣x,﹣6﹣x﹣4﹣x﹣1﹣x﹣x=﹣71,﹣4x=﹣60,x=15.【点评】本题主要考查了两点间的距离以及数轴的运用,解题时注意:连接两点间的线段的长度叫两点间的距离.9.【分析】(1)根据题意可知A′表示的数为2,根据AB的长度即可求解;(2)根据绝对值的定义,分情况讨论解答即可.【解答】解:(1)∵点B表示的数是4,当点A′恰好是AB的中点时,∴点A′表示的数为2,∴数轴上点B′表示的数为2+4=6.故答案为:6;(2)由题意知点A′在点A右侧,即m<n,则m﹣n<0.又原点在线段A'B之间,则点A'在原点的左侧,即m<0,n<0,|m|+|n|+|m﹣n|=﹣m﹣n﹣m+n=﹣2m.【点评】本题考查数轴,有理数的加法等知识,解决此类题目时,能理解题意表示出各点表示的数是关键.10.【分析】模仿例题求解即可解决问题.【解答】解:(1)∵108﹣45=6363﹣45=1845﹣18=2727﹣18=918﹣9=9∴108与45的最大公约数是9.(2)∵104﹣78=26,78﹣26=52,52﹣26=26,∴104与78的最大公约数是26.∵143﹣104=39,104﹣39=65,65﹣39=26,39﹣26=13,26﹣13=13,∴143与104最大公约数是13.∴78、104、143的最大公约数是13.【点评】本题考查有理数的除法,有理数的减法等知识,解题的关键是理解题意,学会模仿例题解决问题.11.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣10+4﹣3×2=﹣10+4﹣6=﹣16+4=﹣12.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.【分析】(1)由图可知,点A表示的数a,点B表示的数b,即可求得a+b的值.(2)由B点不动,点A向左移动3个单位长,可得数a,再根据绝对值求得即可.(3)点A不动,点B向右移动15.3个单位长,可知数b,再列式计算解得.【解答】解:(1)由图可知:a=﹣10,b=2,∴a+b=﹣8故a+b的值为﹣8.(2)由B点不动,点A向左移动3个单位长,可得a=﹣13,b=2∴b﹣|a|=b+a=2﹣13=﹣11故a的值为﹣13,b﹣|a|的值为﹣11.(3)∵点A不动,点B向右移动15.3个单位长∴a=﹣10 b=17.3∴b﹣a=17.3﹣(﹣10)=27.3故b比a大27.3.【点评】本题考查了数轴、绝对值,当a是负有理数时,a的绝对值是它的相反数﹣a.13.【分析】(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;(2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论.【解答】(1)∵OB=3OA=30,∴B对应的数是30.故答案为:30.(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x﹣10,点N对应的数为2x.①点M、点N在点O两侧,则10﹣3x=2x,解得x=2;②点M、点N重合,则,3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等.【点评】本题考查了数轴,根据点与点之间的位置关系找出方程是解题的关键.14.【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【解答】解:原式=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.【点评】此题要注意正确掌握运算顺序以及符号的处理.15.【分析】(1)由已知等式知第6个算式为1+8+16+24+32+40+48=132.(2)根据已知等式的规律得出1+8+16+24+…+8n=(2n+1)2,再利用等式的运算顺序和运算法则计算可得.【解答】解:(1)根据题意,第6个算式为1+8+16+24+32+40+48=132,故答案为:1+8+16+24+32+40+48=132.(2)1+8+16+24+…+8n=(2n+1)2,左边=1+8×(1+2+3+…+n)=1+8×=1+4n(n+1)=1+4n2+4n=(2n+1)2=右边,∴1+8+16+24+…+8n=(2n+1)2.【点评】本题主要考查有理数的混合运算与数字的变化规律,解题的关键是根据已知等式得出1+8+16+24+…+8n=(2n+1)2的规律及整式的运算法则.16.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣8×8×+8×8=﹣8+64=56.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.【分析】(1)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣8×+3×3=﹣10+9=﹣1;(2)原式=﹣1+×3×7=﹣1+3.5=2.5.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.【分析】李明的计算过程不正确,应先计算括号中的加法运算,再计算除法运算.【解答】解:不正确,正确计算过程为:6÷(﹣)=6÷(﹣)=﹣36;人教版七年级数学上册第一章有理数解答题复习(一)解析版原式=(﹣+)×(﹣36)+36÷=﹣18+6﹣4+36×=﹣16+81=65.【点评】此题考查了有理数的混合运算,有理数混合运算注意运算顺序.19.【分析】直接利用绝对值的性质结合有理数混合运算法则计算得出答案.【解答】解:∵|x|=,|y|=,且x <y<0,∴x=﹣,y=﹣,∴6÷(x﹣y)=6÷(﹣+)=﹣36.【点评】此题主要考查了绝对值的性质和有理数混合运算,正确得出x,y的值是解题关键.20.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=1﹣+(﹣)÷4=+﹣=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.- 11 - / 11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级上册第一章有理数高分拔尖提优单元密卷一、选择题1.(2019•河北省2/26)规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作()A.+3B.﹣3C.13-D.13+【答案】B【解析】解:“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作﹣3.故答案为:B.2.(2020•新疆兵团1/23)下列各数中,是负数的为()A.1-B.0C.0.2D.1 2【答案】A.【解析】解:-1是负数;0既不是正数也不是负数;0.2是正数;12是正数.故选:A.3.(2020•吉林1/26)6-的相反数是()A.6B.6-C.16D.16-【答案】A.【解析】解:-6的相反数是6,故选:A.4.(2019•鄂尔多斯1/24)有理数13-的相反数为()A.﹣3B.13-C.13D.3【答案】C【解析】解:有理数13-的相反数为:13.故答案为:C.5.(2020•呼伦贝尔•兴安盟1/26)2020-的绝对值是()A.2020-B.2020C.12020-D.12020【答案】B.【解析】解:根据绝对值的概念可知:|-2020|=2020,故选:B.6.(2020•安徽1/23)下列各数中,比2-小的数是()A.3-B.1-C.0D.2【答案】A.【解析】解:根据两个负数,绝对值大的反而小可知-3<-2.故选:A.7.(2019•呼和浩特1/25)如图,检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数,下面检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是()A.B.C.D.【答案】A【解析】解:由题意得:四个排球质量偏差的绝对值分别为:0.6,0.7,2.5,3.5,绝对值最小的为0.6,最接近标准.故选:A.8.(2020•天津1/25)计算30(20)+-的结果等于()A.10B.10-C.50D.50-【答案】A【解析】解:30(20)(3020)10+-=+-=.故选:A.9.(2020•江西1/23)3-的倒数是()A.3B.3-C.13-D.13【答案】C.【解析】解:-3的倒数是13-. 故选:C .10.(2020•山西1/23)计算1(6)()3-÷-的结果是( )A .18-B .2C .18D .2-【答案】C .【解析】解:1(6)()(6)(3)183-÷-=-⨯-=.故选:C .11.(2020•通辽1/26)2020年我市初三毕业生超过30000人,将30000用科学记数法表示正确的是( ) A .50.310⨯ B .4310⨯ C .33010⨯ D .3万【答案】B .【解析】解:30000用科学记数法表示为:4310⨯. 故选:B .12.(2020•包头2/26)2020年初,国家统计局发布数据,按现行国家农村贫困标准测算,截至2019年末,全国农村贫困人口减少至551万人,累计减少9348万人.将9348万用科学记数法表示为( ) A .0.9348×108 B .9.348×107 C .9.348×108 D .93.48×106【答案】B .【解析】解:9348万=93480000=9.348×107, 故选:B . 二、填空题13.(2020•福建14/25)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为100+米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为 米. 【答案】10907-.【解析】解:∵规定以马里亚纳海沟所在海域的海平面0米,高于海平面的高度记为正数, ∴低于海平面的高度记为负数,∵“海斗一号”下潜至最大深度10907米处,∴该处的高度可记为10907-米.故答案为:10907-.14.(2020•福建11/25)计算:|8|-=.【答案】8.【解析】解:∵80-<,∴|8|(8)8-=--=.故答案为:8.15.平方等于它本身的数是______,立方等于它本身的数是__________.【答案】0,1;0,±1.【解析】解:∵02=0,12=1,∴平方等于它本身的数是0,1;∵03=0,13=1,(-1)3=-1,∴立方等于它本身的数是0,±1.16.(2020•鄂尔多斯11/24)截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为.【答案】1.051×107.【解析】解:1051万=10510000=1.051×107.故答案为:1.051×107.17.(2020•呼伦贝尔•兴安盟13/26)中国的领水面积约为2370000km,将370000科学记数法表示为.【答案】1.051×107.【解析】解:5370000 3.710=⨯,故答案为:53.710⨯.18.(2018•北京市15/28)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.【答案】380.【解析】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元, 当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元, 当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,∴租船费用150×2+90=390元当租1艘四人船,1艘6人船,1艘8人船,100+130+150=380元 ∴租船费用为150×2+90=390元,而810>490>390>380, ∴当租1艘四人船,1艘6人船,1艘8人船费用最低是380元, 故答案为:380. 三、解答题19.(2020•山西16(1)/23)计算:231(4)()(41)2-⨯---+.【答案】1.【解析】解:231(4)()(41)2-⨯---+116()38=⨯-+23=-+1=.20.计算:(1) (16-34+112)×(-36) (2) -102 -(-10)×12÷2×(-20) 【答案】(1)18;(2)-150. 【解析】解:(1)原式=16×(-36)-34×(-36)+112×(-36) =-6-(-27)+(-3) =-6+27-3 =18(2)原式=-100-(-10)×12×12×(-20)=-100-50=-15021. 如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是____,A,B两点间的距离是_______.(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是_______,A,B两点间的距离为_________.(3)如果点A表示数-4,将A点向右移动168个单位长度,再向左移动256 个单位长度,那么终点B表示的数是_______,A,B两点间的距离是________.【答案】(1)4;7;(2)1;2;(3)-92;88.【解析】解:(1)-3+7=4;4-(-3)=7,∴终点B表示的数是4,A,B两点间的距离是7;(2)3-7+5=1;3-1=2,∴终点B表示的数是1,A,B两点间的距离是2;(3)-4+168-256=-92;-92-(-4)=-88,|-88|=88,∴终点B表示的数是-92,A,B两点间的距离是88.22.(2019•河北省20/26)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.【答案】(1)﹣12;(2)□内的符号是“﹣”;(3)这个最小数是﹣20.【解析】解:(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1×12×6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.23.(2019•重庆市22/26)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特殊的自然数﹣“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.【答案】(1)2019不是“纯数”,2020是“纯数”;不大于100的“纯数”的有13个.【解析】解:(1)2019不是“纯数”,2020是“纯数”,理由:当n=2019时,n+1=2020,n+2=2021,∵个位是9+0+1=10,需要进位,∴2019不是“纯数”;当n=2020时,n+1=2021,n+2=2022,∵个位是0+1+2=3,不需要进位,十位是2+2+2=6,不需要进位,百位为0+0+0=0,不需要进位,千位为2+2+2=6,不需要进位,∴2020是“纯数”;(2)由题意可得,连续的三个自然数个位数字是0,1,2,其他位的数字为0,1,2,3时,不会产生进位,当这个数是一位自然数时,只能是0,1,2,共三个,当这个自然数是两位自然数时,十位数字是1,2,3,个位数是0,1,2,共九个,当这个数是三位自然数时,只能是100,由上可得,不大于100的“纯数”的个数为3+9+1=13,即不大于100的“纯数”的有13个.。

相关文档
最新文档