二次函数第三课时
二次函数的图象与性质第三课时
二次函数的图象与性质(3)学习目标:会画出2)(h x a y -=这类函数的图象,通过比较,了解这类函数的性质. 学习重难点:探究形如2)(h x a y -=这类函数的图象特点和相对应的函数性质 学习过程:我们已经了解到,函数k ax y +=2的图象,可以由函数2ax y =的图象上下平移所得,那么函数2)2(21-=x y 的图象,是否也可以由函数221x y =平移而得呢?画图试一试,你能从中发现什么规律吗?[实践与探索]例1.在同一直角坐标系中,画出下列函数的图象.221x y =,2)2(21+=x y ,2)2(21-=x y ,并指出它们的开口方向、对称轴和顶点坐标.描点、连线,画出这三个函数的图象,如图26.2.5所示.它们的开口方向都向上;对称轴分别是y 轴、直线x= -2和直线x=2;顶点坐标分别是 (0,0),(-2,0),(2,0). 回顾与反思 对于抛物线2)2(21+=x y ,当x 时,函数值y 随x 的增大而减小;当x 时,函数值y 随x 的增大而增大;当x 时,函数取得最 值,最 值y= . 探索 抛物线2)2(21+=x y 和抛物线2)2(21-=x y 分别是由抛物线221x y =向左、向右平移两个单位得到的.如果要得到抛物线2)4(21-=x y ,应将抛物线221x y =作怎样的平移?例2.不画出图象,你能说明抛物线23x y -=与2)2(3+-=x y 之间的关系吗?解 抛物线23x y -=的顶点坐标为(0,0);抛物线2)2(3+-=x y 的顶点坐标为(-2,0). 因此,抛物线23x y -=与2)2(3+-=x y 形状相同,开口方向都向下,对称轴分别是y 轴和直线2-=x .抛物线2)2(3+-=x y 是由23x y -=向左平移2个单位而得的.回顾与反思 2)(h x a y -=(a 、h 是常数,a ≠0)的图象的开口方向、对称轴、顶点坐标[当堂课内练习]1.画图填空:抛物线2)1(-=x y 的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线2x y =向 平移 个单位得到的. 2.在同一直角坐标系中,画出下列函数的图象.22x y -=,2)3(2--=x y ,2)3(2+-=x y ,并指出它们的开口方向、对称轴和顶点坐标.[本课课外作业]A 组1.已知函数221x y -=,2)1(21+-=x y , 2)1(21--=x y .(1)在同一直角坐标系中画出它们的图象;(2)分别说出各个函数图象的开口方向、对称轴和顶点坐标; (3)分别讨论各个函数的性质.2.根据上题的结果,试说明:分别通过怎样的平移,可以由抛物线221x y -=得到抛物线2)1(21+-=x y 和2)1(21--=x y ?3.函数2)1(3+-=x y ,当x 时,函数值y 随x 的增大而减小.当x 时,函数取得最 值,最 值y= .4.不画出图象,请你说明抛物线25x y =与2)4(5-=x y 之间的关系.B 组5.将抛物线2ax y =向左平移后所得新抛物线的顶点横坐标为 -2,且新抛物线经过点 (1,3),求a 的值. 课后反思:今天学习的知识相对于昨天学习的有一点难度,学生可能容易混淆,就是上节课是图像沿y 轴上下平移,且移动方向与我们的正常学习相辅,加向上平移,减向下平移。
实际问题与二次函数_第三课时-课件
图1
图2
【思路点拨】根据线段的长度写出相关点的坐标,再设出函数的解析 式,把点的坐标代入解析式求出解析式,可以算出EF的宽度。
探究三:利用二次函数解决实际问题的训练
例5.如图1,三孔桥截面的三个孔都呈抛物线形,两小孔形状、大小都相同。 正常水位时,大孔水面宽度AB=20米,顶点M距水面6米(即MO=6米),小 孔顶点N距水面4.5米(NC=4.5米)。当水位上涨刚好淹没小孔时,借助图2 中的直角坐标系,求此时大孔的水面宽度EF。
探究三:利用二次函数解决实际问题的训练
练习:有一抛物线形拱桥,其最大高度为16米,跨度为40米, 把它的示意图放在如图所示的坐标系中,则抛物线的函数关系 式为__y_____21_5__x_2 __85__x__ 。
解:因为抛物线过点(0,0)和(40,0),
∴ y=ax(x- 40)①
又∵ 函数过点(20,16)代入①得20a(20-40)=16,
探究一:利用二次函数解决抛物线形拱桥问题
重点知识★
活动2 自学互研,生成能力。
完成下列填空:
1.以拱桥的顶点为原点,以经过该点的铅垂线为y轴建立平面直 角坐标系时,可设这条抛物线的关系式为_____y____a_x_2。
2.一座拱桥为抛物线形,其函数解析式为___y____a_x_2_,
当水位线在AB位置时,水面宽4 m,这时水面离桥顶的高度为
设点B(10,n),点D(5,n+3),
n=10²•a=100a,n+3=5²a=25a,
即
n 100a n 3 25a
y 1 x2 25
n 4
解得
a
1 25
(2)∵ 货轮经过拱桥时的横坐标为x=3, ∴ 当x=3时,y 1 9 25 9 ( 4) 3.6 25
第三课时 用二次函数解决实际问题
解:
3 1 x2
2
x2 6
解得 x1 6, x2 6
水面的宽度2x 2 6 m 水面下降1cm,水面宽度增加__2___6___4____m.
如图,隧道的截面由抛物线和长方形构成,长方形的长 是8m,宽是2m,抛物线可以用 y 1 x2 4 表示.
4
A.50 m B.100 m C.160 m D.200 m
探究3
图中是抛物线形拱桥,
当水面在l时,拱顶离水
2
面2m,水面宽4m,水
l
面下降1m,水面宽度增
加多少?
4
分析:我们知道,二次函数的图象是抛物线,建立适当
的坐标系,就可以求出这条抛物线表示的二次函数,为解 题简便,以抛物线的顶点为原点,以抛物线的对称轴为y轴 建立直角坐标系.
如图建立如下直角坐标系
超过多少 m 时就会影响过往船只在桥下顺利航行.
y O
C A
h
DB x
20 m
例2 如图,悬挂桥两端主塔塔顶之间的主悬钢索,
其形状可以近似地看作抛物线,水平桥面与主悬钢索之 间用垂直钢索连接.若两端主塔之间水平距离为900m, 两主塔塔顶距桥面的高度为81.5m,主悬钢索最低点离桥 面的高度为0.5m.
4.利用待定系数法求出函数解析式;
5.根据函数解析式进一步分析,判断 并进行有关的计算;
◇ 练习:
有一座抛物线形拱桥,正常水位时桥下水面宽度为
20 m,拱顶距离水面 4 m.
(1)如图所示的直角坐标系中,求出这条抛物线表
示的函数的解析式;
(2)设正常水位时桥下的水深为 2 m,为保证过往
船只顺利航行,桥下水面的宽度不得小于 18 m.求水深
5.2二次函数的图像和性质 第3课时 二次函数y=ax^2 bx c的图像和性质(教学课件)-初中数
新知导入 课程讲授 随堂练习 课堂小结
y=ax2+bx+c(a≠0)的性质
二次函数y=-x2-4x-5 的图像如图所示.
由图像可知, 当x=-2时, y的值最大, 最大值是-1.
新知导入 课程讲授 随堂练习 课堂小结
y=ax2+bx+c(a≠0)的图像
y=
1 2
x2-6x+21
y=
1 2
(x2-12x)+21
你知道是怎样配方的吗? 1. “提”:提出二次项系数;
1 y= 2 (x2-12x+36-36)+21
y= 1 (x-6) 2+21-18 2
2.“配”:括号内配成完全平方式;
a<0时,抛物线开口向下,函数有最大值;
4ac - b2
函数在顶点处取得有最大(小)值 4a
.
新知导入 课程讲授 随堂练习 课堂小结
y=ax2+bx+c(a≠0)的图像
练一练:用配方法将二次函数y=x2-8x-9化为y=a(x-h)2+k的形式 为( B ) A.y=(x-4)2+7 B.y=(x-4)2-25 C.y=(x+4)2+7 D.y=(x+4)2-25
新知导入 课程讲授 随堂练习 课堂小结
y=ax2+bx+c(a≠0)的性质
例1 画出二次函数y=-x2-4x-5的图像,并指出它的开口方向、顶点坐 标、对称轴、最大值或最小值. 【分析】要画出二次函数y=-x2-4x-5的图像,可先将函数表达式变
人教版九年级数学上册课件 第二十二章 二次函数 第3课时 二次函数y=a(x-h)2+k的图象和性质
13.有相同对称轴的两条抛物线的图象如图所示,则下列关系不正确的 是( C )
A.h=m B.k>n C.k=n D.h>0,k>0
14.(2020·兰州)点A(-4,3),B(0,k)在二次函数y=-(x+2)2+h的图 象上,则k=__3__.
15.(2020·广安)已知二次函数 y=a(x-3)2+c(a,c 为常数,a<0),当
自变量 x 分别取 5 ,0,4 时,所对应的函数值分别为 y1,y2,y3,则 y1, y2,y3 的大小关系为_y__2<__y_3_<__y_1____(用“<”连接).
点坐标为(1,-5)
(3)当 x<1 时,y 随 x 的增大而增大
9.(2020·哈尔滨)将抛物线y=x2向上平移3个单位长度,再向右平移5个 单位长度,所得到的拋物线为( D )
A.y=(x+3)2+5 B.y=(x-3)2+5 C.y=(x+5)2+3 D.y=(x-5)2+3
10.函数y=3(x-1)2+2是由函数y=3x2的图象先向_右___平移1个单位, 再向__上__平移__2__个单位得到的.
3.抛物线 y=- 2 (x-5)2+3 的开口向__下__,对称轴是直线__x_=__5__.
4.对于抛物线y=-(x+1)2-3,下列结论错误的是( B ) A.抛物线的开口向下 B.对称轴为直线x=1 C.顶点坐标为(-1,-3) D.x>1时,y随x的增大而减小
5.(兰州中考)已知点A(1,y1),B(2,y2)在抛物线y=-(x+1)2+2上, 则下列结论正确的是( A )
【精】 《二次函数的图象和性质(第3课时)》精品教案
《二次函数(第3课时)》精品教案
(1)抛物线顶点坐标___________;
(2)对称轴为________;
(3)当x=____时,y有最大值是_____;
(4)当________时,y随着x得增大而增大.(5)当____________时,y>0.
4.将函数y=3x+1的图象向______平行移动_____个单位,可使它经过点(1,-1).
5.若将函数y=2x2的图象向右平行移动1个单位,再向上平移5个单位,可得到________________。
课堂小结通过本节课的内容,你有哪些收获?
(2)对称轴是x=h.
(3)顶点是(h,k).
(4)平移规律:h值正右移,负左移;k值正上移,负下移. 学会总结学
习收获,巩
固知识点,
理清知识间
的联系。
让学生
来谈本
节课的
收获,培
养学生
自我检
查、自我
小结的
良好习
惯,将知
识进行
整理并
系统化。
九年级数学《二次函数》第三课时教案
中学“自导式”育人设计方案(四)老师公布并讲解上面2题。
(五)小组讨论完成下面表格;(六)老师公布答案并答疑。
(七)小组内结对2人理解记忆上表格内容。
(八)探究练习:填写下列抛物线的开口方向、对称轴、顶点坐标以及最值.抛物线 开口方向 对称轴 顶点坐标 最值y =2x 2+2y =-5x 2-3y =15x 2+1y =-12x 2-4(九)课堂小结:1二次函数y =ax 2+k 的性质2. 二次函数y =ax 2与y =ax 2+k 的平移规律:()022>+=→=k k ax y k ax y 个单位向上平移 ()022>-=→=k k ax y k ax y 个单位向下平移口决:上加下减四、课后拓展练习:(见复习巩固单)抛物线 开口方向对称轴顶点坐标最大(小)值 增减性 平移规律a>0 a<0 a>0 a<0 a>0 a<0y=ax 2y=ax 2+k课后作业 课后反思一、预学检测单1.在同一直角坐标系中,画出二次函数y =2x 2+1,y =2x 2-1,y =2x 2的图象.二、探究练习单1.画一画:在同一坐标系中画出函数y=-2x、y =-x 2+1、y= y =-x 2-2的图像3、小组内讨论完成下表;三、复习巩固单1.二次函数y =x 2+1的图象大致是( )2.下列关于抛物线y =-x 2+2的说法正确的是( ) A .抛物线开口向上B .顶点坐标为(-1,2)C .在对称轴的右侧,y 随x 的增大而增大D .在对称轴的左侧,y 随x 的增大而增大3.与抛物线y =-45x 2-1顶点相同,形状也相同,而开口方向相反的抛物线所对应的函数解析式是( )A .y =-45x 2-1B .y =45x 2-1C .y =-45x 2+1D .y =45x 2+14.抛物线y =2x 2-1在y 轴右侧的部分是 (填“上升”或“下降”)的.5.二次函数y =3x 2-3的图象开口向上,顶点坐标为 对称轴为 轴,当x>0时,y 随x 的增大而 ;当x<0时,y 随x 的增大而 .因为a =3>0,所以y 有最 值,当x = 时,y 的最小值是6.抛物线y =ax 2-1(a >0)上有两点A (1,y 1),B (3,y 2),则y 1 y 2.(填“>”“<”或“=”)7.函数y =13x 2+1与y =13x 2的图象的不同之处是( )A .对称轴B .开口方向C .顶点D .形状8.如果将抛物线y =-3x 2向上平移2个单位长度,那么得到的新抛物线的解析式为9.在同一平面直角坐标系中画出二次函数y =-2x 2,y =-2x 2+3的图象. (1)分别指出它们的开口方向、对称轴以及顶点坐标;(2)抛物线y =-2x 2+3可由抛物线y =-2x 2向 平移 个单位长度得到. 易错点 求函数值的范围时忽视顶点处的取值10.对于二次函数y =-2x 2+4,当-2<x≤1时,y 的取值范围是 中档题11.已知点(x 1,y 1),(x 2,y 2)均在抛物线y =x 2-1上,下列说法中正确的是( ) A .若y 1=y 2,则x 1=x 2 B .若x 1=-x 2,则y 1=-y 2 C .若0<x 1<x 2,则y 1>y 2 D .若x 1<x 2<0,则y 1>y 2 12.【数形结合思想】一次函数y =ax +b (a≠0,b≠0)的图象如图所示,则二次函数y =bx 2+a 的大致图象是( )13、已知y =ax 2+k 的图象上有三点A (-3,y 1),B (1,y 2),C (2,y 3),且y 2<y 3<y 1,则a的取值范围是()A.a>0 B.a<0C.a≥0 D.a≤014.已知二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等.当x取x1+x2时,函数值为()A.a+c B.a-cC.-c D.c。
《二次函数的图象与性质(第3课时)》优秀课件
小结:
本节课主要运用了数形结合的思想方法,通过对
函数图象的讨论,分析归纳出 y a(x h)2 k
的性质:(1)a的符号决定抛物线的开口方向 (2)对称轴是直线x=h
(3)顶点坐标是(h,k)
抛物线
开口方向 对称轴 顶点坐标
y ax2 (a 0)
y ax 2 k(a 0) y a(x h)2 (a 0)
开口向上 开口向上 开口向上
直线X=0 直线X=0 直线X=h
(0,0) (0,k)
(h,0)
y a(x h)2 k(a 0) 开口向上 直线X=h (h,k)
2
直线x=-1
(- 1, 0)4,y2)(
1 4
,y3)为二次函数
y=(x-2)2图象上的三点,则y1 ,y2 ,y3的大小关系为
___y_3_<__y_2_<__y1____.
典例精析
例1 抛物线y=ax2向右平移3个单位后经过点(-1,4), 求a的值和平移后的函数关系式.
解:设平移后的函数关系式为y=a(x-3)2,
把x=-1,y=4代入,得4=a(-1-3)2, ,
∴
1 a=
4
∴平移后二次函数关系式为y= 1 (x-3)2.
4
小结
比较y=ax2 , y=ax²+k , y=a(x-h)²的图像的不同
y=ax2 y=ax²+k
对称轴 Y轴
Y轴
(直线x=0) (直线x=0)
2) 如何将抛物线y=2(x-1) 2+3经过平移得到 抛物线y=2x2
3) 将抛 物线y=2(x -1)2+3经过怎样的平移得 到抛物线y=2(x+2)2-1
4) 若抛物线y=2(x-1)2+3沿x轴方向平移后,经 过(3,5),求平移后的抛物线的解析式_______
《二次函数的图像和性质》第三课时说课稿
提高练习
设计一些需要运用二次函数性质解决的问题,如求最值、判断单调性等,让学生在实践中加深 对二次函数性质的理解。
课堂小结
总结本节课所学的二次函数的图像和性质,强调这些知 识点在后续学习中的重要性。
布置作业:针对本节课所学内容,布置适量的练习题和 思考题,以便学生进一步巩固和拓展所学知识。
如何激发学生的学习兴趣和积极性
采用生动有趣的教学案例 ,将抽象的数学知识与现 实生活相结合,激发学生 的学习兴趣。
组织学生进行小组讨论和 合作学习,鼓励学生积极 参与课堂互动,提高学生 的课堂参与度。
设计具有挑战性的数学问 题,激发学生的求知欲和 探索精神,培养学生的数 学思维能力。
及时给予学生积极的反馈 和鼓励,肯定学生的进步 和成绩,增强学生的自信 心和学习动力。
02 实际应用
二次函数在现实生活中的应用广泛,如抛物线型 桥梁的设计、经济领域的最优化问题等。
03 培养数学思维
学习二次函数有助于培养学生的数形结合思维、 方程思想和分类讨论思想等。
教学目标与要求
01 知识与技能
掌握二次函数的图像特征,理解其性质,能够运 用性质解决问题。
02 过程与方法
通过观察、比较、归纳等方法,探究二次函数的 图像和性质。
05
组织学生进行小组讨论和合作学习,鼓励学生互相交流和 分享学习成果。
06
设计有针对性的课堂练习和作业,帮助学生巩固所学知识 并提高其解题能力。
03
教学过程设计
导入新课
回顾旧知
简要回顾上节课所学的二次函数的基本概念,包括二次 函数的定义、标准形式等。
引入新课
22.1.3 第3课时 二次函数y=a(x-h)2+k的图象和性质
坐标及增减性等;
2.掌握二次函数 y=a(x-h)2+k 的图象的平移规律. 课堂导入
一个运动员打高尔夫球,如果球的飞行高度 y(m)与水平距离 x(m)之间的函数
解析式为 y=-510(x-25)2+12,那么高尔夫球飞行过程中的最大高度是多少?
课件目录
首页
末页
第3课时 二次函数y=a(x-h)2+k的图象和性质
首页
末页
第3课时 二次函数y=a(x-h)2+k的图象和性质
(3)当 y=1.5 时,1.5=-34(x-1)2+3, 解得 x1=1+ 2,x2=1- 2, 故当 0<m<1+ 2时,才不会淋湿衣裳.
课件目录
首页
末页
第3课时 二次函数y=a(x-h)2+k的图象和性质
8.[2018·湘潭]如图 22-1-16,点 P 为抛物线 y=14x2 上的一动点.
后的铅球沿一段抛物线轨迹运行,当运行到最高 3 m 时,水平距离为 4 m.
(1)求这个二次函数的解析式. (2)该同学把铅球推出去多远? 图 22-1-14
课件目录
首页
末页
第3课时 二次函数y=a(x-h)2+k的图象和性质
解:(1)设二次函数的解析式为 y=a(x-4)2+3, 把(0,0.6)代入,得 0.6=a(0-4)2+3,a=-230, ∴y=-230(x-4)2+3. (2)当 y=0 时,0=-230(x-4)2+3, 解得 x1=4+2 5,x2=4-2 5(舍去). 答:该同学把铅球推出去(4+2 5) m.
2.[2017·金华]对于二次函数 y=-(x-1)2+2 的图象与性质,下列说法正确的 是( B )
A.对称轴是直线 x=1,最小值是 2 B.对称轴是直线 x=1,最大值是 2 C.对称轴是直线 x=-1,最小值是 2 D.对称轴是直线 x=-1,最大值是 2
二次函数的图像和性质 第三课时-九年级数学下册课件(冀教版)
解:(1)在 y=(x+2)2中,令y=0,得x=-2;令x=0,得y =4. ∴点A,点B 的坐标分别为(-2,0),(0,4).
(2)∵点A,点B 的坐标分别为(-2,0),(0,4), ∴OA=2,OB=4.
∴S△AOB=
1 2
OA·OB= 1 ×2×4=4.
2
(3)抛物线的对称轴为x=-2.
y
2
1(x 2
1)2 与 y
1 ( x 1)2 2
的图像的形状和位置有什么关系?
2
形状相同,位置不同.
1 抛物线 y=-5(x-2)2的顶点坐标是( B )
A.(-2,0)
B.(2,0)
C.(0,-2)
D.(0,2)
2 在下列二次函数中,其图象的对称轴为直线x=-2的是( A )
A.y=(x+2)2
易错点:函数y=ax 2+c 与y=a (x-h)2的图象与性质
区别不清
二次函数 y=3x 2+1的图象开口向上,对称轴是 y 轴,顶 点坐标是(0,1),当x >0时,y 随x 的增大而增大;二次 函数y=3(x-1)2的图象开口向上,对称轴是直线x=1,顶 点坐标是(1,0),当x >1时,y 随x 的增大而增大;二次 函数 y=3x 2+1和y=3(x-1)2的图象的开口大小一样.因
x_>__5时,y 随x 的增大而减小.
导引:
y =-1 (x-5)2的图象与抛物线y =-1 x 2的形状相
4
同,但位置不同,y
=-1
4
(x-5)2的图象由抛物线
y
=-1
x
4 2向右平移5个单位得到.
4
1 把抛物线 y =x 2平移得到抛物线 y =(x+2)2,则这
第三课时 27.2 二次函数的图象与性质(2)(第3课时)
第三课时 27.2 二次函数的图象与性质(2)(第3课时)一、衔接知识回顾:1.一次函数x y 2=的图象 移动 单位,可得12+=x y 的图象。
2.你能由此推测二次函数2x y =与12+=x y 的图象之间的关系吗? ,那么2x y =与22-=x y 的图象之间又有何关系?1.会画二次函数y =ax 2+k 的图象;2.掌握二次函数y =ax 2+k 的性质,并会应用; 3.知道二次函数y =ax 2与y =的ax 2+k 的联系. 二、新知自习探究:(学生先独立完成下列题目)例1.在同一直角坐标系中,画出函数22x y =与222+=x y 的图象. 解列表.描点、连线,画出这两个函数的图象.反思 1. 当自变量x 取同一数值时,这两个函数的函数值之间有什么关系?2.反映在图象上,相应的两个点之间的位置又有什么关系? 探索 1.观察这两个函数,它们的开口方向、对称轴和顶点坐标有那些是相同的?又有哪些不同?2.你能由此说出函数22x y =与222-=x y 的图象之间的关系吗? 例2、在同一直角坐标系中,画出二次函数y =x 2+1,y =x 2-1的图象. 解:先列表x … -3 -2 -1 0 1 23 … y =x 2+1 … … y =x 2-1 ……描点并画图x... -3 -2 -1 0 1 2 3 (2)2x y =... 18 8 2 0 2 8 18 (2)22+=x y…20104241020…观察图象得:1.开口方向顶点对称轴有最高(低)点最值y=x2y=x2-1y=x2+12.可以发现,把抛物线y=x2向______平移______个单位,就得到抛物线y=x2+1;把抛物线y=x2向_______平移______个单位,就得到抛物线y=x2-1.3.抛物线y=x2,y=x2-1与y=x2+1的形状_____________.三、理一理知识点1.y=ax2y=ax2+k开口方向顶点对称轴有最高(低)点最值a>0时,当x=______时,y有最____值为________;a<0时,当x=______时,y有最____值为________.增减性2.抛物线y=2x2向上平移3个单位,就得到抛物线__________________;抛物线y=2x2向下平移4个单位,就得到抛物线__________________.因此,把抛物线y=ax2向上平移k(k>0)个单位,就得到抛物线_______________;把抛物线y=ax2向下平移m(m>0)个单位,就得到抛物线_______________.3.抛物线y=-3x2与y=-3x2+1是通过平移得到的,从而它们的形状__________,由此可得二次函数y =ax 2与y =ax 2+k 的形状__________________.四、课堂巩固训练1.填表函数草图开口方向 顶点对称轴 最值对称轴右侧的增减性y =3x 2y =-3x 2+1y =-4x 2-52.将二次函数y =5x 2-3向上平移7个单位后所得到的抛物线解析式为_________________.3.写出一个顶点坐标为(0,-3),开口方向与抛物线y =-x 2的方向相反,形状相同的抛物线解析式____________________________. 五.方法归纳:k axy +=2(a 、k 是常数,a≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:k axy +=2开口方向对称轴顶点坐标>a<a六、作业:A1.填表函数开口方向顶点 对称轴最值 对称轴左侧的增减性y =-5x 2+3 y =7x 2-12.抛物线y =-13 x 2-2可由抛物线y =-13x 2+3向___________平移_________个单位得到的.3.抛物线y =-x 2+h 的顶点坐标为(0,2),则h =_______________.4.抛物线y =4x 2-1与y 轴的交点坐标为_____________,与x 轴的交点坐标为_________. 5.抛物线9412-=x y 的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线241x y =向 平移 个单位得到的.6.函数332+-=x y ,当x 时,函数值y 随x 的增大而减小.当x 时,函数取得最 值,最 值y= .7.已知抛物线y=mx 2+n 向下平移2个单位后得到的函数图像是y=3x 2-1,求m,n 的值. B 、1.在同一直角坐标系中b ax y +=2与)0,0(≠≠+=b a b ax y 的图象的大致位置是( )2.已知二次函数7)1(82-+--=k x k x y ,当k 为何值时,此二次函数以y 轴为对称轴?写出其函数关系式.3.二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 。
数学九年级上册《二次函数-第三课时》教案
板书设计:22.1.3 二次函数y=ax2+k的图象和性质
二次函数y=ax2+k的性质
教学后记(反思成败、总结经验):
3、二次函数y=ax2+k(a,k是常数),当x取值x1、x2时(x1≠x2),函数值相等,则当x取x1+x2时,函数值为
学生自主完成,小组内展示,点评,教师巡视
五、能力提升:(7分钟)
独立完成学思练巩固提升
六、课堂小结(2分钟,学生回答)
二次函数y=ax2+k的性质及平移规律
七、作业布置
教材习题22.1第5(1)题
(1)y=-x2-3 (2)y=1.5x2+7 (3)y=2x2-1
5.完成学思练自学检测部分
学生自主完成,小组内展示,点评,教师巡视
四、巩固练习(8分钟)
1、二次函数y=ax2+k的图象经过点A(2,3), B(3,5),求这个函数的解析式。
2、已知二次函数y=2x2+3,当x取何值时,y随x的增大而增大;当x取何值时,y随x的增大而减小?
会作函数的图象.
教学难点
能正确说出两函数图象的开口方向、对称轴和顶点坐标.
教学方法与手段
自主学习——合作交流——当堂训练
教学准备
课件、教材、三角板
第 一 课时
课时数
1 课时
教学流程
二次备课(标、增、改、删、调)
一、旧知回顾:(3分钟)
二次函数y=ax2有什么性
二、自主探究:(12分钟)
探究:
在同一直角坐标系中,画出下列二次函数的图象:y=x2,y=x2+2 , y=x2-2
初中20-20学年度第一学期教学设计
2-2二次函数的图象与性质(第三课时)课件
b , 4ac 2a 4a 直线x
b2 b
2a
由a,b和c的符号确定
y=ax2+bx+c(a<0)
b , 4ac 2a 4a 直线x
b2 b
2a
由a,b和c的符号确定
开口方向
向上
向下
增减性 最值
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
当x b 时,最小值为 4ac b2
400 9
0.0225 x 202 1.
这条抛物线的顶点坐标 是 20,1.
由此可知钢缆的最低点到桥面的距离是1m。
⑵两条钢缆最低点之间的距离是多少?你是怎样计算的 ?与同伴交流.
想一想,你知道图中右面钢缆的表达式是什么吗?
y 0.0225 x2 0.9x 10
0.0225 x 20 2 1.
2a
4a
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
当x b 时,最大值为 4ac b2
2a
4a
小结 拓展 回味无穷
二次函数y=ax2+bx+c(a≠0)与=ax²的关系
1.相同点: (1)形状相同(图像都是抛物线,开口方向相同).
(2)都是轴对称图形.
(3)都有最(大或小)值.
而获得钢缆的最低点到桥面的距离;
y 0.0225 x2 0.9x 10
y 0.0225 x2 0.9x 10
0.0225 x2 40 x 4000
9
Y/m 10
0.0225 x2 40 x 20 2 20 2 4000 桥面 -5 0 5
x/m9Βιβλιοθήκη 0.0225x20 2
数学人教版九年级上册二次函数第三课时
对于二次函数 y ax
a>0时 顶点坐标 对称轴 位置
( 0, 0)
y轴 在x轴的上方 (除顶点外) 向上
2
a< 0时
( 0, 0)
y轴 在x轴的下方 (除顶点外) 向下
开口方向 当x=0时,y最小值=0。 当x=0时,y最大值=0 最值 增减性
④
y 2对称轴为
轴;
).
3顶点坐标(0 k,
例2 在同一平面直角坐标系内 1 1 2 2 ) ) 与 y (x1 画出 y (x 1 2 2 的图象.
12 12 例 题 2 : 参 照 下 表 画 出 函 数 y = ( x + 1 ) 与 y = ( x 1 ) 的 图 象 2 2
y随着x的增大而减小,当x= _____
它是由抛物线y= −2x2线怎样平移得到
的__________.
(2)抛物线 y= x² -5 的顶点坐标 是____,对称轴是____,在对称轴 的左侧,y随着x的 ;在 对称轴的右侧,y随着x的 , 当x=____时,函数y的值最___, 最小值是 .
总结:
1 2 y ( x h ) 向及对称轴、顶点的位置.你能说出抛物线 2
的开口方向及对称轴、顶点的位置吗?
试一试自己的能力
1、要从抛物线y= - 2x2的图象得到y= - 2x2-1的图象, 则抛物线y=-2x2必须( B). A.向上平移1个单位; B.向下平移1个单 位; C.向左平移1个单位; D.向右平移1个单 2.抛物线y= 2x2 向上平移5个单位,会得到哪条抛物 位. 线.向下平移3.4个单位呢? 3、把抛物线y= 2x2-4x+2化成y= a(x-h)2的形式,并指 出抛物线的开口方向,对称轴,顶点坐标;函数有最大 值还是最小值?是多少?
22.1.4二次函数y=ax2+bx+c的图象和性质(第三课时)
解得k≤1,
即k的取值范围是k≤1
(3)解:设方程的两个根分别是x1,x2,
根据题意,得(x1 -3)(x2 -3)< 0, 即 x1 x2 -3(x1 + x2 )+9 < 0, ∵ x1 + x2 = 5-k, x1 x2 =1-k ∴ 1-k-3(5-k)+9<0 解得k< ,
则k的最大整数值为2.
16.(2017•荆州调考)已知关于x的方程 (m-1)x2+(m-2)x-1=0. (1)求证:无论m为何实数,方程总有实数根; (2)m为何整数时,方程有两个不相等的整数根; (3)m 取不同的实数(m ≠1),就对应不同的抛物线 y=(m-1)x2+(m-2)x-1,请证明当m(m ≠1) 变化时,所有这些不同的抛物线 y=(m-1)x2+(m-2)x-1有公共点,并求出它们 的公共点. (1)证明:当m=1时,方程为-x-1=0有唯一实数根x=1 当m ≠1时 △=(m﹣2)2+4(m﹣2) =m2 ≥0 ∴无论m为何实数,方程总有实数根.
y
O A x
y O B
y
y x O x
-1 0
x
x
O
C
D
7. 小明从左边的二次函数y=ax2+bx+c的图象观察得出 下面的五条信息:① a<0;② c=0;③ 函数的最小 值为-3; ④当x<0时,y>0; ⑤当0<x1<x2<2时, y1>y2 你认为其中正确的个数有( C ) A.2 B .3 C.4 D.5 y y
看作是抛物线y=-
x2+bx+c的一部分,其中出球点B离地面O
点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物 线的解析式是 ( B ) A. C. B. D.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2
新知导学
y ax 2 c (a 0)的图象与性质: 二次函数
【做一做】在同一坐标系中画出函数
y x 1,
2
y x 1,的图象.
2
... ...
10
8
5 3
2 0
1 2
5 3
2
【反思】若将抛物线 y 2 x 3 绕其顶点旋转180°, 2 则所得抛物线的解析式为___________. y 2 x 3
2
【拓展】若抛物线 y ax 轴对称,求a,c的值.
2
c 与 y 2 x 5 关于 x
2
巩固练习
向下 y 2 x 2 5 的开口方向___,对称轴 (1)抛物线 y轴 (0,-5) ___,顶点坐标____.
2 2
类型二:求二次函数的解析式.
例题2:抛物线 y ax 该抛物线的解析式.
2
c 经过点(-1,2),(0,-4),求
y ax 2 c 向下平移2个单位后, 例题3:已知抛物线 2 所得抛物线为 y 3x 2 ,试求a,c的值.
总结反思,拓展升华
【总结】本节所学的数学知识:函数 y ax c的图象 2 y 特征与性质以及抛物线 ax 上下平移规律.
y ax 2 c
【思考】把抛物线 y 2 x 向上平移5个单位,会得到 哪条抛物线?向下平移3.4个单位呢?请写出它们的函数 解析式.
【练一练】教材第10页 练习
应用迁移,巩固提高
类型一:二次函数 y ax c的图象特征的应用。
2
例题1:抛物线 y ax c 与 y 5 x 的形状大小, 开口方向都相同,且其顶点坐标是(0,3),则其表达式为 2 2 上 3 y__________,它是抛物线 y 5 x 向____平移____个单 5 x 3 位得到的.
(4)下列各组抛物线中,能够互相平移而彼此得到对方 的是( D )
A. y 2 x 与 y 3x
2
2
C. y 2 x 2 与 y x 2 2
(5)若抛物线 y ax 抛物线的解析式.
2
1 2 1 2 B. y x 2 与 y 2 x 2 2 D. y x 2 2 与 y x 2 2
c 经过A(-3,2),B(0,-1),求该
(6)在同一坐标系中,一次函数 y ax c 与二次函数 2 y ax c 的图象大致为( B )
y
y
0
x
(A)
0
x
(B)
y
y
0
x
(C)
0
x
(D)
重复是学习之母。
——狄慈根
二次函数(三)
温故知新
二次函数
y ax (a 0) 的图象特征:
2
①二次函数
y ax 的图象是一条抛物线;
2
y ax 2的对称轴是 y 轴,顶点是原点, a 0 ②抛物线 时,抛物线的开口向上,顶点是抛物线的最低点, a 0时,
抛物线的开口向下,顶点是抛物线的最高点. ③
10 ...
8 ...
1 0
【想一想】抛物线
2
y x 1,
2 2
y x 1, y x 有哪些
相同点和不同点? 相同点: ①形状大小相同; ②对称轴都相同,都是y轴. ③开口方向都相同,它们的 开口方向都是向上. 不同点:顶点的位置不同,抛物线的位置也不相同.
y x 2 1, y x 2 1, y x 2 这三个 【议一议】
函数的形状相同,从哪些方面可以看出?
【议一议】抛物线
y ax 与 y ax c有何联系? 2 2 ①抛物线 y ax c 的形状与 y ax 的形状完
2 2
全相同,只是位置不同;
②抛物线y
ax ax
2
向上平移
c个单位
2
y ax c
2
向下平移 c个单位
2
抛物线 y
2
(2)抛物线 y ax c 与 y 3x 2的形状相同,且其 2 顶点坐标为(0,1),则其表达式为_____________ y 3x 1 2 _________________. 或 y 3x 1
1 2 向下 10 (3)抛物线 y x 7 向__平移____个单位后, 2 1 2 得到抛物线 y x 3 2
a 越大,抛物线 y形的长为 x(cm),宽为 x(cm) ,则这 2 y (cm2 ) 与它的长 x(cm) 的关系 个长方形的面积
y x 2的图象有哪些区别? 如何?这个图象与
1 2 答:y x ( x 0) ,它的图象只是抛物线的一部 2 y x 2的图象是一条抛物线. 分,而