安徽大学期末试卷近世代数8.doc

合集下载

近世代数试题及答案

近世代数试题及答案

近世代数试题及答案一、选择题(每题4分,共20分)1. 下列哪个选项不是群的性质?A. 封闭性B. 存在单位元C. 存在逆元D. 交换律答案:D2. 有限群的阶数为n,那么它的子群的个数至少为:A. nB. 1C. n-1D. n+1答案:B3. 以下哪个命题是正确的?A. 任意两个子群的交集仍然是子群B. 任意两个子群的并集仍然是子群C. 子群的子群仍然是子群D. 子群的补集仍然是子群答案:A4. 群G的阶数为n,那么它的元素的阶数不可能是:A. 1B. nC. 2D. n+1答案:D5. 以下哪个不是环的性质?A. 封闭性B. 交换律C. 分配律D. 结合律答案:B二、填空题(每题4分,共20分)1. 如果集合S上的二元运算*满足结合律,那么称S为________。

答案:半群2. 一个群G的所有子群的集合构成一个________。

答案:格3. 一个环R中,如果对于任意的a,b∈R,都有a+b=b+a,则称R为________。

答案:交换环4. 一个环R中,如果对于任意的a,b∈R,都有ab=ba,则称R为________。

答案:交换环5. 一个群G中,如果存在一个元素a,使得对于任意的g∈G,都有ag=ga=e,则称a为G的________。

答案:单位元三、简答题(每题10分,共30分)1. 请简述子群和正规子群的区别。

答案:子群是群G的非空子集H,满足H中的任意两个元素的乘积仍然在H中,并且H对于G的运算是封闭的。

正规子群是子群N,满足对于任意的g∈G和n∈N,都有gng^-1∈N。

2. 请解释什么是群的同态和同构。

答案:群的同态是两个群G和H之间的函数f,满足对于任意的g1,g2∈G,都有f(g1g2)=f(g1)f(g2)。

群的同构是同态,并且是双射,即存在逆映射。

3. 请解释什么是环的零因子和非零因子。

答案:在环R中,如果存在非零元素a和b,使得ab=0,则称a和b 为零因子。

如果环R中不存在零因子,则称R为无零因子环。

近世代数参考答案

近世代数参考答案

安徽大学2008-2009学年第一学期《近世代数》考试试卷(B 卷)参考答案一、名词解释题(本题共5小题,每小题3分,共15分)1、对,显然模n 的同余关系满足以下条件:1)对Z 中的任意元素a 都有(mod )a a n ≡;(反身性)2)如果(mod )a b n ≡,必有(mod )b a n ≡;(对称性)3)如果(mod )a b n ≡,(mod )b c n ≡,必有(mod )a c n ≡(传递性)则这个关系是的一个等价关系.2、错,因为2Z ∈,在Z 中没有逆元.3、错,因为由于[]Z x x Z <>≅,而整数环Z 不是一个域.4、错,在同态满映下,正规子群的象是正规子群.5、对,[]F x 是一个有单位元的整环,且1)存在ϕ:()()f x f x →的次数,是非零多项式到非负整数集的一个映射;2)在[]F x 中任取()f x 及()0g x ≠,存在[]F x 上的多项式()q x ,()r x 满足 ()()()(f x g x q x r x =+,其中()0r x =或()r x 的次数<()g x 的次数. 因此[]F x 作成一个欧式环.二、计算分析题(本题共3小题,每小题5分,共15分)1、στ=(2453),2τσ=(2346),1τστ-=(256413).2、12Z 的所有的可逆元为1,5,7,11;n Z 的子环共有()T n 个,故12Z 共有6个子环,它们分别是{}10S =,{}20,6S =,{}30,4,8S =,{}40,3,6,9S =,{}50,2,4,6,8,10S =和12Z 本身. 3、在8Z 中:32([4][3][2])([5][3])x x x x +--+5432[4][4][3][5][3][6]x x x x x =-+-+-. 三、举例题(本题共3小题,1,2题各3分,第3题4分,共10分)1、在整数环上的一元多项式[]Z x 中,由于[]Z x x Z <>≅,整数环Z 是一个整环而不是一个域,故主理想x <>是整数环的一个素理想而不是极大理想.2、22,,,a b R Z a b c d Z c d ⨯⎧⎫⎛⎫⎪⎪==∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭对普通的矩阵的加法和乘法作成一个环,R 有单位元1001⎛⎫ ⎪⎝⎭,000a S a Z ⎧⎫⎛⎫⎪⎪=∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭对普通的矩阵的加法和乘法作成R 的一个子环,S 有单位元1000⎛⎫ ⎪⎝⎭,二单位元不相等. 3、Klein 四元群4K 是四次对称群4S 的一个正规子群,{}4(1),(12)(34)B =是4K 的一个正规子群(4K 是一个交换群),但4B 不是4S 的正规子群(44(13)(13)B B ≠).四、证明题(本题共6小题,每小题10分,共60分)1、证明:1)设G 是一个有限群,a 是G 的任意一个阶大于2的元素,则显然1a a -≠(否则将有2a e =,与a 阶大于2矛盾!),但a 与1a -有相同的阶,即1a -的阶也是大于2.又设b 也是G 的一个阶大于2的元素,且1,b a b a -≠≠,则容易得到:111,b a b a ---≠≠,这就是说,G 中阶大于2的元素总是成对出现的,由于G 是一个有限群,故中的阶大于2的元素个数必为偶数.2)设G 是一个偶数阶的有限群,由于单位元是阶为1的惟一元素,又由1)知G 中的阶大于2的元素个数一定是偶数,这样阶等于2的元素的个数一定是奇数.2、证明:设H 是G 的一个子群,任取1axa -,1aya -1aHa -∈(,x y H ∈),则由于H 是一个子群,故1xy H -∈,这样11111()()a x a a y a a x y a a H a ------=∈,从而1aHa G -≤.又由于易证1:x axa ϕ- 是H 到1aHa -的一个双射,且1()()x y a x y a ϕ-=11()()axa axa --=()()x y ϕϕ= 故ϕ是H 到1aHa -的一个同构映射,从而1aHa H -≅.2、证明:首先易证集合2,a b R a b F b a ⎧⎫⎛⎫⎪⎪=∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭数域关于普通的矩阵的加法作成一个加群,其零元为零矩阵,负元为负矩阵.其次,对22,a b c d R b a dc ⎛⎫⎛⎫∀∈ ⎪ ⎪⎝⎭⎝⎭,其中,,,a b cd F ∈,我们有 2222a b c d c d a b b a d c d c b a ⎛⎫⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭2222ac bd ad bc R bc ad bd ac ++⎛⎫=∈ ⎪++⎝⎭, 即普通矩阵的乘法是R 上的一个代数运算.且有 222a b c d e f b a d c f e ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭222a b c d e f b a d c f e ⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭, 即R 对于普通的矩阵的乘法作成一个半群.另外,1001R ⎛⎫∃∈ ⎪⎝⎭,使得对 2a b R b a ⎛⎫∀∈ ⎪⎝⎭,1022100101a b a b b a b a ⎛⎫⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭2a b b a ⎛⎫= ⎪⎝⎭, 综上所述,2,a b R a b F b a ⎧⎫⎛⎫⎪⎪=∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭数域关于普通的矩阵的加法和乘法作成一个有单位元的交换环.4、证明:1)若R 的每个非零元素的阶都是无限,命题成立;若R 中有某个元素0a ≠的阶为n ,则在R 中任取0b ≠,有()()00na nb na b b ===. 但0a ≠,且R 无零因子,故nb 0=,b n ≤.设b m =,则()()0ma b a mb ==,0ma =,故n m .从而n m b ≤=. 因此b n =,即R 中每个非零元素的阶都是n .2)设char R 1n =>,且12n n n =, 1i n n <<.则在R 中任取0a ≠,由于R 中每个非零元素的阶都是n ,故10n a ≠,20n a ≠.但21212()()()n a n a n n a =20na == 这与R 中无零因子环矛盾,故n 必为素数.5、证明:1)任取,x y G ∈,则由于G H 与G K 都是交换群,故x y H y x H =,xyK yxK =.于是()xy H K xyH xyK = yxH yxK = ()yx H K = ,即GH K 也是一个交换群. 2)任取h H ∈,k K ∈,由于,H K 都是群G 的正规子群,故1111()hkh k h kh k H ----=∈,1111()hkh k hkh k K ----=∈,从而{}11hkh k H K e --∈= ,故11hkh k e --=,即得到hk kh =,得证!6、证明:(1)设N 是R 的诣零理想,若R 是诣零的,下证R N 也是诣零的. 对R a N N ∀+∈,因为R 是诣零的,故存在n Z +∈,使得0n a =,从而()0n n a N a N N N +=+=+=,即R N 也是诣零的. 反之,若R N 是诣零的,下面说明R 也是诣零的.对a R ∀∈,因R N 是诣零的,故存在m Z +∈,使得()m m a N a N N +=+=,即m a N ∈,又N 是R 的诣零理想,故存在n Z +∈,使得()0m n mn a a ==,从而R 是诣零的.(2) 若,A B 是环R 的诣零理想,则A B ⋂是R 的诣零理想,且A B ⋂分别是,A B 的诣零理想.由环第二同构定理知A B B A A B +≅⋂,由(1)知,B A B ⋂是诣零的,从而A B A +也是诣零的.而A 是R 的诣零理想,也是A B +的诣零理想,因此由(1)知A B +也是R 的诣零理想,得证.安徽大学2009-2010学年第一学期《近世代数》考试试卷(B 卷)参考答案一、分析判断题(请判断下列命题对错,并简要说明理由)1、设:X Y ϕ→为一个映射,A 是X 的一个非空子集,则1(())A A ϕϕ-=.答:不正确.只有当ϕ为单射时等号才成立,一般的1(())A A ϕϕ-⊇.2、整数集Z 对于普通的数的乘法作成一个半群.答:正确.利用半群的定义易验证.3、整数环的全部素理想是由所有素数p 生成的主理想p <>和自己本身. 答:不正确.由于整数环无零因子,故零理想也是它的素理想.4、若,H G K G ≤≤,则HK G ≤.答:不正确.两个子群的乘积是原来群的子群充要条件是它们相乘时可交换.5、域是一个欧氏环.答:正确。

(完整word版)近世代数期末考试题库(包括模拟卷和1套完整题)

(完整word版)近世代数期末考试题库(包括模拟卷和1套完整题)

多所高校近世代数题库一、(2011年近世代数)判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。

( )2、设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。

( )3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f 。

( )4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。

( )5、如果群G 的子群H 是循环群,那么G 也是循环群。

( )6、近世代数中,群G 的子群H 是不变子群的充要条件为H Hg g H h G g ⊆∈∀∈∀-1;,。

( )7、如果环R 的阶2≥,那么R 的单位元01≠。

( )8、若环R 满足左消去律,那么R 必定没有右零因子。

( )9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。

( )10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主理想。

( )二、(2011年近世代数)单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。

答案选错或未作选择者,该题无分。

每小题1分,共10分)1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ⨯⨯⨯ 21到D 的一个映射,那么( )①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换;③n A A A ⨯⨯⨯ 21中不同的元对应的象必不相同;④一个元()n a a a ,,,21 的象可以不唯一。

2、指出下列那些运算是二元运算( ) ①在整数集Z 上,abb a b a +=; ②在有理数集Q 上,ab b a = ; ③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。

近世代数期末考试试卷及答案

近世代数期末考试试卷及答案

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、设G 有6个元素的循环群,a 是生成元,则G 的子集(c)是子群。

A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e2、下面的代数系统(G ,*)中,( D )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( B ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( B ) A 、12σB 、1σ2σC 、22σD 、2σ1σ5、任意一个具有2个或以上元的半群,它( A )。

A 、不可能是群 B 、不一定是群 C 、一定是群 D 、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、凯莱定理说:任一个子群都同一个----变换群------同构。

2、一个有单位元的无零因子-交换环----称为整环。

3、已知群G 中的元素a 的阶等于50,则4a 的阶等于----25--。

4、a 的阶若是一个有限整数n ,那么G 与---模n 剩余类加群----同构。

5、A={1.2.3} B={2.5.6} 那么A ∩B=---{2}--。

6、若映射ϕ既是单射又是满射,则称ϕ为----双射-------------。

7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得010=+++n n a a a αα 。

8、a 是代数系统)0,(A 的元素,对任何A x ∈均成立x a x = ,则称a 为---右单位元------。

近世代数期末考试试卷及答案

近世代数期末考试试卷及答案

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个就是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、设G 有6个元素的循环群,a 就是生成元,则G 的子集( )就是子群。

A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下面的代数系统(G,*)中,( )不就是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在自然数集N 上,下列哪种运算就是可结合的?( )A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ就是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( )A 、12σB 、1σ2σC 、22σD 、2σ1σ5、任意一个具有2个或以上元的半群,它( )。

A 、不可能就是群B 、不一定就是群C 、一定就是群D 、 就是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、凯莱定理说:任一个子群都同一个----------同构。

2、一个有单位元的无零因子-----称为整环。

3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。

4、a 的阶若就是一个有限整数n,那么G 与-------同构。

5、A={1、2、3} B={2、5、6} 那么A ∩B=-----。

6、若映射ϕ既就是单射又就是满射,则称ϕ为-----------------。

7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10Λ使得010=+++n n a a a ααΛ。

8、a 就是代数系统)0,(A 的元素,对任何A x ∈均成立x a x =ο,则称a 为---------。

近世代数期末考试试卷及答案

近世代数期末考试试卷及答案

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。

A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在自然数集N 上,下列哪种运算是可结合的?( )A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ5、任意一个具有2个或以上元的半群,它( )。

A 、不可能是群B 、不一定是群C 、一定是群D 、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、凯莱定理说:任一个子群都同一个----------同构。

2、一个有单位元的无零因子-----称为整环。

3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。

4、a 的阶若是一个有限整数n ,那么G 与-------同构。

5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。

6、若映射ϕ既是单射又是满射,则称ϕ为-----------------。

7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10Λ使得010=+++n n a a a ααΛ。

8、a 是代数系统)0,(A 的元素,对任何A x ∈均成立x a x =ο,则称a 为---------。

近世代数期末考试试题和答案解析

近世代数期末考试试题和答案解析

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。

A 、B 、C 、D 、{}a {}e a ,{}3,a e {}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( )A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b|4、设、、是三个置换,其中=(12)(23)(13),=(24)(14),1σ2σ3σ1σ2σ=(1324),则=( )3σ3σA 、 B 、 C 、 D 、12σ1σ2σ22σ2σ1σ5、任意一个具有2个或以上元的半群,它( )。

A 、不可能是群B 、不一定是群C 、一定是群D 、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、凯莱定理说:任一个子群都同一个----------同构。

2、一个有单位元的无零因子-----称为整环。

3、已知群中的元素的阶等于50,则的阶等于------。

G a 4a 4、a 的阶若是一个有限整数n ,那么G 与-------同构。

5、A={1.2.3} B={2.5.6} 那么A∩B=-----。

6、若映射既是单射又是满射,则称为-----------------。

ϕϕ7、叫做域的一个代数元,如果存在的-----使得αF F n a a a ,,,10 。

010=+++n n a a a αα8、是代数系统的元素,对任何均成立,则称为-------a )0,(A A x ∈x a x = a --。

近世代数期末考试试题库

近世代数期末考试试题库

世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内.错选、多选或未选均无分。

1、设A=B=R(实数集),如果A到B的映射:x→x+2,x∈R,则是从A到B的( c )A、满射而非单射B、单射而非满射C、一一映射D、既非单射也非满射2、设集合A中含有5个元素,集合B中含有2个元素,那么,A与B的积集合A×B中含有( d )个元素.A、2B、5C、7D、103、在群G中方程ax=b,ya=b, a,b∈G都有解,这个解是(b )乘法来说A、不是唯一B、唯一的C、不一定唯一的D、相同的(两方程解一样)4、当G为有限群,子群H所含元的个数与任一左陪集aH所含元的个数(c )A、不相等B、0C、相等D、不一定相等。

5、n阶有限群G的子群H的阶必须是n的(d )A、倍数B、次数C、约数D、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案.错填、不填均无分.1、设集合;,则有。

2、若有元素e∈R使每a∈A,都有ae=ea=a,则e称为环R的单位元。

3、环的乘法一般不交换。

如果环R的乘法交换,则称R是一个交换环。

4、偶数环是整数环的子环。

5、一个集合A的若干个——变换的乘法作成的群叫做A的一个变换全.6、每一个有限群都有与一个置换群同构。

7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是1,元a 的逆元是a-1。

8、设和是环的理想且,如果是的最大理想,那么———————-—。

9、一个除环的中心是一个-域———--。

三、解答题(本大题共3小题,每小题10分,共30分)1、设置换和分别为:,,判断和的奇偶性,并把和写成对换的乘积。

2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和.奇1、解:把和写成不相杂轮换的乘积:可知为奇置换,为偶置换。

近世代数期末试卷

近世代数期末试卷

数学与应用数学专业《 近世代数 》一、填空题(本题共8小题,每小题3分,共24分)1、一个变换群的单位元是2、设()G a =是一个6阶循环群,G 的生成元的集合是3、H 是群G 的子群,H 的右陪集Ha Hb =当且仅当4、,,a b H ab H ∈∈是群G 的非空有限子集H 作成G 的一个子群 的 条件5、假定循环群()G a =,a 的阶是n ,那么G 的乘法是h k a a =6、在两个群G 和G '的一个同态映射f 下,:f a a '→,a a '与的阶的关系是(填一定相同, 一定不同, 可能不同,整除等) 7、在4S 中,元(13)(24)的阶是8、模6剩余类环6Z 的子环{[0],[2],[4]}的特征为二、解答题(本题共7小题,每小题6分,共42分)1、设f 是集合A 到B 的映射,,a b A ∈,规定关系:“”:()()a b f a f b ⇔=:, 判断:“”是不是A 上的等价关系,并说明理由。

2、设()G a =是10阶循环群,找出G 的所有子群。

3、求群12(,)Z + 关于子群([3])H =的所有左陪集。

4、求模10的剩余类环10Z 的所有零因子。

5、设环R 与R '同态,命题:R '是交换环,则R 也是交换环是否正确?说明理由。

6、在实数域R 上的2阶全矩阵环是不是它的理想?说明理由。

7、已知2112341234,,24133412αβαβ-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭求,并把最终结果写成循环置换乘积的形式.三、证明题(本题共3小题,34分)1、设f 和g 都是群G 到G '的同态映射。

证明:{()()}H x x G f x g x =∈=且是G 的子群。

(10分)20(),,,,00a b a M R a b c d R S a R c d ⎧⎫⎧⎫⎛⎫⎛⎫=∈=∈⎨⎬⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎩⎭⎩⎭中2、设C 是非零复数乘法群, R 是正实数乘法群,D 是模为1的复数乘法群,证明:C R D≅ 。

安徽大学数学期末试卷汇编近世代数8

安徽大学数学期末试卷汇编近世代数8

《近世代数》试卷一、填空题(每空2分,共20分)1、4次对称群4S 的阶是____,在4S 中,(14)(312)=_______,(1423)1-=_______, 元素(132)的阶是______.2、整数加群Z 是一个循环群,它有且仅有两个生成元是______和_____.3、模6的剩余类环6Z 的全部零因子是__________.4、在模12的剩余类环12Z 中,[6]+[8]=_______,[8][6]=_______.5、17Z 是模17的剩余类环,在一元多项式环][17x Z 中,=+17])8[]6([x _________.二、判断题(对打“√”,错打“×”,不说明理由,每小题2分,共20分)1、( )交换群的子群是不变子群。

2、( )若21,H H 是群G 的子群,则21H H 也G 是的子群。

3、( )任意两个循环群同构。

4、( )模27的剩余类环27Z 是域。

5、( )一个阶是19的群只有两个子群。

6、( )欧氏环上的一元多项式环是欧氏环。

7、( )在一个环中,若左消去律成立,则右消去律成立。

8、( )域是唯一分解环。

9、( )存在特征是143的无零因子环。

10、( )只有零理想和单位理想的环是域。

三、解答题(第1题15分,第2,3题各10分,共35分)1、设)}132(),123(),1{( H 是3次对称群3S 的子群,求H 的所有左陪集和右陪集,试问H 是否是3S 的不变子群?为什么?2、求模12的剩余类环12Z 的所有理想。

3、设G 是交换群,e 是G 的单位元,n 是正整数,},,|{e a G a a H n=∈=问:H 是否是G 的子群?为什么?四、证明题(第1,2题各10分,第3题5分,共25分)1、证明:整数环Z 中由34和15生成的理想(34,15)就是Z 本身。

2、设G 和H 是两个群,G e 和H e 分别是G 和H 的单位元,f 是群G 到H 的满同态映射,B 是H 的子群,证明:})(,|{B a f G a a A ∈∈=是G 的子群。

近世代数期末考试试卷及答案.doc

近世代数期末考试试卷及答案.doc

近世代数期末考试试卷及答案1、设 G 有 6 个元素的循环群, a 是生成元,则G的子集()是子群.A、 aB、a, eC、e, a3D、e, a,a 32、下面的代数系统( G,* )中,()不是群A、G为整数集合, * 为加法 B 、G为偶数集合, * 为加法C、G为有理数集合, * 为加法 D 、G为有理数集合, * 为乘法3、在自然数集 N 上,下列哪种运算是可结合的?()A、a*b=a-bB、 a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b|4、设 1 、 2 、3 是三个置换,其中 1 =(12)(23)(13), 2 =(24)(14),3 =( 1324),则3 =()A、 2 B 、1 2C 、 2 D 、 2 11 25、任意一个具有 2 个或以上元的半群,它().A、不可能是群B、不一定是群C、一定是群D、是交换群二、填空题 ( 本大题共 10 小题,每空 3 分,共 30 分) 请在每小题的空格中填上正确答案. 错填、不填均无分 .1、凯莱定理说:任一个子群都同一个 ---------- 同构 .2、一个有单位元的无零因子 ----- 称为整环 .3、已知群G中的元素a的阶等于 50,则a4 的阶等于 ------.4、a 的阶若是一个有限整数n,那么 G与------- 同构 .5、A={1.2.3} B={2.5.6} 那么 A∩B=-----.6、若映射既是单射又是满射,则称为----------------- .7、叫做域F的一个代数元,如果存在 F 的a0 , a1 ,, a n使得aa1 a nn0 .8、a是代数系统( A,0)的元素,对任何x A 均成立x ax,则称a为 --------- .9、有限群的另一定义:一个有乘法的有限非空集合G 作成一个群,如果满足G对于乘法封闭;结合律成立、 ---------.10、一个环 R 对于加法来作成一个循环群,则P 是----------.三、解答题(本大题共 3 小题,每小题 10 分,共 30 分)1、设集合 A={1,2,3}G 是 A 上的置换群, H 是 G的子群, H={I,(1 2)},写出H的所有陪集.2、设 E 是所有偶数做成的集合,“?”是数的乘法,则“?”是 E 中的运算,( E,?)是一个代数系统,问( E,?)是不是群,为什么?3、a=493, b=391,求(a,b), [a,b]和p, q.四、证明题(本大题共 2 小题,第 1 题 10 分,第 2 小题 15 分,共 25 分)1、若 <G,*> 是群,则对于任意的a、 b∈ G,必有惟一的 x∈ G使得 a*x = b.2、设 m是一个正整数,利用m定义整数集 Z 上的二元关系: a? b 当且仅当 m︱ a– b.近世代数模拟试题三一、单项选择题 ( 本大题共 5 小题,每小题 3 分,共 15 分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内. 错选、多选或未选均无分.1、6 阶有限群的任何子群一定不是().A、2阶B、3 阶C、4阶D、6阶2、设 G是群, G有()个元素,则不能肯定G是交换群 .A、4个B、5个C、6个D、7个3、有限布尔代数的元素的个数一定等于().A、偶数B、奇数C、4的倍数D、2的正整数次幂4、下列哪个偏序集构成有界格()A、(N,)B、(Z,)C、( {2,3,4,6,12},|(整除关系))D、 (P(A),)5、设 S3= {(1) , (12) , (13) , (23) ,(123) ,(132)} ,那么,在 S3 中可以与 (123) 交换的所有元素有()A、(1) , (123) ,(132) B 、 12) ,(13) ,(23)C、(1) , (123) D 、 S3 中的所有元素二、填空题 ( 本大题共 10 小题,每空 3 分,共 30 分) 请在每小题的空格中填上正确答案. 错填、不填均无分 .1、群的单位元是 -------- 的,每个元素的逆元素是 -------- 的 .2、如果f是 A 与A间的一一映射,a是 A 的一个元,则f1f a---------- .3、区间 [1 , 2] 上的运算ab{min a,b}的单位元是 -------.4、可换群 G中|a|=6,|x|=8, 则|ax|= —————————— .5、环 Z8的零因子有 ----------------------- .6、一个子群 H 的右、左陪集的个数 ---------- .7、从同构的观点,每个群只能同构于他/ 它自己的 --------- .8、无零因子环 R 中所有非零元的共同的加法阶数称为R的----------- .9、设群G中元素a的阶为m,如果ane,那么m与n存在整除关系为 -------- .三、解答题(本大题共 3 小题,每小题10 分,共 30 分)1、用 2 种颜色的珠子做成有 5 颗珠子项链,问可做出多少种不同的项链?2、S1, S2是 A的子环,则 S1∩ S2也是子环 .S 1 +S2也是子环吗?3、设有置换(1345)(1245) ,(234)(456) S6.1.求和1;2.确定置换1的奇偶性 . 和四、证明题(本大题共 2 小题,第 1 题 10 分,第 2 小题 15 分,共 25 分)1、一个除环 R 只有两个理想就是零理想和单位理想.2、M为含幺半群,证明b=a-1的充分必要条件是aba=a 和 ab2a=e.近世代数模拟试题一参考答案一、单项选择题 .1、C;2、D;3、B;4、C;5、D;二、填空题 ( 本大题共 10 小题,每空 3 分,共 30 分).1、1, 1 , 1,0 , 1,1 2, 1 , 2,0 , 2,1;2、单位元;3、交换环;4、整数环;5、变换群;6、同构 ;7 、零、 -a ;8、S=I 或 S=R ;9、域;三、解答题(本大题共 3 小题,每小题 10 分,共 30 分)1、解:把和写成不相杂轮换的乘积:(1653)(247)(8)(123)(48)(57)(6)可知为奇置换,为偶置换.和可以写成如下对换的乘积:(13)(15)(16)(24)(27)(13)(12)(48)(57)B 1(A A) C1(A A),则 B 是对称矩阵,而 C 是反对2、解:设 A 是任意方阵,令 2 , 2称矩阵,且AB C.若令有AB1C1 ,这里B1 和C1 分别为对称矩阵和反对称矩阵,则B B1C1C,而等式左边是对称矩阵,右边是反对称矩阵,于是两边必须都等于0,即:B B1 ,C C1,所以,表示法唯一.3、答:(Mm,m)不是群,因为Mm中有两个不同的单位元素0 和 m.四、证明题(本大题共 2 小题,第 1 题 10 分,第 2 小题 15 分,共 25 分)1、对于 G中任意元 x,y,由于(xy)2 e ,所以 xy ( xy) 1 y 1 x1yx(对每个 x,从x2 e 可得 x x 1 ).2、证明在 F 里ab 1 b 1 a a (a, b R, b 0)bQ所有a(a,b R, b0)有意义,作 F 的子集 bQ显然是 R 的一个商域证毕.近世代数模拟试题二参考答案一、单项选择题 ( 本大题共 5 小题,每小题 3 分,共 15 分).二、填空题 ( 本大题共 10 小题,每空 3 分,共 30 分).1、变换群;2、交换环;3、25;4、模 n 乘余类加群;5、{2} ;6、一一映射;7、不都等于零的元; 8、右单位元; 9、消去律成立; 10、交换环;三、解答题(本大题共 3 小题,每小题10 分,共 30 分)1、解: H的 3 个右陪集为: {I,(1 2)} ,{(123) ,(1 3)} ,{(1 32) ,(23)}H的 3 个左陪集为: {I,(1 2)} ,{(1 2 3) ,(2 3)} ,{(1 3 2 ) ,(1 3 )}2、答:( E,?)不是群,因为( E,?)中无单位元 .3、解方法一、辗转相除法 . 列以下算式:a=b+102b=3× 102+85102=1×85+17由此得到 (a,b)=17, [a,b]=a×b/17=11339.然后回代: 17=102-85=102-(b-3 ×102)=4×102-b=4×(a-b)-b=4a-5b.所以 p=4, q=-5.四、证明题(本大题共 2 小题,第 1 题 10 分,第 2 小题 15 分,共 25 分)1、证明设e是群<G,*>的幺元.令x=a-1*b,则a*x=a*(a-1*b)=(a*a-1)*b=e*b=b. 所以, x=a-1*b 是 a*x = b 的解 .若 x ∈G也是 a*x = b 的解,则 x =e*x =(a - 1*a)*x =a-1*(a*x ) =a-1*b = x. 所以, x=a-1*b 是 a*x = b 的惟一解 .2、容易证明这样的关系是 Z 上的一个等价关系,把这样定义的等价类集合Z记为 Zm,每个整数 a 所在的等价类记为 [a]= {x∈ Z; m︱ x– a}或者也可记为a,称之为模 m剩余类 . 若 m ︱a– b 也记为 a≡b(m).当 m=2时, Z2 仅含 2 个元: [0] 与[1].近世代数模拟试题三参考答案一、单项选择题 ( 本大题共 5 小题,每小题 3 分,共 15 分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内. 错选、多选或未选均无分.二、填空题 ( 本大题共 10 小题,每空 3 分,共 30 分) 请在每小题的空格中填上正确答案 . 错填、不填均无分 .1、唯一、唯一;2、a; 3、 2; 4、 24;5、; 6、相等; 7、商群; 8、特征; 9、m n;三、解答题(本大题共 3 小题,每小题 10 分,共 30 分)1、解在学群论前我们没有一般的方法,只能用枚举法. 用笔在纸上画一下,用黑白两种珠子,分类进行计算:例如,全白只 1 种,四白一黑 1 种,三白二黑 2 种,等等,可得总共8 种 .2、证由上题子环的充分必要条件,要证对任意a,b ∈ S1∩S2 有 a-b, ab ∈ S1∩S2:因为 S1,S2 是 A 的子环,故 a-b, ab ∈S1 和 a-b, ab ∈S2 ,因而 a-b, ab ∈S1∩S2 ,所以 S1∩ S2 是子环 .S1+S2不一定是子环 . 在矩阵环中很容易找到反例:3、解: 1 .(1243)(56) ,1(16524 ) ;2.两个都是偶置换 .四、证明题(本大题共 2 小题,第 1 题 10 分,第 2 小题 15 分,共 25 分)1、证明:假定是 R 的一个理想而不是零理想,那么 a 0,由理想的定义a 1a 1,因而R的任意元b b ?1这就是说=R,证毕 .2、证必要性:将 b 代入即可得 . 充分性:利用结合律作以下运算:ab=ab(ab2a)=(aba)b2a=ab2a=e ,ba=(ab2a)ba=ab2 (aba)=ab2a=e ,所以 b=a-1.。

近世代数期末考试试卷与答案

近世代数期末考试试卷与答案

一、单项选择题(本大题共5小题,每题3分,共15分)在每题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多项选择或未选均无分。

1、设G 有6个元素的循环群,a 是生成元,则G 的子集〔 〕是子群。

A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下面的代数系统〔G ,*〕中,〔 〕不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在自然数集N 上,以下哪种运算是可结合的?〔 〕A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1σ=〔12〕〔23〕〔13〕,2σ=〔24〕〔14〕,3σ=〔1324〕,则3σ=〔 〕 A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ5、任意一个具有2个或以上元的半群,它〔 〕。

A 、不可能是群B 、不一定是群C 、一定是群D 、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每题的空格中填上正确答案。

错填、不填均无分。

1、凯莱定理说:任一个子群都同一个----------同构。

2、一个有单位元的无零因子-----称为整环。

3、群G 中的元素a 的阶等于50,则4a 的阶等于------。

4、a 的阶假设是一个有限整数n ,那么G 与-------同构。

5、A={1.2.3} B={2.5.6} 那么A ∩B=-----。

6、假设映射ϕ既是单射又是满射,则称ϕ为-----------------。

7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得010=+++n n a a a αα 。

8、a 是代数系统)0,(A 的元素,对任何A x ∈均成立x a x = ,则称a 为---------。

安徽大学期末试卷近世代数试卷.doc

安徽大学期末试卷近世代数试卷.doc

近 世 代 数 试 卷一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。

( )2、设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。

( )3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f 。

( )4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。

( )5、如果群G 的子群H 是循环群,那么G 也是循环群。

( )6、群G 的子群H 是不变子群的充要条件为H Hg g H h G g ⊆∈∀∈∀-1;,。

( )7、如果环R 的阶2≥,那么R 的单位元01≠。

( )8、若环R 满足左消去律,那么R 必定没有右零因子。

( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。

( )10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主理想。

( )二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。

答案选错或未作选择者,该题无分。

每小题1分,共10分)1、设n A A A ,,,21Λ和D 都是非空集合,而f 是n A A A ⨯⨯⨯Λ21到D 的一个映射,那么( )①集合D A A A n ,,,,21Λ中两两都不相同;②n A A A ,,,21Λ的次序不能调换; ③n A A A ⨯⨯⨯Λ21中不同的元对应的象必不相同;④一个元()n a a a ,,,21Λ的象可以不唯一。

2、指出下列那些运算是二元运算( ) ①在整数集Z 上,ab b a b a +=ο; ②在有理数集Q 上,ab b a =ο;③在正实数集+R 上,b a b a ln =ο;④在集合{}0≥∈n Z n 上,b a b a -=ο。

近世代数10套试题

近世代数10套试题

《近世代数》试卷1(时间120分钟)二、判断题(对打“√”,错打“×”,每小题2分,共20分)1. ()循环群的子群是循环子群。

2. ()满足左、右消去律的有单位元的半群是群。

3. ()存在一个4阶的非交换群。

4. ()素数阶的有限群G的任一子群都是G的不变子群。

5. ()无零因子环的特征不可能是2001。

6. ()无零因子环的同态象无零因子。

7. ()模97的剩余类环Z97是域。

8. ()在一个环中,若左消去律成立,则消去律成立。

9. ()域是唯一分解整环。

10. ()整除关系是整环R的元素间的一个等价关系。

一、填空题(共20分,第1、4、6小题各4分,其余每空2分)1. 设A、B是集合,| A |=3,| B |=2,则共可定义个从A到B的映射,其中有个单射,有个满射,有个双射。

2. 设群G是24阶群,G中元素a的阶是6,则元素a2的阶为,子群H=< a3>的在G中的指数是。

3. 设G=< a>是10阶循环群,则G的非平凡子群的个数是。

4. 在模12的剩余环R={[0], [1], ……, [11]}中,[5]+[10]=,[5]·[10]=,方程x2=[1]的所有根为。

5. 环Z6的全部零因子是。

6. 整环Z[√-3 ]不是唯一分解整环,因为它的元素α=在Z[√-3 ]中有两种本。

(共30分)1.设S3是3次对称群,a=(123)∈S3.(1)写出H=< a>的所有元素.(2)计算H的所有左陪集和所有右陪集.(3)判断H是否是S3的不变子群,并说明理由.2. 求模18的剩余类加群(Z18,+,[0])的所有子群及这些子群的生成元。

3. 在整数环Z中,求由2004,125生成的理想A=(2004,125)。

四、证明题(共30分)1.设G是一个阶为偶数的有限群,证明(1)G中阶大于2的元素的个数一定为偶数;(2)G中阶等于2的元素的个数一定为奇数。

近世代数试卷

近世代数试卷

安徽大学2008—2009学年第一学期《近世代数》考试试卷(B 卷)一、分析判断题(请判断下列命题对错,并简要说明理由)1、模n 的同余关系是一个等价关系.2、整数集Z 对于普通的数的乘法作成一个群.3、x <>是[]Z x 的一个极大理想.4、在同态映射下,正规子群的象是正规子群.5、数域F 上的多项式环[]F x 是一个欧氏环.二、计算分析题1、设两个六次置换:(134652)σ=,(1235)(46)τ=计算:στ,2τσ,1τστ-.2、求剩余类环12Z 的所有可逆元和所有子环.3、在8Z 中计算:32([4][3][2])([5][3])x x x x +--+三、举例题(对下列的各种情形,请各举一例)1、环的素理想而非极大理想;2、环和其一个子环均有单位元,但二者不相等;3、正规子群的正规子群不是原来群的正规子群.四、证明题(本题共6小题,每小题10分,共60分)1、证明在一个有限群中:1) 阶数大于2的元素的个数一定是偶数;2) 偶数阶群里阶等于2的元素个数一定是奇数.2、设H G ≤,证明:对1,a G aHa G -∀∈≤且1aHa H -≅.3、证明:对集合2,a b R a b F b a ⎧⎫⎛⎫⎪⎪=∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭数域关于普通的矩阵的加法和乘法作成一个有单位元的交换环.4、设R 是一个无零因子的环,且1R >.则1)R 中所有非零元素(对加法)的阶均相同;2)若R 的特征有限,则必为素数.5、设,H K 是群G 的两个正规子群,证明:1)如果GH 与G K 都是交换群,则G H K 也是交换群; 2)若H K = {}e ,证明:H 与K 中元素相乘时可交换.6、环R 的一个理想N 叫做诣零的,如果对a N ∀∈,均存在n Z +∈,使得0n a =,证明:1) 若N 是R 的诣零理想,则R 是诣零的RN ⇔是诣零的;2) 环R 的两个诣零理想之和仍为诣零理想.安徽大学2009—2010学年第一学期《近世代数》考试试卷(B 卷)一、分析判断题(请判断下列命题对错,并简要说明理由)1、设:X Y ϕ→为一个映射,A 是X 的一个非空子集,则1(())A A ϕϕ-=.2、整数集Z 对于普通的数的乘法作成一个半群.3、整数环的全部素理想是由所有素数p 生成的主理想p <>和自己本身.4、若,H G K G ≤≤,则HK G ≤.5、域是一个欧氏环.二、计算分析题(本题共3小题,每小题5分,共15分)1、给出剩余类环12Z 的所有素理想和极大理想.2、设(143)(45)(26)τ=,7(267)(43)S σ=∈,1) 求τ,σ的阶; 2) 计算1?στσ-=, 1?στσ-=.3、求多项式321x x x +-- 在8Z 中的所有根.三、举例题(对下列的各种情形,请各举一例)1、除环而非域;2、群的正规子群而非特征子群.四、证明题(本题共6小题,每小题10分,共60分)1、证明:1) 若环R 有正则元,则全体正则元对乘法作成一个半群;2) 环R 的元素0a ≠是正则元当且仅当由0axa =可得0x =.2、设,H K 是群G 的两个正规子群,且二者的交为{}e .证明:H 与K 的元素相乘时可换.3、设G 是一个群,,a b G ∈,11a b ab --称为,a b 的换位元,记作[],a b .由G 的全体换位元生成的群称为G 的换位子群,记作G '.证明:1) G '是G 的正规子群;2) 设N G ,则G N 是交换群G N '⇔≤4、设,a b 是群G 中阶分别为m 与n 的两个元素.证明:若ab ba =,[] ,ab m n ,其中[],m n 为m 与n 的最小公倍数, 并证明G 中有阶为[],m n 的元素.5、证明:Gauss 整环[]Z i 是一个欧氏环.6、设R 是一个阶大于1且有单位元的可换环.证明:R 是域⇔R 到任意环的非零同态都是单的.。

近世代数期末考试试卷及答案

近世代数期末考试试卷及答案

近世代数试题一、单项选择题 ( 本大题共 5 小题,每小题 3 分,共 15 分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、设 G 有 6 个元素的循环群, a 是生成元,则 G 的子集()是子群。

A、aB、 a,eC、 e,a 3D、 e, a,a 32、下面的代数系统( G, * )中,()不是群A、G为整数集合, * 为加法B、G为偶数集合, * 为加法C、G为有理数集合, * 为加法D、G为有理数集合, * 为乘法3、在自然数集 N 上,下列哪种运算是可结合的?()A、a*b=a-bB、a*b=max{a,b}C、 a*b=a+2bD、a*b=|a-b|4、设 1 、 2 、3是三个置换,其中 1 =(12)(23)(13),2 =(24)(14),3=( 1324),则3 =()A、2 B 、12 D 、2112C 、25、任意一个具有 2 个或以上元的半群,它()。

A、不可能是群B、不一定是群C、一定是群D、是交换群二、填空题 ( 本大题共 10 小题,每空 3 分,共 30 分) 请在每小题的空格中填上正确答案。

错填、不填均无分。

1、凯莱定理说:任一个子群都同一个----------同构。

2、一个有单位元的无零因子 ----- 称为整环。

3、已知群G中的元素a的阶等于 50,则a4的阶等于 ------。

4、a 的阶若是一个有限整数n,那么 G与-------同构。

5、A={1.2.3}B={2.5.6}那么 A∩B=-----。

6、若映射既是单射又是满射,则称为-----------------。

7 、叫做域F的一个代数元,如果存在F的-----a, a1,, an使得n8、a 是代数系统( A,0)的元素,对任何x A均成立x a x,则称 a 为---------。

9、有限群的另一定义:一个有乘法的有限非空集合G作成一个群,如果满足G对于乘法封闭;结合律成立、---------。

安徽大学2020-2021学年第一学期软件工程专业《近世代数》试卷附答案

安徽大学2020-2021学年第一学期软件工程专业《近世代数》试卷附答案

安徽大学2020-2021学年第一学期软件工程专业近世代数试题一、单项选择题(本大题共5小题,每小题3分,共15分)1.设集合A中含有5个元素,集合B中含有2个元素,那么,A与B的积集合A ×B中含有()个元素。

A.2B.5C.7D.102.设A=B=R(实数集),如果A到B的映射ϕ:x→x+2,∀x∈R,则ϕ是从A到B的()A.满射而非单射B.单射而非满射C.一一映射D.既非单射也非满射3.设S3={(1),(12),(13),(23),(123),(132)},那么,在S3中可以与(123)交换的所有元素有()A.(1),(123),(132)B.(12),(13),(23)C.(1),(123)D.S3中的所有元素4.设Z15是以15为模的剩余类加群,那么,Z15的子群共有()个。

A.2B.4C.6D.85.下列集合关于所给的运算不作成环的是()A.整系数多项式全体Z[x]关于多项式的加法与乘法B.有理数域Q上的n级矩阵全体M n(Q)关于矩阵的加法与乘法C.整数集Z关于数的加法和新给定的乘法“ ”:∀m,n∈Z,m n=0D.整数集Z关于数的加法和新给定的乘法“ ”:∀m,n∈Z,m n=1二、填空题(本大题共10小题,每空3分,共30分)6.设“~”是集合A的一个关系,如果“~”满足___________,则称“~”是A 的一个等价关系。

7.设(G,·)是一个群,那么,对于∀a,b∈G,则ab∈G也是G中的可逆元,而且(ab)-1=___________。

8.设σ=(23)(35),τ=(1243)(235)∈S5,那么στ=___________(表示成若干个没有公共数字的循环置换之积)。

9.如果G是一个含有15个元素的群,那么,根据Lagrange定理知,对于∀a∈G,则元素a的阶只可能是___________。

10.在3次对称群S3中,设H={(1),(123),(132)}是S3的一个不变子群,则商群G/H中的元素(12)H=___________。

近世代数期末考试试卷与答案

近世代数期末考试试卷与答案

.....一、单项选择题 (本大题共 5 小题,每题 3 分,共 15 分)在每题列出的四个备选项中只有一个是切合题目要求的,请将其代码填写在题后的括号内。

错选、多项选择或未选均无分。

1、设 G 有 6 个元素的循环群, a 是生成元,则 G 的子集()是子群。

A、aB、 a, eC、 e,a 3D、 e, a, a32、下边的代数系统( G,* )中,()不是群A、G 为整数会合, *为加法B、 G 为偶数会合,*为加法C、G 为有理数会合,*为加法D、G 为有理数会合,*为乘法3、在自然数集 N 上,以下哪一种运算是可联合的?()A、a*b=a-bB、a*b=max{a,b}C、 a*b=a+2b D 、a*b=|a-b|4、设 1 、 2 、3是三个置换,此中1 = (12 )( 23)( 13),2 = (24)( 14),3=(1324),则3 =()A、 2B、12C、 2D、 2 11 25、随意一个拥有 2 个或以上元的半群,它()。

A、不行能是群B、不必定是群C、必定是群D、是互换群二、填空题 (本大题共 10 小题,每空 3 分,共 30 分 )请在每题的空格中填上正确答案。

错填、不填均无分。

1、凯莱定理说:任一个子群都同一个 ----------同构。

2、一个有单位元的无零因子----- 称为整环。

3、已知群G中的元素a的阶等于 50,则a4的阶等于 ------ 。

.....4、a 的阶假如一个有限整数 n,那么 G 与------- 同构。

5、A={1.2.3} B={2.5.6} 那么 A∩B=----- 。

6、若映照既是单射又是满射,则称为-----------------。

7 、叫做域 F 的一个代数元,假如存在 F 的----- a, a1,,an使得n0 。

a0 a1 a n8 、a是代数系统( A,0)的元素,对任何 x A 均成立x a x ,则称 a 为--------- 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《近世代数》试卷
一、填空题(每空2分,共20分)
1、4次对称群4S 的阶是____,在4S 中,(14)(312)=_______,(1423)1-=_______, 元素(132)的阶是______.
2、整数加群Z 是一个循环群,它有且仅有两个生成元是______和_____.
3、模6的剩余类环6Z 的全部零因子是__________.
4、在模12的剩余类环12Z 中,[6]+[8]=_______,[8][6]=_______.
5、17Z 是模17的剩余类环,在一元多项式环][17x Z 中,=+17
])
8[]6([x _________.
二、判断题(对打“√”,错打“×”,不说明理由,每小题2分,共20分)
1、( )交换群的子群是不变子群。

2、( )若21,H H 是群G 的子群,则21H H Y
也G 是的子群。

3、( )任意两个循环群同构。

4、( )模27的剩余类环27Z 是域。

5、( )一个阶是19的群只有两个子群。

6、( )欧氏环上的一元多项式环是欧氏环。

7、( )在一个环中,若左消去律成立,则右消去律成立。

8、( )域是唯一分解环。

9、( )存在特征是143的无零因子环。

10、( )只有零理想和单位理想的环是域。

三、解答题(第1题15分,第2,3题各10分,共35分)
1、设)}132(),123(),1{( H 是3次对称群3S 的子群,求H 的所有左陪集和右陪集,试问H 是否是3S 的不变子群?为什么?
2、求模12的剩余类环12Z 的所有理想。

3、设G 是交换群,e 是G 的单位元,n 是正整数,},,|{e a G a a H n
=∈=问:H 是否是G 的子群?为什么?
四、证明题(第1,2题各10分,第3题5分,共25分)
1、证明:整数环Z 中由34和15生成的理想(34,15)就是Z 本身。

2、设G 和H 是两个群,G e 和H e 分别是G 和H 的单位元,f 是群G 到H 的满同态映射,B 是H 的子群,证明:})(,|{B a f G a a A ∈∈=是G 的子群。

3、设S 是环)1,0,,,(⋅+R 的子环,N 是R 的理想且}0{=N S I ,证明:剩余类环N
R 有子环
与S 同构。

相关文档
最新文档