高校规模分析模型 (数学建模)
数学建模数学建模简介
数学建模的一般步骤
实际问题
抽象、简化、假设 确定变量、参数
建立数学模型并数学、数值地求解、确定参数
用实际问题的实测数据等来检验该数学模 型
不符合实际
符合实际
交付使用,从而可产生经济、社会效益
数学模型(Mathematical Model)
• 数学模型是对于现实世界的一个特定对象, 一个特定目的,根据特有的内在规律,做出 一些必要的假设,运用适当的数学工具,得 到一个数学结构。
A 2001
B A 2002 B A 2003 B A 2004 B
血管的三维重建 公交车调度
车灯线光源的优化设计 彩票中的数学
非典型肺炎的传染和控制 露天矿生产的车辆安排 奥运会临时超市网点设计 电力市场的输电阻塞管理
2005 2006 2007 2008
A
长江水质的评价和预测
B
DVD 在线租赁
年份 1992 1993 1994 1995 1996 1997 1998 1999 -2009
省(市、自治区)数 10 16 21 23 25 26 26 26 33
院校数 79 101 196 259 337 373 400 460
1137
队数 314 420 867 1234 1683 1874 2103 2657 15042(12272 +2770)
• 全国高校规模最大的课外科技活动 • 1999年开始设立大专组的竞赛
竞赛内容:题目由工程技术、管理科学中的实际问 题简化而成,没有事先设定的标准答案,但留有充 分余地供参赛者发挥其聪明才智和创造精神。
竞赛形式:三名大学生组成一队,可以自由地收集 资料、调查研究,使用计算机、互联网和任何软件, 在三天时间内分工合作完成一篇论文。
数学建模介绍
模型人们在观察、分析和研究一个现实对象时经常使用模型,如展览馆里的飞机模型、水坝模型,实际上,照片、玩具、地图、电路图等都是模型,它们能概括地、集中地反映现实对象的某些特征,从而帮助人们迅速、有效地了解并掌握那个对象。
数学模型不过是更抽象些的模型。
编辑本段数学模型简单地说:数学模型就是对实际问题的一种数学表述。
具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。
更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。
数学结构可以是数学公式,算法、表格、图示等。
编辑本段数学建模当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。
这个建立数学模型的全过程就称为数学建模。
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。
数学建模是在20世纪60和70年代进入一些西方国家大学的,我国清华大学、北京理工大学等在80年代初将数学建模引入课堂。
经过20多年的发展现在绝大多数本科院校和许多专科学校都开设了各种形式的数学建模课程和讲座,为培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径。
编辑本段数学建模竞赛大学生数学建模竞赛最早是1985年在美国出现的, 1988年左右,北京理工大学叶其孝教授受邀到美国观摩比赛。
1989年由清华大学和北京理工大学组队4支,这是中国大学生第一次参加国际大学生数学建模竞赛。
美国大学生数模竞赛规模示意图1992年由中国工业与应用数学学会组织举办了我国10城市的大学生数学模型联赛,74所院校的314队参加。
数学建模介绍
数学建模介绍1.1 数学模型及其分类数学建模作为用数学方法解决问题的第一步,它与数学本身有着同样悠久的历史。
一个羊倌看着他的羊群进入羊圈,为了确信他的羊没有丢失,他在每只羊进入羊圈时,则在旁边放一颗小石子,如果每天羊全部入圈而他那堆小石子刚好全部放完,则表示他的羊和以前一样多。
究竟羊倌数的是石子还是羊,那是毫无区别的,因为羊的数目同石子的数目彼此相等。
这实际上就使石子与羊“联系”起来,建立了一个使石子与羊一一对应的数学模型。
(1)什么是数学模型人们在认识研究现实世界里的客观对象时,常常不是直接面对那个对象的原形,有些是不方便,有些甚至是不可能直接面对原形,因此,常常设计、构造它的各种各样的模型。
如各式各样的玩具模型、展览厅里的三峡大坝模型、化学上的分子结构模型等。
这些模型都是人们为了一定目的,对客观事物的某一部分进行简化、抽象、提炼出来的原形替代物,集中反映了原形中人们需要的那一部分特征,因而有利于人们对客观对象的认识。
数学模型也是反映客观对象特征的,只不过它刻画的是事物在数量方面的特征或数学结构及其变化规律。
数学模型是人们为了认识客观对象在数量方面的特征、定量地分析对象的内在规律、用数学的语言和符号去近似地刻画要研究的那一部分现象时,所得到的一个数学表述。
建立数学模型的过程称为数学建模。
(2) 数学模型的重要作用进入20世纪以来,数学以空前的广度和深度向一切领域渗透,作为数学的应用,数学建模也越来越受到人们的重视。
在一般工程技术领域,数学模型仍是工程技术人员定量研究有关工程技术问题的重要工具;而随着数学与其他学科领域诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生;计算机的发展给数学及作为数学应用的数学建模带来了前所未有的机遇和挑战。
计算机改变了人类的生活方式、思考方式和研究方式,极大地提高了人们的计算能力、搜索和分析海量数据和信息的能力。
数学建模各类方法归纳总结
数学建模各类方法归纳总结数学建模是一门应用数学领域的重要学科,它旨在通过数学模型对现实世界中的问题进行分析和解决。
随着科技的不断发展和应用需求的增加,数学建模的方法也日趋多样化和丰富化。
本文将对数学建模的各类方法进行归纳总结,以期帮助读者更好地了解和应用数学建模。
一、经典方法1. 贝叶斯统计模型贝叶斯统计模型是一种基于概率和统计的建模方法。
它通过利用先验知识和已知数据来确定未知数据的后验概率分布,从而进行推理和预测。
贝叶斯统计模型在金融、医药、环境等领域具有广泛应用。
2. 数理统计模型数理统计模型是基于概率统计理论和方法的建模方法。
它通过收集和分析样本数据,构建统计模型,并通过参数估计和假设检验等方法对数据进行推断和预测。
数理统计模型在市场预测、风险评估等领域有着重要的应用。
3. 线性规划模型线性规划模型是一种优化建模方法,它通过线性目标函数和线性约束条件来描述和解决问题。
线性规划模型在供应链管理、运输优化等领域被广泛应用,能够有效地提高资源利用效率和降低成本。
4. 非线性规划模型非线性规划模型是一种对目标函数或约束条件存在非线性关系的问题进行建模和求解的方法。
非线性规划模型在经济学、物理学等领域有着广泛的应用,它能够刻画更为复杂的现实问题。
二、进阶方法1. 神经网络模型神经网络模型是一种模拟人脑神经元系统进行信息处理的模型。
它通过构建多层神经元之间的连接关系,利用反向传播算法进行训练和学习,实现对复杂数据的建模和预测。
神经网络模型在图像识别、自然语言处理等领域取得了显著的成果。
2. 遗传算法模型遗传算法模型是一种模拟自然界生物进化过程的优化方法。
它通过模拟遗传、交叉和突变等过程,逐步搜索和优化问题的最优解。
遗传算法模型在组合优化、机器学习等领域具有广泛的应用。
3. 蒙特卡洛模拟模型蒙特卡洛模拟模型是一种基于随机模拟和概率统计的建模方法。
它通过生成大量的随机样本,通过对样本进行抽样和分析,模拟系统的运行和行为,从而对问题进行求解和评估。
数学建模简介
中国大学生建模竞赛题目汇集
2011年赛题 • (A)城市表层土壤重金属污染分析 • (B)交巡警服务平台的设置与调度 • (C)企业退休职工养老金制度的改革 • (D)天然肠衣搭配问题 2012年赛题 • (A)葡萄酒的评价 • (B)太阳能小屋的设计 • (C)脑卒中发病环境因素分析及干预
四、我校数学建模协会简介及 成果
徐州工程学院数学建模协会成立于2003年10月,它是 由本校对数学建模有共同爱好且有一定基础的学生 发起成立学习型社团组织,协会由数理学院院长李 苏北担任长期顾问,以姜英姿,赵建强等老师为核心 的多位优秀老师担任指导老师,并同时接受校院两级 团委的指导。
建模协会活动
模型构成
xk~第k次渡河前此岸的商人数 yk~第k次渡河前此岸的随从数 sk=(xk , yk)~过程的状态 xk, yk=0,1,2,3; k=1,2,
S ~ 允许状态集合
S={(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2} uk, vk=0,1,2; uk~第k次渡船上的商人数 vk~第k次渡船上的随从数 k=1,2, dk=(uk , vk)~决策 D={(u , v) u+v=1, 2} ~允许决策集合 sk+1=sk+(-1)kdk ~状态转移律
年 1625 1830 1930 1960 1974 1987 1999 人口(亿) 5 10 20 30 40 50 60
中国人口增长概况
年 1908 人口(亿) 3
1933 1953 1964 1982 1990 1995 4.7 6 7 10.1 11.3 12
控制人口过快增长
研究人口变化规律
Logistic模型在经济领域中的应用(如耐用消费品的售量)
数学建模简介1
数学建模的方法和步骤
模型假设
在明确建模目的,掌握必要资料的基础上, 通过对资料的分析,根据对象的特征和建 模目的,找出起主要作用的因素,对问题 进行必要的、合理的简化,用精确的语言 提出若干符合客观实际的合理假设。
数学建模的方法和步骤
模型假设
作出合理假设,是建模至关重要的一步。 如果对问题的所有因素一概考虑,无疑是 一种有勇气但方法欠佳的行为,所以高超 的建模者能充分发挥想象力、洞察力和判 断力 ,善于辨别主次,而且为了使处理方 法简单,应尽量使问题线性化、均匀化。
看谁答得快
1、某甲早8时从山下旅店出发沿一路径上山,下 午5时到达山顶并留宿。次日早8时沿同一路径下 山,下午5时回到旅店。某乙说,甲必在两天中 的同一时刻经过路径中的同一地点,为什么?
2、两兄妹分别在离家2千米和1千米且方向相反 的两所学校上学,每天同时放学后分别以4千米/ 小时和2千米/小时的速度步行回家,一小狗以6千 米/小时的速度从哥哥处奔向妹妹,又从妹妹处奔 向哥哥,如此往返直至回家中,问小狗奔波了多 少路程?
四、模型的特点:
逼真性和可行性 渐进性 强健性 可移植性 非预测性 条理性 技艺性 局限性
五、建模能力的培养:
具有广博的知识(包括数学和各种实际知 识)、丰富的经验、各方面的能力、注意 掌握分寸。
具有丰富的想象力和敏锐的洞察力
类比法和理想化方法
直觉和灵感
实例研究法
学 习 、 分 析 别 人 的 模 型 亲 手 去 做
模型集中反映了原型中人们需要的那一部分特征
什么是数学建模
什么是数学模型?
简单地说:数学模型就是对实际问题的一种 数学表述。
具体一点说:数学模型是以部分现实世界为某 种研究目的的一个抽象的、简化的数学结构。 这种数学结构可以是数学公式、算法、表格、 图示等。
数学建模简介
MATLAB求解代码: x=[50,100,150,200,250,300,350,400,450,500,550]; y=[1.000,1.875,2.750,3.250,4.375,4.875,5.675,6.500,7.250,8.000,8.750]; scatter(x,y,'.') xlabel('质量') ylabel('伸长')
MATLAB求解代码: x=[50,100,150,200,250,300,35 0,400,450,500,550]; y=[1.000,1.875,2.750,3.250,4.3 75,4.875,5.675,6.500,7.250,8.0 00,8.750]; c1=polyfit(x,y,1); tp1=0:50:550; x1=polyval(c1,tp1); plot(tp1,x1,x,y,'.') xlabel('质量m') ylabel('伸长e')
建立数学模型过程
建立数学模型没有固定模式,一般大致可分为 以下几个步骤: 分析问题 合理假设(简化) 模型建立 模型求解 模型检验(包含了模型评价、推广或改进等) 模型应用
简化关系:比例性
例1 测试比例性
y k x( k 0)
y 记为:∝ x
做一个测量弹簧的伸长作为置于弹簧末端的质量(以重量计) 的函数的实验。
模型检验:数据拟合效果好,所以建立的比例模型合理。
数学建模基础
基本概念
原型(Prototype)
人们在现实世界中关心、研究、从 事的生产、管理的实际对象称为原型。 模型(Modle)为了某个特定的目的将原型的某一部分 信息进行简缩、提炼而成的原型的替代物称为模型。 模型有直观模型、物理模型、思维模型、符号模型、 计算模型、数学模型等。一个原型可以有多个不同的 模型。 数学模型(Mathematical Model)由数字、字母或其他 数学符号组成,描述实际对象的数量规律的数学公式、 图形或算法称为数学模型。即就是对于现实世界的一 个特定对象,为一个特定目的,根据特有的内在规律, 做出一些必要的简化假设,也能用适当的数学工具, 得到一个数学结构。
全国大学生数学建模竞赛常用建模方法总结
邯郸学院本科毕业论文题目全国大学生数学建模竞赛常用建模方法探讨学生柴云飞指导教师闫峰教授年级2009级本科专业数学与应用数学二级学院数学系(系、部)邯郸学院数学系2013年6月郑重声明本人的毕业论文是在指导教师闫峰的指导下独立撰写完成的.如有剽窃、抄袭、造假等违反学术道德、学术规范和侵权的行为,本人愿意承担由此产生的各种后果,直至法律责任,并愿意通过网络接受公众的监督.特此郑重声明.论文经“中国知网”论文检测系统检测,总相似比为5.80%.毕业论文作者(签名):年月日全国大学生数学建模竞赛常用建模方法探讨摘要全国大学生数学建模竞赛作为全国高校规模最大的基础性学科竞赛,越来越受到人们的重视,所以建模竞赛的方法也就变得尤为重要.随着竞赛的不断发展,赛题的开放性逐步增大,一道赛题可用多种解法,各种求解的算法有时会相互融合,同时也在向大规模数据处理方向发展,这就对选手的能力提出了更高的要求.由于建模方法种类众多,无法一一介绍,所以本文主要介绍了四种比较常用的数学建模竞赛方法,包括微分与差分方程建模方法、数学规划建模方法、统计学建模方法、图论方法,并结合历年赛题加以说明.关键词:数学建模竞赛统计学方法数学规划图论Commonly Used Modeling Method ofChina Undergraduate Mathematical Contest in ModelingChai yunfei Directed by Professor Yan fengABSTRACTThe China undergraduate mathematical contest in modeling has been attention by more and more people as a basic subject of the largest national college competition. The method of modeling competition has become more and more important. Open questions gradually increased with the development of competition. Most of the games can be solved by lots of solutions. Sometimes these methods can be used together. And there is also a lot of data which puts forward higher requirement on the ability of players. The modeling methods is too numerous to mention, so this article mainly four kinds Commonly used modeling method are introduced that differential and difference equations modeling method, Mathematical programming modeling method, Statistics modeling method, graph theory and interprets with calendar year’s test questions.KEY WORDS:Mathematical contest in modeling Statistics method Mathematical programming Graph theory目录摘要 (I)英文摘要 (II)前言 (1)1微分方程与差分方程建模 (2)1.1微分方程建模 (2)1.1.1微分方程建模的原理和方法 (2)1.1.2微分方程建模应用实例 (3)1.2差分方程建模 (4)1.2.1 差分方程建模的原理和方法 (4)1.2.2 差分方程建模应用实例 (5)2数学规划建模 (5)2.1线性规划建模的一般理论 (6)2.2线性规划建模应用实例 (7)3统计学建模方法 (8)3.1聚类分析 (8)3.1.1 聚类分析的原理和方法 (8)3.1.2 聚类分析应用实例 (8)3.2回归分析 (9)3.2.1 回归分析的原理与方法 (9)3.2.2 回归分析应用实例 (10)4图论建模方法 (10)4.1两种常见图论方法介绍 (11)4.1.1 模拟退火法的基本原理 (11)4.1.2 最短路问题 (11)4.2图论建模应用实例 (12)5小结 (13)参考文献 (13)致谢 (14)前言全国大学生数学建模竞赛创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛.参赛者需要根据题目要求,在三天时间内完成一篇包括模型假设、模型建立和求解、计算方法的设计和实现、模型结果的分析和检验、模型的改进等方面的论文.通过参加竞赛的训练和比赛,可以提高学生用数学方法解决实际问题的意识和能力,而且在培养团队精神和撰写科技论文等方面都会得到十分有益的锻炼.竞赛题目的涉及面比较宽,有工业、农业、工程设计、交通运输、经济管理、生物医学和社会事业等.竞赛选手不一定预先掌握深入的专业知识,而只需要学过高等数学的相关课程即可,并且题目具有较大的灵活性,便于参赛者发挥其创造能力.近年来,竞赛题目包含的数据较多,手工计算一般不能实现,所以就对参赛者的计算机能力提出了更高的要求,如2003年B题,某些问题的解决需要使用计算机软件;2001年A题,问题的数据读取需要计算机技术,并且对于给出的图像,需要用图像处理的方法获得;再如2004年A题则需要利用数据库数据,数据库方法,统计软件包等等.竞赛题目的总体特点可大致归纳如下:(1)实用性不断加强,问题和数据来自于实际,解决方法需要切合实际,模型和结果可以应用于实际;(2)综合性不断加强,解法多样,方法融合,学科交叉;(3)数据结构越来越复杂,包括数据的真实性,数据的海量性,数据的不完备性,数据的冗余性等;(4)开放性也越来越突出,题意的开放性,思路的开放性,方法多样,结果不唯一等.总体来说,赛题向大规模数据处理方向发展,求解算法和各类现代算法相互融合.纵观历年的赛题,主要用到的建模方法有:初等数学模型、微分与差分方程建模、组合概率、数据处理、统计学建模、计算方法建模、数学规划、图论方法、层次分析、插值与拟合、排队论、模糊数学、随机决策、多目标决策、随机模拟、计算机模拟法、灰色系统理论、时间序列等.本文不一一列举竞赛题目中涉及的所有方法,只是重点讨论其中一些比较常用的方法,包括微分与差分方程建模方法、数学规划建模方法、统计学建模方法、图论建模方法,并结合案例说明建模方法的原理及应用.1 微分方程与差分方程建模在很多竞赛题目中,常常会涉及很多变量之间的关系,找出它们之间的函数关系式具有重要意义.可在许多实际问题中,我们常常不能直接给出所需要的函数关系,但可以得到含有所求函数的导数(或微分)或差分(即增量)的方程,这样的方程称为微分方程或差分方程. 建立微分方程或差分方程的数学模型是一种重要的建模方法.如1996年A 题“最优捕鱼策略”,1997年A 题“零件参数设计”,2003年A 题“SARS 的传播”,2007年A 题“中国人口增长预测”,2009年A 题“最优捕鱼策略”等赛题中,都用到了这种方法.1.1 微分方程建模1.1.1 微分方程建模的原理和方法一般来说,任何时变问题中随时间变化而发生变化的量与其它一些量之间的关系经常以微分方程的形式来表现.例1.1 有一容器装有某种浓度的溶液,以流量1v 注入该容器浓度为1c 的同样溶液,假定溶液立即被搅拌均匀,并以2v 的流量流出混合后的溶液,试建立反映容器内浓度变化的数学模型.解 注意到溶液浓度=溶液体积溶液质量,因此,容器中溶液浓度会随溶质质量和溶液体积变化而发生变化.不妨设t 时刻容器中溶质质量为()t s ,初始值为0s ,t 时刻容器中溶液体积为()t v ,初始值为0v ,则这段时间()t t t ∆+,内有⎩⎨⎧∆-∆=∆∆-∆=∆t v t v V t v c t v c s 212211, (1) 其中1c 表示单位时间内注入溶液的浓度,2c 表示单位时间内流出溶液的浓度,当t ∆很小时,在()t t t ∆+,内有≈2c =)()(t V t s tv v V t s )()(210-+. (2) 对式(1)两端同除以t ∆,令0t ∆→,则有⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=00212211)0(,)0(V V s s v v dtdV v c v c dt ds . (3) 即所求问题的微分方程模型.虽然它是针对液体溶液变化建立的,但对气体和固体浓度变化同样适用.实际应用中,许多时变问题都可取微小的时间段t ∆去考察某些量之间的变化规律,从而建立问题的数学模型,这是数学建模中微分方程建模常用手段之一.常用微分方程建模的方法主要有:(1)按实验定律或规律建立微分方程模型.此种建模方法充分依赖于各个学科领域中有关实验定律或规律以及某些重要的已知定理,这种方法要求建模者有宽广的知识视野,这样才能对具体问题采用某些熟知的实验定律.(2)分析微元变化规律建立微分方程模型.求解某些实际问题时,寻求一些微元之间的关系可以建立问题的数学模型.如例1.1中考察时间微元t ∆,从而建立起反应溶液浓度随时间变化的模型.此建模方法的出发点是考察某一变量的微小变化,即微元分析,找出其他一些变量与该微元间的关系式,从微分定义出发建立问题的数学模型.(3)近似模拟法.在许多实际问题中,有些现象的规律性并非一目了然,或有所了解亦是复杂的,这类问题常用近似模拟方法来建立问题的数学模型.一般通过一定的模型假设近似模拟实际现象,将问题做某些规范化处理后建立微分方程模型,然后分析、求解,并与实际问题作比较,观察模型能否近似刻画实际现象.近似模拟法的建模思路就是建立能够近似刻画或反映实际现象的数学模型,因此在建模过程中经常做一些较合理的模型假设使问题简化,然后通过简化建立近似反映实际问题的数学模型.1.1.2 微分方程建模应用实例例1.2(2003年高教社杯全国大学生数学建模竞赛A 题) SARS 传播的预测. 2003年爆发的“SARS ”疾病得到了许多重要的经验和教训,使人们认识到研究传染病的传播规律的重要性.题目给出了感病情况的三个附件,要求对SARS 的传播建立数学模型:(1)对SARS 的传播建立一个自己的模型,并说明模型的优缺点;(2)收集SARS 对经济某个方面影响的数据,建立相应的数学模型并进行预测.问题求解过程分析 由于题目具有开放性,故选择文献[1]中的求解思路分析. 传染病的传播模式可近似分为自由传播阶段和控后阶段,然后将人群分为易感者S ,感病者I ,移出者R 三类.由三者之间的关系可得到下列微分方程:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=++=-=-=NR I S hI dt dR hI kIS dt dI kISdt dS , 利用附件中给出的数据,可以将上述方程变形为I hI kNI dtdI λ=-=, 其中h kN -=λ,其解为t e I t I λ-=0)(.其中0I 为初始值.但此模型只适用于病例数与总人口数具有可比性的情况,当病例数远小于总人口数时,感病人数将随时间以指数增长.这是按实验定律或规律建立的微分方程模型.为进一步改进模型,用计算机跟踪病毒的个体传播情况,又建立计算机模拟模型.然后用计算机模拟北京5月10日之前SARS 的传播情况,并对5月10日以后的传播情况进行预测.但是得到的有效接触率与实际统计数据有所偏差,所以统计数据,为参数的确定寻求医学上的支持,并以随机模拟取代完全确定性的模拟,对原模型进行改进,建立随机模拟模型.通过计算机编程,产生正态分布的随机数,并对传染情况进行500次模拟,即可进行预测,并可得出对SARS 疫情控制提出的相应建议.1.2 差分方程建模1.2.1 差分方程建模的原理和方法差分方程在数学建模竞赛中应用的频率极高,所以要对这种方法引起足够的重视.它针对要解决的目标,引入系统或过程中的离散变量.具体方法是:根据实际的规律性质、平衡关系等,建立离散变量所满足的关系式,从而建立差分方程模型.差分方程可以分为不同的类型,如一阶和高阶差分方程,常系数和变系数差分方程,线性和非线性差分方程等等.建立差分方程模型一般要注意以下问题:(1)注意题中的离散变化量,对过程进行分析,尤其要注意形成变化运动过程的时间或距离的分化而得到离散变量;(2)通过对具体变化过程的分析,列出满足题意的差分方程,其中入手点是找出变量所能满足的平衡关系、增量或减量关系及规律,从而得到差分方程.1.2.2差分方程建模应用实例例1.3(2007年高教社杯全国大学生数学建模竞赛A题)中国人口增长预测.题目要求从中国的实际情况和人口增长的特点出发,参考附录中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测,特别要指出模型中的优点与不足之处.问题求解过程分析由于题目具有开放性,故选择文献[2]中的求解思路分析.通过分析题中相关的数据,考虑到我国近年来人口发展的总趋势,因为涉及到人口的增长和变换,所以可以先用微分方程来建立模型,并对我国人口增长的中短期和长期趋势做出预测.首先,根据灰色系统理论,使用灰色关联分析模型法对人口系统结构进行关联分析,找出影响人口增长的主要因素;其次使用年龄推算法进行短期预测.在建立和求解长期预测模型时,根据人口阻滞增长模型(Logistic模型),可以考虑对中国人口老龄化进程加速、出生人口性别比例持续升高以及乡村人口城镇化等因素建立新的人口增长的差分方程模型.但是它仅给出了人口总数的变化规律,反映不出各类人口的详细信息,所以我们需要建立离散化的模型,并进一步可以得到全面系统地反应一个时期内人口数量状况的差分方程,可以用微分和差分方程理论来表现和模拟人口数量的变化规律.从而对人口分布的状况、变化趋势、总体特征等有更加详细和科学的了解.在模型的求解过程中,用到了MATLAB软件,并做参数估计,利用所得结果和题目给出的近五年来的人口数据,对我国人口发展趋势进行了预测,得到了在老龄化进程加速、出生人口性别比例持续升高以及乡村人口城镇化等因素影响下,未来我国人口发展预测情况.2 数学规划建模数学规划是指在一系列条件限制下,寻求最优方案,使得目标达到最优的数学模型,它是运筹学的一个重要分支.数学规划的内容十分丰富,包括许多研究分支,如:线性规划、非线性规划、整数规划、二次规划、0-1规划、多目标规划、动态规划、参数规划、组合优化、随机规划、模糊规划、多层规划问题等.在1993年A 题“非线性交调的频率设计”,1993年B 题“足球队排名”,1995年A 题“飞行管理问题”,1996年B 题“节水洗衣机”,1997年A 题“零件的参数设计”,1998年A 题“一类投资组合问题”,1999年B 题“钻井布局”,2001年B 题“公交车调度问题”,2002年A 题“车灯线光源的优化”,2006年A 题“出版社书号问题”,2007年B 题“城市公交线路选择问题”等赛题中,都用到了规划的方法.在此以线性规划为例,对规划的方法进行探讨.2.1 线性规划建模的一般理论线性规划建模方法主要用于解决生产实际中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是研究线性约束条件下线性目标函数的极值问题的数学理论和方法.一般的优化问题是指用“最好”的方式,使用或分配有限的资源即劳动力、原材料、机器、资金等,使得费用最小或利润最大.优化模型的一般形式为:()m ax m in 或 ()x f z = (4)().0..≤x g t s ()m i ,,2,1 = (5)()()12,,T n x x x x =,.由(4)、(5)组成的模型属于约束优化.若只有(4)式就是无约束优化.()x f 称为目标函数,()0g x ≤称为约束条件.在优化模型中,如果目标函数()x f 和约束条件中的()g x 都是线性函数,则该模型称为线性规划.建立实际问题线性规划模型的步骤如下:(1)设置要求解的决策变量.决策变量选取得当,不仅能顺利地建立模型而且能方便地求解,否则很可能事倍功半.(2)找出所有的限制,即约束条件,并用决策变量的线性方程或线性不等式来表示.当限制条件多,背景比较复杂时,可以采用图示或表格形式列出所有的已知数据和信息,从而避免“遗漏”或“重复”所造成的错误.(3)明确目标要求,并用决策变量的线性函数来表示,标出对函数是取极大还是取极小的要求.需要特别说明的是,要使用线性规划方法来处理一个实际问题,必须具备下面的条件:(1)优化条件:问题的目标有极大化或极小化的要求,而且能用决策变量的线性函数来表示.(2)选择条件:有多种可供选择的可行方案,以便从中选取最优方案.(3)限制条件:达到目标的条件是有一定限制的(比如,资源的供应量有限度等),而且这些限制可以用决策变量的线性等式或线性不等式表示出来.此外,描述问题的决策变量相互之间应有一定的联系,才有可能建立数学关系,这一点自然是不言而喻的.线性规划模型的求解可用图解法或单纯形法.随着计算机的普及和大量数学软件的出现,可以利用现成的软件MATLAB或LINGO等求解,在此不再叙述.2.2线性规划建模应用实例例2.1(2006年高教社杯全国大学生数学建模竞赛B题)艾滋病疗法的评价及疗效的预测.题目给出了美国某艾滋病医疗试验机构公布的两组数据,数据涉及到了病人CD4和HIV的浓度含量的测试结果.根据所给的资料需要参赛者完成以下问题:(1)利用附件1的数据,预测继续治疗的效果,或者确定最佳治疗终止时间;(2)利用附件2的数据,评价4种疗法的优劣(仅以4CD为标准),并对较优的疗法预测继续治疗的效果,或者确定最佳治疗终止时间;(3)如果病人需要考虑4种疗法的费用,对评价和预测有什么影响.问题求解过程分析由于题目具有开放性,故选择文献[3]中的求解思路进行分析.首先对题目所给数据进行分析,考虑到治疗的效果与患者的年龄有关,将患者按年龄分组,如25~35岁及45岁以上4组.每组中按照4种疗法和4个25岁,45~~14岁,35治疗阶段(如1020周,4030周),构造16个决策单元.取4~~~~0周,2010周,30种药品量为输入,治疗各个阶段末患者的4CD值的比值为输出.CD值与开始治疗时4然后建立相应的数学模型,利用相对有效性评价方法,建立分式规划模型并经过变换,转化为线性规划模型求解,对各年龄组患者在各阶段的治疗效率进行评价.计算结果:对第1年龄组疗法2和4在整个治疗中效率较高,在第4阶段仍然有效;对第2年龄组疗法1在第1,2阶段有效;对第3年龄组疗法1,2,3在第1阶段有效;对第4年龄组疗法1,2在第1,2阶段有效.表明只有2514岁的年4种轻患者,才能在治疗的最~后阶段仍然有有效的疗法.随后,由线性规划模型的对偶形式建立预测模型,对各年龄组各种疗法下一阶段的疗效进行预测.若由某决策单元得到的实际输出大于预测输出,则该决策单元相对有效;反之,说明该种疗法对该组患者在治疗的未来阶段不再有效,应该转换疗法.3 统计学建模方法在数学建模竞赛中,常常会涉及到大量的数据,因此,我们就需要用统计学建模方法对这些数据进行处理.此类方法主要包括统计分析、计算机模拟、回归分析、聚类分析、数据分类、判别分析、主成分分析、因子分析、残差分析、典型相关分析、时间序列等.如2004年A题“奥运会临时超市网点设计问题”,2004年B题“电力市场的输电阻塞管理问题”,2007年A题“人口增长预测问题”,2008年B题“大学学费问题”,2012年A题“葡萄酒的评价”等都用到了这种建模方法.在此选取其中两类方法进行阐述.3.1聚类分析3.1.1聚类分析的原理和方法该方法说的通俗一点就是,将n个样本,通过适当的方法选取m聚类中心,通过研究各样本和各个聚类中心的距离,选择适当的聚类标准,通常利用最小距离法来聚类,从而可以得到聚类.结果利用sas 软件或者spss 软件来做聚类分析,就可以得到相应的动态聚类图.这种模型的的特点是直观,容易理解.聚类分析的类型可分为:Q型聚类(即对样本聚类)和R型聚类(即对变量聚类).通常聚类中有相似系数法和距离法两种衡量标准.聚类方法种类多样,有可变类平均法、中间距离法、最长距离法、利差平均和法等.在应用时要注意,在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理.主要的方法步骤大致如下:(1)首先把每个样本自成一类;(2)选取适当的衡量标准,得到衡量矩阵;(3)重新计算类间距离,得到衡量矩阵;(4)重复第2步,直到只剩下一个类.3.1.2聚类分析应用实例例3.1(2012年高教社杯全国大学生数学建模竞赛A题)葡萄酒的评价.题目的附件中给出了某一年份一些葡萄酒的评价结果,和该年份这些葡萄酒的和酿酒葡萄的成分数据.要求参赛者建立数学模型解决以下问题:(1)分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信;(2)根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级;(3)分析酿酒葡萄与葡萄酒的理化指标之间的联系;(4)分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量.问题求解过程分析由于题目具有开放性,故选择文献[4]中的求解思路分析.由于给定了酿酒葡萄的理化指标,首先可将附录2和附录3中的一些数据进行处理.并可以据此对各种酿酒葡萄进行聚类分析,但是,由于题目中所给的数据庞大,所以可通过主成分分析法,简化并提取大部分有效信息,再用聚类分析对酿酒葡萄进行分级.最后根据酿酒葡萄对应葡萄酒质量的平均值大小进行比较,排序分级.接下来针对问题中分析酿酒葡萄与葡萄酒理化指标之间的联系,及上面整理好的数据,采用回归分析原理,在SPSS中得到酿酒葡萄与葡萄酒的理化指标之间的联系.再通过相关分析,得出相应的相关系数,从而得到相应的判断结论.在分析酿酒葡萄与葡萄酒的理化指标之间的联系时,还用到了多元线性回归分析.该模型用于生活实践中,也可以解决很多实际问题.3.2回归分析回归分析是利用数据统计原理,对大量数据进行数学处理,并确定因变量与某些自变量的相关关系,建立一个相关性较好的回归方程,并加以外推,用于预测今后的因变量的变化的分析方法.3.2.1回归分析的原理与方法回归分析是在一组数据的基础上研究这样几个问题:建立因变量与自变量之间的回归模型;对回归模型的可信度进行检验;判断每个自变量对因变量的影响是否显著;判断回归模型是否适合这组数据;利用回归模型对进行预报或控制.回归分析主要包括一元线性回归、多元线性回归、非线性回归.回归分析的主要步骤为:(1)根据自变量和因变量的关系,建立回归方程.(2)解出回归系数.(3)对其进行相关性检验,确定相关系数.(4)当符合相关性要求后,便可与具体条件结合,确定预测值的置信区间.需要注意的是,要尽可能定性判断自变量的可能种类和个数,并定性判断回归方程的可能类型.另外,最好应用高质量的统计数据,再运用数学工具和相关软件定量定性判断.3.2.2回归分析应用实例例3.2(2006年高教社杯全国大学生数学建模竞赛B题)艾滋病疗法的评价及疗效的预测.题目同例2.1.问题求解过程分析由于题目具有开放性,故选择文献[3]中的求解思路进行分析.问题2的解决就用到回归模型.首先分析数据知,应建立时间的一次与二次函数模型,并经过统计分析比较,确定哪种较好.所以可建立一个统一的回归模型,也可对每种疗法分别建立一个模型.以总体回归模型为例,分别用一次与二次时间函数模型进行比较,可知疗法3~1用一次模型较优,且一次项系数为负,即4CD在减少,从数值看疗法3优于疗法2和1;疗法4用二次模型较优,即4t左右达到最大.可以通过4条回归CD先增后减,在20曲线进行比较,显示疗法4在30周之前明显优于其它.最后再用检验法作比较,结果是疗法1与2无显著性差异,而疗法1与3,2与3,3与4均有显著性差异.4 图论建模方法图论建模方法在建模竞赛中也经常涉及,应用十分广泛,并且解法巧妙,方法灵活多变.如1990年B题“扫雪问题”,1991年B题“寻找最优Steiner树”,1992年B题“紧急修复系统的研制”,1993年B题“足球队排名”,1994年A题“逢山开路问题”,1994年B题“锁具装箱问题”,1995年B题“天车与冶炼炉的作业调度”,1997年B题“截断切割的最优排列”,1998年B题“灾情巡视最佳路线”,1999年B题“钻井布局”,2007年B题“城市公交线路选择问题”等都应用到了图论的方法.图论近几年来发展十分迅速,在物理、化学、生物学、地理学、计算机科学、信息论、控制论、社会科学、军事科学以及计算机管理等方面都有着广泛的应用.因此图论越来越受到了全世界数学界和工程技术界乃至经营决策管理者的重视.同时也成为了数学建模中一种十分重要的方法.图论问题算法很多,包括最短路、最大流、最小生成树、二分匹配、floyd、frim等.。
数学建模简介
有关数学建模竞赛的介绍
美国数学建模竞赛(MCM):
1. 2. 3. 4. 5. 每年的2月份左右举行,4天=96小时; 学校选拔不超过7个队; 每个队3名同学组成; 参赛费用,每个队伍45美元; 参赛范围,全球,主要为美国、中国、 印度、英国等国家。
美国数学建模竞赛主页
/undergraduate/contests/ mcm 提供有关数学建模竞赛的信息; 往年的竞赛试题与评奖结果; 有关资料; 竞赛结果分析等
怎样学习数学建模
数学建模与其说是一门技术,不如说是一门 艺术,技术大致有章可循,艺术无法归纳成普 遍适用的准则
想象力 洞察力 判断力
学习、分析、评价、改进别人作过的模型 亲自动手,认真作几个实际题目
建模教程学习的基本要领:三步阅读法。 对于任何一本教材,一份资料里介绍的一种数学模 型的建立,或者一种算法,你都要问自己三个问题: 1. 这个模型叫什么名字? 2. 这个模型属于什么类型,能够解决具有哪类特 征的问题? 3. 这个模型的具体操作步骤怎么实现? 当你能够学完教材上的这个模型,并能够查找相关 资料,实例加以巩固,自己能够非常清晰地回答以 上三个问题,那么,这个模型就完全印在你的脑子 里而融会贯通了。
从问题的解决方法上分析
用到插值拟合的问题有4个; 用到神经网络的4个; 用灰色系统理论的2个; 用到时间序列分析的至少2个; 用到综合评价方法的至少2个; 机理分析方法和随机模拟都多次用到; 其它的方法都至少用到一次。 大部分题目都可以用两种以上的方法来解决,即综 合性较强的题目有21个,占75%。
有关学习网站
1.本网站是国防科技大学所办的一个数学建模网站,上面有 许多的参赛过程以及参赛经验之谈; 2. 本网站也提供一些优秀论文的下载,BBS交流等信息; 3.本网站同时也提供一些有用的数学建模所用的软件下载 服务等;
数学建模的认识与体会
数学建模的认识与体会一、数学建模的起源1985年,在美国科学基金会的资助下,创办了一个名为“数学建模竞赛”(Mathematical Competition in Modeling 后改名Mathematical Contest in Modeling,简称MCM)一年一度的大学水平的竞赛,竞赛以三名学生组成一个队,赛前有指导教师培训。
MCM的宗旨是鼓励大学师生对范围并不固定的各种实际问题予以阐明、分析并提出解法,通过这样一种结构鼓励师生积极参与并强调实现完整的模型构造的过程。
以竞赛的方式培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。
他还可以培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。
它是一种彻底公开的竞赛,每年的赛题来源于实际问题。
比赛时要求就选定的赛题每个队在连续三天的时间里写出论文,它包括:问题的适当阐述;合理的假设;模型的分析、建立、求解、验证;结果的分析;模型优缺点讨论等。
最后由专家组成的评阅组进行评阅,评出优秀论文,并给予某种奖励。
它只有唯一的禁律,就是在竞赛期间不得与队外任何人(包括指导教师)讨论赛题,但可以利用任何图书资料、互联网上的资料、任何类型的计算机和软件等,为充分发挥参赛学生的创造性提供了广阔的空间。
第一届MCM 时,就有美国70所大学90个队参加,到1992年已经有美国及其它一些国家的189所大学292个队参加,在某种意义下,已经成为一种国际性的竞赛,影响极其广泛。
我国自1989年起陆续有高校参加美国大学生数学建模竞赛。
1992年由中国工业与应用数学协会组织举办了自己的大学生数学建模竞赛,并成为国家教育部组织的全国大学生四项学科竞赛之一。
十几年来,这项比赛的规模以年增长率25%以上的速度在发展。
数学建模 学校选址问题模型
学校选址问题摘 要本文针对某地新开发的20个小区建设配套小学问题建立了0-1规划模型和优化模型。
为问题一和问题二的求解,提供了理论依据。
模型一:首先:根据目标要求,要建立最少学校的方案列出了目标函数:∑==161i i x s然后:根据每个小区至少能被一所学校所覆盖,列出了20个约束条件;最后:由列出的目标函数和约束函数,用matlab 进行编程求解,从而得到,在每个小区至少被一所学校所覆盖时,建立学校最少的个数是四所,并且一共有22种方案。
模型二:首先:从建校个数最少开始考虑建校总费用,在整个费用里面,主要是固定费用,由此在问题一以求解的条件下,进行初步筛选,得到方案1,4,8的固定成本最少。
然后:在初步得出成本费用最少时,对每个这三个方案进一步的求解,求出这三个方案的具体的总费用,并记下这三套方案中的最小费用。
其次:对这三套方案进行调整,调整的原则是:在保证每个小区有学校覆盖的条件下,用多个固定成本费用低的备选校址替换固定成本费用高的备选校址。
在替换后,进行具体求解。
再次:比较各种方案的计算结果,从而的出了如下结论: 选用10,11,13,15,16号备选校址的选址方案,花费最少,最少花费为13378000元。
最后:对该模型做了灵敏度分析,模型的评价和推广。
关键字:最少建校个数 最小花费 固定成本 规模成本 灵敏度分析1. 问题重述1.1问题背景:某地新开发的20个小区内需要建设配套的小学,以方便小区内居民的的孩子上学。
但是为了节省开支,建造的学校要求尽量的少,为此,设备选定的16个校址提供参考,各校址覆盖的小区情况如表1所示:表1-1备选校址表备选校址1 2 345 6 7 8 覆盖小区1,2,3, 4,6 2,3,5,8, 11,20 3,5,11,201,4,6,7,12 1,4,7,8,9,11,13, 14 5,8,9,10 11,16,20 10,11,1516,19, 20 6,7,12, 13,17, 18 备选校址9 10 11 12 13 14 15 16覆盖小区 7,9,13, 14,15, 17,18, 199,10,14,15,16, 18,191,2,4,6, 75,10,11, 16,20,12,13,14,17, 189,10,14, 152,3,,5, 11,202,3,4,5,81.2 问题提出:问题一、求学校个数最少的建校方案,并用数学软件求解(说明你所使用的软件并写出输入指令)。
数学建模
在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。
模型求解
利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。
模型分析
对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。
模型检验
将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
建模应用
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性、结论的明确性和体系的完整性,而且在于它应用的广泛性。自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展、数学理论与方法的不断扩充,使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。
第二条 竞赛内容
题目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。
第三条 竞赛形式、规则和纪律
1.全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行。
2.竞赛每年举办一次,一般在某个周末前后的三天内举行。
数学建模的概念、方法和意义
2.1.2 数学建模的全过程
由于在数学建模的过程中都要对实际情况作出 由于在 数学建模的过程中都要对实际情况作出 一定的简化假设,所以对数学模型进行强健性分析是 一定的简化假设,所以对数学模型进行强健性分析是 很有必要的. 在学习数学建模课程的过程中, 很有必要的. 在学习数学建模课程的过程中,我们会 发现很多数学模型是强健的,也就是说, 发现很多数学模型是强健的,也就是说,虽然模型建 立在较强的假设上, 立在较强的假设上,假设对实际情况做出了较多的简 但是模型解答已经符合或近似现实对象的信息, 化,但是模型解答已经符合或近似现实对象的信息, 已经获得预期的建模效果. 已经获得预期的建模效果
2.1.3 数学建模论文的撰写
(3)问题重述(restatement of the problem) )问题重述( ) , 或者问题澄清( ,或者引 或者问题澄清(clarification of the problem) 或者引 ) , :按照作者对问题的理解 言(introduction) 按照作者对问题的理解,陈述论 ) 按照作者对问题的理解, : 文要研究的实际问题,包括背景和任务; 文要研究的实际问题,包括背景和任务; :陈述 (4)问题分析(analysis of the problem) 陈述 )问题分析( ) : 作者对实际问题的分析和提出的数学问题, 作者对实际问题的分析和提出的数学问题,陈述作者 为建立数学模型选择采用的数学方法,陈述建立数学 为建立数学模型选择采用的数学方法, 模型的动机和思路; 模型的动机和思路;
2.1.2 数学建模的全过程
数学建模( 数学建模(Mathematical Modeling)是建立数学 ) 模型解决实际问题的全过程,包括数学模型的建立、 解决实际问题的全过程 数学模型的建立 模型解决实际问题的全过程,包括数学模型的建立、 求解、分析和检验四大步骤 四大步骤( 求解、分析和检验四大步骤(见下图). 现实对象 的信息 检验 现实对象 的解答 分析 建立 数学模型 求解 数学模型 的解答
1数学建模简介
数学建模与能力的培养 仅最近几年里, 仅最近几年里,我
校学生都在只参加 锻炼, ①数学建模实践的 了半年左右的学习 每一步中都 蕴含着能力上的 锻炼, 在调查研究阶段, 和实践后,就在全 要用到观察能力 分析能力和 观察能力、 在调查研究阶段,需 要用到观察能力、分析能力和数据 和实践后, 处理能力等 处理能力等。在提出假设 时,又需要用到 想象力和归纳 国大学生数学建模 开设数学建模课的主要目的为了提高学 简化能力。 生的综合素质 简化能力。 生的综合素质,增强 应用数学知识 解决实际问 综合素质, 竞赛中交出了非常 题的本领。 题的本领。 在真正开始自己的研究之前, ,夺得 ②在真正开始自己的研究之前,还应当尽可能先了解一下 出色的论文, 出色的论文 前人或别人的工作, 前人或别人的工作,使自己的工作成为别人研究工作的继 了国家奖2 了国家奖2项、省 续而不是别人工作的重复, 续而不是别人工作的重复,你可以把某些已知的研究结果 一等奖五项的好成 用作你的假设,去探索新的奥秘。 用作你的假设,去探索新的奥秘。因此我们还应当学会在 查到并学会我想应用的知识的本领 我想应用的知识的本领。 尽可能短的时间 内绩。 查到并学会我想应用的知识的本领。
数学模型竞赛与通常的数学竞赛不同之处在于它来 自实际问题或有明确的实际背景, 自实际问题或有明确的实际背景,它的宗旨是培养 大学生用数学方法解决实际问题的意识和能力, 大学生用数学方法解决实际问题的意识和能力,培 养创新意识、团队精神,鼓励参与、提倡公平竞争, 养创新意识、团队精神,鼓励参与、提倡公平竞争, 提高学生综合素质。 提高学生综合素质。 整个比赛要完成一篇包括问题的阐述分析, 整个比赛要完成一篇包括问题的阐述分析,模型的 假设和建立,计算结果及讨论的论文。 假设和建立,计算结果及讨论的论文。通过训练和 比赛,同学们不仅用数学方法解决实际问题的意识 比赛, 和能力有很大提高, 和能力有很大提高,而且在团结合作发挥集体力量 攻关, 攻关,以及撰写科技论文等方面将都会得到十分有 益的锻炼。 益的锻炼。
数学建模四大模型归纳
四类基本模型1优化模型1.1数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2微分方程组模型阻滞增长模型、SARS传播模型。
1.3图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov链模型。
1.5组合优化经典问题多维背包问题(MKP)背包问题:n个物品,对物品i,体积为W i,背包容量为W。
如何将尽可能多的物品装入背包。
多维背包问题:n个物品,对物品i,价值为P i,体积为W i,背包容量为W。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP难问题。
二维指派问题(QAP)工作指派问题:n个工作可以由n个工人分别完成。
工人i完成工作j的时间为d j。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n台机器要布置在n个地方,机器i 与k之间的物流量为f ik,位置j与l之间的距离为d jl,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
旅行商问题(TSP)旅行商问题:有n个城市,城市i与j之间的距离为d ij,找一条经过n个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP问题是VRP问题的特例。
车间作业调度问题(JSP)车间调度问题:存在j个工作和m台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
数学建模评价模型方法
数学建模评价模型方法数学建模评价模型方法一、关于评价指标所谓指标就是用来评价系统的参量。
例如,在校学生规模、教学质量、师资结构、科研水平等,就可以作为评价高等院校综合水平的主要指标。
一般说来,任何—个指标都反映和刻画事物的—个侧面。
从指标值的特征看,指标可以分为定性指标和定量指标。
定性指标是用定性的语言作为指标描述值,定量指标是用具体数据作为指标值。
例如,旅游景区质量等级有 5A、 4A、 3A、 2A 和 1A之分,则旅游景区质量等级是定性指标;而景区年旅客接待量、门票收入等就是定量指标。
从指标值的变化对评价目的的影响来看,可以将指标分为以下四类:(1) 极大型指标 ( 又称为效益型指标 ) 是指标值越大越好的指标;(2) 极小型指标 ( 又称为成本型指标 ) 是指标值越小越好的指标;(3) 居中型指标是指标值既不是越大越好,也不是越小越好,而是适中为最好的指标;(4) 区间型指标是指标值取在某个区间内为最好的指标。
例如,在评价企业的经济效益时,利润作为指标,其值越大,经济效益就越好,这就是效益型指标;而管理费用作为指标,其值越小,经济效益就越好,所以管理费用是成本型指标。
再如建筑工程招标中,投标报价既不能太高又不能太低,其值的变化范围一般是× 标的价,超过此范围的都将被淘汰,因此投标报价为区间型指标。
投标工期既不能太长又不能太短,就是居中型指标。
在实际中,不论按什么方式对指标进行分类,不同类型的指标可以通过相应的数学方法进行相互转换1 评价指标的处理方法一般情况下,在综合评价指标中,各指标值可能属于不同类型、不同单位或不同数量级,从而使得各指标之间存在着不可公度性,给综合评价带来了诸多不便。
为了尽可能地反映实际情况,消除由于各项指标间的这些差别带来的影响,避免出现不合理的评价结果,就需要对评价指标进行一定的预处理,包括对指标的一致化处理和无量纲化处理。
1 . 指标的一致化处理所谓一致化处理就是将评价指标的类型进行统一。
数学建模知识点总结
数学建模知识点总结一、数学建模概述1.1 数学建模的概念数学建模是利用数学方法和技术解决实际问题的过程,是将实际问题抽象成数学模型,再通过数学分析和计算来解决问题的一种方法。
数学建模可以应用于工程、科学、经济、环境等各个领域,对于解决复杂的实际问题具有重要的作用。
1.2 数学建模的基本步骤数学建模的基本步骤包括问题分析、建立数学模型、求解模型、模型验证和应用。
在处理实际问题时,首先要对问题进行充分的分析,然后建立相应的数学模型,再通过数学方法来求解模型,最后对模型进行验证和应用。
1.3 数学建模的应用范围数学建模的应用范围非常广泛,可以涉及到自然科学、社会科学、工程技术等各个领域。
例如,在工程领域可以用数学建模来设计飞机、汽车、桥梁等结构的强度和稳定性;在环境科学领域可以用数学建模来研究气候变化、环境污染等问题;在生物医学领域可以用数学建模来研究人体的生理过程。
1.4 数学建模的意义数学建模可以帮助人们更好地理解实际问题,设计出更优秀的工程产品,提高生产效率,优化资源配置,解决环境污染等问题,对于推动科技进步和社会发展具有重要的意义。
二、数学建模的数学基础2.1 微积分微积分是数学建模的基础。
微积分是研究变化的数学分支,包括导数、积分、微分方程等概念。
在数学建模中,微积分可以用来描述变化率、优化函数、求解微分方程等问题。
2.2 线性代数线性代数是数学建模的另一个基础。
线性代数是研究向量、矩阵、线性方程组等概念的数学分支,可以用来描述多维空间的几何关系、解决大规模线性方程组等问题。
2.3 概率论与统计学概率论与统计学是数学建模的重要工具。
概率论研究随机事件的概率分布、随机过程等概念,统计学研究数据的收集、处理、分析等方法。
在数学建模中,概率论和统计学可以用来描述随机现象、分析数据、评估模型等问题。
3.1 最优化方法最优化方法是数学建模常用的方法之一。
最优化方法是研究如何找到使目标函数取得最大(小)值的变量取值。
数学建模基础入门
数学建模基础入门数学建模是一门应用数学领域的学科,它将数学方法和技巧应用于解决实际问题。
在现代科学和工程中,数学建模起着至关重要的作用。
本文将为您介绍数学建模的基本概念和入门知识。
一、引言数学建模是一种基于数学模型来描述和解决实际问题的过程。
它结合了数学理论和实际问题,通过建立合适的数学模型来分析和预测实际系统的行为。
数学建模的目标是通过理论分析和计算求解,得出对实际问题的认识和解决方案。
二、数学建模的基本步骤数学建模的过程可以分为以下几个基本步骤:1. 审题与问题分析:首先需要仔细审题,理解问题的背景和要求。
在问题分析阶段,需要明确问题的目标、所涉及的因素以及问题的约束条件。
2. 建立数学模型:在问题分析的基础上,需要选择合适的数学方法和技巧建立数学模型。
数学模型是对实际问题的抽象和描述,它可以是代数方程、微分方程、概率模型等形式。
3. 模型求解:根据建立的数学模型,采用适当的数值计算方法或者符号计算方法,对模型进行求解。
这一步骤需要运用数学知识和计算工具,得出模型的解析解或近似解。
4. 模型验证与分析:在获得数学模型的解之后,需要对解的合理性进行验证。
通过与实际数据的对比或者数值模拟的方法,验证模型的准确性和可靠性。
同时,对模型的敏感性分析和稳定性分析也是重要的一步。
5. 结果的解释与应用:根据模型求解得到的结果,进行结果的解释和分析。
将模型的结果与实际问题联系起来,给出合理的解释和应用建议。
在实际问题中,模型的结果通常会有多种解释和应用方式,需要综合考虑各种因素来得出最优解决方案。
三、常用的数学方法和技巧数学建模涉及的数学方法和技巧非常丰富,下面列举一些常用的方法和技巧:1. 最优化方法:最优化方法用于求解最大值或最小值问题,常见的最优化方法包括线性规划、整数规划、非线性规划等。
2. 概率统计方法:概率统计方法用于处理不确定性和随机性问题,包括概率分布、假设检验、回归分析等。
3. 微分方程方法:微分方程方法用于研究变化和动态系统,可以用来描述物理、化学、生物等领域的问题。
2023年mathorcup高校数学建模a题qubo模型
2023年mathorcup高校数学建模a题qubo模型一、题目背景介绍MathorCup高校数学建模竞赛自2003年创办以来,已成为了我国高校数学建模领域的品牌赛事。
2023年的竞赛中,A题涉及到了QUBO(量子优化)模型。
QUBO模型是量子计算领域的一个重要研究方向,其应用前景广阔,备受瞩目。
二、QUBO模型概述量子优化算法是利用量子计算机求解优化问题的算法。
QUBO(Quantum Unconstrained Binary Optimization)模型是一种特殊的量子优化模型,其灵感来源于约束满足问题(CSP)。
QUBO问题的求解可以转化为求解量子线性规划问题,从而利用量子计算机的高效计算能力求解复杂优化问题。
三、求解QUBO问题的方法1.量子退火算法:量子退火算法是一种模拟退火算法的量子版本,用于求解QUBO问题。
它利用量子比特的特性,在搜索过程中保持一定的随机性,从而提高了解的质量。
2.量子模拟退火算法:量子模拟退火算法是对经典模拟退火算法的改进,通过引入量子比特和量子门操作,提高了搜索速度和收敛性。
3.量子启发式算法:量子启发式算法是一种基于启发式规则的量子优化算法,可以在较短时间内找到QUBO问题的近似解。
四、QUBO在实际问题中的应用1.组合优化:QUBO算法在组合优化问题上具有显著优势,如旅行商问题(TSP)、背包问题(KP)等。
2.机器学习:QUBO算法可以应用于机器学习领域的优化问题,如支持向量机(SVM)的参数优化、神经网络的训练等。
3.信号处理:QUBO算法在信号处理领域也有广泛应用,如信道均衡、信号检测等。
4.金融领域:QUBO算法可以用于求解金融领域的优化问题,如投资组合优化、期权定价等。
五、总结与展望QUBO模型作为一种新兴的量子优化算法,在诸多领域展现出了强大的竞争力。
随着量子计算机技术的发展,QUBO模型有望在未来解决更多复杂、大规模的优化问题。
与此同时,研究者们也在不断探索求解QUBO问题的新方法和改进策略,以期在实际应用中取得更好的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是否应该进行扩招。 对于第三问, 通过对于前两个问题的分析, 认为处于规模经济并且还没有达到最佳 规模的省份,可以采取对学生或教师数目的扩招、增加教学设备和器材等方式,从而改 善教学质量和高校规模,提高高校的经济效益,使高校更好地经营与发展。同时对于那 些已经处于最佳经济规模的高校,要继续保持其高校规模,使其经济效益保持在较高的 水平,或者调整内部办学成本,但总的办学成本应继续保持在现有水平。再次对于已经 处于规模不经济的高校,建议其紧缩招生数目,提高教学设备和器材的利用率,缩减不 必要的开销等以达到减小成本的目的,最终通过改进经营的方式使其经济效益提高,从 而达到规模经济。
q
各高校的学生总人数 长期总成本 长期平均成本 长期边际成本 高校的最佳规模 调整空间(扩招或紧缩的人数) 回归方程中的系数 (i 0,1, 2,3) 随机误差 回归方程的准确度
yLTC yLAC
yLMC
Q0 K
i
R
六. 模型的建立与求解
6.1 问题一的建模及求解
3
高校的主要产出是培养高级人才和科研贡献, 但分析和度量其人才的产出及科研产 出存在很大困难。所以在本文中,使用在一些要求不是很精确的分析中常用到的“学生 数”这一指标作为高校的唯一产出,作为高校规模衡量的标准。分析题目所给的列表中 的信息,可知含有“本科生” 、 “硕士生” 、 “博士生”的高校所占的比例很小,所以将这 三项指标和“专科生”合在一起,四项的和作为“学生数” 。对于高校的成本,也做类 似的简化处理,即以表中给出的两项经费总支出作为总成本。 首先将表中的数据按照省份进行划分,将各省的高学视作整体共同考虑。具体见下 表: 表1 各省总成本与学生总数统计表
【关键词】 规模经济 统计回归
边际成本
1
二. 问题重述
1999 年,我国做出了“扩大高等教育规模”的重大决策。10 年时间里,我国高等 教育实现了历史性跨越,规模先后超过俄罗斯、印度、美国,成为世界第一。2008 年, 我国高等教育毛入学率达到 23.3%, 《国家中长期教育改革和发展规划纲要 (2010—2020 年) 》制订了 2020 年高等教育毛入学率达 40.0%的目标,我国目前已进入国际公认的大 众化发展阶段。 对于高等教育而言,教育成本中大部分属于固定成本,高等学校具有一定的“非排 他性” ,增加一名学生不会使学校的总成本有所变化,并且也不会对其他学生上学有所 影响。在一定范围内,学生数的增加不会影响教学质量,但高校生均成本随着学生规模 的扩大而降低,高校办学显现出规模经济现象。但当学校规模扩大到超出现有资源水平 能够满足的范围,资源的超负荷使用会造成教学质量的下降,高校需要新的资源,例如 修建教学楼、宿舍、食堂、增加教师数量等,新资源的投入又将导致办学成本上升。我 国从 1999 年高等学校扩招到现在已经进行到一个阶段,高校规模扩大到一定程度,不 同类型的高校呈现出不同的规。根据资料但不局限于给定材料,研究以下问题: 1. 选取适当变量,建立模型,判断这些高校是否存在规模经济现象 2. 探讨这些高校是否应当进行扩招,扩招空间有多大 3. 根据 1、2 的结论,从规模和经济的角度上提出适合这些高校的办学建议。
在利用表 1 中的数据进行求解时,为减小在作统计回归时的误差,总成本以“百万 元”作单位,学生数以“十万”作单位。直接利用 MATLAB 统计工具箱中的命令 regress
4
求解,各参数的估计值及参数置信区间如下表: 表 2 长期总成本参数信息表 参数 参数估计值 -1.0182 4.8580 -1.8808 0.3246 参数置信区间 [-3.5874 [-1.2507 [-6.1297 [-0.5317 1.5510] 10.9667] 2.3681] 1.1810]
8
会出现显著的“学习效应”,从而提高教学内容、方法的熟练程度以及教学效率与效果。 2、 资本设备的专业化分工和先进教学手段的应用。 教学设施是高等院校的基本办学 条件,部分教学设施具有极强的专业性、方向性和不可替代性。高校规模的扩大,使其有 能力购置先进的专业化教学实验设备,采用多媒体、局域网、远程教育等现代化教育手 段,提高教学质量,降低教学变动费用,获得技术进步带来的经济节约。 3、生产要素的整体性和不可分割性。前者是指学校的兴办,相关教育资源必须同时 投入与运用。 后者则是指某些资源的购置及运用必须是一个自然单位,不可分割使用,如 人力、教室、实验室、教学仪器设备、图书、办公用房、学生宿舍、运动场馆、食堂等。 学校规模的扩大,有利于充分利用现有办学条件,减少生均教育成本。 4、 财务因素。 大规模高校可凭借其财产担保与社会信用从金融部门获得大量低息贷 款,以及为其带来基本建设、仪器设备、招生、教材图书、毕业生就业等采购或推荐经 济上的优惠,降低交易成本,使其具有更强的风险承担能力。 5、几何尺度(知识交流的报酬递增)。一般而言,高校规模扩大是与其专业数量呈同 方向变化的,专业数量的增加具有两个方面的报酬递增效果。一是不同专业教师可以进 行知识交流,有助于提高教师的学识、教学质量与科研水平;二是同伴效应。学生在一个 规模大的学校里可以听到不同专业的知识讲座、获取不同专业的知识,不同专业的学生 也可以进行知识交流,产生报酬递增现象。 上述两个方面共同作用的结果,有助于培养复 合型人才,提高学生培养的质量。一个学校的学风、教风和校风正是这种同伴效应和师 生交互影响的总体体现。 6、学校声望和社会地位。企业目标是追求价值或利润最大化,高等院校这类组织则 是追求社会名望地位最大化。高校规模的扩大,预示着其声望、社会地位的提高和社会 价值的实现,满足学校管理层与教职员工的成就感;并使其有机会从国家或社会获得更 多资源,以优越的教学科研条件和薪金吸引、 稳定高水平的师资队伍及高素质的学生,毕 业生也更受用人单位和社会的青睐。 对于已经处于规模不经济的院校, 各高校要根据自己的实际情况作出合理的招生计 划调整或学校规模的扩建,不管是从紧缩招生还是扩建学校基础设施来说,都是在保证 教学质量的前提下进行的,保证教学质量是高校扩招所应遵循的最本质的原则,一味地 扩大招生,若师资硬件设施跟不上扩招的步伐,满足不了学生的需求,就可能造成教学 质量的下降,盲目的追求经济利益不是高等教育院校所应出现的现象,高等院校是培养 人才的地方,只有保证教学质量,才能源源不断地为国家社会主义现代化建设输入大批 的人才精英,才能实现它应有的价值。 综上所述, 各高校一定要认清自己的现状, 作出适当的招生调整或者进行学校扩建, 以期达到最理想的状态。
K Q0 q
由相关的经济学知识可得如下结果:
K 0, 高校为规模经济 K 0, 高校为最佳规模 K 0, 高校为规模不经济 由此, 将最佳规模 Q 0 与表 1 中各省的现有学生总人数逐一相减, 可得各省的调整空间 K ,
7
具体如下表: 表 3 各省的高校学生人数调整参考表
高校的规模分析模型
一. 摘要
本文主要针对高等学校的规模问题, 通过对规模经济理论的理解和分析建立回归模 型。在不考虑高校性质的前提下,对题目给出的数据中各高校的信息按省份进行分类。 根据数据作出相应的简化,以高校各类学生总数作为衡量高校规模的指标,以经费总支 出作为高校的成本。对问题一,通过规模经济概念,并对分类后的数据作统计分析,得 出 长 期 总 成 本 函 数 yLTC 0.3246q 3 1.8808q 2 4.858q 1.0182 和 长 期 边 际 成 本 函 数 yLMC 0.9738q 2 3.7616q 4.858 ,求得最佳规模为 193140 人,最终得出广东、湖北、 湖南、江苏、山东五省的高校总体情况存在规模不经济现象,其余高校则存在规模经济 现象。对问题二,通过对各个省份高校现有的学生总数和最佳规模作比较,得出各省高 校可扩招或需紧缩的空间。对问题三,从规模与经济的角度考虑,在对数据分析的基础 上,对高校提出相关的建议。
四. 基本假设
1. 2. 3. 4. 5. 假设高校的规模仅以学生数为指标,不考虑教师数等其他因素; 假设高校的总成本仅以经费总支出为指标,不考虑经费收入的影响; 假设学生数量是连续的变量; 假设专科生、本科生及读硕博的学生可计入无差别的学生总数; 假设在分析规模经济时可不考虑各高校的性质。
五. 符号说明
yLMC 0.9738q 2 3.7616q 4.858
为使能直观的分析各条曲线蕴含的信息,分别作出各自的图像如下:
5
6
由图 2 的长期平均成本曲线可以直观地看出,曲线先是有一段较陡的上升,反映了 在高校的发展初期,因为要新建教学楼、宿舍、购买相关设备等,还要引进教师等工作 人员,花费很大,所以这一段时期生均成本上升很快。之后的曲线则是反映出了高校在 具备了一定的规模后,随着规模的扩大而出现的规模经济和规模不经济现象:先是生均 成本随着规模的扩大而降低,超过一定的范围后又随着规模的增大而增加。 由图 3 的长期边际成本曲线则可以直观地看出,曲线先降后升,有一个最低点,其 对应的横坐标就是最佳规模。 由长期平均成本 yLMC 0.9738q 2 3.7616q 4.858 ,可以求得当 yLMC 取得最小值时,全国 水平的各省最佳规模为 193140 人。 定义扩招或紧缩空间 K 为:
三. 问题的分析
对于任何的组织和公司, 其经营都以能够保证长期的盈利为方针, 这就决定了公司 或者组织要处于规模经济的经营模型中。同样对于高校的长期经营,要使学校处于一个 盈利的状态才能稳定发展。而规模经济指的是,给定技术的条件下(指没有技术变化), 对于某一产品(无论是单一产品还是复合产品), 如果在某些产量范围内平均成本是下降 或上升的话,我们就认为存在着规模经济(或不经济)。由经济学原理,长期边际成本曲 线和长期平均成本曲线上一样,可以反映是否存在经济规模。前者的的最低点就是“最 佳规模” 。因此针对高校扩张的问题,刚开始扩招时,由于扩大高等教育规模能够使高 校的经济效益得到提高,此时处于经济规模状态。当扩招达到一定水平时,高校规模的 扩大达到最佳规模, 此时高校的经济效益达到最大化。 若继续扩大高校高等教育的规模, 就会使经济效益下降,此时出现规模不经济。也就是说高校如果继续扩大教育规模就会 使学校的经营出现效益低于成本的情况。 对于问题一,首先将表中的数据按照省份进行划分,将各省的高学视作整体共同考 虑。在基于凯恩斯和萨缪尔森的西方经济学原理的模型上,建立长期总成本方程的回归 模型,进而可得长期总成本方程和长期边际成本方程。对各省高校的相关信息作统计分 析,可得具体的关系式。由长期边际成本函数求解出长期边际方程的最佳规模。最佳规 模减去各本科院校的实际学生规模即可判断出各本科高校是否处于规模经济还是规模 不经济状态:如果该值为正,则说明该高校处于规模经济;若该值为 0,则说明该高校 处于全国水平上的最佳规模;若该值为负,则说明该高校处于规模不经济。 对于问题二,利用问题一的结果,将最佳规模与各省的现有规模相比较,可判断出