薄板的屈曲
薄板的屈曲
115第六章 薄板的屈曲钢结构大型梁、柱等构件,通常都由板件组合而成,为了节省材料,板件通常宽而薄,薄板在面内压力作用下就可能失稳,并由此导致整个构件的承载力下降;另外,在构件连接的节点也存在板件失稳的可能性。
因此,对板件失稳和失稳后性态的研究也是钢结构稳定的重要问题。
板根据其厚度分为厚板、薄板和薄膜三种。
设板的最小宽度为b ,厚度为t 。
当t /b >1/5~1/8时称为厚板,这时横向剪力引起的剪切变形与弯曲变形大小同阶,分析时不能忽略剪切变形的影响。
当1/80~1/100<t /b <1/5~1/8时称为薄板,此时横向剪力引起的剪切变形与弯曲变形相比可以忽略不计。
当板极薄,t /b <1/80~1/100时,称为薄膜,薄膜没有抗弯刚度,靠薄膜拉力与横向荷载平衡。
平分板的厚度且与板的两个面平行的平面称为中面。
本章只介绍等厚度薄板中面内受力的板的弹性失稳。
与前面所介绍过的失稳问题比较,板的失稳有如下几个特点: ⑴作用于板中面的外力,不论是一个方向作用有外力还是在两个方向同时作用有外力,屈曲时板产生的都是出平面的凸曲现象,产生双向弯曲变形,因此在板的任何一点的弯矩x M 、y M 和扭矩xy M 以及板的挠度w 都与此点的坐标(x ,y )有关。
⑵板的平衡方程属于二维偏微分方程,除了均匀受压的四边简支的理想矩形板可以直接求解其分岔屈曲荷载外,对于其他受力条件和边界条件的板,用平衡法很难求解。
可以用能量法(如瑞利—里兹法,伽辽金法)或者数值法(如差分法、有限元法等)求解屈曲荷载,在弹塑性阶段,用数值法可以得到精度很高的板屈曲荷载。
⑶理想薄板失稳属于稳定分岔失稳。
对于有刚强侧边支承的板,凸屈后板的中面会产生薄膜应变,从而产生薄膜应力。
如果在板的一个方向有外力作用而凸曲时,在另一个方向的薄膜拉力会对它产生支持作用,增强板的抗弯刚度进而提高板的强度,这种凸屈后的强度提高称为屈曲后强度。
第五章 薄板的弯曲
第五章 薄板的弯曲薄板的概念:厚度t<<Min(B,L)()L B Min t 81~51<中厚板 ()L B Min t 81~51> 厚板()()L B Min t L B Min 81~511001~801<< 薄板()L B Min t 1001~801< 薄膜作用在其上的载荷分解为平行于板面和垂直于板面,当仅有平行于板面的力时,就是我们前面讲到的平面应力问题。
现在我们要解决的就是当有垂直于板面的载荷时(板受弯曲作用时),应该如何计算。
两者都有时,又应该如何考虑。
§5.1 薄板弯曲的基本方程一,基本概念1,中面:变形前平分板厚的平面。
2,挠度:中面上各点在垂直于中面上的位移w 。
3小挠度:通常w/t<1/5。
二,基本假定1,变形前垂直于中面上的直线,变形后仍为直线,且仍垂直于弯曲的中面。
该假定类似与材料力学中梁的平面假定。
它确保与中面平行的的各面之间不存在剪应变。
0==zy zx γγ 2,变形前后,板的厚度不变,即0=z ε。
板内各点的挠度值仅为x 、y 的函数,而与z 轴无关。
()y x w w ,=。
3,薄板中面内的各点没有平行于板面的位移()00==z u 、()00==z v ,只有z 方向的位移。
4,平行于中面的各层之间互不挤压。
0=z σ三,基本方程利用空间的三大方程和以上4个假定,我们可以推求出适用薄板的基本方程。
1,几何方程由假定○1,0=∂∂+∂∂=x w z u zx γ,0=∂∂+∂∂=ywz v zy γ,就有: x w z u ∂∂-=∂∂,ywz v ∂∂-=∂∂,积分可得: ()y x f xwzu ,1+∂∂-= ()y x f ywzv ,2+∂∂-=再由假定○3,()00==z u 、()00==z v ,就是中面上各点没有板面的位移,代入上式,可得()()0,,21==y x f y x f 所以x w zu ∂∂-=,ywz v ∂∂-=。
薄板的屈曲
件的板,用平衡法很难求解;需用能量法或数值法求解。
✓理想薄板失稳属于稳定的分叉失稳。对于有刚强侧边支撑的板,会 产生薄膜应力,提高钢板屈曲后的强度(屈曲后强度)。
✓按照小挠度理论分析只能得到板的分叉屈曲荷载,根据大挠度理论 分析才能得到板的屈曲后强度和板的挠度。
第6章 薄板的屈曲
➢ 小挠度理论板的弹性曲面微分方程
D 2
A2
m2
a2
2
m2 2b2
6a2
1
ab
px 12
A2
m2 2
a2
ab3
由势能驻值原理,有:A
Dm2
a
2b
m2 2b2
a2
1
px
m2 2b3
a
0
第6章 薄板的屈曲
➢ 能量法计算板的弹性失稳荷载
✓瑞利-里兹法
A0
px
m2 2b2
a2
6
1
D b2
2D
b2
1
2
m2 2b2
a2
61
令 m 1,可得px的最小值:
2D px,cr k b2
k
2b2
a2
6 1
/
2
若取 0.3,则:
k
0.425
b2 a2
均匀受压三边简支一边自由
第6章 薄板的屈曲
➢ 能量法计算板的弹性失稳荷载
✓迦辽金法
要求假定的挠曲面函数符合板的几何和自然边界条件。
假定挠曲面函数为:
a
0
a
0
L
w
sin
x a
sin
y a
dxdy
0
a
0
a
0
第五章薄板弯曲
e
T
p( x, y)dxdy
其中[N]为板弯曲的形状函数矩阵,由式(5.11) 决定。
当横向分布载荷为常值p时(均布载荷), 对图5-5所示的矩形板单元,M yk
Zl
M xl 1 b 4 12
M yl a 12
Zm 1 4
M xm b 12 a 12
其中V为板的体积域。
将式(5.2)及(5.3)代入上式,并沿厚度方向积 分,可得
1 2 1 1 U D p z dV 2 V
T
1 1 1 D dS 2 S
T
(5.6)
其中S为板中面的面积域,[D]为薄板弯曲的弹性 系数矩阵。 •由上式可见,薄板弯曲变形时,单位面积中面的 弹性应变能为其曲率的二次型。 •板弯曲的曲率是其挠度w的二阶导数,因而薄板弯 曲的弹性应变能为包括w二阶导数的二次泛函数。
N ( x, y) N k
Nl
Nm
Nn
(5.11)
对于图5-4所示的矩形单元,其 任一节点i的形状函数矩阵[Ni}是 一个1X3的行阵,表达如 (5.12)(p80)
单元刚阵
将式(5.10)代入式(5.1),可得单元的曲率为
2 2 x2 1 e e N [ B] 2 y 2 2 xy
例如:在单元ij边界y=b (常数) 上 有
w( x, b) A0 A1 x A2 x A3 x
2
3
其中四个常数Ak,k=0,1,2,3 可以由四 个条件wi,wj,
yi
w
及 x
i
yj
w
四边简支薄板纯剪切作用下板的屈曲形式
四边简支薄板纯剪切作用下板的屈曲形式在四边简支薄板纯剪切作用下,板的屈曲形式表现为中央出现有规则的剪切带,且随着剪切应力的增加,剪切带逐渐向周围扩展。
剪切带将板分为两个区域,一个区域为与剪切方向相反的拉伸区,另一个区域为与剪切方向相同的压缩区。
随着剪切应力的增加,剪切带会逐渐扩展并最终导致板的屈曲。
如需获取更多关于四边简支薄板纯剪切作用下板的屈曲形式的信息,建议咨询土木工程专家或查阅相关领域资料。
薄板弯曲问题
略不计。取 εz =0
,因而有:
• 因此,板内各点的挠度w 与z 坐标无关,只是x、y 的函数。
• 2. 直线假设
• 在薄板弯曲变形前垂直于板中面的直线,在簿板弯曲变形后仍为直线, 且垂直于弯曲后的中面。这说明在平行于中面的面上没有剪应变,即:
上一页 下一页 返回
7.1 薄板的弯曲变形
• 3. 正应力假设 • 中面上的正应力远小于其他应力分量的假设:平行于中面的各层相互
上一页 下一页 返回
7.2 矩形薄板单元分析
• 最后两项的选取是使单元在边界上有三次式的形式。按照式(7.20) 可以算出转角,即:
上一页 下一页 返回
7.2 矩形薄板单元分析
• 将矩形单元的4 个节点坐标(ξ i , η i ) 分别代入式(7.20),就可以得 到用12 个参数来表示的节点位移分量的联立方程组,求解这12 个方 程,从中解出a1~a12,再代入式(7.21),经归纳并整理后就可以改 写成如下的形式:
• 或者写成标准形式,即:
上一页 下一页 返回
7.2 矩形薄板单元分析
• 其中 • 如果把形函数写成通式,即:
上一页 下一页 返回
7.2 矩形薄板单元分析
• 于是有:
• 其中,
上一页 下一页 返回
第八章 班级气氛的经营与管理
• 知道最好的一切,且将之发挥至极致,才 是成功的生活。
• 未来我们会创造一个更经济、更有效率的 世界,但是让人担心的是,人们却没有现 在过得幸福。
• 为学生营造良好的班级气氛,提供给学生优质的 学习和生活环境,让学生快乐、健康地在班级中 成长是班级管理者的义务和责任。
2022/8/29
24
一、班级气氛的涵义与作用
路用薄板结构屈曲、弯曲及振动问题的解析与数值分析
介绍数值模拟的基本原理、数值模型的建立及求 解方法。
数值模拟过程
详细描述模拟操作流程、参数设置及模拟结果。
数值模拟结果分析
根据模拟结果,对薄板结构的优化设计进行深入 分析,得出相关结论。
06
结论与展望
研究成果与结论
发现了路用薄板结构在屈曲、弯曲及振动问题中 的一些重要特性。 提出了针对这些问题的解析与数值分析方法。
薄板结构的基本定义与分类
01
根据材料和制造工艺对薄板结构进行定义和分类,包括金属薄
板、复合材料薄板等。
薄板结构弯曲的基本原理
02
介绍薄板结构弯曲的基本原理,包括弯曲变形、弯曲应力、弯
曲刚度等。
经典薄板弯曲理论
03
介绍经典薄板弯曲理论,如Mindlin板理论、Kirchhoff板理论
等。
薄板结构弯曲实验研究
3
薄板结构振动的稳定性
研究薄板结构在受到外部激励时的稳定性,以 及分岔和混沌现象。
薄板结构振动实验研究
实验设备和方法
介绍实验所用的测试设备和实验方法,包括激励方式、测量仪器、数据采集和处 理等。
实验结果和分析
通过实验测量薄板结构的振动响应,并对实验结果进行分析,验证理论模型的正 确性。
薄板结构振动数值模拟
研究内容与方法
研究内容
对路用薄板结构的屈曲、弯曲及振动问题进行深入研究,包括基本理论、解 析解和数值分析方法等。
研究方法
采用理论推导、数值模拟和实验验证相结合的方法,对路用薄板结构的屈曲 、弯曲及振动问题进行全面分析。
02
路用薄板结构屈曲分析
薄板结构屈曲基本理论
薄板结构屈曲定义
1.板件的稳定和屈曲后强度的利用
5、配置加劲肋的腹板稳定计算 (1)仅用横向加劲肋的腹板
h0
a
a
式中: σ—计算区格,平均弯矩作用下,腹板计算高度边缘的弯曲压应力; τ--计算区格,平均剪力作用下,腹板截面剪应力; V σc—腹板计算高度边缘的局部压应力,计算时取ψ=1.0。 hw t w
c cr c ,cr
a 短向加劲肋的间距a1 为0.75h1。
hc为腹板受压区高度
h2
h0 235 ( 3) 任何情况下, 250 ; tw fy
(4) 梁的支座处和上翼缘受有较大固定集中荷载
处,宜设置支承加劲肋。
以上公式中h0为腹板的计算高度,tw为腹板厚度;
4、加劲肋的构造要求
(1)宜成对布置,对于静力荷载下的梁可单侧布置。支 承加劲肋和重级工作制的吊车梁不应单侧布置。
规范规定对长细比在100以上的压弯构件以及当构件强度和稳定计算中取时翼缘外伸宽厚比的容许值的限值规范规定如果构件的截面尺寸由平面内的稳定控制且长细比小于100应力又用得较足2351523513464板件屈曲后的强度利用四边有支承的薄板发生屈曲时其强度并不降低仍能继续承载也就是说具有屈曲后强度
4.6 板件的稳定和屈曲后强度的利用
2
(4 39
我们将板件的非弹性屈曲应力值控制在什么范围 内才认为板件是稳定的?
一种是不允许板件的屈曲先于构件的整体屈曲, 《钢结构设计规范》(GB 50017)对轴心压杆 就是这样规定的。 另一种是允许板件先屈曲。虽然板件屈曲会降低 构件的承载能力,但由于构件的截面较宽,整 体刚度好,从节省钢材来说反而合算,《冷弯 薄壁型钢结构技术规范》(GB 50018)就有这 方面的条款。轻型门式刚架结构的刚架梁腹板 就是这样考虑的。有时对于一般钢结构的部分 板件,如大尺寸的焊接工字形截面的腹板,也 允许其先有局部屈曲。
弹性力学 薄板弯曲
10
zx x yx
z
x y
zy y xy
z
y x
将应力分量用挠度 表示的物理方程代入上式,并化
简得:
zx
z
1
Ez
2
2
x
zy
z
1
Ez
2
2
y
由于挠度 不随z 变化,且薄板在上下面的边界条
件为:
zx z t 0, 2
zy z t 0 2
11
将上列二式对z 进行积分,得:
16
将上节给出的应力分量与挠度 之间关系代入,并积分
得:
Mx
D
2
x 2
ห้องสมุดไป่ตู้
2
y 2
My
D
2
y 2
2
x 2
M xy
M yx
D1 2
xy
Qx
D
2
x
Qy
D
y
2
上式称为薄板弯曲问题中内力与变形之间的弹性方程。
17
利用应力分量与挠度 之间的关系、薄板挠曲微分方 程以及内力与形变之间的弹性方程,消去 ,可以给出各
(1)几何方程
在薄板的中面上取一微
小矩形ABCD如图所示。它的 边长为dx和dy,载荷作用后, 弯成曲面A’B’C’D’。设A点的挠
度为 ,弹性曲面沿x和y方
向的倾角分别为 和 ,则
x y
A
dy A
w
D y
z
y
D
dx
w x
Bx
B
C
C
6
B点的挠度为 dx
x
D点的挠度为 dy
y
由
xz
0和
薄板结构的屈曲承载能力分析
薄板结构的屈曲承载能力分析薄板结构是指在一个平面内,一侧的长度远大于另一侧的结构。
它具有较高的刚度和承载能力,广泛应用于建筑、航空航天、交通运输等领域。
然而,在长时间使用或者遭受外力作用时,薄板结构可能发生屈曲,使其失去原来的刚度和承载能力。
因此,对薄板结构的屈曲承载能力进行分析和评估是非常重要的。
1. 薄板结构的屈曲现象屈曲是指杆件在受到外力作用时,由于其自身的不稳定性而发生的形状变化。
对于薄板结构而言,由于其一侧长度远大于另一侧,产生的扭矩和弯曲力会使其在某一方向上发生屈曲。
当结构失去了原来的刚度和承载能力时,就会发生屈曲现象。
2. 薄板结构的屈曲挠度计算在进行薄板结构的屈曲承载能力分析时,首先需要计算其屈曲挠度。
常用的屈曲挠度计算公式如下:\[ \delta = \frac{{5 \times p \times L^4}}{{384 \times E \times I}} \]其中,\[ \delta \]表示屈曲挠度,\[ p \]表示作用在结构上的外力,\[ L \]表示结构的长度,\[ E \]表示结构的弹性模量,\[ I \]表示结构的截面惯性矩。
3. 薄板结构的屈曲承载能力薄板结构的屈曲承载能力是指结构在屈曲前可以承受的最大外力。
根据欧拉公式,可以计算薄板结构的屈曲临界载荷。
欧拉公式如下:\[ P_{cr} = \frac{{\pi^2 \times E \times I}}{{L^2}} \]其中,\[ P_{cr} \]表示屈曲临界载荷。
4. 影响薄板结构屈曲承载能力的因素薄板结构的屈曲承载能力受到多种因素的影响。
主要的因素包括结构的几何形状、材料的弹性模量、荷载的大小和方向等。
当结构的几何形状不规则、材料弹性模量较小、荷载过大或方向不合理时,薄板结构的屈曲承载能力会大大降低。
5. 提高薄板结构屈曲承载能力的方法为了提高薄板结构的屈曲承载能力,可以采取一些措施。
首先是合理选择材料,使用强度高、刚度大的材料制作结构。
薄板弯曲挠度计算公式
薄板弯曲挠度计算公式
δ = (5 w l^4) / (384 E t^3)。
在这个公式中,δ代表薄板的弯曲挠度,w代表加载在薄板上的集中力或均布载荷,l代表薄板的长度,E代表薄板的杨氏模量,t代表薄板的厚度。
另外,如果考虑薄板的边界条件和受力情况,还可以使用其他公式来计算薄板的弯曲挠度。
例如,对于简支边界条件下的均布载荷作用的薄板,可以使用以下公式:
δ = (5 w l^4) / (384 D)。
在这个公式中,D代表薄板的弯曲刚度,可以通过薄板的几何形状和材料性质来计算。
需要注意的是,薄板的弯曲挠度计算涉及到复杂的数学推导和力学理论,因此在实际工程中,通常会借助于专业的有限元分析软件来进行准确的计算。
总之,薄板的弯曲挠度计算公式可以通过梁的弯曲理论或者考虑边界条件和受力情况来进行推导,但在实际应用中需要综合考虑薄板的几何形状、材料性质和受力情况来选择合适的计算方法。
最新-矩形薄板的屈曲
3.142 2.06 105
121 0.32
18.6 104
p x ,cr
18.6K
t
2
104
x ,cr
t
b
由公式
p x ,cr
18 .6 K
t
2
10 4ຫໍສະໝຸດ ax ,crt
b
px
b
px
可见,板屈曲临界应力的大小:
1)与所受应力分布情况、板的支承条件及长宽比(a/b)有关, 与板的宽厚比(b/t)的平方成反比。
不是铰支又不是嵌固边,而是广义的弹性约束边。应考虑板组间
的 约束因素。引入板组约束系数 ,则板的弹性屈曲临界应力为
:
2
x ,cr
p x ,cr t
K2E 12 1 2
t b
取 E=2.06×105N/mm2、μ=0.3, 则:
2E
121 2
2、矩形薄板的屈曲
根据弹性力学小挠度理论,四边简支矩形薄板在单向中面压力 Px 作用下弹性屈曲时的临界应力为:
2
x ,cr
p x ,cr t
K2E
12 1 2
t b
K — 弹性屈曲系数,与荷载种类、应力分布状态、板的边长比 例、边界条件等相关
钢梁是由几块板件组成的,各板件之间存在相互约束作用。既
2)减小板宽可有效地提高临界应力,而减小板长的效果不大。 3)与钢材强度无关,采用高强度钢材并不能提高板的局部稳定
性能。
弹塑性临界应力:
x ,cr
p x ,cr t
弹塑性力学6薄板弯曲
Mxy
Mx
z
My
Myx
Qx
y
Qy
• 内力由挠度表示
将应力的表达式代入积分得到
M
x
D(
2w x 2
v
2w y 2
)
D(K x
vK
y
)
M
y
D(
2w y 2
v
2w x 2
)
D(K
y
vK x
)
M
xy
M
yx
D1 2w
xy
Qx
D 2w x
利用板下面的边界条件 z zt 0 , f(x,y)=0
2
z
Et 3 6(1 v2 )
1 2
-
z t
2
1
z t
4w
z沿板厚度方向呈三次方变化 最大值发生在板面为q,最小值在板底为0。
• 薄板的平衡微分方程
利用板上面的边界条件 z zt q ,得:
m1,3,5... n1,3,5...
m2 a2
n2 b2
mn(
m2 a2
n2 b2
)2
sin
mx
a
sin
ny
b
M y
16q0 4
m2 a2
2
mn( m m1,3,5... n1,3,5...
n2
b2 n2 )2
sin
mx sin a
ny b
弹性力学第九章 薄板弯曲问题
NORTHEASTERN UNIVERSITY
§9-3 薄板横截面上的内力
(1)应力分量 x
由公式(9-4)知, x 合成的主矢量为零;
对中面合成的弯矩
2
M x 2 z xdz
把(9-4)代入上式
M x
1
E
2
2w x2
2w y2
2 z2dz
§9-1 有关概念及计算假定
计算假定:
薄板的小挠度弯曲理论,三个计算假定。
(1)垂直于中面方向的正应变可以不计。即
z 0
由几何方程可得
y
w 0, w w x, y
z
0
x
b
/2 /2
z 图9-1
也就是说,在中面的任意一根法线上,薄板全厚度内所有各点都 具有相同的位移,其值等于挠度。
M yx
2 2
z yxdz
E 3
121
2w xy
M xy
Fsy
2
2
yz
dz
12
E 3 1 2
2w y
(d) (e) (f)
弹性力学简明教程
NORTHEASTERN UNIVERSITY
§9-3 薄板横截面上的内力
zx 0, yz 0
这里与梁的弯曲相同之处,也有 不同之处,梁的弯曲我们只考虑横截 面,板的弯曲有两个方向,要考虑两 个横截面上的应力。
弹性力学简明教程
NORTHEASTERN UNIVERSITY
§9-1 有关概念及计算假定
结合第一假定,可见中面的法线在薄板弯曲时保持不伸缩,并且成 为弹性曲面的法线。
薄板屈曲1
x y
Ez 1 2 Ez 1 2
xy yx
Ez 2 w 1 xy
(5)
为了计算板中内力,取出板的单元体如图 2a 所示。微元体侧面上的应力的合力矩 就是板中的弯矩 M x 、 M y 和扭矩 M xy (图 2b)。分别按下列各式求得 M x 、 M y 和 M xy :
图 2a
图 2b
Mx
t/2
t / 2
x zdz y zdz
t/2
My
t/2
t / 2
M xy M yx
t / 2
xy zdz
以式(5)表示的应力分量代入上式,因 w w( x, y ) ,不随 z 变化,积分后可得
2w 2w M x D x 2 y 2 2w 2w M y D y 2 x 2 M xy M yx D(1 ) 2w xy
m 4 4 m 2 n 2 4 n 4 4 p x m 2 2 2 4 0 D a2 a4 a 2b 2 b
7
即
D 2 px 2 b
mb n 2 a a mb
2
(f)
临界载荷应是使板发生微弯的最小载荷,因而设微弯时沿 y 方向的半波数 n 1 ,于是
Q x Q y x y dxdy
(g)
将式(f)和式(g)相加,化简后得平衡条件 z 0 为
5
Q x Q y 2w 2w 2w N x 2 2 N xy Ny 2 0 x y xy x y
由图 4b 所示微元体,对 x 轴的力矩平衡条件 M x 0 ,得
2