2002年中考数学专题复习:圆中三大基本定理
初三《圆》知识点及定理
《圆》知识点及定理一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB CD⊥③CE DE=④弧BC=弧BD⑤弧AC=弧AD中任意2个条件推出其他3个结论。
推论2:圆的两条平行弦所夹的弧相等。
(完整版)初三《圆》知识点及定理
《圆》知识点及定理一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB CD⊥③CE DE=④弧BC=弧BD⑤弧AC=弧AD中任意2个条件推出其他3个结论。
初三《圆》知识点及定理[参照]
- 1 -《圆》知识点及定理一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内 点在圆内;⇒d r <⇒C2、点在圆上 点在圆上;⇒d r =⇒B3、点在圆外 点在圆外;⇒d r >⇒A 三、直线与圆的位置关系1、直线与圆相离 无交点;⇒d r >⇒2、直线与圆相切 有一个交点;⇒d r =⇒3、直线与圆相交 有两个交点;⇒d r <⇒四、圆与圆的位置关系外离(图1) 无交点 ;⇒⇒d R r >+外切(图2) 有一个交点 ;⇒⇒d R r =+相交(图3) 有两个交点 ;⇒⇒R r d R r -<<+内切(图4) 有一个交点 ;⇒⇒d R r =-内含(图5) 无交点 ;⇒⇒d R r <-周1五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①是直径②③ ④ 弧弧 ⑤ 弧AB AB CD ⊥CE DE =BC =BD 弧AC =AD中任意2个条件推出其他3个结论。
初三《圆》知识点及定理
高图教育数学教研组卢老师专用《圆》知识点及定理一、圆的概念集合形式的概念: 1 、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充) 2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);四、圆与圆的位置关系外离(图 1)无交点d R r ;外切(图 2)有一个交点d R r ;相交(图 3)有两个交点R r d R r ;内切(图 4)有一个交点d R r ;内含(图 5)无交点d R r ;d dR r R r图 1图 23、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
dR r图3d rRdR图4r二、点与圆的位置关系1、点在圆内d r点 C 在圆内;2、点在圆上d r点 B 在圆上;A d3、点在圆外d r点 A 在圆外;r OBd三、直线与圆的位置关系C1、直线与圆相离d r无交点;2、直线与圆相切d r有一个交点;3、直线与圆相交d r有两个交点;rd d=r r d图 5五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论 1:( 1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共 4 个定理,简称 2 推 3 定理:此定理中共 5 个结论中,只要知道其中 2 个即可推出其它 3 个结论,即:①AB是直径②AB CD③CE DE④ 弧BC弧BD⑤ 弧AC弧 AD中任意 2 个条件推出其他 3 个结论。
初三《圆》知识点及定理
高图教育数学教研组卢老师专用《圆》知识点及定理一、圆的概念集合形式的概念: 1 、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充) 2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);四、圆与圆的位置关系外离(图 1)无交点d R r ;外切(图 2)有一个交点d R r ;相交(图 3)有两个交点R r d R r ;内切(图 4)有一个交点d R r ;内含(图 5)无交点d R r ;d dR r R r图 1图 23、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
dR r图3d rRdR图4r二、点与圆的位置关系1、点在圆内d r点 C 在圆内;2、点在圆上d r点 B 在圆上;A d3、点在圆外d r点 A 在圆外;r OBd三、直线与圆的位置关系C1、直线与圆相离d r无交点;2、直线与圆相切d r有一个交点;3、直线与圆相交d r有两个交点;rd d=r r d图 5五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论 1:( 1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共 4 个定理,简称 2 推 3 定理:此定理中共 5 个结论中,只要知道其中 2 个即可推出其它 3 个结论,即:①AB是直径②AB CD③CE DE④ 弧BC弧BD⑤ 弧AC弧 AD中任意 2 个条件推出其他 3 个结论。
初三数学圆知识点总结
初三数学圆知识点总结圆是初中数学中非常重要的一个概念,几乎涵盖了整个数学知识体系中的各个方面。
圆的性质和应用广泛,不仅在数学中有着重要的地位,而且在生活和实际应用中也有着广泛的应用。
本文将对初三数学圆的知识进行总结和归纳。
一、基本概念和性质1. 圆的定义:圆是由平面上离定点(圆心)的距离相等于定长(半径)的所有点的轨迹构成。
圆的边界称为圆周,圆周上的任意两点与圆心的线段称为弦,通过圆心的连线称为直径。
2. 圆的要素:圆心、半径、直径、圆周等是圆的基本要素。
圆心用字母O表示,半径用字母r表示,直径用字母d表示,圆周用字母C表示。
3. 圆的性质:圆周上的任意一点到圆心的距离相等;圆的直径是圆周的一种特殊的弦,它的长度等于半径的两倍;圆的任意弦都可以作为其两点连线的中垂线。
二、圆的要素之间的关系1. 圆心角和弧度:圆心角是指以圆心为顶点,两条弦为腰的角。
它的大小是圆周上这两个点所对的弧所夹的角度。
弧度是用来度量圆心角大小的单位,1弧度等于圆心角所对的弧长与半径的比值。
2. 弧长和扇形面积:弧长是指圆周上的一段弧的长度,它等于圆心角的大小乘以半径的长度。
扇形是以圆心角为顶角,圆的一部分为底边的图形。
扇形的面积等于圆心角所对的弧长与圆周长的比值乘以圆的面积。
3. 弦长和正弦定理:弦长是指圆上任意两点所确定的线段的长度。
正弦定理是指在一个圆内,三角形的三个边与其对角的正弦值之间的关系。
三、圆的重要定理和公式1. 切线定理和割线定理:切线定理是指从同一外点向圆引切线,切线上的切点到引线点距离的平方等于切点到圆心距离的平方。
割线定理是指从同一外点向圆引割线,割线上的切点到引线点的两部分距离的乘积等于引线点到圆心距离的平方减去割线长的平方。
2. 求圆内切多边形的边长和面积:对于正多边形,可以利用正多边形内接圆与外接圆之间的关系来求解多边形的边长和面积。
3. 余弦定理和正弦定理:余弦定理是它描述了一个三角形的边与角之间的关系。
中考复习圆专题含答案
中考专题复习——圆一、垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.转为几何语言:∵CD是直径,CD⊥AB,∴AM=BM,⌒AC=⌒BC,⌒AD=⌒BD如果把条件和结论看成是5个条件,相互间是否还有其它关系呢?如图,在下列五个条件中:①CD是直径,②CD⊥AB,③AM=BM,④⌒AC=⌒BC,⑤⌒AD=⌒BD只要具备其中两个条件,就可推出其余三个结论.你可以写出相应的命题吗?条件结论命题①②③④⑤垂直于弦的直径平分弦,并且平分弦所的两条弧.①③②④⑤平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.①④ ②③⑤ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.①⑤ ②③④ ②③ ①④⑤ 弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧. ②④ ①③⑤ 垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且平分弦和所对的另一条弧.②⑤ ①③④ ③④ ①②⑤ 平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于弦,并且平分弦所对的另一条弧.③⑤ ①②④ ④⑤ ①②③ 平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.垂径定理是《圆》这一章的重要内容,在实际生活中有着广泛的应用.在各地中考题中对垂径定理的考查频频出现,这类问题常常需要结合勾股定理来解决,现以中考题为例说明如下:类型一 求直径【例1】如图,O ⊙的直径AB 垂直弦CD 于点P ,且点P 是半径OB 的中点,6 cm CD =,则直径AB 的长是( ).A . 2 3 cmB . 3 2 cmC . 4 2 cmD . 4 3 cm【解析】解决本题的关键是构造直角三角形,根据勾股定理列出方程求解即可.连接OD ,由垂径定理可知PD =362121=⨯=CD (cm).设半径OD =x cm ,则OP=x OB 2121=(cm). 在Rt △OPD 中,因为222OP DP OD +=,所以222132x x ⎛⎫+= ⎪⎝⎭.解这个方程,得23x =.所以直径AB 的长为342=x (cm),故应选D . 类型二 求弦长【例2】如图,AB O 是⊙的直径,弦CD AB ⊥于点E ,60COB ∠=°,⊙O 的半径为 3 cm ,则弦CD 的长为( ).A .3cm 2B . 3 cmC . 2 3 cmD . 9 cm 【解析】因为60COB ∠=°,CD AB ⊥,所以∠CEO =90°,∠OCD =30°.又因为⊙O 3 cm ,所以OE =12OC 3.由勾股定理可得222233(3)22CE OC OE ⎛⎫=--= ⎪ ⎪⎝⎭. 所以CD =2CE =3(cm).故应选B . 类型三 求弦心距【例3】⊙O 的半径为10 cm ,弦AB =12 cm ,则圆心到弦AB 的距离为( ).A .2 cmB .6 cmC .8 cmD .10 cm【解析】画出示意图如图,作OC AB ⊥于点C ,连接OA , 由垂径定理,得AC =1112622AB =⨯=. 在Rt △AOC 中,由勾股定理,得OC =22221068OA AC -=-=(cm).故应选C .类型四 求拱高【例4】如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ).A .5米B .8米C .7米D .53米 【解析】设石拱桥圆弧的圆心为O ,连接OA 、OD ,则OD ⊥AB .又因为OA =13,由垂径定理可得AD =11241222AB =⨯=. 所以在Rt △AOD 中,OD 222213125OA AD -=-=. 所以CD =OC -OD =13-5=8(米).故应选B .类型五 探究线段的最小值【例5】如图,⊙O 的半径 5 cm OA =,弦8 cm AB =,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是________cm .【解析】因为连接直线外一点与直线上各点的所有线段中,垂线段最短, 所以需作出弦AB 的弦心距.过点O 作OC ⊥AB , C 为垂足,由垂径定理,知AC=118422AB =⨯=(cm). 在Rt △AOC 中,由勾股定理可得OC 2222543OA AC -=-=. 故点P 到圆心O 的最短距离为3 cm .二、 圆周角定理及推论《圆周角》解题技巧在数学里,把一个对象转化为另一个对象,常常可以化繁为简,化未知为已知,从而达到解决问题的目的,这种思考问题的方法,就是“转化”.在研究与圆周角有关的问题时,常进行等角间的转化.【例1】如图,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连接AC ,OC ,BC .(1)求证:∠ACO =∠BCD .(2)若EB =8 cm ,CD =24 cm ,求⊙O 的直径.【分析】(1)欲证∠ACO =∠BCD ,关键是进行等角间的转化:∠ACO =∠OAC ,∠BCD =∠OAC ,转化的依据是等腰三角形的性质定理和圆周角的“等弧所对的圆周角相等”;(2)借助勾股定理构建方程即可求得⊙O 的直径.解:(1)∵AB 为⊙O 的直径,CD 是弦,且AB CD 于点E ,∴CE =ED ,︵CB =︵DB . ∴∠BCD =∠BAC . ∵OA =OC , ∴∠OAC =∠OCA . ∴∠ACO =∠BCD .(2)设⊙O 的半径为R cm ,则OE =OB -EB =R -8.∴CE =21CD =21×24=12.在Rt△CEO中,由勾股定理可得OC2=OE2+CE2,即R2=(R-8)2+122.解得R=13.所以2R=2×13=26.【例2】如图,四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC 上,AB=AD,∠BFC=∠BAD=2∠DFC.求证:(1)CD⊥DF;(2)BC=2CD.【分析】(1)欲证CD⊥DF,可转化为证明∠FCD+∠CFD=90°.由圆周角的性质有∠FCD=∠ABD,再联系条件∠BAD=2∠CFD,不难向等腰△ABD的内角和定理进行联想,从而找到解题的切入点;(2)欲证BC=2CD,现在还有一个条件∠BFC=∠BAD没有用,注意到∠BFC=∠ABF+∠BAC,∠BAD=∠CAD+∠BAC,从而有∠ABF=∠CAD,而∠CAD=∠CBD,故∠ABF=∠CBD,即∠ABD=∠FBC,而∠ABD=∠ADB=∠FCB,从而∠FBC=∠FCB,于是得FB=FC.思考到这里,不妨再回头看看证题目标BC=2CD,可考虑取BC的中点G,于是问题转化为证明CG=CD,即证△FGC≌△FDC.证明:(1)∵AB=AD,∴∠ABD=∠ADB.在△ABD中,∠BAD+2∠ABD=180°.又∠BAD=2∠DFC,∠FCD=∠ABD,∴2∠DFC+2∠FCD=180°.∴∠DFC+∠FCD=90°.∴∠FDC=90°.∴CD⊥DF.(2)∵∠BFC=∠ABF+∠BAC,∠BAD=∠CAD+∠BAC,∴∠ABF=∠CAD.又∠CAD=∠CBD,∴∠ABF=∠CBD,即∠ABD=∠FBC,而∠ABD=∠ADB=∠FCB,∴∠FBC=∠FCB,∴FB=FC.取BC的中点G,连接FG.∴FG⊥BC.∴∠FGC=90°.∵AB=AD,∴︵AB=︵AD,∴∠ACB=∠ACD.∵∠FGC=∠FDC=90°,FC=FC,∴△FGC≌△FDC.∴CG=CD.∵BC=2CG,∴BC=2CD.三、切线及切线长定理怎样证明直线与圆相切?在直线与圆的各种位置关系中,相切是一种重要的位置关系.现介绍以下三种判别直线与圆相切的基本方法:(1)利用切线的定义——在已知条件中有“半径与一条直线交于该半径的外端”,于是只需直接证明这条直线垂直于这个半径即可.【例1】已知:△ABC内接于⊙O,⊙O的直径AE交BC于F点,点P在BC的延长线上,且∠CAP=∠ABC.求证:PA是⊙O的切线.【证明】连接EC.∵AE是⊙O的直径,∴∠ACE=90°.∴∠E+∠EAC=90°.∵∠E=∠B,∠B=∠CAP,∴∠E=∠CAP.∴∠EAC+∠CAP=∠EAC+∠E=90°.∴∠EAP=90°.∴PA⊥OA.又PA经过点A,∴PA是⊙O的切线.(2)利用切线的判定定理——在已知条件中,有“一条直线过圆上某一点(即为切点),但没有半径”,于是先连接圆心与这个点成为半径,然后再证明这条直线和这条半径垂直.【例2】以Rt△ABC的直角边BC为直径作⊙O交斜边AB于点P,点Q为AC的中点.求证:PQ为⊙O的切线.B【证明】连接OP,CP.∵BC为直径,∴∠BPC=90°,即∠APC=90°.又点Q为AC的中点,∴QP=QC.∴∠1=∠2.又OP=OC,∴∠3=∠4.又∠ACB=90°,∴∠2+∠4=∠1+∠3=∠ACB=90°.∴∠OPQ=90°.∵点P在⊙O上,且点P为半径OP的端点,∴QP为⊙O的切线.说明:要证PQ与半径垂直,即连接OP.这是判别相切中添加辅助线的常用方法.(3)证明“d=R”,在已知条件中“没有半径,也没有明确直线与圆的公共交点”,于是过圆心作直线的垂线,然后再证明这条垂线段的长(d)等于圆的半径(R)即可.【例3】已知,在△ABC中,AD⊥BC于点D,且AD=12BC,点E,F分别为AB,AC的中点,点O为EF的中点.求证:以EF为直径的圆与BC相切.【证明】作OH⊥BC于点H,设AD与EF交于点M.∵点E,F分别为AB,AC的中点,∴EF=12 BC.∴点M也是AD的中点,即MD=12 AD.又AD=12BC,∴EF=AD,MD=12EF.又AD⊥BC,∴OH∥MD.∴四边形OHDM是矩形.∴OH=MD=12EF.∴OH是⊙O的半径.∴以EF为直径的圆与BC相切.与《切线长定理》相关的中考压轴题1.已知:以Rt △ABC 的直角边AB 为直径作⊙O ,与斜边AC 交于点D ,过点D 作⊙O 的切线交BC 边于点E .(1)如图,求证:EB =EC =ED ;(2)试问在线段DC 上是否存在点F ,满足BC 2=4DF •DC ?若存在,作出点F ,并予以证明;若不存在,请说明理由.分析:(1)连接BD ,已知ED 、EB 都是⊙O 的切线,由切线长定理可证得OE 垂直平分BD ,而BD ⊥AC (圆周角定理),则OE ∥AC ;由于O 是AB 的中点,可证得OE 是△ABC 的中位线,即E 是BC 中点,那么Rt △BDC 中,DE 就是斜边BC 的中线,由此可证得所求的结论;(2)由(1)知:BC =2BE =2DE ,则所求的比例关系式可转化为22BC ⎛⎫ ⎪⎝⎭=DF •DC ,即DE 2=DF •DC ,那么只需作出与△DEC 相似的△DFE 即可,这两个三角形的公共角为∠CDE ,只需作出∠DEF =∠C 即可;①∠DEC >∠C ,即180°-2∠C >∠C ,0°<∠C <60°时,∠DEF 的EF 边与线段CD 相交,那么交点即为所求的F 点;②∠DEC =∠C ,即180°-2∠C =∠C ,∠C =60°时,F 与C 点重合,F 点仍在线段CD 上,此种情况也成立;③∠DEC<∠C,即180°-2∠C<∠C,60°<∠C<90°时,∠DEF的EF边与线段的延长线相交,与线段CD没有交点,所以在这种情况下不存在符合条件的F点.解:(1)证明:连接BD.由于ED、EB是⊙O的切线,由切线长定理,得ED=EB,∠DEO=∠BEO,∴OE垂直平分BD.又∵AB是⊙O的直径,∴AD⊥BD.∴AD∥OE.即OE∥AC.又O为AB的中点,∴OE为△ABC的中位线,∴BE=EC,∴EB=EC=ED.(2)解:在△DEC中,由于ED=EC,∴∠C=∠CDE,∴∠DEC=180°-2∠C.①当∠DEC>∠C时,有180°-2∠C>∠C,即0°<∠C<60°时,在线段DC上存在点F满足条件.在∠DEC内,以ED为一边,作∠DEF,使∠DEF=∠C,且EF交DC于点F,则点F即为所求.这是因为:在△DCE和△DEF中,∠CDE=∠EDF,∠C=∠DEF,∴△DEF∽△DCE.∴DE2=DF•DC.即212BC⎛⎫⎪⎝⎭=DF•DC.∴BC2=4DF•DC.②当∠DEC=∠C时,△DEC为等边三角形,即∠DEC=∠C=60°,此时,C点即为满足条件的F点,于是,DF=DC=DE,仍有BC2=4DE2=4DF•DC.③当∠DEC<∠C时,即180°﹣2∠C<∠C,60°<∠C<90°;所作的∠DEF >∠DEC,此时点F在DC的延长线上,故线段DC上不存在满足条件的点F.点评:此题主要考查了直角三角形的性质、切线长定理、三角形中位线定理及相似三角形的判定和性质;(2)题一定要注意“线段DC上是否存在点F”的条件,以免造成多解.2.如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,以AB为直径的⊙O与DC相切于E.已知AB=8,边BC比AD大6.(1)求边AD、BC的长;(2)在直径AB上是否存在一动点P,使以A、D、P为顶点的三角形与△BCP相似?若存在,求出AP的长;若不存在,请说明理由.分析:过D作DF⊥BC于F,设AD=x,则DE=AD=x,EC=BC=x+6,根据勾股定理就得到一个关于x的方程,就可以解得AD的长;△ADP和△BCP相似,有△ADP∽△BCP和△ADP∽△BPC两种情况进行讨论,根据相似三角形的对应边的比相等,就可以求出AP的长.解:(1)方法1:过D作DF⊥BC于F,在Rt△DFC中,DF=AB=8,FC=BC-AD=6,∴DC2=62+82=100,即DC=10.设AD=x,则DE=AD=x,EC=BC=x+6,∴x+(x+6)=10.∴x=2.∴AD=2,BC=2+6=8.方法2:连OD、OE、OC,由切线长定理可知∠DOC=90°,AD=DE,CB=CE,设AD=x,则BC=x+6,由射影定理可得:OE2=DE•EC.即:x(x+6)=16,解得x1=2,x2=-8,(舍去)∴AD=2,BC=2+6=8.(2)存在符合条件的P点.设AP=y,则BP=8-y,△ADP与△BCP相似,有两种情况:①△ADP∽△BCP时,有AD APBC PB=,即288yy=-.∴y=85.②△ADP∽△BPC时,有AD APBP BC=,即288yy=-.∴y=4.故存在符合条件的点P,此时AP=85或4.点评:本题主要考查了相似三角形的判定性质,对应边的比相等的两三角形相似.3.如图,已知AB为⊙O的直径,PA,PC是⊙O的切线,A,C为切点,∠BAC=30°.(Ⅰ)求∠P的大小;(Ⅱ)若AB=2,求PA的长(结果保留根号).分析:(Ⅰ)根据切线的性质及切线长定理可证明△PAC为等边三角形,则∠P的大小可求;(Ⅱ)由(Ⅰ)知PA=PC,在Rt△ACB中,利用30°的特殊角度可求得AC 的长.解:(Ⅰ)∵PA是⊙O的切线,AB为⊙O的直径,∴PA⊥AB,∴∠BAP=90°;∵∠BAC=30°,∴∠CAP=90°-∠BAC=60°.又∵PA、PC切⊙O于点A、C,∴PA=PC,∴△PAC为等边三角形,∴∠P=60°.(Ⅱ)如图,连接BC,则∠ACB=90°.在Rt△ACB中,AB=2,∠BAC=30°,∵cos∠BAC=ACAB,∴AC=AB•cos∠BAC=2cos30°3∵△PAC为等边三角形,∴PA=AC,∴PA3.点评:本题考查的是切线长定理,切线长定理图提供了很多等线段,分析图形时关键是要仔细探索,找出图形的各对相等切线长.四、 正多边形与圆4.(1)已知如图①所示,△ABC 是⊙O 的内接正三角形,点P 为︵BC 上一动点,求证PA =PB +PC .下面给出一种证明方法,你可以按这一方法补全证明过程,也可以选择另外的证明方法.证明:在AP 上截取AE =CP ,连接BE . ∵△ABC 是正三角形, ∴AB =CB .∴∠1和∠2是同弧所对的圆周角. ∴∠1=∠2. ∴△ABE ≌△CBP .③OPFEDBA②ODCBA①21E POCB(2)如图②所示,四边形ABCD 是⊙O 的内接正方形,点P 为︵BC 上一动点,求证:PA =PC 2PB .(3)如图③所示,六边形ABCDEF 是⊙O 的内接正六边形,点P 为︵BC 上一动点,请探究PA 、PB 、PC 三者之间有何数量关系,直接写出结论.4.证明:⑥F⑤④(1)如图④所示,延长BP 至E ,使PE =PC ,连接CE . 易知∠CPE =∠CAB =60°,∴△PCE 是等边三角形. ∴CE =PC ,∠ECP =60°. ∴∠ECP +∠PCB =∠BCA +∠PCB , 即∠ECB =∠PCA .在△CAP 和△CBE 中,CA =CB ,CP =CE ,∠PCA =∠ECB , ∴△CAP ≌△CBE . ∴PA =BE =PB +PC .(2)如图⑤所示,过点B 作BE ⊥PB 交PA 于E . ∵∠1+∠2=∠2+∠3=90°, ∴∠1=∠3.又∵AB =BC,∠BAP =∠BCP , ∴△ABE ≌△CBP ,∴PC =AE .∵∠APB=45°,∴BP =BE ,∴PE PB. ∴PA =AE +PE =PC PB . (3)PA =PC .证明:如图⑥所示,在AP 上截取AQ =PC ,连接BQ . ∵∠BAP =∠BCP ,AB =BC ,AQ =CP , ∴△ABQ ≌△CBP ,∴BQ =BP . 又∵∠APB =30°,∴PQ =3PB . ∴PA =PQ +AQ =3PB +PC .五、 与圆有关的计算1.如图,将圆沿AB 折叠后,圆弧恰好经过圆心,则弧AMB 的度数是( ).A .60°B .90°C .120°D .150°2.如图,王虎使一长为4 cm 、宽为3 cm 的长方形木板,在桌面上做无滑动的翻滚(顺时针方向),木板上点A 位置变化为A →A 1→A 2,其中第二次翻滚被桌面上一小木板档住,使木板与桌面成30°角,则点A 翻滚到A 2位置时共走过的路径长为( ).A .10 cmB .4π cmC .72π cmD .52cm3.如图,有一圆锥形粮堆,其正视图是边长为6 cm 的正三角形ABC ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程是________cm (结果不取近似值).4、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=3,BC=1,将Rt△ABC绕点C 旋转90°后得Rt△A'B'C,再将Rt△A'B'C绕点B'旋转为Rt△A''B'C'使得点A,C,B',A''在同一条直线上,则点A运动到点A''所走的路径长为___________.。
初三《圆》知识点及定理
高图教育数学教研组卢老师专用《圆》知识点及定理一、圆的概念集合形式的概念: 1 、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充) 2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);四、圆与圆的位置关系外离(图 1)无交点d R r ;外切(图 2)有一个交点d R r ;相交(图 3)有两个交点R r d R r ;内切(图 4)有一个交点d R r ;内含(图 5)无交点d R r ;d dR r R r图 1图 23、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
dR r图3d rRdR图4r二、点与圆的位置关系1、点在圆内d r点 C 在圆内;2、点在圆上d r点 B 在圆上;A d3、点在圆外d r点 A 在圆外;r OBd三、直线与圆的位置关系C1、直线与圆相离d r无交点;2、直线与圆相切d r有一个交点;3、直线与圆相交d r有两个交点;rd d=r r d图 5五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论 1:( 1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共 4 个定理,简称 2 推 3 定理:此定理中共 5 个结论中,只要知道其中 2 个即可推出其它 3 个结论,即:①AB是直径②AB CD③CE DE④ 弧BC弧BD⑤ 弧AC弧 AD中任意 2 个条件推出其他 3 个结论。
初三中考数学圆及概念公式定理知识点的归纳
初三中考数学圆及概念公式定理知识点的归纳
初三中考数学圆及有关概念公式定理知识点的归纳
我们的圆是轴对称图形,其对称轴是任意一条通过圆心的直线,所以是无数条对称轴。
圆及有关概念
1 到定点的距离等于定长的点的集合叫做圆(circle).这个定点叫做圆的圆心。
2 连接圆心和圆上的任意一点的线段叫做半径(radius)。
3 通过圆心并且两端都在圆上的线段叫做直径(diameter)。
4 连接圆上任意两点的线段叫做弦(chord). 最长的弦是直径。
5 圆上任意两点间的部分叫做圆弧,简称弧(arc).大于半圆的弧称为优弧,优弧是用三个字母表示。
小于半圆的弧称为劣弧,劣弧用两个字母表示。
半圆既不是优弧,也不是劣弧。
优弧是大于180度的弧,劣弧是小于180度的弧
6 由两条半径和一段弧围成的图形叫做扇形(sector)。
7 由弦和它所对的一段弧围成的图形叫做弓形。
8 顶点在圆心上的角叫做圆心角(central angle)。
9 顶点在圆周上,且它的`两边分别与圆有另一个交点的角叫做圆周角。
10 圆周长度与圆的直径长度的比值叫做圆周率。
它是一个超越数,通常用π表示,π=3.1415926535……。
在实际应用中,一般取π≈3.14。
11 圆周角等于弧所对的圆心角的一半。
字母表示
圆—⊙ ; 半径—r或R(在环形圆中外环半径表示的字母); 弧—⌒ ; 直径—d ;
扇形弧长—L ; 周长—C ; 面积—S。
圆的表示方法要求很严格,需要用到相应的知识要求。
初三《圆》知识点及定理
初三《圆》知识点及定理- 1 -《圆》知识点及定理一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外;三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+;相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论。
初三《圆》知识点及定理
《圆》知识点及定理一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB CD⊥③CE DE=④弧BC=弧BD⑤弧AC=弧AD中任意2个条件推出其他3个结论。
初三下册数学圆知识点定理总结
初三下册数学圆知识点定理总结研究必备精品知识点——初三圆的定理总结1.垂径定理及推论:在圆中,如果一条直径垂直于一条弦,那么这条直径将这条弦平分,并且这条直径还垂直于弦的两个端点所在的直线。
还有其他三个定理:中径定理、弧径定理和中垂定理。
2.平行线夹弧定理:圆的两条平行弦所夹的弧相等。
3.“角、弦、弧、距”定理:在同一个圆或等圆中,如果两个角相等,那么它们所对的弦也相等;如果两个弦相等,那么它们所对的角也相等;如果两个角所对的弧相等,那么这两个角也相等;如果两个弧所对的角相等,那么这两个弧也相等;如果两个弧所对的弦相等,那么这两个弧也相等;如果两个弦所对的弦心距相等,那么这两个弦也相等;如果两个弦所对的弦心距相等,那么这两个弦也相等。
4.圆周角定理及推论:圆周角的度数等于它所对的弧的度数的一半。
如果一个直径平分一个圆,那么它所对的两个弧是等弧,它所对的两个角是等角,它所对的两个弦是等弦,它所对的两个弦心距是相等的。
如果一条弦所对的圆心角是直角,那么这条弦是直径。
5.圆内接四边形性质定理:圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。
6.切线的判定与性质定理:如果一条直线通过圆上的一个点,并且垂直于这个点到圆心的半径,那么这条直线是圆的切线。
圆的切线垂直于经过切点的半径。
如果一条直线经过圆心并且垂直于切线,那么它必须经过切点。
如果一条直线经过切点并且垂直于切线,那么它必须经过圆心。
7.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等;圆心和这一点的连线平分两条切线的夹角。
2.因为OC是半径,AB是切线,所以OC⊥AB。
3.弦切角定理及其推论:1) 弦切角等于它所夹的弧对的圆周角;2) 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等;3) 弦切角的度数等于它所夹的弧的度数的一半。
举例:1) 因为BD是切线,BC是弦,所以∠CBD =∠CAB。
2) 因为ED,BC是切线,所以∠CBA =∠DEF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解析】⑴ ∵ ,∴ ,
∵ 是直径,∴ ,
∴ ,即 .
⑵由⑴可知 ,
∵ ,∴ ,
又 ,∴ ,∴ .
题型三圆周角定理巩固练习
【练习4】⑴如图, 是 的直径, ,设 ,
则 _________.
⑵如图, 是 的直径,弦 交 于点 ,弦 交 于点 ,
且 .若 ,则 ___________.
如图,已知 是半圆 的直径, 为半圆周上一点, 是
的中点, 于 ,试判断 与 的数量关系并证明.
【解析】 .
解法一:连接 ,交 于
∵ 是 的中点,∴ ,即 , ,
∵ ,∴ ,
∴ ,∴ .
解法二:补全圆,延长 交 于
由垂径定理可知, ,即
∴ ,
又∵ 是 的中点,∴ ,
∴ ,∴ ,
∴ .
拿到圆周角,先观察它的位置,对于位置不合适的,可以利用弧把它转化为圆心角或相等的圆周角,除此之外,由半径和弦构成的等腰三角形也是常用的转化角的工具,应该熟练应用.
∴ .
解法二:由⑴得 平分 ,
由角平分线定理可得 ,
∴ .
【练习2】如图, 中, 是直径,弦 , 交 于 .求证: .
【解析】 过 点作 于 点,
∴ 是 中点,
∵ ,∴ ,
又 ,∴ ,
∴ 是 中点,
∵ ,∴ .
题型二弧、弦、圆心角、弦心距的关系定理巩固练习
【练习3】如图,过 的直径 上两点 ,分别作弦 ,若 .
如图,若 ,则 为 中点;
【探究8】弦心距与边的关系探究:
一边的弦心距等于对边的一半: ;
分析:方法一:过O作 ,垂足为 ,连接 、 、 、 ;∵
;
∴ ;
∴ ;
方法二:连接 ,延长 交圆 于点 ,连接 ;
∵ ;
∴ ;
∴ ;
方法三:过O作 ,垂足为 ,连接 、 、 ;
∵由【探究7】的婆罗摩笈多定理可知 ,
(2013普陀模拟)
【解析】①过点O作OM⊥AD,ON⊥BC,
∵OE平分∠AEC,∴OM=ON,∴ ,
∴ ,即 ,∴AB=CD;
②∵OM⊥AD,∴AM=DM,
∵AD⊥CB,OE平分∠AEC,∴∠OEM=45°,∴∠OME=45°,
∴∠OEM=∠EOM,∴OM=ME,
在Rt△AOM中, ,即 ,
解得: 或 (舍去),故AD的长为8.
如图,已知圆内接四边形 中 ,若
, 则 __________.
【解析】⑴ .
⑵连接
∵ ,∴
∴
∴ ,∴ ,
∴ ,∴ .
另外还有一种解法:过点 作 交 于点 .
精讲:圆中垂直弦的相关结论探究;
【探究对象】圆中垂直弦所组成的四边形的性质
【探究目的】垂直弦是圆的题型中常见条件之一,以垂直弦为对角线的四边形非常特殊,具有很多自己特有的性质和结论,探究并掌握垂直弦所带来的性质和结论对于加强对圆的认识和加深对解题技巧的掌握都有很大的帮助;
那么 _________.
⑵如下中图, 是 的直径,点 在 上, , ,则 ()
A. B. C. D.
⑶如下右图, 的半径为 , 是 的一条弦,且 ,则弦 所对圆周角的度数为__________.
【解析】⑴ ;⑵C;⑶ 或 .
【例6】 如图,面积为 的四边形 内接于 ,对角线 经过圆心,
若 ,则 的长等于.
已知:如图, 是 的直径,点 是半圆上一个三等分点,点 是
的中点, 是 上一动点, 的半径为 ,则 的最小
值是__________.
如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,
则AD的长为( )
A. B. C. D.
如图所示,在 中, ,那么( )
A. B.
C. D. 与 的大小关系不能确定
两端在圆上滑动时,始终与 相交,记点 到 的距离分别为
,则 等于__________.
【解析】解法一:设 相交于 ,过 点作 于 ,连结 .
由垂径定理 ,∴ ,
∵ ,∴ ,
∴ ,即 ,
∴
当 点在 点左侧时, ,
当 点在 点右侧时, ,
∴ .
解法二:极端假设法
⑴当 点运动到与 点重合时, , ,
此时 是直角三角形, ,∴ .
1.若 于 ,则 ;
; .
2.若 ,则 ;
; .
【例1】 如图,BD是⊙O的弦,点C在BD上,以BC为边作等边三角形
△ABC,点A在圆内,且AC恰好经过点O,其中BC=12,OA=8,
则BD的长为( )
A.20B.19C.18D.16
如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量分别相等.
如图,由定理可知:
若 ,则 、 ;
若 ,则 、 ;
若 ,则 、 .
【例3】 如图, 是半圆,O为AB中点,C、D两点在 上,且
AD∥OC,连接BC、BD.若 ,则 的度
数为何?( )
A. B. C. D.
【探究1】角的相关性质探究:
圆内接四边形对角互补: ;
;
【探究2】边的相关性质探究:
对边平方和相等: ;
分析:连接CO,延长CO与圆O相交于点E,连接AE、BE;
则 ,从而 ;易得 ;所
以 , ;
【探究3】面积的计算探究:
四边形 的面积等于对角线的乘积的一半: ;
【探究4】面积的性质探究:
相对顶点同圆心的连线段平分四边形的面积:
圆心,CA为半径的圆与AB交于点D,则AD的长为.
【解析】 A; .
【例2】 如图, 是 直径,弦 交 于 , , .设 , .下列图象中,能表示 与 的函数关系的是()
如图,圆心在y轴的负半轴上,半径为5的⊙B与y
轴的正半轴交于点 ,过点 的直线l与
⊙B相交于C、D两点.则弦CD长的所有可能的整
数值有( )A.1个B.2个C.3个D.4个
⑵当 与 垂直时, ,
∵ ,由垂径定理知 ,∴ ,
∴ ,
∴ .
解法三:连接 并延长交 于
易证 ,
∴ ,∴ ,
由解法一可知 ,
∴ ,
当 在圆心 的另外一侧时, ,
∴ .
解法四:连接 ,作 于 ,延长 交 于
易得 是 的中点,
则 , ,
∴ ,
∴ .
解法五:延长 交 于 ,连接 ,作 于 交 于
易证 , ,
垂径定理反映的是经过圆心的直线和圆中弦的关系,“要求弦长,先求弦长的一半”,注意对由半径、半弦长和弦心距构成的直角三角形模型的理解和应用.
暑期知识点回顾:
定理
示例剖析
1.垂直于弦的直径平分弦,并且平分弦所对的两条弧.
2.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
如图, 是 的直径, 是弦
【解析】 A;
∵ ,圆的半径为5,∴ ,又∵ ,∴ ,
①当CD垂直圆的直径AE时,CD的值最小,
连接BC,在Rt△BCP中, ,
故 ,
②当CD经过圆心时,CD的值最大,此时 ;
综上可得:弦CD长的所有可能的整数值有:8,9,10,共3个.
故选C.
【备选1】如图, 是 的直径,且 ,弦 的长为 ,若弦 的
∴ ,
∴ .
【点评】此题还有其它解法,老师在讲解时还可以引导学生拓展思路.
在同圆或等圆中,弧、弦、圆心角、弦心距四个量中,只要有一组量对应相等,那么其它三组量也分别相等。利用这个定理,我们可以把四组量的相等关系进行相互转化,做到有的放矢。
暑期知识点回顾:
定理
示例剖析
弧、弦、圆心角之间的关系:
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
;
分析:过 作 ,垂足为 ;过O作 ,垂
足为 ;
;
【探究5】中点四边形探究:
四边形 的中点四边形为矩形;
【探究6】弧度探究:
対弧和相等,且均等于半圆: (以上弧均指劣弧);
分析:同【探究2】, ;
【探究7】圆中的婆罗摩笈多定理:
过对角线交点且平分一边的直线必垂直于对边:
如图,若 为 中点,则 ;
过对角线交点且垂直于一边的直线必平分对边:
【解析】⑴1;⑵ .
【练习5】已知点 顺次在 上, , 于点
,求证: .
【解析】解法一:补短法
过 点作 交 延长线于 .
∵ ,∴ ,
∵ ,∴ ,
∴
∵ ,
∴ ,
∴ ,
∴ .
(或延长 到 ,使 ,连结 ,也可证得结论.)
解法二:截长法
在 上取一点 ,使得 ,连结 .
则很容易证明 ,∴ ,
∵ ,∴ ,
∴ .
∴ ,
∴∠DOB=∠OAC=2∠BAD,
∴△AOF≌△OED,
∴ ,
在Rt△DOE中, ,
在Rt△ADE中, .
故选A.
如图所示,作 ,则
∵在 中, ,
∴ ,
∵ ,
∴ ,
∴ ,即 .
故选A.
【例4】 如图,在⊙O中,AD、BC相交于点E,OE平分∠AEC.
①求证:AB=CD;
②如果⊙O的半径为5,AD⊥CB,DE=1,求AD的长.
暑期知识点回顾:
定理
示例剖析
圆周角定理:
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
推论1:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等.
推论2:半圆(或直径)所对的圆周角是直角, 的圆周角所对的弦是直径.
若 ,则