高中数学排列组合二项式定理与概率检测试题及答案
排列组合+二项式定理(含答案)
高二数学:排列组合二项式定理一、选择题(本大题共16小题,共80.0分)1.如图,花坛内有五个花池,有五种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则最多有几种栽种方案( )A. 180种B. 240种C. 360种D. 420种【答案】D【解析】解:若5个花池栽了5种颜色的花卉,方法有A55种,若5个花池栽了4种颜色的花卉,则2、4两个花池栽同一种颜色的花;或者3、5两个花池栽同一种颜色的花,方法有2A54种,若5个花池栽了3种颜色的花卉,方法有A53种,故最多有A55+2A54+A53=420种栽种方案,故选D.若5个花池栽了5种颜色的花卉,方法有A55种,若5个花池栽了4种颜色的花卉,方法有2A54种,若5个花池栽了3种颜色的花卉,方法有A53种,相加即得所求.本题主要考查排列、组合以及简单计数原理的应用,体现了分类讨论的数学思想,属于中档题.2.甲、乙、丙等6人排成一排,且甲、乙均在丙的同侧,则不同的排法共有( )种(用数字作答).A. 720B. 480C. 144D. 360【答案】B【解析】解:甲、乙、丙等六位同学进行全排可得A66=720种,∵甲乙丙的顺序为甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,∴甲、乙均在丙的同侧,有4种,∴甲、乙均在丙的同侧占总数的46=23∴不同的排法种数共有23×720=480种.故选:B.甲、乙、丙等六位同学进行全排,再利用甲、乙均在丙的同侧占总数的46=23,即可得出结论.本题考查排列、组合及简单计数问题,考查学生的计算能力,比较基础.3.从1,3,5中选2个不同数字,从2,4,6,8中选3个不同数字排成一个五位数,则这些五位数中偶数的个数为( )A. 5040B. 1440C. 864D. 720【答案】C【解析】解;先任选一个偶数排在末尾,共有4种选法,其它2个奇数的选法共有3种,剩余2个偶数的选法共有3种,这4个数全排列,共有4×3×2×1=24种方法,共有则这些五位数中偶数的个数为4×3×3×24= 864,故选:C.先按要求排末尾,再排其它,根据分步计数原理可得.本题考查加法原理和乘法原理综合运用,考查学生分析解决问题的能力,属于中档题.4.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为( )A. 48B. 72C. 90D. 96【答案】D【解析】解:根据题意,从5名学生中选出4名分别参加竞赛,分2种情况讨论:①、选出的4人没有甲,即选出其他4人即可,有A44=24种情况,②、选出的4人有甲,由于甲不能参加生物竞赛,则甲有3种选法,在剩余4人中任选3人,参加剩下的三科竞赛,有A43=24种选法,则此时共有3×24=72种选法,则有24+72=96种不同的参赛方案;故选:D.根据题意,分2种情况讨论选出参加竞赛的4人,①、选出的4人没有甲,②、选出的4人有甲,分别求出每一种情况下分选法数目,由分类计数原理计算可得答案.本题考查排列、组合的实际应用,注意优先考虑特殊元素.5.小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为( )A. 60B. 72C. 84D. 96【答案】C【解析】解:根据题意,分3种情况讨论:①、若小明的父母的只有1人与小明相邻且父母不相邻时,先在其父母中选一人与小明相邻,有C21=2种情况,将小明与选出的家长看成一个整体,考虑其顺序有A22=2种情况,当父母不相邻时,需要将爷爷奶奶进行全排列,将整体与另一个家长安排在空位中,有A22×A32=12种安排方法,此时有2×2×12=48种不同坐法;②、若小明的父母的只有1人与小明相邻且父母相邻时,将父母及小明看成一个整体,小明在一端,有2种情况,考虑父母之间的顺序,有2种情况,则这个整体内部有2×2=4种情况,将这个整体与爷爷奶奶进行全排列,有A33=6种情况,此时有2×2×6=24种不同坐法;③、小明的父母都与小明相邻,即小明在中间,父母在两边,将3人看成一个整体,考虑父母的顺序,有A22=2种情况,将这个整体与爷爷奶奶进行全排列,有A33=6种情况,此时,共有2×6=12种不同坐法;则一共有48+24+12=84种不同坐法;故选:C.根据题意,分3种情况讨论:①、小明的父母的只有1人与小明相邻且父母不相邻,②、小明的父母的只有1人与小明相邻且父母相邻,③、小明的父母都与小明相邻,分别求出每一种情况下的排法数目,由分类计数原理计算可得答案.本题考查排列、组合的应用,关键是根据题意,进行不重不漏的分类讨论.6.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻),那么不同的排法共有( )A. 24种B. 60种C. 90种D. 120种【答案】B【解析】解:根据题意,使用倍分法,五人并排站成一排,有A55种情况,而其中B站在A的左边与B站在A的右边是等可能的,则其情况数目是相等的,×A55=60,则B站在A的右边的情况数目为12故选B.根据题意,首先计算五人并排站成一排的情况数目,进而分析可得,B 站在A 的左边与B 站在A 的右边是等可能的,使用倍分法,计算可得答案.本题考查排列、组合的应用,注意使用倍分法时,注意必须保证其各种情况是等可能的.7. C 74+C 75+C 86等于( ) A. C 95B. C 96C. C 87D. C 97【答案】B【解析】解:根据组合数公式C n+1m =C n m−1+C n m得,C 74+C 75+C 86=(C 74+C 75)+C 86 =C 85+C 86 =C 96. 故选:B .利用组合数公式C n+1m =C n m−1+C n m,进行化简即可.本题考查了组合数公式C n+1m =C n m−1+C n m的逆用问题,是基础题目.8. 9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件一等品的抽取方法是( )A. C 42⋅C 52B. C 42+C 43+C 44C. C 42+C 52D. C 42⋅C 52+C 43⋅C 51+C 44⋅C 50【答案】D【解析】解:一共有4件一等品,至少两件一等品分为2件,3件,4件,第一类,一等品2件,从4件任取2件,再从3件二等品或2件三等品共5件产品中任取2件,有C 42⋅C 52, 第二类,一等品3件,从4件任取3,再从3件二等品或2件三等品共5件产品中任取1,有C 43⋅C 51,第二类,一等品4件,从4件中全取,有C 44⋅C 50, 根据分类计数原理得,至少有两件一等品的抽取方法是C 42⋅C 52+C 43⋅C 51+C 44⋅C 50. 故选:D .利用分类计数原理,一共有4件一等品,至少两件一等品分为2件,3件,4件,然后再按其它要求抽取. 本题主要考查了分类计数原理,如何分类是关键,属于基础题.9. 4名同学争夺三项冠军,冠军获得者的可能种数是( )A. 43B. A 43C. C 43D. 4 【答案】A【解析】解:每一项冠军的情况都有4种,故四名学生争夺三项冠军,获得冠军的可能的种数是43, 故选:A .每个冠军的情况都有4种,共计3个冠军,故分3步完成,根据分步计数原理,运算求得结果. 本题主要考查分步计数原理的应用,属于基础题.10. 某班班会准备从含甲、乙的7人中选取4人发言,要求甲、乙两人至少有一人参加,且若甲、乙同时参加,则他们发言时顺序不能相邻,那么不同的发言顺序有( ) A. 720种 B. 520种 C. 600种 D. 360种 【答案】C【解析】解:分两类:第一类,甲、乙两人只有一人参加,则不同的发言顺序有C 21C 53A 44种;第二类:甲、乙同时参加,则不同的发言顺序有C 22C 52A 22A 32种.共有:C 21C 53A 44+C 22C 52A 22A 32=600(种). 故选:C .分两类:第一类,甲、乙两人只有一人参加,第二类:甲、乙同时参加,利用加法原理即可得出结论. 本题考查排列、组合的实际应用,正确分类是关键.11. 现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两部分不能用同一种颜色,则不同的着色方法共有 ( ) A. 144种 B. 72种 C. 64种 D. 84种 【答案】D【解析】解:由题意知本题是一个分步计数问题, 需要先给最上面金着色,有4种结果, 再给榜着色,有3种结果,给题着色,与榜同色,给名着色,有3种结果;与榜不同色,有2种结果,给名着色,有2种结果 根据分步计数原理知共有4×3×(3+2×2)=84种结果, 故选D .需要先给最上面金着色,有4种结果,再给榜着色,有3种结果,给题着色,与榜同色,给名着色,有3种结果;与榜不同色,有2种结果,给名着色,有2种结果,根据分步计数原理得到结果.本题考查计数原理的应用,解题的关键是理解“公共边的两块区域不能使用同一种颜色,”根据情况对C 处涂色进行分类,这是正确计数,不重不漏的保证.12. 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A. 192种B. 216种C. 240种D. 288种 【答案】B【解析】解:最左端排甲,共有A 55=120种,最左端只排乙,最右端不能排甲,有C 41A 44=96种, 根据加法原理可得,共有120+96=216种. 故选:B .分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论. 本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.13. 有黑、白、红三种颜色的小球各5个,都分别标有数字1,2,3,4,5,现取出5个,要求这5个球数字不相同但三种颜色齐备,则不同的取法种数有( ) A. 120种 B. 150种 C. 240种 D. 260种 【答案】B【解析】解:根据题意,取出的5个球有三种颜色且数字不同, 分2步进行分析:①,先把取出的5个球分成3组,可以是3,1,1,也可以是1,2,2; 若分成3,1,1的三组,有C 53C 21C 11A 22=10种分组方法; 若分成1,2,2的三组,有C 51C 42C 22A 22=15种分组方法;则共有10+15=25种分组方法,②,让三组选择三种不同颜色,共有A 33=6种不同方法 则共有25×6=150种不同的取法; 故选:B .因为要求取出的5个球分别标有数字1,2,3,4,5且三种颜色齐备,所以肯定是数字1,2,3,4,5各取一个,分2步分析:先把5个球分成三组,再每组选择一种颜色,由分步计数原理计算可得答案. 本题考查分步计数原理的应用,注意题目中“5个球数字不相同但三种颜色齐备”的要求.14. 从4双不同鞋中任取4只,结果都不成双的取法有____种.( )A. 24B. 16C. 44D. 384 【答案】B【解析】解:取出的四只鞋不成双,可分四步完成,依次从四双鞋子中取一只,取四次,故总的取法有2×2×2×2=16种, 故选B .取出的四只鞋不成双,可分四步完成,依次从四双鞋子中取一只,取四次,利用乘法原理可得结论.本题考查排列、组合及简单计数问题,考查乘法原理的运用,比较基础.15.某公共汽车上有10位乘客,沿途5个车站,乘客下车的可能方式有( )种.A. 510B. 105C. 50D. A105【答案】A【解析】解:根据题意,公共汽车沿途5个车站,则每个乘客有5种下车的方式,则10位乘客共有510种下车的可能方式;故选:A.根据题意,分析可得每个乘客有5种下车的方式,由分步计数原理计算可得答案.本题考查排列、组合的实际应用,16.从0,1,2,3,4中选取三个不同的数字组成一个三位数,其中奇数有( )A. 18个B. 27个C. 36个D. 60个【答案】A【解析】解:先从1,3中选一个为个位数字,再剩下的3个(不包含0)取1个为百位,再从剩下3个(包含0)取一个为十位,故有2×3×3=18个,故答案为:18.先从1,3中选一个为个位数字,再剩下的3个(不包含0)取1个为百位,再从剩下3个(包含0)取一个为十位,根据分步计数原理可得.本题考查了分步计数原理,关键是分步,属于基础题.二、填空题(本大题共9小题,共45.0分)17.(1+2x)5的展开式中含x2项的系数是______ .(用数字作答)【答案】40【解析】解:由二项式定理的通项公式T r+1=C n r a n−r b r可设含x2项的项是T r+1=C5r15−r(2x)r=2r C5r x r,可知r=2,所以系数为22C52=40所以答案应填40本题是求系数问题,故可以利用通项公式T r+1=C n r a n−r b r来解决,在通项中令x的指数幂为2可求出含x2是第几项,由此算出系数为40本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9.一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等.18.(x−1x )(2x+1x)5的展开式中,常数项为______.【答案】−40【解析】解:(x−1x )(2x+1x)5展开式中常数项是(2x+1x )5展开式中的1x项与x的乘积,加上含x项与−1x的乘积;由(2x+1x)5展开式的通项公式为T r+1=C5r⋅(2x)5−r⋅(1x)r=25−r⋅C5r⋅x5−2r,令5−2r=−1,解得r=3,∴T4=22⋅C53⋅1x =40x;令5−2r=1,解得r=2,∴T3=23⋅C52⋅x=80x;所求展开式的常数项为40 x ⋅x+80x⋅(−1x)=40−80=−40.故答案为:−40.根据(x−1x )(2x+1x)5展开式中常数项是(2x+1x)5展开式中的1x项与x的乘积,加上x项与−1x的乘积;利用(2x+1x)5展开式的通项公式求出对应的项即可.本题考查了二项式定理的应用问题,是基础题.19.小明、小刚、小红等5个人排成一排照相合影,若小明与小刚相邻,且小明与小红不相邻,则不同的排法有______ 种.【答案】36【解析】解:根据题意,分2种情况讨论:①、小刚与小红不相邻,将除小明、小刚、小红之外的2人全排列,有A22种安排方法,排好后有3个空位,将小明与小刚看成一个整体,考虑其顺序,有A22种情况,在3个空位中,任选2个,安排这个整体与小红,有A32种安排方法,有A22×A32×A22=24种安排方法;②、小刚与小红相邻,则三人中小刚在中间,小明、小红在两边,有A22种安排方法,将三人看成一个整体,将整个整体与其余2人进行全排列,有A33种安排方法,此时有A33×A22=12种排法,则共有24+12=36种安排方法;故答案为:36.根据题意,分2种情况讨论:①、小刚与小红不相邻,②、小刚与小红相邻,由排列、组合公式分别求出每一种情况的排法数目,由分类加法原理计算可得答案.本题考查排列、组合的运用,注意特殊元素优先考虑,不同的问题利用不同的方法解决如相邻问题用捆绑,不相邻问题用插空等方法.20.(1−3x)7的展开式中x2的系数为______ .【答案】7【解析】解:由于(1−3x)7的展开式的通项公式为T r+1=C7r⋅(−1)r⋅x r3,令r3=2,求得r=6,可得展开式中x2的系数为C76=7,故答案为:7.在二项展开式的通项公式中,令x的幂指数等于2,求出r的值,即可求得展开式中x2的系数.本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题21.已知C203x=C20x+4,则x=______ .【答案】2或4【解析】解:∵C203x=C20x+4,则3x=x+4,或3x+x+4=20,解得x=2或4.故答案为:2或4.由C203x=C20x+4,可得3x=x+4,或3x+x+4=20,解出即可得出.本题考查了组合数的计算公式、方程的解法,考查了推理能力与计算能力,属于基础题.22.从4台甲型和5台乙型电视机中任意取出三台,其中至少要有甲型和乙型电视机各1台,则不同的取法共有______ 种.【答案】70【解析】解:甲型电视机2台和乙型电视机1台,取法有C42C51=30种;甲型电视机1台和乙型电视机2台,取法有C41C52=40种;共有30+40=70种.故答案为:70任意取出三台,其中至少要有甲型和乙型电视机各1台,有两种方法,一是甲型电视机2台和乙型电视机1台;二是甲型电视机1台和乙型电视机2台,分别求出取电视机的方法,即可求出所有的方法数.本题考查组合及组合数公式,考查分类讨论思想,是基础题.23.一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,则向上的数之积的数学期望是______ .【答案】49【解析】解:一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,向上的数之积可能为ξ=0,1,2,4,P(ξ=0)=C31C31+C31C31+C31C31C61C61=34,P(ξ=1)=C21C21C61C61=19,P(ξ=2)=C21C11+C11C21C61C61=19,P(ξ=4)=C11C11C61C61=136,∴Eξ=19+29+436=49.故答案为:49.一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个骰子掷两次得到结果有三种情况,使得它们两两相乘,得到变量可能的取值,结合事件做出概率和期望.数字问题是概率中经常出现的题目,一般可以列举出要求的事件,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的可以借助于排列数和组合数来表示.24.把5本不同的书全部分给4个学生,每个学生至少一本,不同的分发种数为______.(用数字作答)【答案】240【解析】解:由题意知先把5本书中的两本捆起来看做一个元素共有C52,这一个元素和其他的三个元素在四个位置全排列共有A44,∴分法种数为C52⋅A44=240.故答案为:240.由题意知先把5本书中的两本捆起来看做一个元素,这一个元素和其他的三个元素在四个位置全排列,根据分步计数原理两个过程的结果数相乘得到结果.排列组合问题在几何中的应用,在计算时要求做到,兼顾所有的条件,先排约束条件多的元素,做的不重不漏,注意实际问题本身的限制条件.25.从4名男同学和6名女同学中选取3人参加某社团活动,选出的3人中男女同学都有的不同选法种数是______(用数字作答)【答案】96【解析】解:根据题意,在4名男同学和6名女同学共10名学生中任取3人,有C103=120种,其中只有男生的选法有C43=4种,只有女生的选法有C63=20种则选出的3人中男女同学都有的不同选法有120−4−20=96种;故答案为:96.根据题意,用间接法分析:首先计算在10名学生中任取3人的选法数目,再分析其中只有男生和只有女生的选法数目,分析即可得答案.本题考查排列、组合的应用,注意利用间接法分析,可以避免分类讨论.三、解答题(本大题共5小题,共60.0分)26.已知(2x√x)n展开式前两项的二项式系数的和为10.(1)求n的值.(2)求出这个展开式中的常数项.【答案】解:(1)∵(2x√x)n展开式前两项的二项式系数的和为10∴C n0+C n1=10,解得n=9;(2)∵(2x√x )n展开式的通项T r+1=C n r(2x)n−r(√x)r=2n−r C n r x n−3r2----8分∴令n−3r2=0且n=9得r=6,∴(2x+√x)n展开式中的常数项为第7项,即T7=29−6⋅C96=672.【解析】(1)根据二项式展开式得到前两项的系数,根据系数和解的n的值,(2)利用展开式的通项,求常数项,只要使x的次数为0即可.本题主要考查了二项式定理,利用好通项,属于基础题.27.已知n为正整数,在二项式(12+2x)n的展开式中,若前三项的二项式系数的和等于79.(1)求n的值;(2)判断展开式中第几项的系数最大?【答案】解:(1)根据题意,C n0+C n1+C n2=79,即1+n+n(n−1)2=79,整理得n2+n−156=0,解得n=12或n=−13(不合题意,舍去)所以n=12;…(5分)(2)设二项式(12+2x)12=(12)12⋅(1+4x)12的展开式中第k+1项的系数最大,则有{C12k⋅4k≥C12k−1⋅4k−1 C12k⋅4k≥C12k+1⋅4k+1,解得9.4≤k≤10.4,所以k=10,所以展开式中第11项的系数最大.…(10分)【解析】(1)根据题意列出方程C n0+C n1+C n2=79,解方程即可;(2)设该二项式的展开式中第k+1项的系数最大,由此列出不等式组,解不等式组即可求出k的值.本题考查了二项式定理的应用问题,也考查了转化思想与不等式组的解法问题,是综合性题目.28.已知二项式(1+√2x)n=a0+a1x+a2x2+⋯+a n x n(x∈R,n∈N)(1)若展开式中第五项的二项式系数是第三项系数的3倍,求n的值;(2)若n为正偶数时,求证:a0+a2+a4+a6+⋯+a n为奇数.(3)证明:C n1+2C n2⋅2+3C n3⋅22+⋯+nC n n⋅2n−1=n⋅3n−1(n∈N+)【答案】解:(1)由题意可得C n 4=3⋅C n 2(√2)2,∴n =11.(2)证明:当n 为正偶数时,则a 0+a 2+a 4+a 6+⋯+a n =1+2C n 2+22⋅C n 4+⋯+2n2⋅C n n , 除第一项为奇数外,其余的各项都是偶数,故1+2C n 2+22⋅C n 4+⋯+2n2⋅C nn 为奇数, 即a 0+a 2+a 4+a 6+⋯+a n 为奇数.(3)∵kC n k =n ⋅C n−1k−1, ∴C n 1+2C n 2⋅2+3C n 3⋅22+⋯+nC n n ⋅2n−1=n(C n−10+C n−11×2+C n−12×22+⋯+C n−1n−1×2n−1) =n ⋅(1+2)n−1=n ⋅3n−1.【解析】(1)直接利用条件可得C n 4=3⋅C n 2(√2)2,由此求得n 的值.(2)当n 为正偶数时,则a 0+a 2+a 4+a 6+⋯+a n =1+2C n 2+22⋅C n 4+⋯+2n2⋅C nn ,除第一项为奇数外,其余的各项都是偶数,从而证得结论.(3)由kC n k =n ⋅C n−1k−1,可得C n 1+2C n 2⋅2+3C n 3⋅22+⋯+nC n n ⋅2n−1=n(C n−10+C n−11×2+C n−12×22+⋯+C n−1n−1×2n−1),再利用二项式定理证得所给的等式成立.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.29. 从5名男生和4名女生中选出4人去参加座谈会,问:(Ⅰ)如果4人中男生和女生各选2人,有多少种选法?(Ⅱ)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法? (Ⅲ)如果4人中必须既有男生又有女生,有多少种选法?【答案】解:(Ⅰ)根据题意,从5名男生中选出2人,有C 52=10种选法,从4名女生中选出2人,有C 42=6种选法,则4人中男生和女生各选2人的选法有10×6=60种;(Ⅱ)先在9人中任选4人,有C 94=126种选法,其中甲乙都没有入选,即从其他7人中任选4人的选法有C 74=35种, 则甲与女生中的乙至少要有1人在内的选法有126−35=91种;(Ⅲ)先在9人中任选4人,有C 94=126种选法,其中只有男生的选法有C 51=5种,只有女生的选法有C 41=1种, 则4人中必须既有男生又有女生的选法有126−5−1=120种.【解析】(Ⅰ)根据题意,分别计算“从5名男生中选出2人”和“从4名女生中选出2人”的选法数目,由分步计数原理计算可得答案;(Ⅱ)用间接法分析:先计算在9人中任选4人的选法数目,再排除其中“甲乙都没有入选”的选法数目,即可得答案;(Ⅲ)用间接法分析:先计算在9人中任选4人的选法数目,再排除其中“只有男生”和“只有女生”的选法数目,即可得答案.本题考查排列、组合的应用,涉及分步、分类计数原理的应用,(Ⅱ)(Ⅲ)中可以选用间接法分析.30. 某次文艺晚会上共演出8个节目,其中2个唱歌、3个舞蹈、3个曲艺节目,求分别满足下列条件的排节目单的方法种数:(1)一个唱歌节目开头,另一个压台; (2)两个唱歌节目不相邻;(3)两个唱歌节目相邻且3个舞蹈节目不相邻.【答案】解:(1)先排歌曲节目有A 22种排法,再排其他节目有A 66种排法,所以共有A 22A 66=1440种排法.(2)先排3个舞蹈节目,3个曲艺节目,有A 66种排法,再从其中7个空(包括两端)中选2个排歌曲节目,有A 72种插入方法,所以共有A 66A 72=30240种排法.(3)两个唱歌节目相邻,用捆绑法,3个舞蹈节目不相邻,利用插空法,共有A 44A 53A 22=2880种. 【解析】(1)先排歌曲节目,再排其他节目,利用乘法原理,即可得出结论; (2)先排3个舞蹈,3个曲艺节目,再利用插空法排唱歌,即可得到结论;(3)两个唱歌节目相邻,用捆绑法,3个舞蹈节目不相邻,利用插空法,即可得到结论.本题考查排列组合知识,考查学生利用数学知识解决实际问题的能力,属于中档题.。
排列组合和二项式定理测试卷及答案(4套)(已上传)
排列组合与二项式定理(1)【基本知识】1.甲班有四个小组,每组10人,乙班有3个小组,每组15人,现要从甲、乙两班中选1人担任校团委部,不同的选法种数为 852.6人站成一排,甲、乙 、丙三人必须站在一起的排列种数为 1444.用二项式定理计算59.98,精确到1的近似值为( 99004 )5.若2)nx 的项是第8项,则展开式中含1x的项是第 9项6.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 34种7.已知8()a x x-展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是 1或288.某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有 38A 种9.设34550500150(1)(1)(1)(1)x x x x a a x a x ++++++++=+++L L ,则3a 的值是 451C10.不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一起,则不同的排法种数共有____24______.11.102(2)(1)x x +-的展开式中10x 的系数为____179______.(用数字作答)若1531-++++n n n n n C C C C ΛΛ=32,则n = 612.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第____10_____个数。
13、体育老师把9个相同的足球放入编号为1、2、3的三个箱子里,要求每个箱子放球的个数不少于其编号,则不同的放法有___10___种。
三、解答题15、已知n 展开式中偶数项的二项式系数之和为256,求x 的 系数.【解】由二项式系数的性质:二项展开式中偶数项的二项式系数之和为2n -1,得n =9,由通项92923199C (C (2)r rrrrr r r T x---+==-g g g ,令92123r r --=,得r =3,所以x 的二项式为39C =84, 而x 的系数为339C (2)84(8)672-=⨯-=-g.16、有5名男生,4名女生排成一排:(1)从中选出3人排成一排,有多少种排法?(2)若男生甲不站排头,女生乙不站在排尾,则有多少种不同的排法? (3)要求女生必须站在一起,则有多少种不同的排法? (4)若4名女生互不相邻,则有多少种不同的排法?【解】(1)39504A = (2)287280 (3)17280 (4)211217.从7个不同的红球,3 个不同的白球中取出4个球,问:(1)有多少种不同的取法?(2)其中恰有一个白球的取法有多少种? (3)其中至少有现两个白球的取法有多少种? 【解】(1)210 (2)105 (3)7018、 已知n展开式中偶数项二项式系数和比()2na b +展开式中奇数项二项式系数和小120,求:(1)n展开式中第三项的系数;(2)()2na b +展开式的中间项。
排列组合及二项式定理试题和答案
排列组合、二项式定理一、选择题:1.5人排一个5天的值日表,每天排一人值日,每人可以排多天或不排,但相邻两天不能排同一人,值日表排法的总数为 A .120B .324C .720D .12802.一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是 A .40B .74C .84D .2003.以三棱柱的六个顶点中的四个顶点为顶点的三棱锥有 A .18个B .15个C .12个D .9个4.从一架钢琴挑出的十个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和弦,若有一个音键不同,则发出不同的和弦,则这样的不同的和弦种数是 A .512B .968C .1013D .10245.如果()n x x x +的展开式中所有奇数项的系数和等于512,则展开式的中间项是 A .6810C xB .5710C xxC .468C xD .6811C xx6.用0,3,4,5,6排成无重复字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是 A .36B .32C .24D .207.若n 是奇数,则112217777n n n n n n n C C C ---+++⋯⋯+被9除的余数是A .0B .2C .7D .88.现有一个碱基A ,2个碱基C ,3个碱基G ,由这6个碱基组成的不同的碱基序列有 A .20个B .60个C .120个D .90个9.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个节目插入原节目单中,那么不同的插法种数为 A .504B .210C .336D .12010.在342005(1)(1)(1)x x x ++++⋯⋯++的展开式中,x 3的系数等于 A .42005CB .42006CC .32005CD .32006C11.现有男女学生共8人,从男生中选2人,从女生中选1人,分别参加数理化三科竞赛,共有90种不同方案,则男、女生人数可能是 A .2男6女B .3男5女C .5男3女D .6男2女12.若x ∈R ,n ∈N + ,定义nx M =x (x +1)(x +2)…(x +n -1),例如55M -=(-5)(-4)(-3)(-2)(-1)=-120,则函数199()x f x xM -=的奇偶性为A .是偶函数而不是奇函数B .是奇函数而不是偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数13.由等式43243212341234(1)(1)(1)(1),x a x a x a x a x b x b x b x b ++++=++++++++定义映射12341234:(,,,)(,,,),f a a a a b b b b →则f (4,3,2,1)等于 A .(1,2,3,4)B .(0,3,4,0)C .(-1,0,2,-2)D .(0,-3,4,-1)14.已知集合A ={1,2,3},B ={4,5,6},从A 到B 的映射f (x ),B 中有且仅有2个元素有原象,则这样的映射个数为 A .8B .9C .24D .2715.有五名学生站成一排照毕业纪念照,其中甲不排在乙的左边,又不与乙相邻,而不同的站法有 A .24种B .36种C .60种D .66种16.等腰三角形的三边均为正数,它们周长不大于10,这样不同形状的三角形的种数为 A .8B .9C .10D .1117.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有 A .36种B .42种C .50种D .72种18.若1021022012100210139(2),()()x a a x a x a x a a a a a a -=+++⋯+++⋯+-++⋯+则 的值为 A .0B .2C .-1D .1答题卡题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 答案二、填空题:19.某电子器件的电路中,在A ,B 之间有C ,D ,E ,F 四个焊点(如图),如果焊点脱落,则可能导致电路不通.今发现A ,B 间电路不通,则焊点脱落的不同情况有 种. 20.设f (x )=x 5-5x 4+10x 3-10x 2+5x +1,则f (x )的反函数f -1(x )= .21.正整数a 1a 2…a n …a 2n -2a 2n -1称为凹数,如果a 1>a 2>…a n ,且a 2n -1>a 2n -2>…>a n ,其中a i(i =1,2,3,…)∈{0,1,2,…,9},请回答三位凹数a 1a 2a 3(a 1≠a 3)共有 个(用数字作答).22.如果a 1(x -1)4+a 2(x -1)3+a 3(x -1)2+a 4(x -1)+a 5=x 4,那么a 2-a 3+a 4 .23.一栋7层的楼房备有电梯,在一楼有甲、乙、丙三人进了电梯,则满足有且仅有一人要上7楼,且甲不在2楼下电梯的所有可能情况种数有.24.已知(x+1)6(ax-1)2的展开式中,x3的系数是56,则实数a的值为.三、解答题:25.(本小题满分12分)将7个相同的小球任意放入四个不同的盒子中,每个盒子都不空,共有多少种不同的方法?26.(本小题满分12分)已知(41x+3x2)n展开式中的倒数第三项的系数为45,求:⑴含x3的项;⑵系数最大的项.27.(本小题满分12分)求证:123114710(31)(32)2.n n n n n n C C C n C n -++++⋯++=+⋅第十一单元 排列组合、二项式定理参考答案一、选择题(每小题5分,共90分): 题号1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 答案 DBCBBDCBABBADDBCBD提示1.D 分五步:5×4×4×4×4=1280.2.B 分三步:33425154545474.C C C C C C ++= 3.C 46312.C -=4.B 分8类:3451001210012101010101010101010101010()2(11045)968.C C C C C C C C C C C +++⋯+=+++⋯+-++=-++=5.B 12512,10,n n -=∴=中间项为5555761010().T C x x C x x ==6.D 按首位数字的奇偶性分两类:2332223322()20A A A A A +-=7.C 原式=(7+1)n -1=(9-1)2-1=9k -2=9k ’+7(k 和k ’均为正整数).8.B 分三步:12365360C C C =9.A 939966504,504.A A A ==或10.B 原式=11.B 设有男生x 人,则2138390,(1)(8)30x x C C A x x x -=--=即,检验知B 正确.12.A 2222()(9)(8)(9191)(1)(4)(81).f x x x x x x x x x =--⋯-+-=--⋯- 13.D 比较等式两边x 3的系数,得4=4+b 1,则b 1=0,故排除A ,C ;再比较等式两边的常数项,有1=1+b 1+b 2+b 3+b 4,∴b 1+b 2+b 3+b 4=0.14.D 223327.C =15.B 先排甲、乙外的3人,有33A 种排法,再插入甲、乙两人,有24A 种方法,又甲排乙的左边和甲排乙的右边各占12 ,故所求不同和站法有3234136().2A A =种16.C 共有(1,1,1),(1,2,2),(1,3,3),(1,4,4),(2,2,2),(2,2,3),(2,3,3),(2,4,4),(3,3,3)(3,3,4)10种.17.B 每人值班2天的排法或减去甲值周一或乙值周六的排法,再加上甲值周一且乙值周32003320062006442006(1)[1(1)](1)(1)(1).1(1)x x x x x x C x x+-+-+++=+-+即求中的系数为六的排法,共有2212264544242().C C A C A -+=种18.D 设f (x )=(2-x )10,则(a 0+a 2+…+a 10)2-(a 1+a 3+…+a 9)2=(a 0+a 1+…+a 10)(a 0-a 1+a 2-…-a 9+a 10)=f (1)f (-1)=(2+1)10(2-1)10=1。
高二数学排列组合与二项式定理试题答案及解析
高二数学排列组合与二项式定理试题答案及解析1.…除以88的余数是()A.-1B.-87C.1D.87【答案】C【解析】根据题意,由于…=(1-90)10=8910=(88+1)10,展开式可知展开式的最后一项不能被88整除,可知答案为C.【考点】二项式定理点评:主要是考查了二项式定理的逆用,属于基础题。
2.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.30种B.24种C.12种D.6种【答案】B【解析】第一步:从4门课程中选1门相同有种选法;第二步:让甲从剩下的3门中再选1门,选法有种;第三步:再让乙从剩下的2门中选1门,选法有种,所以所求的选法有。
故选B。
【考点】分步乘法计数原理点评:分步乘法计数原理:完成一件事,需要分成n个步骤,做第1步有种不同的方法,做第2步有种不同的方法……,做第n步有种不同的方法.那么完成这件事共有种不同的方法.3.如图,小圆圈表示网络的结点,结点之间的箭头表示它们有网线相联,连线标注的数字表示该段网线单位时间内可以通过的最大信息量。
现从结点A向结点G传递信息,信息可以分开沿不同的路线同时传递。
则单位时间内传递的最大信息量为()A.31B.6C.10D.14【答案】B【解析】信息传递,可有三条路线,每条路线上通过的信息量均为2 ,所以,单位时间内传递的最大信息量为6 ,选B。
【考点】本题主要考查阅读理解能力,分类讨论思想。
点评:简单题,看似复杂,实际上,关键是理解题意,看各条“路线”上,传递信息的最大值之和。
4.由1、2、3、4、5组成个位数字不是3的没有重复数字的五位奇数共有个(用数字作答).【答案】48【解析】由题意先排个位,从1,5两个数中随便取一个有,然后再用剩余的四个数字排前面四个位置有,∴由分步原理可知由1、2、3、4、5组成个位数字不是3的没有重复数字的五位奇数共有个【考点】本题考查了排列组合的综合运用点评:熟练掌握排列组合的综合运用是解决此类问题的关键,属基础题5.设为奇数,则除以9的余数为.【答案】【解析】∵,∴除以9的余数为7【考点】本题考查了二项式定理的运用点评:对于余数问题一般是把式子拆开,然后利用二项式定理展开求余数,属基础题6.有6名同学参加两项课外活动,每位同学必须参加一项活动且不能同时参加两项,每项活动最多安排4人,则不同的安排方法有种.(用数学作答)【答案】50【解析】解:由题意知本题是一个分类计数问题,∵每项活动最多安排4人,∴可以有三种安排方法,即(4,2)(3,3)(2,4)当安排4,2时,需要选出4个人参加共有=15,当安排3,3,时,共有=20种结果,当安排2,4时,共有=15种结果,∴根据分类计数原理知共有15+20+15=50种结果,故答案为:50【考点】分类计数问题点评:本题是一个分类计数问题,这是经常出现的一个问题,解题时一定要分清做这件事需要分为几类,每一类包含几种方法,把几个步骤中数字相加得到结果7.的展开式中,的系数是()A.B.C.297D.207【答案】D【解析】由题意可知,的系数即为【考点】本小题主要考查二项展开式的应用.点评:解决二项式问题一般离不开展开式的通项公式,要灵活应用.8.两位同学一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是1∕70”.根据这位负责人的话可以推断出参加面试的人数为()A.21B.35C.42D.70【答案】A【解析】设参加面试的人数为n,由题意可知,解得n=21.【考点】本小题主要考查排列组合在实际问题中的应用.点评:准确理解题意,准确计算是解决此类问题的关键.9.(本小题满分12分)已知二项式(N*)展开式中,前三项的二项式系数和是,求:(Ⅰ)的值;(Ⅱ)展开式中的常数项.【答案】(Ⅰ)10 (Ⅱ)【解析】(Ⅰ)…… 2分(舍去).………… 5分(Ⅱ) 展开式的第项是,,………… 10分故展开式中的常数项是.……… 12分10.甲、乙、丙、丁四位同学各自对A、B两变量的线性相关性做实验,并用回归分析方法分析求得相关系数r与残差平方和m如下表:则哪位同学的实验结果体现A、B两变量有更强的线性相关性()A、甲B、乙C、丙D、丁【答案】D【解析】解:在验证两个变量之间的线性相关关系中,相关系数的绝对值越接近于1,相关性越强,在四个选项中只有丁的相关系数最大,残差平方和越小,相关性越强,只有丁的残差平方和最小,综上可知丁的试验结果体现A、B两变量有更强的线性相关性,故选D.11.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有()A.40种B.60种C.100种D.120种【答案】B【解析】根据题意,首先从5人中抽出两人在星期五参加活动,有种情况,再从剩下的3人中,抽取两人安排在星期六、星期日参加活动,有种情况,则由分步计数原理,可得不同的选派方法共有 =60种.故选B.12.平面上有相异10个点,每两点连线可确定的直线的条数是每三点为顶点所确定的三角形个数的,若无任意四点共线,则这10个点的连线中有且只有三点共线的直线的条数为__________条.【答案】3【解析】【考点】排列、组合及简单计数问题。
2007-2015山东高考数学排列、组合、二项式定理及概率汇编试题及答案
2007-2015山东高考数学排列、组合、二项式定理及概率汇编试题1.07N 位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动5次后位于点(2,3)的概率为( )(A )51()2(B ) 2551()2C (C )3351()2C (D ) 235551()2C C2.08N 在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手。
若从中任选3人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为( ) (A )511(B )681(C )3061(D )40813.08N (X -31x)12展开式中的常数项为( )(A )-1320 (B )1320 (C )-220 (D)2204.09N 在区间[-1,1]上随机取一个数x ,cos2x π的值介于0到21之间的概率为( ). (A )31 (B )π2(C )21 (D )325.10N 某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目 乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案有( )(A )36种 (B )42种 (C )48种 (D )54种6.10N 已知随机变量ξ服从正态分布),1(2σN ,若023.0)2(=>ξP ,则=≤≤-)22(ξP ( )(A )0.477(B )0.628(C )0.954(D )0.9777.11N 若62()a x x-展开式的常数项为60,则常数a 的值为 .8.12N 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( ) (A )232 (B)252 (C)472 (D)4849.13N 在区间[-3,3]上随机取一个数x ,使得121++-≥x x 成立的概率为______.10.13N 用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ) (A) 243 (B) 252 (C) 261 (D) 27911.14N 若46b ax x ⎛⎫+ ⎪⎝⎭的展开式中3x 项的系数为20,则22a b +的最小值为 。
高二数学排列组合、二项式定理、概率测试卷
高二数学抽测(1)---排列组合、二项式定理、概率测试卷一、选择题:(本大题共12小题;每小题5分;共60分. 在每小题给出的四个选项中;只有一项是符合题目要求的.)1.从7人中选派5人到10个不同岗位的5个中参加工作;则不同的选派方法有 ( )A 、5551057A A C 种B 、5551057PC A 种 C 、57510C C 种D 、51057A C2.以1;2;3;…;9这九个数学中任取两个;其中一个作底数;另一个作真数;则可以得到不同的对数值的个数为 ( )A 、64B 、56C 、53D 、513.设34)1(6)1(4)1(234-+-+-+-=x x x x S ;则S 等于 ( )A 、x 4B 、x 4+1 C 、(x-2)4D 、x 4+44.学校要选派4名爱好摄影的同学中的3名参加校外摄影小组的3期培训(每期只派1名);由于时间上的冲突;甲、乙两位同学都不能参加第1期培训;则不同的选派方式有 ( )A 、6种B 、8种C 、10种D 、12种5.甲、乙、丙三个人负责一个计算机房周一至周六的值班工作;每天1人;每人值班2天。
如果甲同学不排周一;乙同学不排值周六;则可以排出不同的值班表有 ( )A 、36种B 、42种C 、50种D 、72种6.从1;2;……;9这九个数中;随机抽取3个不同的数;则这3个数的和为偶数的概率是 ( )A 、95B 、94 C 、2111 D 、2110 7.(1-2x)7展开式中系数最大的项为 ( )A 、第4项B 、第5项C 、第7项D 、第8项8.事件A 与事件B 互斥是事件A 、事件B 对立的 ( )A.充分不必要条件;B.必要不充分条件;9.设有甲、乙两把不相同的锁;甲锁配有2把钥匙;乙锁配有2把钥匙;这4把钥匙与不能开这两把锁的2把钥匙混在一起;从中任取2把钥匙能打开2把锁的概率是 ( )A 、4/15B 、2/5C 、1/3D 、2/3 10.若n xx )13(3+)(*∈N n 展开式中含有常数项;则n 的最小值是 ( )A 、4B 、3C 、12D 、1011.将一颗质地均匀的骰子(它是一种各面上分别标有点数1;2;3;4;5;6的正方体玩具)先后抛掷3次;至少出现一次6点向上的概率是 ( )A 、 错误!B 、 错误!C 、 错误!D 、 错误!12.四面体的顶点和各棱中点共10个点; 在其中取4个不共面的点; 则不同的取法共有 ( )A . 150种B . 147种C . 144种D . 141种 二、填空题:(本大题共4小题;每小题4分;共16分)13.四封信投入3个不同的信箱;其不同的投信方法有 种14.若41313--+=n n n C C C ; 则n 的值为 .15.若以连续投掷两次骰子分别得到的点数m 、n 作为点P 的坐标;则点P 落在直线x +y =5下方的概率 是________16.某城市的交通道路如图;从城市的东南角A 到城市的西北角B ; 不经过十字道路维修处C ;最近的走法种数有_________________。
排列组合二项式定理概率综合训练
题一:144.详解:先将票分为符合条件的4份;由题意,4人分6张票,且每人至少一张,至多两张,则两人一张,2人2张,且分得的票必须是连号,相当于将1、2、3、4、5、6这六个数用3个板子隔开,分为四部分且不存在三连号;易得在5个空位插3个板子,共有3510C=种情况,但其中有四种是1人3张票的,故有10-4=6种情况符合题意,再对应到4个人,有4424A=种情况;则共有6×24=144种情况.题二:96.详解:由题意知本题是一个分步计数问题,先4个人中选2人,这2人每人会拿到2张票有246C=,编号为1~6的电影票按连续编号可以分为:13,24,35,46共4组.被选出的2人分别可以从这4组中人选一组,第1人有4种选法,若第一个人选择13,则第二个人就不能选择35,第2人有2种选法,则有4×2=8,剩余的2人2张票有2种结果,∴总的分法有6×8×2=96种.题三:540.详解:从5个位中任意取2个位,使这两个位上的数字相同(这2个位不能是十位和百位),共有(25C-1)×5=45 种方法,其余的3个位从剩余的4个数种选3个填上,共有34A种方法,恰有2个数位上的数字重复的五位数的个数是45×34A.由于十位上的数字小于百位上的数字的五位数占总数的一半,故满足条件的五位数的个数是(45×34A)÷2=540,故答案为540.题四:36.详解:如图所示:从5、7、9三个奇数中任选一个放在6与8之间, 可用13C 中选法,而6与8可以交换位置有22A 种方法,把6与8及之间的一个奇数看做一个整体与剩下的两个奇数全排列共有33A 种方法,利用乘法原理可得两个偶数数字之间恰有一个奇数数字的五位数的个数是13C •22A •33A =36.题五: 36.详解:把甲、乙两名员工看做一个整体,5个人变成了4个,再把这4个人分成3部分,每部分至少一人,共有24C 种方法,再把这3部分人分到3个为车间,有33A 种方法,根据分步计数原理,不同分法的种数为24C •33A =36.题六:30.详解:由题意知4个小球有2个放在一个盒子里的种数是24C ,把这两个作为一个元素同另外两个元素在三个位置排列,有33A 种结果,而①②好小球放在同一个盒子里有33A =6种结果,∴编号为①②的小球不放到同一个盒子里的种数是24C •33A -6=30.题七:128.详解:由已知条件可得a 5=38C ·(-m )3=-56m 3=56,解得m =-1, 所以(x -m )8=(x +1)8,所以a 0+a 2+a 4+a 6+a 8=27=128.题八:205.详解:以x -1代x 可得(x -1)5+(x -1)10=a 0+a 1x +a 2x 2+…+a 9x 9+a 10x 10, 则a 4为左边x 4的系数,左边x 4的系数为16510205C C -+=.题九:2. 详解:552155()r rr r r r r a T x x a xC C --+==,∴5-2r =3,∴r =1,∴15C ·a =10,∴a =2.题十:(1)1;(2)-1632x;(3)1 1206x-.详解:由题意知,第五项系数为44(2)n C -,第三项的系数为22(2)nC -,则有4422(2)10(2)1n n C C -=-, 化简得n 2-5n -24=0,解得n =8或n =-3(舍去). (1)令x =1得各项系数的和为(1-2)8=1. (2)通项公式1k T +=8822()kk k C x-⋅-=8(2)k kC-⋅822kk x--,令8-k 2-2k =32,则k =1, 故展开式中含32x的项为T 2=-1632x.(3)设展开式中的第k 项,第k +1项,第k +2项的系数绝对值分别为1182k k C --⋅,82k k C ⋅,1182k k C ++⋅,若第k +1项的系数绝对值最大,则118811882222k k k k k k k kC C C C --++⎧⋅≤⋅⎪⎨⋅≤⋅⎪⎩解得56k ≤≤. 又T 6的系数为负,∴系数最大的项为T 7=1 79211x-. 由n =8知第5项二项式系数最大,此时T 5=1 1206x -.题十一:C .详解:在这一组数据中10出现次数最多,故众数是10; 这组数据的中位数是(10+10)÷2=10(分);平均数是(3+5+6+7×5+8×4+9×11+10×27)÷50=9(分),这次听力测试成绩的众数、中位数和平均 数的和是10+10+9=29(分);故选C .题十二:73.详解:根据平均数的性质,可将平均数乘以8再减去剩余7名学生的成绩,即可求出x 的值.依题意得:x =77×8-80-82-79-69-74-78-81=73.题十三:100.详解:∵个体的值由小到大依次为4,6,8,9,x ,y ,11,12,14,16,且总体的中位数为10,∴x +y =20, ∴这组数据的平均数是(4+6+8+9+x +y +11+12+14+16)÷10=10,要使总体方差最小, 即(x -10)2+(y -10)2最小.又∵(x -10)2+(y -10)2=(x -10)2 +(20-x -10)2 =2(x -10)2, ∴当x =10时,(x -10)2+(y -10)2取得最小值. 又∵x +y =20,∴x =10,y =10.x y =100, 故答案为:100.. 详解:由题意知(a +1+2+3)÷4=1,解得2a =-,∴样本标准差为S ===.题十五:30.详解:由图知,(0.035+a +0.020+0.010+0.005)×10=1,解得a =0.03, ∴身高在[120,130]内的学生人数在样本的频率为0.03×10=0.3, 故身高在[120,130]内的学生人数为0.3×100=30.题十六:0.1;50.详解:由频率分步直方图知,(0.02+m +0.06+0.02)×5=1,∴m =0.1,∴所抽取的体重在45~50kg 的人数是0.1×5×100=50人, 故答案为:0.1;50.题十七:34.详解:∵f (x )=ax 2-bx +1在 [1,+∞)上递增, ∴--b 2a≤1,即2a ≥ b .由题意得⎩⎪⎨⎪⎧0≤a ≤20≤b ≤2,2a ≥b画出图示得阴影部分面积.∴概率为P =2×2-12×2×12×2 = 34.题十八:1613 . 方法二:不在家看书的概率=1—在家看书的概率=1—2211132416⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭=π-ππ.题十九:(Ⅰ)61;(Ⅱ)92. 详解:(Ⅰ)记“3次射击的人依次是甲、甲、乙,且乙射击未击中目标”为事件A . 由题意,得事件A 的概率1231()3346P A =⨯⨯=; (Ⅱ)记“乙至少有1次射击击中目标”为事件B , 事件B 包含以下两个互斥事件:1事件B 1:三次射击的人依次是甲、甲、乙,且乙击中目标, 其概率为11211()33418P B =⨯⨯=; 2事件B 2:三次射击的人依次是甲、乙、乙,其概率为2211()346P B =⨯=.所以事件B 的概率为122()()9P B P B +=. 所以事件“乙至少有1次射击击中目标”的概率为92. 题二十:(1)80243;(2)451024. 详解:(I )设“甲射击5次,有两次未击中目标”为事件A ,则23252180()()()33243P A C ==. 答:甲射击5次,有两次未击中目标的概率为80243. (II )设“乙恰好射击5次后,被终止射击”为事件C ,由于乙恰好射击5次后被终止射击,所以必然是最后两次未击中目标,第一次及第二次至多有一次未击中目标, 则12223313145()[()()()]()444441024P C C =⋅⋅⋅=+.答:乙恰好射击5次后,被终止射击的概率为451024.。
高考复习专题:排列组合、二项式定理测试题及答案
专题20 排列组合、二项式定理测试题满分150分 时间120分钟一、选择题(本大题共12小题,每题5分,共60分) 1.设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( ) A .-15x 4 B .15x 4 C .-20i x 4 D .20i x 42.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ) A .60种 B .63种 C .65种 D .66种3.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有( )A .30种B .36种C .60种D .72种4.已知(x +2)15=a 0+a 1(1-x )+a 2(1-x )2+…+a 15(1-x )15,则a 13的值为( ) A .945 B .-945 C .1 024 D .-1 0245.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A .72B .168C .144D .1006.若⎝ ⎛⎭⎪⎫x +2x 2n 展开式中只有第六项的二项式系数最大,则展开式中的常数项是( )A .360B .180C .90D .457.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为( ) A .232 B .252 C .472 D .4848.若(1-2x )2 016=a 0+a 1x +a 2x 2+…+a 2 016 x 2 016,则a 12+a 222+…+a 2 01622 016的值为( ) A .2 B .0 C .-1 D .-29.某校开设A 类课3门,B 类课5门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有( )A .15种B .30种C .45种D .90种10.某宾馆安排A ,B ,C ,D ,E 五人入住3个房间,每个房间至少住1人,且A ,B 不能住同一房间,则不同的安排方法有( )A .24种B .48种C .96种D .114种11.若n⎛⎫的展开式中的二项式系数之和为64,则该展开式中3y 的系数是( ) A .15 B .15- C .20 D .20-12.在(x -2)2 006的二项展开式中,含x 的奇次幂的项之和为S ,当x =2时,S =( ) A .23 008 B .-23 008 C .23 009 D .-23 009 二、填空题(本大题共4小题,每题5分,共20分)13.一栋7层的楼房备有电梯,在一楼有甲、乙、丙三人进了电梯,则满足有且仅有一人要上7楼,且甲不在2楼下电梯的所有可能情况种数有 . 14.若⎝⎛⎭⎪⎫ax 2+1x 5的展开式中x 5的系数是-80,则实数a =________.15.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有__________种(用数字作答).16.若(1-x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则函数f (x )=a 2x 2+a 1x +a 0的单调递减区间是________.三、解答题(本大题共6小题,共70分)17.要从7个班中选10人参加数学竞赛,每班至少1人,共有多少种不同的选法?18.赛艇运动员10人,3人会划右舷,2人会划左舷,其余5人两舷都能划,现要从中选6人上艇,平均分配在两舷上划浆,有多少种不同的选法?19、在二项式n的展开式中,前三项系数的绝对值成等差数列.(1)求展开式中的常数项;(2)求展开式中各项的系数和.20(1)求展开式中各项的系数和;(2)求展开式中的有理项.21.从1到9这九个数字中取三个偶数和四个奇数,试问:(1)能组成多少个没有重复数字的七位数?(2)上述七位数中三个偶数排在一起的有几个?(3)在(1)中的七位数中,偶数排在一起,奇数也排在一起的有几个? (4)在(1)中任意两个偶数都不相邻的七位数有几个?22、已知()(23)n f x x =-展开式的二项式系数和为512,且2012(23)(1)(1)n x a a x a x -=+-+-(1)n n a x ++-L .(1)求2a 的值; (2)求123n a a a a ++++L 的值.专题20 排列组合、二项式定理测试题参考答案一、选择题1.解析:选A 二项式的通项为T r +1=C r 6x 6-r i r,由6-r =4,得r =2. 故T 3=C 26x 4i 2=-15x 2.故选A.2.解析:选D 从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数的取法分为三类:第一类是取四个偶数,即C 44=1种方法;第二类是取两个奇数,两个偶数,即C 25C 24=60种方法;第三类是取四个奇数,即C 45=5,故有5+60+1=66种方法.学_科网3.解析:选A 甲、乙两人从4门课程中各选修2门有C 24C 24=36种选法,甲、乙所选的课程中完全相同的选法有6种,则甲、乙所选的课程中至少有1门不相同的选法共有36-6=30种.4.解析:选B 由(x +2)15=[3-(1-x )]15=a 0+a 1(1-x )+a 2(1-x )2+…+a 15(1-x )15,得a 13=C 1315×32×(-1)13=-943. 5.解析:选D 先安排小品类节目和相声类节目,然后让歌舞类节目去插空.(1)小品1,相声,小品2.有A 22A 34=48; (2)小品1,小品2,相声.有A 22C 13A 23=36; (3)相声,小品1,小品2.有A 22C 13A 23=34.共有48+36+36=100种. 6.解析:选B 依题意知n =10, ∴T r +1=C r 10(x )10-r·⎝ ⎛⎭⎪⎫2x 2r =C r 102r·x 5-52r , 令5-52r =0,得r =2,∴常数项为C 21022=180.7..解析:选C 由题意,不考虑特殊情况,共有C 316种取法,其中每一种卡片各取3张,有4C 34种取法,取出2张红色卡片有C 24·C 112种取法,故所求的取法共有C 316-4C 34-C 24·C 112=560-16-72=472种,选C.8.解析:选C 当x =0时,左边=1,右边=a 0,∴a 0=1. 当x =12时,左边=0,右边=a 0+a 12+a 222+…+a 2 01622 016, ∴0=1+a 12+a 222+…+a 2 01622 016.即a 12+a 222+…+a 2 01622 016=-1.9.解析:可分以下2种情况:①A 类选修课选1门,B 类选修课选2门,有C 13C 25种不同的选法;②A 类选修课选2门,B 类选修课选1门,有C 23C 15种不同的选法.∴根据分类计数原理知不同的选法共有C 13C 25+C 23C 15=30+15=45(种).答案:C10解析:5个人住三个房间,每个房间至少住1人,则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有C 35A 33=60(种),A ,B 住同一房间有C 13A 33=18(种),故有60-18=42(种);当为(2,2,1)时,有C 25C 23A 22·A 33=90种,A ,B 住同一房间有C 23A 33=18(种),故有90-18=72(种).根据分类计数原理共有42+72=114(种),故选D. 答案:D11. 【答案】A 【解析】由题意得264,6nn ==,因此3363622166r r r r r r r T C C x y ---+==,从而333,42r r -==,因此展开式中3y 的系数是426615.C C ==选A. 12. 答案:B 解析:设(x -2)2 006=a 0x 2 006+a 1x 2 005+…+a 2 005x +a 2 006,则当x =2时,有a 0(2)2006+a 1(2)2 005+…+a 2 0052+a 2 006=0①;当x =-2时,有a 0(2)2 006-a 1(2)2 005+…-a 2 0052+a 2 006=23 009②.①-②得2[a 1(2)2 005+…+a 2 005(2)]=-23 009,即2S =-23 009,∴S =-23 006.故选B. 二、填空题 13.【答案】65【解析】分二类:第一类,甲上7楼,有52种;第二类:甲不上7楼,有4×2×5种,52+4×2×5=65.14.解析:T r +1=C r 5·(ax 2)5-r ⎝ ⎛⎭⎪⎫1x r =C r 5·a 5-rx 10-52r .令10-52r =5,解得r =2.又展开式中x 5的系数为-80,则有C 25·a 3=-80,解得a =-2. 答案:-215.解析:把8张奖券分4组有两种方法,一种是分(一等奖,无奖)、(二等奖,无奖)、(三等奖,无奖)、(无奖,无奖)四组,分给4人有A 44种分法;另一种是一组两个奖,一组只有一个奖,另两组无奖,共有C 23种分法,再分给4人有C 23A 24种分法,∴不同获奖情况种数为A 44+C 23A 24=24+36=60. 答案:6016.解析:∵(1-x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,∴a 0=1,a 1=-C 15=-5,a 2=C 25=10,∴f (x )=10x 2-5x +1=10⎝ ⎛⎭⎪⎫x -142+38,∴函数f (x )的单调递减区间是⎝ ⎛⎦⎥⎤-∞,14.答案:⎝ ⎛⎦⎥⎤-∞,14三、解答题17、解 方法一 共分三类:第一类:一个班出4人,其余6个班各出1人,有C 17种;第二类:有2个班分别出2人,3人,其余5个班各出1人,有A 27种;第三类:有3个班各出2人,其余4个班各出1人,有C 37种,故共有C 17+A 27+C 37=84(种).方法二 将10人看成10个元素,这样元素之间共有9个空(两端不计),从这9个空中任选6个(即这6个18.解 分三类,第一类.2人只划左舷的人全不选,有C 35C 35=100(种);第二类,2人只划左舷的人中只选1人,有C 12C 25C 36=400(种);第三类,2人只划左舷的人全选,有C 22C 15C 37=175(种).所以共有C 35C 35+C 12C 25C 36+C 22C 15C 37=675(种).位置放入隔板,将其分为七部分),有C 69=84(种)放法.故共有84种不同的选法.19.解:展开式的通项为2311()(0,1,22n rr r r n T C x r -+=-=,…,)n由已知:00122111()()()222n n n C C C -,,成等差数列,∴ 121121824n n C C n ⨯=+∴=,(1)5358T = (2)令1x =,各项系数和为125620.【解析】在展开式中,恰好第五项的二项式系数最大,则展开式有9项,∴ 8=n .∴ 中,令1=x(2)通项公式为 ,1,2, (8)整数,即8,5,2=r 时,展开式是有理项,有理项为第3、6、9项,即21.解 (1)分步完成:第一步:在4个偶数中取3个,有C 34种情况. 第二步:在5个奇数中取4个,有C 45种情况. 第三步:3个偶数,4个奇数进行排列,有A 77种情况.所以符合题意的七位数有C 34·C 45·A 77=100 800(个).(2)上述七位数中,三个偶数排在一起的有C 34·C 45·A 55·A 33=14 400(个).(3)上述七位数中,3个偶数排在一起,4个奇数也排在一起的有C 34·C 45·A 33·A 44·A 22=5760(个). (4)上述七位数中,偶数都不相邻,可先把4个奇数排好,再将3个偶数分别插入5个空位(包括两端),共有C 34·C 45·A 44·A 35=28 800(个).22.【解析】(1)根据二项式的系数和即为2n ,可得25129n n =⇒=,因此可将()f x 变形为99()(23)[2(1)1]f x x x =-=--,其二项展开式的第1r +为9919(1)2(1)(09)r r r r r T C x r --+=--≤≤,故令7r =,可得727292(1)144a C =-=-;(2)首先令令901,(213)1x a ==⨯-=-,再令令2x =,得901239(223)1a a a a a +++++=⨯-=L ,从而1239012390()2a a a a a a a a a a ++++=+++++-=L L . (1)由二项式系数和为512知,9251229n n ==⇒= 2分,99(23)[2(1)1]x x -=-- ,∴727292(1)144a C =-=- 6分;(2)令901,(213)1x a ==⨯-=-,令2x =,得901239(223)1a a a a a +++++=⨯-=L ,∴1239012390()2a a a a a a a a a a ++++=+++++-=L L 12分.。
高二数学排列组合二项式定理单元测试题(带答案).doc
排列、组合、二项式定理与概率测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、如图所示的是2008年北京奥运会的会徽,其中的“中国印”的外边是由四个色块构成,可以用线段在不穿越另两个色块的条件下将其中任意两个色块连接起来(如同架桥),如果用三条线段将这四个色块连接起来,不同的连接方法共有 ( )A. 8种B. 12种C. 16种D. 20种2、从6名志愿者中选出4个分别从事翻译、导游、导购、保洁四项不同的工作,其中甲乙两名志愿者不能从事翻译工作,则不同的选排方法共有( )A .96种B .180种C .240种D .280种 3、五种不同的商品在货架上排成一排,其中a 、b 两种必须排在一起,而c 、d 两种不能排在一起,则 不同的选排方法共有( )A .12种B .20种C .24种D .48种 4、编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是( )A . 10种 B. 20种 C. 30种 D . 60种 5、设a 、b 、m 为整数(m >0),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余.记为a ≡b (modm )。
已知a =1+C 120+C 220·2+C 320·22+…+C 2020·219,b ≡a (mod 10),则b 的值可以是( ) A.2015 B.2011 C.2008 D.20066、在一次足球预选赛中,某小组共有5个球队进行双循环赛(每两队之间赛两场),已知胜一场得3分,平一场得1分,负一场得0分.积分多的前两名可出线(积分相等则要比净胜球数或进球总数).赛完后一个队的积分可出现的不同情况种数为( ) A .22种 B .23种 C .24种 D .25种7、令1)1(++n n x a 为的展开式中含1-n x项的系数,则数列}1{na 的前n 项和为 ( )A .2)3(+n n B .2)1(+n n C .1+n n D .12+n n8、若5522105)1(...)1()1()1(-++-+-+=+x a x a x a a x ,则0a = ( )A .32B .1C .-1D .-329、二项式23nx ⎛⎝*()n N ∈展开式中含有常数项,则n 的最小取值是 ( )A 5B 6C 7D 810、四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,则不同的取法共有( )A .150种B .147种C .144种D .141种 11、两位到北京旅游的外国游客要与2008奥运会的吉祥物福娃(5个)合影留念,要求排成一排,两位游客相邻且不排在两端,则不同的排法共有 ( ) A .1440 B .960 C .720 D .480 12、若x ∈A 则x 1∈A ,就称A 是伙伴关系集合,集合M={-1,0,31,21,1,2,3,4} 的所有非空子集中,具有伙伴关系的集合的个数为( )A .15B .16C .28D .25二、填空题(每小题4分,共16分,把答案填在题中横线上)13.四封信投入3个不同的信箱,其不同的投信方法有_________种. 14、在72)2)(1(-+x x 的展开式中x 3的系数是 .15、已知数列{n a }的通项公式为121+=-n n a ,则01n C a +12n C a +Λ+33n C a +nn n C a 1+=16、对于任意正整数,定义“n 的双阶乘n!!”如下:对于n 是偶数时,n!!=n·(n -2)·(n -4)……6×4×2;对于n 是奇数时,n!!=n·(n -2)·(n -4)……5×3×1. 现有如下四个命题:①(2005!!)·(2006!!)=2006!;②2006!!=21003·1003!;③2006!!的个位数是0;④2005!!的个位数是5.正确的命题是________.三、解答题(本大题共6小题,前5小题每小题12分,最后1小题14分,共74分.解答应写出必要的文字说明、证明过程或演算步骤.)17、某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种竞赛,要求每科均有1人参加,共有180种不同的选法.那么该小组中男、女同学各有多少人?18、设m,n∈Z+,m、n≥1,f(x)=(1+x)m+(1+x)n的展开式中,x的系数为19.(1)求f(x)展开式中x2的系数的最值;(2)对于使f(x)中x2的系数取最小值时的m、n的值,求x7的系数.19、7位同学站成一排.问:(1)甲、乙两同学必须相邻的排法共有多少种?(2)甲、乙和丙三个同学都相邻的排法共有多少种?(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起的排法有多少种?20、已知()2nxx的展开式中前三项的系数成等差数列.(Ⅰ)求n的值;(Ⅱ)求展开式中系数最大的项.21、由0,1,2,3,4,5这六个数字。
雅礼中学高三数学排列组合二项式定理和概率测试题
排列组合二项式定理和概率测试题1、如果二项式nx x x ⎪⎭⎫ ⎝⎛-1的展开式中存在含有4x 的项,则正整数n 的一个可能值是( )(A )6 (B )8 (C ) 9 (D ) 102、设集合{12}{123}A B ==,,,,,分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点()P a b ,,记“点()P a b ,落在直线x y n +=上”为事件(25)n C n n ∈N ≤≤,,若事件n C 的概率最大,则n 的所有可能值为( )(A )3 (B )4 (C )2和5 (D )3和43、用1,2,3,4,5排成一个五位数,则使任两个相邻数码之差至少是2的概率是( )(A )607 (B )307 (C )601 (D ) 1201 4、一袋中装有大小相同,编号分别为12345678,,,,,,,的八个球,从中有放回...地每次取一个球,共取2次,则取得两个球的编号和不小于...15的概率为( ) (A )132(B )164 (C )332(D )3645、在51(1)x x+-的展开式中,常数项为( )(A )51 (B )-51 (C )-11 (D )116、某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( ) (A )()2142610C A 个 (B )242610A A 个(C )()2142610C 个(D ) 242610A 个7、从0到9这10个数字中任取3个数字组成一个没有重复数字的三位数,这个数不能被3整除的概率为( ) (A )4160 (B )3854 (C )3554 (D )19548将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上和概率是 ( )(A)5216 (B)25216 (C)31216 (D)91216 9、若多项式102x x +=10109910)1()1()1(++++⋅⋅⋅+++x a x a x a a ,则=9a ( )(A ) 9 (B )10 (C )9- (D )10-10、一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球。
高三数学排列组合与二项式定理试题答案及解析
高三数学排列组合与二项式定理试题答案及解析1.某种饮料每箱装5听,其中有3听合格,2听不合格,现质检人员从中随机抽取2听进行检测,则检测出至少有一听不合格饮料的概率是( )A.B.C.D.【答案】【解析】从中随机抽取2听进行检测,总的方法数为,检测出至少有一听不合格饮料的方法数为,所以,检测出至少有一听不合格饮料的概率是,故选.【考点】组合问题,古典概型.2.的展开式中各项系数的和为2,则该展开式中常数项为【答案】【解析】根据题意,由于的展开式中各项系数的和为2,则可知令x=1,得到1+a=2,a=1,则可知表达式为展开式,当r=2,r=3对应的项的系数与,x陪凑相乘可知得到常数项为40,故答案为40.【考点】二项式定理点评:主要是考查了二项式定理的展开式的运用,属于基础题。
3.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有架舰载机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有()A.B.C.D.【答案】C【解析】分三步:把甲、乙捆绑为一个元素,有种方法;与戊机形成三个“空”,把丙、丁两机插入空中有种方法;考虑与戊机的排法有种方法.由乘法原理可知共有种不同的着舰方法.故应选C.【考点】排列、组合。
点评:我们在排序过程中,常用到相邻“捆绑”和不相邻“插空”的方法进行排序,在捆绑时,我们要注意其内部的顺序。
4.设编号为1,2,3,4,5,6的六个茶杯与编号为1,2,3,4,5,6的六个茶杯盖,将这六个杯盖盖在茶杯上,恰好有2 个杯盖与茶杯编号相同的盖法有A.24种B.135种C.9种D.360种【答案】B2种结果,剩下的四个小球和四个盒【解析】首先从6个号中选两个放到同号的盒子里,共有C6子,要求球的号码与盒子的号码不同,首先第一个球有3种结果,与被放上球的盒子同号的球有三种方法,余下的只有一种方法,根据分步计数原理的结果解:由题意知本题是一个分步计数问2=15种结果,剩下的四个小球和四个盒题,首先从6个号中选两个放到同号的盒子里,共有C6子,要求球的号码与盒子的号码不同,首先第一个球有3种结果,与被放上球的盒子同号的球有三种方法,余下的只有一种方法共有3×3=9种结果,根据分步计数原理得到共有15×9=135种结果.故选B.【考点】分步计数问题点评:本题考查分步计数问题,本题解题的关键是选出球号和盒子号一致的以后4个小球和四个盒子的方法,本题是一个基础题5.设,则二项式展开式中的项的系数为()A.B.20C.D.160【答案】C【解析】根据题意,由于,那么可知a=-2,同时由于二项式,令12-3r=3,r=3,则可知展开式中的项的系数为,故答案为C【考点】二项式定理点评:主要是考查了二项式定理的展开式通项公式的运用,属于基础题。
排列组合二项式定理综合测试(含详细解答)
排列、组合和二项式定理单元综合测试一、选择题(每小题5分,共60分)1.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为( )A .18B .24C .30D .362.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为 ( )A .300B .216C .180D .1623.五个人排成一排,甲、乙不相邻,且甲、丙也不相邻的不同排法的种数为 ( )A .60B .48C .36D .244.某小组共有8名同学,其中男生6人,女生2人,现从中按性别分层随机抽取4人参加一项公益活动,则不同的抽取方法有 ( )A .40种B .70种C .80种D .240种5.若能被整除,则的值可能为(122n nn n n C x C x C x +++ 7,x n )A .B .4,3x n ==4,4x n ==C . D .5,4x n ==6,5x n ==6.圆周上有12个不同的点,过其中任意两点作弦,这些弦在圆内的交点个数最多有( )A .AB .A ·A 412212212C .C ·CD .C 2122124127.用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有 ( )A .288个B .240个C .144个D .126个8.有4个标号为1,2,3,4的红球和4个标号为1,2,3,4的白球,从这8个球中任取4个球排成一排.若取出的4个球的数字之和为10,则不同的排法种数是( )A .384B .396C .432D .4809.在一条南北方向的步行街同侧有8块广告牌,广告牌的底色可选用红、蓝两种颜色,若只要求相邻两块广告牌的底色不都为红色,则不同的配色方案共有 ( )A .55种B .56种C .46种D .45种10.有两排座位,前排4个座位,后排5个座位,现安排2人就坐,并且这2人不相邻(一前一后也视为不相邻),那么不同坐法的种数是 ( )A .18B .26C .29D .5811.若自然数n 使得作竖式加法n +(n +1)+(n +2)均不产生进位现象,则称n 为“可连数”.例如:32是“可连数”,因32+33+34不产生进位现象;23不是“可连数”,因23+24+25产生进位现象.那么,小于1000的“可连数”的个数为 ( )A .27B .36C .39D .4812.为支持地震灾区的灾后重建工作,四川某公司决定分四天每天各运送一批物资到A 、B 、C 、D 、E 五个受灾地点.由于A 地距离该公司较近,安排在第一天或最后一天送达;B 、C 两地相邻,安排在同一天上、下午分别送达(B 在上午、C 在下午与B 在下午、C 在上午为不同运送顺序),且运往这两地的物资算作一批;D 、E 两地可随意安排在其余两天送达.则安排这四天送达五个受灾地点的不同运送顺序的种数为 ( )A .72B .18C .36D .24二、填空题(每小题4分,共16分)13.沿海某市区对口支援贫困山区教育,需从本区3所重点中学抽调5名教师分别到山区5所学校任教,每校1人;每所重点中学至少抽调1人,则共有__________种不同的支教方案.14.一个五位数由数字0,1,1,2,3构成,这样的五位数的个数为__________.15.(4x 2-4x +1)5的展开式中,x 2的系数为__________.(用数字作答)16.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为__.三、解答题(本大题共6个小题,共计74分,写出必要的文字说明、计算步骤,只写最后结果不得分)17.(12分)(1)求值:C +C ;5-n n 9-n n +1(2)解不等式:-<.18.(12分)有5张卡片的正反面分别写有0与1、2与3、4与5、6与7、8与9,将其中任三张并排组成三位数,可组成多少个数字不重复的三位数?19.(12分)若(1+2x )100=a 0+a 1(x -1)+a 2·(x -1)2+…+a 100(x -1)100,求a 1+a 3+a 5+…+a 99.20.(12分)已知(-)n 的展开式的各项系数之和等于(4-)5的展开式中的3a 3b 常数项,求:(1)(-)n 展开式的二项式系数和;3a (2)(-)n 的展开式中a -1项的二项式系数.3a 21.(12分)(1)求证:kC =nC ;k nk -1n (2)等比数列{a n }中,a n >0,化简:A =lg a 1-C lg a 2+C lg a 3-…+(-1)n C lg a n +1.1n 2n n详细解答:1.答案解析:用间接法解答:四名学生中有两名学生分在一个班的种数是,顺序C 24C 有 种,而甲乙被分在同一个班的有种,所以种数是.33A 33A 23343330C A A -=2.答案 解析:分类讨论思想:第一类:从1,2,3,4,5中任取两个奇数和两个偶数,C 组成没有重复数字的四位数的个数为;第二类:取0,此时2和4只能取243472C A =一个,0还有可能排在首位,组成没有重复数字的四位数的个数为.共有180个数.21433243[]108C C A A -=3.解析:五个人排成一排,其中甲、乙不相邻且甲、丙也不相邻的排法可分为两类:一类是甲、乙、丙互不相邻,此类方法有A ·A =12种(先把除甲、乙、丙外的两个人排好,有A 种232方法,再把甲、乙、丙插入其中,有A 种方法,因此此类方法有A ·A =12种);另一类是乙、323丙相邻但不与甲相邻,此类方法有A ·A ·A =24种方法(先把除甲、乙、丙外的两人排好,2322有A 种方法,再从这两人所形成的三个空位中任选2个,作为甲和乙、丙的位置,此类方法2有A ·A ·A =24种).综上所述,满足题意的方法种数共有12+24=36,选C.2322答案:C4.解析:依题意得,所选出的4人必是3名男生、1名女生,因此满足题意的抽取方法共有C C =40种,选A.3612答案:A 5.答案解析:,当时,C 122(1)1nnnn n n C x C x C x x +++=+- 5,4x n ==能被7整除.4(1)1613537n x +-=-=⨯6答案:D解析:圆周上任意四个点连线的交点都在圆内,此四点的选法有C ,则由这四点确定412的圆内的交点个数为1,所以这12个点所确定的弦在圆内交点的个数最多为C .故选D.4127.解析:个位是0的有C ·A =96个;1434个位是2的有C ·A =72个;1334个位是4的有C ·A =72个;1334所以共有96+72+72=240个.答案:B 8答案:C解析:若取出的球的标号为1,2,3,4,则共有C C C C A =384种不同的排法;若取出121212124的球的标号为1,1,4,4,则共有A =24种不同的排法;若取出的球的标号为2,2,3,3,则共有A 4=24种不同的排法;由此可得取出的4个球数字之和为10的不同排法种数是4384+24+24=432,故应选C.9解析:C +C +C +C +C =55.0818273645答案:A10.解析:若把两人都安排在前排,则有A =6种方法,若把两人都安排在后排,则有23A =12种方法,若两人前排一个,后排一个,则有4×5×2=40种方法,因此共有58种方法,24故正确答案是D.答案:D11解析:根据题意,要构造小于1000的“可连数”,个位上的数字的最大值只能为2,即个位数字只能在0,1,2中取.十位数字只能在0,1,2,3中取;百位数字只能在1,2,3中取.当“可连数”为一位数时:有C =3个;13当“可连数”为两位数时:个位上的数字有0,1,2三种取法,十位上的数字有1,2,3三种取法,即有C C =9个;1313当“可连数”为三位数时:有C C C =36个;131413故共有:3+9+36=48个,故选D.答案:D12解析:可分三步完成:第一类是安排送达物资到受灾地点A ,有A 种方法;第二步是12在余下的3天中任选1天,安排送达物资到受灾地点B 、C ,有A A 种方法;第三步是在余132下的2天中安排送达物资到受灾地点D 、E ,有A 种方法.由分步计数原理得不同的运送顺2序共有A ·(A A )·A =24种,故选D.121322答案:D二、填空题(每小题4分,共16分)13.解析:5名重点中学教师到山区5所学校有A 种,而3所重点中学的抽调方法种5数可由列举法一一列出为6种.故共有6A =720种不同的支教方案.5答案:72014.解析:分两类:(1)万位取1,其余不同的四个数放在不同的四个位置上时有A 个:4(2)万位取2或3,在余下的四个不同的位置中选两个位置放数字0与3或2时有2A 个,故24总共有A +2A =48.424答案:4815.答案:18016.解析:令x =1,(1+m )6=a 0+a 1+…+a 6 ①,令x =0,1=a 0 ②,①-②,得:a 1+…+a 6=(1+m )6-1∴(1+m )6-1=63 ∴(1+m )6=64∴1+m =±2 ∴m =1或m =-3.答案:1或-3三、解答题(本大题共6个小题,共计74分,写出必要的文字说明、计算步骤,只写最后结果不得分)17.解:利用组合数定义与公式求解.(1)由组合数定义知:解得4≤n ≤5.∵n ∈N *,∴n =4或5.当n =4时,原式=C +C =5;145当n =5时,原式=C +C =16.0546(2)由组合数公式,原不等式可化为-<,3!(n -3)!n !4!(n -4)!n !2×5!(n -5)!n !不等式两边约去,得(n -3)(n -4)-4(n -4)<2×5×4,即n 2-11n -12<0,解3!(n -5)!n !得-1<n <12.又∵n ∈N *,且n ≥5,∴n =5,6,7,8,9,10,11.18.解:解法1:(直接法)由于三位数的百位数字不能为0,所以分两种情况:当百位数字为1时,不同的三位数有A ·A =48个;当百位数为2、3、4、5、6、7、8、9中的任意一个时,1816不同的三位数有A A A =8×8×6=384个.综上,共可组成不重复的三位数48+384=432181816个.解法2:(间接法)任取3张卡片共有C ·C ·C ·C ·A 种排法,其中0在百位不能构成三351212123位数,这样的排法有C ·C ·C ·A 种,故符合条件的三位数共有C ·C ·C ·C ·A -C ·C ·C 24121223512121232412·A =432个.12219.解:令x -1=t ,则x =t +1,于是已知恒等式可变为(2t +3)100=a 0+a 1t +a 2t 2+…+a 100t100,又令f (t )=(2t +3)100,则a 1+a 3+a 5+…+a 99=[f (1)-f (-1)]12=[(2+3)100-(-2+3)100]=(5100-1).121220.解:依题意,令a =1,得(-)n 展开式中各项系数和为(3-1)n =2n ,(4-3a 3b )5展开式中的通项为T r +1=C (4)5-r (-)r =(-1)r C 45-r 5-b .r 53b r 5r 210-5r6若T r +1为常数项,则=0,即r =2,10-5r6故常数项为T 3=(-1)2C ·43·5-1=27,25于是有2n =27,得n =7.(1)(-)n 展开式的二项式系数和为3a 2n =27=128.(2)(-)7的通项为3a T ′r +1=C ()7-r ·(-)r =C (-1)r ·37-r ·a ,r 73a r 75r -216令=-1,得r =3,5r -216∴所求a -1项的二项式系数为C =35.3721.解:(1)∵左式=k ·=n !k !(n -k )!n ·(n -1)!(k -1)!(n -k )!=n ·=nC =右式,(n -1)!(k -1)![(n -1)-(k -1)]!k -1n∴kC =nC .k nk -1n (2)由已知:a n =a 1q n -1,∴A =lg a 1-C (lg a 1+lg q )+C (lg a 1+2lg q )-C (lg a 1+3lg q )+…+(-1)n C (lg a 1+n lg q )1n 2n 3n n =lg a 1[1-C +C -…+(-1)n C ]-lg q [C -2C +3C -…+(-1)n -1C ·n ]1n 2n n 1n 2n 3n n =lg a 1·(1-1)n -lg q [nC -nC +nC -…+(-1)n -1·nC ]0n -11n -12n -1n -1=0-n lg q [C -C +C -…+(-1)n -1·C ]0n -11n -12n -1n -1=-n lg q (1-1)n -1=0.22.解:(1)如图1,先对a 1部分种植,有3种不同的种法,再对a 2、a 3种植,因为a 2、a 3与a 1不同颜色,a 2、a 3也不同.所以S (3)=3×2=6(种)……………3分如图2,S (4)=3×2×2×2-S (3)=18(种) ……………………………6分 (2)如图3,圆环分为n 等份,对a 1有3种不同的种法,对a 2、a 3、…、a n 都有两种不同的种法,但这样的种法只能保证a 1与a i (i=2、3、……、n -1)不同颜色,但不能保证a 1与a n 不同颜色. ………………………………8分于是一类是a n 与a 1不同色的种法,这是符合要求的种法,记为种.另一类是a n 与a 1同色的种法,这时可以把a n 与a 1看成一部分,这样)3)((≥n n S 的种法相当于对n -1部分符合要求的种法,记为.)1(-n S 共有3×2n -1种种法. ………………………………10分这样就有.即,123)1()(-⨯=-+n n S n S ]2)1([2)(1----=-n nn S n S 则数列是首项为公比为-1的等比数列.)3}(2)({≥-n n S n32)3(-S 则).3()1](2)3([2)(33≥--=--n S n S n n由⑴知:,∴.6)3(=S 3()2(68)(1)nn S n --=--∴.………………………………13分3()22(1)nn S n -=-⋅-答:符合要求的不同种法有…………………14分).3()1(223≥-⋅--n n n种。
高二数学排列组合二项式定理统计概率测试卷
育才学社培训学校:精品班型--7.1.3战队(选用题)排列组合、二项式定理、概率及统计二、典例剖析题型一:排列组合应用题解决此类问题的方法是:直接法,先考虑特殊元素(或特殊位置),再考虑其他元素(或位置);间接法,所有排法中减去不合要求的排法数;对于复杂的应用题,要合理设计解题步骤,一般是先分组,后分步,要求不重不漏,符合条件.例1、(08安徽理12)12名同学合影,站成了前排4人后排8人.现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是()A.B.C.D.解:从后排8人中选2人共种选法,这2人插入前排4人中且保证前排人的顺序不变,则先从4人中的5个空挡插入一人,有5种插法;余下的一人则要插入前排5人的空挡,有6种插法,故为;综上知选C.例2、(08湖北理6)将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为()A.540B.300C.180D.150解:将5分成满足题意的3份有1,1,3与2,2,1两种,所以共有种方案,故D正确.例3、四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为()A.96B.48C.24D.0解:由题意分析,如图,先把标号为1,2,3,4号化工产品分别放入①②③④4个仓库内共有种放法;再把标号为5,6,7,8号化工产品对应按要求安全存放:7放入①,8放入②,5放入③,6放入④;或者6放入①,7放入②,8放入③,5放入④;两种放法.综上所述:共有种放法.故选B.例4、在正方体中,过任意两个顶点的直线中成异面直线的有____________对.解法一:连成两条异面直线需要4个点,因此在正方体8个顶点中任取4个点有种取法.每4个点可分共面和不共面两种情况,共面的不符合条件得去掉.因为在6个表面和6个体对角面中都有四点共面,故有种.但不共面的4点可构成四面体,而每个四面体有3对异面直线,故共有对.解法二:一个正方体共有12条棱、12条面对角线、4条体对角线,计28条,任取两条有种情况,除去其中共面的情况:(1)6个表面,每个面上有6条线共面,共有条;(2)6个体对角面,每个面上也有6条线共面,共有条;(3)从同一顶点出发有3条面对角线,任意两条线都共面,共有,故共有异面直线---=174对.题型二:求展开式中的系数例5、(08广东理10)已知(是正整数)的展开式中,的系数小于120,则__________.解:按二项式定理展开的通项为,我们知道的系数为,即,也即,而是正整数,故只能取1.等于()例6、若多项式,则a9 A.9B.10C.-9D.-10解:=∴.例7、展开式中第6项与第7项的系数的绝对值相等,求展开式中系数最大的项和系数绝对值最大的项.解:,依题意有,∴n=8.则展开式中二项式系数最大的项为.设第r+1项系数的绝对值最大,则有.则系数绝对值最大项为.例8、求证:.证:(法一)倒序相加:设①又∵②∵,∴,由①+②得:,∴,即.(法二):左边各组合数的通项为,∴.(法三):题型三:求复杂事件的概率例9、(08福建理5)某一批花生种子,如果每1粒发芽的概率为,那么播下4粒种子恰有2粒发芽的概率是()A.B.C.D.解:由.例10、甲、乙两个围棋队各5名队员按事先排好的顺序进行擂台赛,双方1号队员先赛,负者被淘汰,然后负方的队员2号再与对方的获胜队员再赛,负者又被淘汰,一直这样进行下去,直到有一方队员全被淘汰时,另一方获胜,假设每个队员的实力相当,则甲方有4名队员被淘汰,且最后战胜乙方的概率是多少?解:根据比赛规则可知,一共比赛了9场,并且最后一场是甲方的5号队员战胜乙方的5号队员,而甲方的前4名队员在前8场比赛中被淘汰,也就是在8次独立重复试验中该事件恰好发生4次的概率,可得,又第9场甲方的5号队员战胜乙方的5号队员的概率为,所以所求的概率为.题型四:求离散型随机变量的分布列、期望和方差例11、某先生居住在城镇的A处,准备开车到单位B处上班. 若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图.(例如:A→C→D算作两个路段:路段AC发生堵车事件的概率为,路段CD 发生堵车事件的概率为(1)请你为其选择一条由A到B的路线,使得途中发生堵车事件的概率最小;(2)若记路线A→C→F→B中遇到堵车次数为随机变量,求的数学期望解:(1)记路段MN发生堵车事件为MN.因为各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,所以路线A→C→D→B中遇到堵车的概率P1为=1-[1-P(AC)][1-P(CD)][1-P(DB)]=1-;同理:路线A→C→F→B中遇到堵车的概率P为1-P((小于).2路线A→E→F→B中遇到堵车的概率P为1-P((小于).3显然要使得由A到B的路线途中发生堵车事件的概率最小.只可能在以上三条路线中选择.因此选择路线A→C→F→B,可使得途中发生堵车事件的概率最小.(2)路线A→C→F→B中遇到堵车次数可取值为0,1,2,3.答:路线A→C→F→B中遇到堵车次数的数学期望为例12、如图所示,甲、乙两只小蚂蚁分别位于一个单位正方体的点和点,每只小蚂蚁都可以从每一个顶点处等可能地沿各条棱向各个方向移动,但不能按原线路返回.比如,甲在处时可以沿、、三个方向移动,概率都是;到达点时,可能沿、两个方向移动,概率都是,已知小蚂蚁每秒钟移动的距离为1个单位.(Ⅰ)若甲、乙两只小蚂蚁都移动1秒钟,则它们所走的路线是异面直线的概率是多少?它们之间的距离为的概率是多少?(Ⅱ)若乙蚂蚁不动,甲蚂蚁移动3秒钟后,甲、乙两只小蚂蚁之间的距离的期望值是多少?解:(Ⅰ)甲蚂蚁移动1秒可以有三种的走法:即沿、、三个方向,当沿C方向走,概率为方向时,要使所走的路线成异面直线,乙蚂蚁只能沿、C1,同理当甲蚂蚁沿方向走时,乙蚂蚁走、CC,概率为,甲蚂蚁沿1时,乙蚂蚁走、,概率为,因此他们所走路线为异面直线的概率为;甲蚂蚁移动1秒可以有三种走法:即沿、、三个方向,当甲沿方向时,要使他们之间的距离为,则乙应走,此时的概率为,同理,甲蚂蚁沿方向走时、甲蚂蚁沿方向走时,概率都为,所以距离为的概率为.(Ⅱ)若乙蚂蚁不动,甲蚂蚁移动3秒后,甲乙两个蚂蚁之间距离的取值有且只有两个:和,当时,甲是按以下路线中的一个走的:、、、、、,所以其概率为,当时,甲是按以下路线中的一个走的:、、、、、、所以其概率为,所以三秒后距离期望值为.例13、(08湖北理17)袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n个(n=1,2,3,4).现从袋中任取一球.ξ表示所取球的标号.(Ⅰ)求ξ的分布列,期望和方差;(Ⅱ)若η=aξ-b,Eη=1,Dη=11,试求a,b的值.解:(1)的分布列为:所以.(2)由,得,即,又,所以当时,由,得;当时,由,得.,或,即为所求.题型五:统计知识例14、(08广东)某校共有学生2000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为()A .24B .18C .16D .12解:依题意我们知道二年级的女生有380人,那么三年级的学生的人数应该是500,即总体中各个年级的人数比例为,故在分层抽样中应在三年级抽取的学生人数为.答案:C例15、在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布.已知成绩在90分以上(含90分)的学生有12名.(Ⅰ)试问此次参赛学生总数约为多少人?(Ⅱ)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可共查阅的(部分)标准正态分布表.解:(Ⅰ)设参赛学生的分数为,因为~N(70,100),由条件知,P(≥90)=1-P(<90)=1-F(90)=1-=1-(2)=1-0.9772=0.0228.这说明成绩在90分以上(含90分)的学生人数约占全体参赛人数的2.28%,因此,参赛总人数约为≈526(人).(Ⅱ)假定设奖的分数线为x分,则P(≥x)=1-P(<x)=1-F(90)=1-==0.0951,即=0.9049,查表得≈1.31,解得x=83.1.故设奖的分数线约为83.1分.冲刺练习一、选择题1、在这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有()A.36个B.24个C.18个D.6个2、从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有()A.108种B.186种C.216种D.270种3、某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有()A.16种B.36种C.42种D.60种4、的展开式中含x的正整数指数幂的项数是()A.0B.2C.4D.65、已知的展开式中第三项与第五项的系数之比为-,其中=-1,则展开式中常数项是()A.-45i B.45iC.-45D.456、高三(一)班学生要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是()A.1800B.3600C.4320D.50407、袋中有40个小球,其中红色球16个、蓝色球12个,白色球8个,黄色球4个,从中随机抽取10个球作为一个样本,则这个样本恰好是按分层抽样方法得到的概率为()A.B.C.D.8、在正方体上任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为()A.B.C.D.9、为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体重在的学生人数是()A.20B.30C.40D.5010、下图中有一个信号源和五个接收器.接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号.若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是()A.B.C.D.[提示]二、填空题11、某高校有甲、乙两个数学建模兴趣班. 其中甲班有40人,乙班50人. 现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是__________分.12、安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有__________种.(用数字作答)13、展开式中的系数为___________(用数字作答).14、电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有__________种不同的播放方式(结果用数值表示).15、若的展开式中的系数是-80,则实数的值是__________.16、设离散型随机变量可能取的值为1,2,3,4.(1,2,3,4).又的数学期望,则___________.[答案]三、解答题17、某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:(Ⅰ)游泳组中,青年人、中年人、老年人分别所占的比例;(Ⅱ)游泳组中,青年人、中年人、老年人分别应抽取的人数.[答案]18、在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较.在试制某种牙膏新品种时,需要选用两种不同的添加剂.现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用.根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验.用表示所选用的两种不同的添加剂的芳香度之和.(Ⅰ)写出的分布列;(以列表的形式给出结论,不必写计算过程)(Ⅱ)求的数学期望.(要求写出计算过程或说明道理)[答案]19、每次抛掷一枚骰子(六个面上分别标以数字(I)连续抛掷2次,求向上的数不同的概率;(II)连续抛掷2次,求向上的数之和为6的概率.[答案]20、某运动员射击一次所得环数的分布如下:现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为.(I)求该运动员两次都命中7环的概率;(II)求的分布列;(Ⅲ)求的数学期望.[答案]1-5BBDBD 6-10 BACCD提示:1、依题意,所选的三位数字有两种情况:(1)3个数字都是奇数,有种方法(2)3个数字中有一个是奇数,有种方法,故共有+=24种方法,故选B.2、从全部方案中减去只选派男生的方案数,合理的选派方案共有=186种,选B.3、有两种情况,一是在两个城市分别投资1个项目、2个项目,此时有种方案,二是在三个城市各投资1个项目,有种方案,共计有60种方案,选D.4、的展开式通项为,因此含x的正整数次幂的项共有2项,选B.5、第三项的系数为-,第五项的系数为,由第三项与第五项的系数之比为-可得n=10,则=,令40-5r=0,解得r =8,故所求的常数项为=45,选D.6、不同排法的种数为=3600,故选B.7、依题意,各层次数量之比为4∶3∶2∶1,即红球抽4个,蓝球抽3个,白球抽2个,黄球抽一个,故选A.8、在正方体上任选3个顶点连成三角形可得=56个三角形,要得等腰直角三角形共有6×4=24个(每个面内有4个等腰直角三角形),得,所以选C.9、根据该图可知,组距为2,得这100名学生中体重在的学生人数所占的频率为(0.03+0.05+0.05+0.07)×2=0.4,所以该段学生的人数是40,选C.10、将六个接线点随机地平均分成三组,共有种结果,五个接收器能同时接收到信号必须全部在同一个串联线路中,有种结果,这五个接收器能同时接收到信号的概率是,选D.答案:11、85 12、2400 13、-96014、48 15、-2 16、提示:11、某高校有甲、乙两个数学建模兴趣班. 其中甲班有40人,乙班50人. 现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是分.12、先安排甲、乙两人在后5天值班,有=20种排法,其余5人再进行排列,有=120种排法,所以共有20×120=2400种安排方法.13、展开式中的项为,的系数为-960.14、分二步:首尾必须播放公益广告的有种;中间4个为不同的商业广告有种,从而共有种,从而应填48.15、的展开式中的系数=x3,则实数a的值是-2.16、设离散性随机变量可能取的值为,所以,即,又的数学期望,则,即,,∴.17、解:(Ⅰ)设登山组人数为,游泳组中,青年人、中年人、老年人各占比例分别为a、b、c,则有,解得b=50%,c=10%.故a=100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人各占比例分别为40%、50%、10%.(Ⅱ)游泳组中,抽取的青年人数为(人);抽取的中年人数为50%=75(人);抽取的老年人数为10%=15(人).18、解:(Ⅰ)(Ⅱ).19、解:(I)设A表示事件“抛掷2次,向上的数不同”,则答:抛掷2次,向上的数不同的概率为(II)设B表示事件“抛掷2次,向上的数之和为6”.向上的数之和为6的结果有、、、、5种,答:抛掷2次,向上的数之和为6的概率为20、解:(Ⅰ)该运动员两次都命中7环的概率为;(Ⅱ)的可能取值为7、8、9、10分布列为(Ⅲ) 的数学期望为.。
排列组合、二项式定理典型题(含答案)
排列、组合、二项式定理典型题一、选择题(共24题)1.(北京卷)在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有(A )36个 (B )24个 (C )18个(D )6个解:依题意,所选的三位数字有两种情况:(1)3个数字都是奇数,有33A 种方法(2)3个数字中有一个是奇数,有1333C A ,故共有33A +1333C A =24种方法,故选B2.(福建卷)从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有(A )108种 (B )186种 (C )216种 (D )270种解析:从全部方案中减去只选派男生的方案数,合理的选派方案共有3374A A -=186种,选B.3.(湖北卷)在24(x -的展开式中,x 的幂的指数是整数的项共有 A .3项 B .4项 C .5项 D .6项解:72424312424rr rr rr T C x C x --r +=(=(-1),当r =0,3,6,9,12,15,18,21,24时,x 的指数分别是24,20,16,12,8,4,0,-4,-8,其中16,8,4,0,-8均为2的整数次幂,故选C4.(湖南卷)某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有 ( )A.16种B.36种C.42种D.60种解析:有两种情况,一是在两个城市分别投资1个项目、2个项目,此时有123436C A ⋅=种方案,二是在三个城市各投资1个项目,有3424A =种方案,共计有60种方案,选D.5.(湖南卷)若5)1(-ax 的展开式中3x 的系数是80,则实数a 的值是 A .-2 B . 22 C. 34 D . 2解析:5)1-ax (的展开式中3x 的系数332335()(1)10C ax a x ⋅-=80x 3, 则实数a 的值是2,选D 6.(湖南卷)在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是A .6B . 12 C. 18 D . 24解析:先排列1,2,3,有336A =种排法,再将“+”,“-”两个符号插入,有222A =种方法,共有12种方法,选B.7.(江苏卷)10)31(x x -的展开式中含x 的正整数指数幂的项数是(A )0 (B )2 (C )4 (D )6 【思路点拨】本题主要考查二项式展开通项公式的有关知识.【正确解答】1031⎪⎭⎫ ⎝⎛-x x的展开式通项为31010102121011()()33r r r r r r C C x x ---=,因此含x 的正整数次幂的项共有2项.选B【解后反思】多项式乘法的进位规则.在求系数过程中,尽量先化简,降底数的运算级别,尽量化成加减运算,在运算过程可以适当注意令值法的运用,例如求常数项,可令0x =.在二项式的展开式中,要注意项的系数和二项式系数的区别. 8.(江西卷)在(x)2006的二项展开式中,含x 的奇次幂的项之和为S ,当x时,S 等于( )A.23008B.-23008C.23009D.-23009 解:设(x)2006=a 0x 2006+a 1x 2005+…+a 2005x +a 2006则当x时,有a 0)2006+a 1)2005+…+a 2005)+a 2006=0 (1) 当x时,有a 0)2006-a 1)2005+…-a 2005)+a 2006=23009 (2) (1)-(2)有a 1)2005+…+a 200523009÷2=-23008,故选B9.(江西卷)在2nx ⎫⎪⎭的二项展开式中,若常数项为60,则n 等于( )A.3B.6C.9D.12解:n 3rrn rr r r 2r 1nn r rn 2T C 2C x x n 3r 02C 60⨯⎧⎨⎩--+=()=-==,由r r n n 3r 02C 60⎧⎨⎩-==解得n =6故选B10.(辽宁卷)1234566666C C C C C ++++的值为( )A.61 B.62C.63 D.64解:原式=62262-=,选B11.(全国卷I )设集合{}1,2,3,4,5I =。
高三数学排列组合与二项式定理试题答案及解析
高三数学排列组合与二项式定理试题答案及解析1.三张卡片的正反面分别写有1和2,3和4,5和6,若将三张卡片并列,可得到不同的三位数(6不能作9用)的个数为()A.8B.6C.14D.48【答案】D【解析】方法一:第一步,选数字.每张卡片有两个数字供选择,故选出3个数字,共有23=8(种)选法.第二步,排数字.要排好一个三位数,又要分三步,首先排百位,有3种选择,由于排出的三位数各位上的数字不可能相同,因而排十位时有2种选择,排个位只有一种选择.故能排出3×2×1=6(个)不同的三位数.由分步乘法计数原理知共可得到8×6=48(个)不同的三位数.方法二:第一步,排百位有6种选择,第二步,排十位有4种选择,第三步,排个位有2种选择.根据分步乘法计数原理,共可得到6×4×2=48(个)不同的三位数.2.设、、为整数,若和被除得余数相同,则称和对模同余,记.若,且,则的值可以为()A.B.C.D.【答案】A【解析】,因此除的余数为,即,因此的值可以为,故选A.【考点】1.二项式定理;2.数的整除性3.5名志愿者到3个不同的地方参加义务植树,则每个地方至少有一名志愿者的方案共有____种.【答案】150【解析】将5名志愿者分到3个不同的地方参加义务植树,且每个地方至少有一名志愿者,则分配至3地的人数模式只有“1、1、3”与“1、2、2”这两种模式.设这3地分别为甲、乙、丙.(1)当分配的人数模式是“1、1、3”时,即甲、乙、丙3地中有一地是3个人,其他两地都只有1人,则共有(种).即先从三地中选一地是分配3个人的,再从5名志愿者中选三人派到该地.剩余2人再分配至其余两地.(2) 当分配的人数模式是“1、2、2”时,即甲、乙、丙3地中有一地是1个人,其他两地都有2人,则共有(种).即先从三地中选一地是只分配1个人的,再从5名志愿者中选1人派到该地.剩余4人再选出2人分配至其余两地中的某地,那剩余2人即是最后一地所得.综上所述,共有60+90=150种方案.【考点】排列与组合4.如图是网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行;依次类推,则(1)按网络运作顺序第n行第一个数字(如第2行第一个数字为2,第3行第一个数字为4,…)是;(2)第63行从左至右的第4个数应是.【答案】(1)。
高二数学排列组合与二项式定理试题答案及解析
高二数学排列组合与二项式定理试题答案及解析1.的二项展开式中,项的系数是()A.45B.90C.135D.270【答案】C【解析】的二项展开式中,,令r=4得,项的系数是=135,选C。
【考点】二项展开式的通项公式点评:简单题,二项式展开式的通项公式是,。
2.设,则的值为【答案】-2.【解析】根据题意,由于,则令x=-1,则可知等式左边为-2,故可知=-2,因此答案为-2.【考点】二项式定理点评:主要是考查了二项式定理的运用,属于基础题。
3.已知二项式的展开式中第四项为常数项,则等于A.9B.6C.5D.3【答案】C【解析】根据题意,由于二项式的展开式中第四项为常数项,那么其通项公式为,故答案为5,选C.【考点】二项式定理点评:主要是考查了二项式定理中展开式的通项公式的运用,属于基础题。
4.已知,则 .【答案】66【解析】根据题意,由于,故可知,故可知答案为66.【考点】组合数公式点评:主要是考查了组合数性质的运用,属于基础题。
5.已知离散型随机变量的分布列如下表.若,,则,.【答案】【解析】由分布列性质可得,【考点】分布列期望方差点评:在分布列中各概率之和为1,借助于分布列结合期望方差公式可计算这两个量6.已知()能被整除,则实数的值为【答案】【解析】根据题意,由于,根据二项式定理展开式可知,那么由于()能被整除,且被11除的余数为2,那么可知2+a能被11整除,可知a==9,故答案为9.【考点】二项式定理的运用点评:主要是考查了二项式定理来解决整除问题的运用,属于基础题。
7. ( -)6的二项展开式中的常数项为_____.(用数字作答)【答案】-160【解析】由二项式定理得通项得,,取得常数项。
故选D。
【考点】二项式定理点评:在两项式定理中,通项是最重要的知识点,解决此类题目,必然用到它。
8. 4名同学到某景点旅游,该景点有4条路线可供游览,其中恰有1条路线没有被这4个同学中的任何1人游览的情况有A.36种B.72种C.81种D.144种【答案】D【解析】由题意可知4人选择了4条线路中的3条,不同的游览情况共有种【考点】排列组合点评:求解本题按照先分组后分配的思路求解9.已知,则二项式展开式中的系数为_________.【答案】10【解析】,展开的通项为,令,系数为【考点】定积分与二项式定理点评:定积分,其中,二项式的展开式第项是10.若N,且则()A.81B.16C. 8D.1【答案】A【解析】根据题意,由于,可知n=4,那么当x=-1时可知等式左边为 ,那么右边表示的为81,故答案为81,选A 【考点】二项式定理点评:主要是考查了二项式定理以及系数和的求解,属于基础题。
高二数学排列组合与二项式定理试题答案及解析
高二数学排列组合与二项式定理试题答案及解析1.已知的展开式前三项中的的系数成等差数列.(1)求展开式中所有的的有理项;(2)求展开式中系数最大的项.【答案】(1)第1项和第5项和第9项。
(2),【解析】(1)根据题意,由于的展开式前三项中的的系数成等差数列.,故可知n=8则可知有理项为,,(2)系数最大项,【考点】二项式定理点评:主要是考查了二项式定理的运用,属于基础题。
2.把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是A.168B.96C.72D.144【答案】D【解析】本题可以采用‘挡板法”来解题,任选三个插入挡板把数分成四组,把两个连续的空未插入挡板出现三个数字相连的情况去掉,把分成的四部分在四个位置上排列,得到结果解:∵要把6张票分给4个人,∴要把票分成四份,∵1,2,3,4,5,6之间有五个空,任选三个插入挡板把数分成四组共有C53种结果,其中如果有两个连续的空未插入挡板,则出现三个数字相连,共有4种情况要排除掉(具体为第一、二;第二、三;第三、四;第四、五空隙未插挡板),把分成的四部分在四个位置上排列,∴有(C53-4)×A44=144,故选D.【考点】排列组合问题点评:本题是一个限制条件比较多的问题,是一个实际问题,排列组合问题在实际问题中的应用,在计算时要求做到兼顾所有的条件,先排约束条件多的元素,做到不重不漏,注意实际问题本身的限制条件3.已知,求(1)的值。
(2)的值。
(3)的值。
【答案】(1)1093(2)(3)【解析】解:令①令②(①--②)得(①+②)得即展开式中各项系数和。
=【考点】二项式定理点评:主要是考查了二项式定理的运用,属于基础题。
4.乒乓球运动员10人,其中男女运动员各5人,从这10名运动员中选出4人进行男女混合双打比赛,选法种数为()A.B.C.D.【答案】D【解析】首先从5名男运动员中选2人有种方法,从5名女运动员中选2人有种方法,将4人按照男女混双分成2组有种方法,所以不同的选法共有种【考点】排列组合点评:此类题目的求解一般按照先选择后排列的方法分步完成5.甲、乙等5人站成一排,其中甲、乙不相邻的不同排法共有()A.144种B.72种C.36 种D.12种【答案】B【解析】根据题意,由于甲、乙等5人站成一排,所有的情况有 ,而对于甲、乙相邻的情况有,那么可知不相邻的情况有-=72,选B.【考点】排列与组合点评:本题主要考查排列与组合及两个基本原理,求出甲、乙两人恰好相邻的方法数为A22•A44,是解题的关键.6.教育局组织直属学校的老师去新疆地区支教,现甲学校有2名男老师和3名女老师愿意去支教,乙学校有3名男老师和3名女老师愿意去支教,由于名额有限,教育局决定从甲学校选2人去支教,乙学校选1人去支教,若被选去支教的3名老师中必须有男老师,则乙学校被选去支教的老师是女老师的概率为【答案】【解析】根据题意,由于被选去支教的3名老师中必须有男老师,那么从甲学校选2人去支教,乙学校选1人去支教所有的情况有 ,而对于选去支教的3名老师中必须有男老师,则乙学校被选去支教的老师是女老师的情况有,那么可知其概率为,故答案为【考点】排列组合点评:本题考查排列组合知识,考查学生分析解决问题的能力,属于中档题.7.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为()A.42B.30C.20D.12【答案】A【解析】原定的5个节目之间有6个位。
高二数学排列组合二项式定理单元计划测试题带答案
摆列、组合、二项式定理与概率测试题一、选择题 (本大题共 12 小题,每题5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的. )1、如 所示的是2008 年北京奥运会的会徽,此中的“中国印 ”的外 是由四个色 构成, 能够用 段在不穿越另两个色 的条件下将此中随意两个色接起来 (好像架 ),假如用三条 段将 四个色 接起来, 不一样的 接方法共有 ()A.8种B.12种C. 16种D.20种2、从 6 名志愿者中选出 4 个分别从事翻译、导游、导购、保洁四项不一样的工作,此中甲 乙两名志愿者不可以从事翻译工作,则不一样的选排方法共有()A .96 种B . 180 种C .240 种D .280 种3、五种不一样的商品在货架上排成一排,此中a 、b 两种一定排在一同,而c 、d 两种不可以排在一同,则 不一样的选排方法共有( )A .12 种B .20 种C .24 种D .48 种4、 号 1、2、 3、4、 5 的五个人分 去坐 号1、 2、 3、 4、 5 的五个座位,此中有且只有两个的 号与座位号一致的坐法是()A. 10种B. 20种C. 30种D. 60种a 、b 、m 整数( m>0),若 a 和 b 被 m 除得的余数同样, 称 a 和 b 模 m 同余 .a ≡b(mod5、12·2+C320 ·219, b ≡a(mod 10) , b 的 能够是()m)。
已知 a=1+C 20+C 20 20·22+⋯ +C 206、在一次足球预选赛中, 某小组共有 5 个球队进行双循环赛 (每两队之间赛两场 ),已知胜一场得 3 分,平一场得 1 分,负一场得 0 分.积分多的前两名可出线 (积分相等则要比净 胜球数或进球总数 ).赛完后一个队的积分可出现的不一样状况种数为( )A .22 种B .23 种C .24 种D .25 种7、 令 a n 为(1 x)n 1的睁开式中含 xn1的系数, 数列{ 1} 的前 n 和 ()a nn(n 3)n( n 1)n 2nA .B .C .D .22n 1n 18、 若 ( x 1)5 a 0 a 1( x 1) a 2 (x 1)2 ... a 5( x 1) 5 , a 0 =()A . 32B .1C . -1D . -32n9、 二项式 3x 22(n N * ) 睁开式中含有常数项,则n 的最小取值是()3xA 5B 6C 7D 810、四周体的 点和各棱中点共 10 个点,在此中取 4 个不共面的点, 不一样的取法共有()A . 150 种B .147 种C .144 种D . 141 种11、两位到北京旅行的外国旅客要与2008 奥运会的祥瑞物福娃( 5 个)合影纪念,要求排成一排,两位旅客相邻且不排在两头,则不一样的排法共有( )A .1440B . 960C .720D . 48012、若 x ∈ A 则 1∈A ,就称 A 是伙伴关系会合,会合M={ -1, 0, 1 , 1,1,2,3,4}x3 2的全部非空子集中,拥有伙伴关系的会合的个数为()A . 15B . 16C . 28D . 25号 123456789101112答案二、填空 (每小 4 分,共 16 分,把答案填在 中横 上)13.四封信投入 3 个不一样的信箱,其不一样的投信方法有 _________种. 14、在 (x 21)( x 2) 7 的睁开式中 x 3 的系数是.15、已知数列 { a n }的通项公式为 a n2 n 1 1,则 a 1C n 0 + a 2C 1n + a 3C n3 + a n 1C n n =16、 于随意正整数,定 “n 的双 乘 n!! ”下: 于如 n 是偶数 ,n!!=n (n ·- 2) ·(n - 4) ⋯⋯ 6×;4×2 于 n 是奇数 , n!!=n (n ·- 2) ·(n - 4) ⋯⋯ 5×.3×1 有以下四个命 :①(2005!!) (2006!!)=2006!· ;② 2006!!=2 1003·1003! ;③ 2006!! 的个位数是0;④ 2005!! 的个位数是 5.正确的命 是 ________.三、解答 (本大 共 6 小 ,前 5 小 每小 12 分,最后 1 小 14 分,共 74 分.解答写出必需的文字 明、 明 程或演算步 .)17、某学习小组有 8 个同学,从男生中选 2 人,女生中选 1 人参加数学、物理、化学三种比赛,要求每科均有 1 人参加,共有 180 种不一样的选法.那么该小组中男、女同学各有多少人18、设 m, n∈ Z+, m、 n≥1, f(x)=(1+ x)m+ (1+x)n的睁开式中, x 的系数为 19.(1)求 f(x)睁开式中 x2的系数的最值;(2)关于使 f(x)中 x2的系数取最小值时的 m、n 的值,求 x7的系数.19、7 位同学站成一排.问:(1)甲、乙两同学一定相邻的排法共有多少种(2)甲、乙和丙三个同学都相邻的排法共有多少种(3)甲、乙两同学一定相邻,并且丙不可以站在排头和排尾的排法有多少种(4)甲、乙、丙三个同学一定站在一同,此外四个人也一定站在一同的排法有多少种1 )n的睁开式中前三项的系数成等差数列.20、已知(x2 x(Ⅰ)求n 的值;(Ⅱ )求睁开式中系数最大的项.21、由0,1,2,3,4,5这六个数字。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合二项式定理与概率训练题一、选择题(本大题共12小题,每小题5分,共60分)1.3名老师随机从3男3女共6人中各带2名学生进行实验,其中每名老师各带1名男生和1名女生的概率为( )A.52 B.53 C.54 D.1092.某人射击5枪,命中3枪,3枪中恰有2枪连中的概率为( ) A.52 B.53 C.101 D.201 3. 一批产品中,有n 件正品和m 件次品,对产品逐个进行检测,如果已检测到前k (k <n )次均为正品,则第k +1次检测的产品仍为正品的概率是( )A.km n k n -+-B.m n k ++1 C.11--+--k m n k n D.km n k -++14. 有一人在打靶中,连续射击2次,事件“至少有1次中靶”的对立事件是( )A.至多有1次中靶B.2次都中靶C.2次都不中靶D.只有1次中靶5.在一块并排10垄的土地上,选择2垄分别种植A 、B 两种植物,每种植物种植1垄,为有利于植物生长,则A 、B 两种植物的间隔不小于6垄的概率为( )A.301 B.154 C.152 D.3016.某机械零件加工由2道工序组成,第一道工序的废品率为a ,第二道工序的废品率为b ,假定这2道工序出废品是彼此无关的,那么产品的合格率是( )A.ab -a -b +1B.1-a -bC.1-abD.1-2ab7.有n 个相同的电子元件并联在电路中,每个电子元件能正常工作的概率为0.5,要使整个线路正常工作的概率不小于0.95,n 至少为( )A.3B.4C.5D.68.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为8180,则此射手的命中率是( )A.31 B.32 C.41 D.529.5)3||1|(|++x x 的展开式中的2x 的系数是( )A.275B.270C.540D.54510.有一道竞赛题,甲解出它的概率为21,乙解出它的概率为31,丙解出它的概率为41,则甲、乙、丙三人独立解答此题,只有1人解出此题的概率是( ) A.241 B.2411 C.2417 D.1 11.事件A 与事件B 互斥是事件A 、事件B 对立的( )A.充分不必要条件;B.必要不充分条件;C.充分必要条件;D.既不充分也不必要条件12.若P (AB )=0,则事件A 与事件B 的关系是( )A.互斥事件;B.A 、B 中至少有一个是不可能事件;C.互斥事件或至少有一个是不可能事件;D.以上都不对二、填空题(每小题4分,共16分)13.四封信投入3个不同的信箱,其不同的投信方法有 种 14.如图,一个地区分为5个行政区域, 现给地图着色,要求相邻区域不得 使用同一颜色,现有4种颜色可 供选择,则不同的着色方法共有种15.若以连续投掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在直线x +y =5下方的概率是________16.在编号为1,2,3,…,n 的n 张奖卷中,采取不放回方式抽奖,若1号为获奖号码,则在第k 次(1≤k ≤n )抽签时抽到1号奖卷的概率为________三、解答题(本大题共6小题,共74分解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)设m ,n ∈Z +,m 、n ≥1,f (x )=(1+x )m+(1+x )n的展开式中,x 的系数为19(1)求f (x )展开式中x 2的系数的最大、小值;(2)对于使f (x )中x 2的系数取最小值时的m 、n 的值,求x 7的系数18.(本小题满分12分)从5双不同的鞋中任意取出4只,求下列事件的概率:(1)所取的4只鞋中恰好有2只是成双的; (2)所取的4只鞋中至少有2只是成双的 19.(本小题满分12分)有8位游客乘坐一辆旅游车随机到3个景点中的一个景点参观,如果某景点无人下车,该车就不停车,求恰好有2次停车的概率20.(本小题满分12分)已知n x x 223)(+的展开式的系数和比n x )13(-的展开式的系数和大992,求n xx 2)12(-的展开式中:①二项式系数最大的项;②系数的绝对值最大的项21.(本小题满分12分)有6个房间安排4个旅游者住宿,每人可以随意进哪一间,而且一个房间也可以住几个人求下列事件的概率:(1)事件A :指定的4个房间中各有1人;(2)事件B :恰有4个房间中各有1人; (3)事件C :指定的某个房间中有两人;(4)事件D :第1号房间有1人,第2号房间有3人22.(本小题满分14分)已知{n a }(n 是正整数)是首项是1a ,公比是q 的等比数列(1) 求和:334233132031223122021,C a C a C a C a C a C a C a -+-+-;(2) 由(1)的结果归纳概括出关于正整数n 的一个结论,并加以证明; (3) 设n S q ,1≠是等比数列的前n 项的和,求n n n n n n n C S C S C S C S C S 134231201)1(+-+⋅⋅⋅+-+-排列组合二项式定理与概率参考答案:1.A2.B3.A4. C5.C6.A7.C8.B9.C 10.B 11.B 12.C13. 43 14. 72 15.6116. n 117.设m ,n ∈Z +,m 、n ≥1,f (x )=(1+x )m+(1+x )n的展开式中,x的系数为19(1)求f (x )展开式中x 2的系数的最大、小值;(2)对于使f (x )中x 2的系数取最小值时的m 、n 的值,求x 7的系数解:19,1911=+=+n m C C n m 即n m -=∴19(1)设x 2的系数为T==+22nmC C 4171)219(17119222-+-=+-n n n ∵n ∈Z +,n ≥1,∴当,153,181max ===T n n 时或当,109min ==T n 时或(2)对于使f (x )中x 2的系数取最小值时的m 、n 的值,即109)1()1()(x x x f +++=从而x 7的系数为15671079=+C C18.从5双不同的鞋中任意取出4只,求下列事件的概率: (1)所取的4只鞋中恰好有2只是成双的; (2)所取的4只鞋中至少有2只是成双的解:基本事件总数是410C =210(1)恰有两只成双的取法是12122415C C C C =120∴所取的4只鞋中恰好有2只是成双的概率为74210120C C C C C 41012122415==(2)事件“4只鞋中至少有2只是成双”包含的事件是“恰有2只成双”和“4只恰成两双”,恰有两只成双的取法是15C 24C 12C 12C =120,四只恰成两双的取法是25C =10∴所取的4只鞋中至少有2只是成双的概率为2113210130C C C C C C 4102512122415==+ 19.有8位游客乘坐一辆旅游车随机到3个景点中的一个景点参观,如果某景点无人下车,该车就不停车,求恰好有2次停车的概率解:8位游客在3个景点随机下车的基本事件总数有38=6561种有两个景点停车,且停车点至少有1人下车的事件数有23C (18C +28C +…+78C +88C )=3(28-1)=381种∴恰好有2次停车的概率为21876561381=20.已知n x x 223)(+的展开式的系数和比n x )13(-的展开式的系数和大992,求n xx 2)12(-的展开式中:①二项式系数最大的项;②系数的绝对值最大的项解:由题意992222=-n n ,解得=n ①10)12(xx -的展开式中第6项的二项式系数最大,即8064)1()2(55510156-=-⋅⋅==+xx C T T②设第1+r 项的系数的绝对值最大,则r r r r r r r r x C xx C T 2101010101012)1()1()2(---+⋅⋅⋅-=-⋅⋅=∴⎪⎩⎪⎨⎧⋅≥⋅⋅≥⋅--+-+---110110101011011010102222r r r r r r r r C C C C ,得⎪⎩⎪⎨⎧≥≥+-110101101022r r r r C C C C ,即⎩⎨⎧-≥+≥-r r r r 10)1(2211∴31138≤≤r ,∴3=r ,故系数的绝对值最大的是第4项即37310415360)1()2(x xx C T -=-=21.有6个房间安排4个旅游者住宿,每人可以随意进哪一间,而且一个房间也可以住几个人求下列事件的概率:(1)事件A :指定的4个房间中各有1人;(2)事件B :恰有4个房间中各有1人; (3)事件C :指定的某个房间中有两人;(4)事件D :第1号房间有1人,第2号房间有3人解:4个人住进6个房间,所有可能的住房结果总数为:(种)(1)指定的4个房间每间1人共有44A 种不同住法54/16/)(444==∴A A P(2)恰有4个房间每间1人共有46A 种不同住法18/56/)(446==∴A B P(3)指定的某个房间两个人的不同的住法总数为:5524⨯⨯C (种),216/256/5)(4224=⨯=∴C C P(4)第一号房间1人,第二号房间3人的不同住法总数为:43314=C C (种),324/16/4)(4==∴D22.已知{n a }(n 是正整数)是首项是1a ,公比是q 的等比数列⑴求和:334233132031223122021,C a C a C a C a C a C a C a -+-+-;⑵由(1)的结果归纳概括出关于正整数n 的一个结论,并加以证明; ⑶设n S q ,1≠是等比数列的前n 项的和,求n n n n n n n C S C S C S C S C S 134231201)1(+-+⋅⋅⋅+-+-解:(1)212111223122021)1(2q a q a q a a C a C a C a -=+-=+-; 31312111334233132031)1(33q a q a q a q a a C a C a C a C a -=-+-=-+-(2)归纳概括出关于正整数n 的一个结论是:已知{n a }(n 是正整数)是首项是1a ,公比是q 的等比数列,则n nn n n n n n n q a C a C a C a C a C a )1()1(1134231201-=-+⋅⋅⋅+-+-+证明如下:nn n n n n n n C a C a C a C a C a 134231201)1(+-+⋅⋅⋅+-+- =n n n n n n n n C q a C q a C q a qC a C a 133********)1(-+⋅⋅⋅+-+- n nn n n n n q a q C q C q C q C C a )1(])([13322101-=-+⋅⋅⋅+-+-=(3)因为q q a S n n --=1)1(1,所以k n n kn k C qq a C S --=+1)1(11 nn n n n n n n C S C S C S C S C S 134231201)1(+-+⋅⋅⋅+-+-=])([1])1([12210132101n n n n n n n n n n n n n q C C q qC C qq a C C C C C q a -+⋅⋅⋅-+----+⋅⋅⋅+-+-- =-n q qqa )1(11--。