【决策管理】第9章决策树算法
决策树算法介绍(DOC)

决策树算法介绍(DOC)3.1 分类与决策树概述3.1.1 分类与预测分类是⼀种应⽤⾮常⼴泛的数据挖掘技术,应⽤的例⼦也很多。
例如,根据信⽤卡⽀付历史记录,来判断具备哪些特征的⽤户往往具有良好的信⽤;根据某种病症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。
这些过程的⼀个共同特点是:根据数据的某些属性,来估计⼀个特定属性的值。
例如在信⽤分析案例中,根据⽤户的“年龄”、“性别”、“收⼊⽔平”、“职业”等属性的值,来估计该⽤户“信⽤度”属性的值应该取“好”还是“差”,在这个例⼦中,所研究的属性“信⽤度”是⼀个离散属性,它的取值是⼀个类别值,这种问题在数据挖掘中被称为分类。
还有⼀种问题,例如根据股市交易的历史数据估计下⼀个交易⽇的⼤盘指数,这⾥所研究的属性“⼤盘指数”是⼀个连续属性,它的取值是⼀个实数。
那么这种问题在数据挖掘中被称为预测。
总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测。
3.1.2 决策树的基本原理1.构建决策树通过⼀个实际的例⼦,来了解⼀些与决策树有关的基本概念。
表3-1是⼀个数据库表,记载着某银⾏的客户信⽤记录,属性包括“姓名”、“年龄”、“职业”、“⽉薪”、......、“信⽤等级”,每⼀⾏是⼀个客户样本,每⼀列是⼀个属性(字段)。
这⾥把这个表记做数据集D。
银⾏需要解决的问题是,根据数据集D,建⽴⼀个信⽤等级分析模型,并根据这个模型,产⽣⼀系列规则。
当银⾏在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、⽉薪等属性,来预测其信⽤等级,以确定是否提供贷款给该⽤户。
这⾥的信⽤等级分析模型,就可以是⼀棵决策树。
在这个案例中,研究的重点是“信⽤等级”这个属性。
给定⼀个信⽤等级未知的客户,要根据他/她的其他属性来估计“信⽤等级”的值是“优”、“良”还是“差”,也就是说,要把这客户划分到信⽤等级为“优”、“良”、“差”这3个类别的某⼀类别中去。
管理学决策树方法

管理学决策树方法一、决策树方法的基本概念。
1.1 啥是决策树呢?简单来说,这就像是咱们在森林里找路一样。
决策树是一种树形结构,它有一个根节点,就像大树的根,从这个根节点开始,会分出好多枝干,这些枝干就是不同的决策选项。
比如说,一个企业要决定是否推出一款新产品,这就是根节点的决策。
1.2 然后每个枝干又会根据不同的情况继续分叉。
就好比这新产品推向市场,可能会遇到市场反应好和市场反应不好这两种大的情况,这就像是枝干又分叉了。
这每一个分叉点都代表着一个事件或者决策的不同结果。
二、决策树方法在管理学中的重要性。
2.1 在管理里啊,决策树可太有用了。
就像那句老话说的“三思而后行”,决策树就是帮咱们管理者好好思考的工具。
它能把复杂的决策过程清晰地展现出来。
比如说,一个公司要扩大业务,是选择开拓新市场呢,还是在现有市场深耕呢?这时候决策树就能列出各种可能的结果。
如果开拓新市场,可能会面临新的竞争对手,就像进入了一片未知的丛林,充满了风险;如果在现有市场深耕,可能会面临市场饱和的问题,就像在一块已经耕种很久的土地上,肥力可能不足了。
2.2 决策树还能让咱们量化风险。
咱们不能总是靠感觉来做决策啊,那可就成了“盲人摸象”了。
通过决策树,我们可以给不同的结果赋予概率,就像给每个岔路标上成功或者失败的可能性。
这样管理者就能清楚地看到每个决策背后的风险和收益。
比如说,一个项目有60%的成功概率,但是成功后的收益很大;另一个项目有80%的成功概率,但是收益比较小。
这时候决策树就能帮我们权衡利弊。
2.3 而且啊,决策树有助于团队沟通。
大家都能看着这个树形结构,一目了然。
就像大家一起看一张地图一样,都清楚要往哪里走。
团队成员可以针对决策树上的每个节点、每个分支进行讨论。
这样就不会出现“各说各话”的情况,大家都在同一个框架下思考问题。
三、如何构建决策树。
3.1 首先要确定决策的目标。
这就像确定大树的根一样重要。
比如说,我们的目标是提高公司的利润,那所有的决策分支都要围绕这个目标来展开。
决策树算法公式

决策树算法公式
决策树算法公式是机器学习中常用的分类算法,通过构建一个树形结构来实现对数据集的分类。
决策树的主要思路是将数据集分成若干个小部分,每个小部分对应一条分支,直到达到预定的终止条件。
根据数据集的属性特征,决策树算法会选择最优的属性来进行划分,从而得到最优的分类效果。
决策树算法的主要公式包括:
1.信息增益公式:$IG(D, A) = H(D) - H(D|A)$
其中,$H(D)$表示数据集$D$的经验熵,$H(D|A)$表示在属性$A$的条件下,数据集$D$的经验条件熵。
信息增益越大,说明使用属性$A$进行划分能够得到更好的分类效果。
2.基尼系数公式:$Gini(D) =
sum_{k=1}^{|mathcal{Y}|}sum_{k'
eq k}p_kp_{k'} = 1 - sum_{k=1}^{|mathcal{Y}|}p_k^2$ 其中,$|mathcal{Y}|$表示数据集$D$中不同类别的个数,
$p_k$表示数据集$D$中属于第$k$个类别的样本占总样本数的比例。
基尼系数越小,说明使用属性$A$进行划分能够得到更好的分类效果。
通过使用信息增益或基尼系数等公式,决策树算法可以自动选择最优的属性进行划分,从而得到最优的分类效果。
- 1 -。
决策树的算法

决策树的算法一、什么是决策树算法?决策树算法是一种基于树形结构的分类和回归方法,其本质是将训练数据集分成若干个小的子集,每个子集对应一个决策树节点。
在决策树的生成过程中,通过选择最优特征对数据进行划分,使得各个子集内部的样本尽可能属于同一类别或者拥有相似的属性。
在预测时,将待分类样本从根节点开始逐层向下遍历,直到到达叶节点并输出该节点所代表的类别。
二、决策树算法的基本流程1. 特征选择特征选择是指从训练数据集中选取一个最优特征用来进行划分。
通常情况下,选择最优特征需要考虑两个因素:信息增益和信息增益比。
2. 决策树生成通过递归地构建决策树来实现对训练数据集的分类。
具体实现方式为:采用信息增益或信息增益比作为特征选择标准,在当前节点上选择一个最优特征进行划分,并将节点分裂成若干个子节点。
然后对每个子节点递归调用上述过程,直到所有子节点都为叶节点为止。
3. 决策树剪枝决策树剪枝是指通过去掉一些无用的分支来降低决策树的复杂度,从而提高分类精度。
具体实现方式为:先在训练集上生成一棵完整的决策树,然后自底向上地对内部节点进行考察,若将该节点所代表的子树替换成一个叶节点能够提高泛化性能,则将该子树替换成一个叶节点。
三、常见的决策树算法1. ID3算法ID3算法是一种基于信息熵的特征选择方法。
其核心思想是在每个节点上选择信息增益最大的特征进行划分。
由于ID3算法偏向于具有较多取值的特征,因此在实际应用中存在一定局限性。
2. C4.5算法C4.5算法是ID3算法的改进版,采用信息增益比作为特征选择标准。
相比于ID3算法,C4.5算法可以处理具有连续属性和缺失值的数据,并且生成的决策树更加简洁。
3. CART算法CART(Classification And Regression Tree)算法既可以用来进行分类,也可以用来进行回归分析。
其核心思想是采用基尼指数作为特征选择标准,在每个节点上选择基尼指数最小的特征进行划分。
决策树计算公式

决策树计算公式
决策树是一种监督学习算法,用于解决分类问题。
其计算公式如下:
1.特征选择:根据某个特征的信息增益、信息增益比、基尼系数等指标,选择最优的特征进行划分。
2.划分节点:根据选择的最优特征,将数据集划分成多个子集或子节点。
3.递归构建:对每个子节点,重复步骤1和步骤2,直到满足终止条件(例如,节点只含有一类样本,或者达到最大深度等)。
4.终止条件:可以是以下情况之一:
-节点只包含一类样本,无需继续划分;
-达到预设的最大深度;
-无法选择一个特征进行划分。
5.样本分类:根据叶子节点的类别标签进行分类。
需要注意的是,决策树的计算过程是一个递归的过程,通过选择最优特征进行划分,将数据集分成更小的子集,最终得到树形结构的分类模型。
决策树还有其他一些拓展形式,例如随机森林、梯度提升树等。
这些拓展形式在计算公式上可能会有一些差异,但核心的思想和基本的计算过程与原始决策树相似。
决策树的数学原理

决策树的数学原理决策树是一种常用的机器学习算法,它通过将数据集划分为不同的分支,逐步生成一棵树状结构,从而实现对数据的分类和预测。
本文将介绍决策树的数学原理,包括信息增益、基尼指数和决策树的生成过程。
一、信息增益在构建决策树时,我们需要选择最佳的属性来进行分割。
信息增益是一种衡量属性对决策结果贡献程度的指标,信息增益越大,表示属性的划分结果对结果的影响越大。
信息增益的计算基于信息熵的概念。
信息熵衡量了数据集的混乱程度,熵越大表示数据集越不纯净。
在决策树的构建中,熵的计算公式为:$$ H(D) = -\sum_{i=1}^{n}p_i\log_2p_i $$其中,$D$表示数据集,$n$表示数据集中类别的数量,$p_i$表示第$i$个类别的概率。
对于某一属性$A$,我们将数据集$D$基于属性$A$的取值划分为多个子集$D_v$,每个子集对应一个取值$v$。
属性$A$对数据集$D$的信息增益定义如下:$$ Gain(A) = H(D) - \sum_{v=1}^{V}\frac{|D_v|}{|D|}H(D_v) $$其中,$V$表示属性$A$的取值数量,$|D_v|$表示子集$D_v$的样本数量。
通过比较不同属性的信息增益,我们可以选择最佳的属性作为决策树的分割标准。
二、基尼指数另一种常用的属性选择指标是基尼指数。
基尼指数衡量了数据集的不纯度,越小表示数据集越纯净。
对于某一属性$A$,基尼指数的计算公式为:$$ Gini(A) = \sum_{v=1}^{V}\frac{|D_v|}{|D|}Gini(D_v) $$其中,$V$表示属性$A$的取值数量,$|D_v|$表示子集$D_v$的样本数量。
选择最佳属性时,我们需要计算每个属性的基尼指数,并选择基尼指数最小的属性作为划分标准。
三、决策树的生成过程决策树的生成通常通过递归的方式进行。
生成过程可以分为以下几个步骤:1. 若数据集$D$中的样本全属于同一类别$C$,则以$C$为叶节点,返回决策树;2. 若属性集$A$为空集,即无法再选择属性进行划分,将数据集$D$中样本数量最多的类别作为叶节点,返回决策树;3. 对于属性集$A$中的每一个属性$A_i$,计算其信息增益或基尼指数;4. 选择信息增益或基尼指数最大的属性$A_j$作为划分标准,生成一个根节点;5. 根据属性$A_j$的取值将数据集$D$划分为若干子集$D_v$;6. 对于每个子集$D_v$,递归地生成决策树,将子树连接到根节点上;7. 返回决策树。
决策树模型算法

决策树模型算法1. 引言决策树模型是一种常用的机器学习算法,它在分类和回归问题中都能够取得很好的效果。
决策树模型基于对数据集进行划分的原理,通过构建一棵树来做出决策。
本文将详细介绍决策树模型算法的原理、构建过程以及应用场景。
2. 决策树模型原理决策树模型的原理基于信息论和熵的概念。
在决策树算法中,我们希望找到一种最优的划分方式,使得划分后的子集中目标变量的不确定性减少最快。
这个减少不确定性的度量称为信息增益,用熵来表示。
2.1 熵的定义熵是信息论中度量随机变量不确定性的度量。
对于一个随机变量X,它的熵定义为:H(X)=−∑pi(x i)log(p(x i))其中,p(x i)表示随机变量X取某个特定值的概率。
2.2 信息增益在决策树模型中,我们希望通过选择最优的划分方式将数据集划分成不同的子集。
为了衡量划分的优劣,我们引入了信息增益的概念。
信息增益表示在划分之前后熵的减少程度,计算公式如下:G(D,A)=H(D)−∑|D v| |D|vH(D v)其中,G(D,A)表示通过属性A对数据集D进行划分所获得的信息增益,|D v|表示在属性A上取值为v的样本数,|D|表示总样本数,H(D)表示数据集D的熵,H(D v)表示在属性A上取值为v的子集的熵。
2.3 构建决策树决策树的构建是一个递归的过程。
在每个节点上,我们选择使得信息增益最大的特征作为划分标准,将数据集划分成不同的子集。
然后,对于每个子集,我们继续递归地构建下一级节点,直到满足终止条件为止。
3. 决策树模型算法步骤决策树模型算法的步骤主要包括:特征选择、决策树构建和决策树剪枝。
3.1 特征选择特征选择是决策树模型算法的关键步骤。
我们需要选择最优的特征作为划分标准。
常用的特征选择方法有信息增益、增益率和基尼系数等。
3.2 决策树构建决策树的构建是一个递归的过程。
我们从根节点开始依次划分数据集,直到满足终止条件。
在每个节点上,我们选择使得信息增益最大的特征进行划分。
决策树的计算方法

决策树的计算方法
决策树的计算方法包括以下几个步骤:
1. 决策树的生成:根据训练样本集生成决策树的过程。
训练样本数据集是根据实际需要的有历史的、有一定综合程度的,用于数据分析处理的数据集。
2. 决策树的剪枝:对生成的决策树进行检验、校正和修剪的过程,主要是用新的样本数据集(称为测试数据集)中的数据校验决策树生成过程中产生的初步规则,将那些影响预测准确性的分枝剪除。
此外,决策树的计算还需要考虑如何构造精度高、规模小的决策树,这是决策树算法的核心内容。
以上信息仅供参考,建议查阅决策树相关书籍或咨询该领域专业人士获取更准确的信息。
决策树法

决策树法(Decision Tree)决策树(decision tree)一般都是自上而下的来生成的。
每个决策或事件(即自然状态)都可能引出两个或多个事件,导致不同的结果,把这种决策分支画成图形很像一棵树的枝干,故称决策树。
决策树就是将决策过程各个阶段之间的结构绘制成一张箭线图,我们可以用下图来表示。
选择分割的方法有好几种,但是目的都是一致的:对目标类尝试进行最佳的分割。
从根到叶子节点都有一条路径,这条路径就是一条“规则”。
决策树可以是二叉的,也可以是多叉的。
对每个节点的衡量:1) 通过该节点的记录数2) 如果是叶子节点的话,分类的路径3) 对叶子节点正确分类的比例有些规则的效果可以比其他的一些规则要好。
决策树的构成要素[1]决策树的构成有四个要素:(1)决策结点;(2)方案枝;(3)状态结点;(4)概率枝。
如图所示:总之,决策树一般由方块结点、圆形结点、方案枝、概率枝等组成,方块结点称为决策结点,由结点引出若干条细支,每条细支代表一个方案,称为方案枝;圆形结点称为状态结点,由状态结点引出若干条细支,表示不同的自然状态,称为概率枝。
每条概率枝代表一种自然状态。
在每条细枝上标明客观状态的内容和其出现概率。
在概率枝的最末稍标明该方案在该自然状态下所达到的结果(收益值或损失值)。
这样树形图由左向右,由简到繁展开,组成一个树状网络图。
决策树对于常规统计方法的优缺点优点:1)可以生成可以理解的规则;2)计算量相对来说不是很大;3) 可以处理连续和种类字段;4) 决策树可以清晰的显示哪些字段比较重要。
缺点:1) 对连续性的字段比较难预测;2) 对有时间顺序的数据,需要很多预处理的工作;3) 当类别太多时,错误可能就会增加的比较快;4) 一般的算法分类的时候,只是根据一个字段来分类。
决策树的适用范围[1]科学的决策是现代管理者的一项重要职责。
我们在企业管理实践中,常遇到的情景是:若干个可行性方案制订出来了,分析一下企业内、外部环境,大部分条件是己知的,但还存在一定的不确定因素。
决策树算法的原理

决策树算法的原理
决策树算法,也称为决策树学习,是一种常见的机器学习算法。
它根据已有的样本数据,用树形结构(每个非叶节点对应一个属性)来生成一个训练模型用于预测和分类,也就是说,构建一个决策支持系统,为用户做出一系列的决定。
决策树算法的原理是基于贝叶斯决策理论的独特要素,贝叶斯决策理论是以概率模型为基础的,其核心思想是根据给定的训练样本数据集,来学习决策规则,用于进行新样例的分类。
决策树算法的基本流程是:
(1)准备:根据训练数据集,对数据进行预处理,将训练数据集转换成决策树的学习例子;
(2)构建:使用贝叶斯决策理论,一步一步地从根节点开始,根据最大信息增益(或最小错误率)的原则,逐步完善决策树;
(3)剪枝:使用测试集对构建的决策树进行验证,并进行剪枝,从而改善决策树的分类精度;
(4)预测:使用构建好的决策树,对新样例数据进行预测,并将其分类到最终的类别中。
综上,决策树算法就是以贝叶斯决策原则为基础,结合数据集构建、剪枝和预测三个步骤,实现决策模型的一种机器学习算法。
此算法具有易于理解、易于实施,能进行非线性分类,能够用于多分类,但也有其不足之处,例如对训练样本数据集要求较高,相比其他算法效率低等。
决策树算法

决策树算法决策树算法(DecisionTreeAlgorithm)是一种常用的数据挖掘和分类技术。
它把数据转换成一个树形结构显示出来,以便更加清楚的展示出数据的关联关系。
决策树算法是一种经典的分类算法,其将会把所有的数据属性进行分类,并根据预先定义的规则做出判定,最终将数据划分为多个分类,从而实现数据的分类鉴定和挖掘。
决策树算法是一种非常有效的机器学习算法,可以从数据中自动学习出一组规则,然后根据这些规则来做出决策。
这种算法可以很容易地理解和使用,也很适合与各种任务一起使用,如作为自动化分类和决策系统的一部分。
决策树算法建立在树状结构的基础上,它代表一组决策,每个决策有一定的判断标准,且标准是独一无二的,在每次判断时要根据训练数据里的不同情况来决定根据哪一个判断标准来进行分类。
决策树算法有着自己的优势,如它可以处理事先未知的概念的数据,比如如果有一个数据集包含多个相关的属性,而这些属性之间有着精确的联系,决策树可以非常容易地从一系列复杂的属性之中学习出一种分类规则,然后根据这些规则来做出分类决策。
此外,决策树算法的训练时间较短,而且可以很容易的显示出分类的过程,从而使得决策树算法具备可视化的优势,它可以轻松地展示出分类的结果。
决策树算法有着它自己特有的缺点,如它容易出现过拟合现象,这意味着在训练过程中,决策树可以一味地追求最大的正确率,而忽视掉样本外的情况,从而使得它在实际应用中会出现较大的偏差。
另外,与其他算法相比,决策树算法需要较多的存储空间,因为它的模型包含了很多的特征,而且这些特征也是依次建立的,这样就需要更多的存储来支持这种复杂的模型。
决策树算法日益受到人们的重视,它在数据挖掘和分类任务中发挥着重要的作用。
现在,已经有越来越多的的分类算法出现在市面上,但是决策树算法仍然是众多算法中的佼佼者,它可以从数据中自动学习出一组决策规则,并根据这些规则做出最终的决策,有助于实现有效的数据挖掘和分类。
决策树计算方法例题讲解

决策树计算方法例题讲解决策树是一种常用的机器学习算法,用于分类和回归问题。
它通过构建一棵树形结构来进行决策,每个内部节点表示一个特征,每个叶子节点表示一个类别或一个数值。
下面我将通过一个具体的例题来详细讲解决策树的计算方法。
假设我们有一个数据集,其中包含了一些水果的特征(颜色、形状、纹理)以及对应的标签(是否为橙子)。
我们希望通过这些特征来构建一个决策树模型,能够根据水果的特征预测其是否为橙子。
首先,我们需要将数据集划分为训练集和测试集。
训练集用于构建决策树模型,测试集用于评估模型的性能。
1.特征选择在构建决策树之前,我们需要选择一个特征作为根节点。
常用的特征选择方法有信息增益、信息增益比、基尼指数等。
这里我们使用信息增益来选择特征。
信息增益衡量了在给定特征条件下,类别的不确定性减少的程度。
具体计算信息增益的步骤如下:-计算整个数据集的熵(entropy):-首先,统计每个类别的样本数量。
-然后,计算每个类别的概率,并求和。
-最后,根据概率计算整个数据集的熵。
-对于每个特征,计算其对应的信息增益:-首先,针对该特征的每个取值,将数据集划分为不同的子集。
-然后,计算每个子集的熵和权重,并求和。
-最后,用整个数据集的熵减去子集的熵和权重的乘积,得到信息增益。
选择具有最大信息增益的特征作为根节点。
2.构建决策树选择完根节点后,我们需要递归地构建决策树。
具体步骤如下:-对于每个内部节点,选择一个最佳的特征作为其子节点。
-将数据集根据该特征的不同取值划分为多个子集。
-对于每个子集,如果所有样本都属于同一类别,则将该子集设为叶子节点,并标记为该类别。
-否则,继续递归地构建决策树,直到满足停止条件(如达到预定深度或无法继续划分)。
3.决策树的剪枝构建完决策树后,我们需要进行剪枝操作,以避免过拟合现象。
剪枝可以通过预剪枝和后剪枝来实现。
-预剪枝:在构建决策树的过程中,在划分子集之前,先进行验证集的测试,如果测试结果不好,则停止划分,将当前节点设为叶子节点。
决策树归纳算法的框架

决策树归纳算法的框架决策树归纳算法,这个名字听起来挺复杂,但其实它就像我们日常生活中的“树”一样,分支很多,层次分明。
想象一下,你在超市里,面对一堆水果,想买苹果。
你可能先问自己,想买红色的还是绿色的?如果你喜欢红色,那就继续问,是不是要大一点的?还是小巧可爱的?这样一路问下去,最后你就能找到自己想要的苹果。
决策树就是这么个道理,通过一系列的问题和答案,把复杂的问题简化为一棵树,让你轻松找到解决方案。
很多人可能会想,为什么要用这种树状结构呢?咱们在生活中常常做决策。
比如你出去吃饭,面对一大堆餐馆,你是不是也会想:“今天想吃中餐还是西餐?”这时候,你心里就开始做一个小小的决策树,开始筛选。
这个过程就像是在解一道题,逐步排除不符合的选项,最后得出一个你满意的结果。
决策树算法也一样,它通过建立一系列的问题,把数据一点点筛选出来,最后帮助你做出最优选择。
你可能会想,这个算法适合什么呢?其实它的用途可广泛了。
无论是银行审批贷款,还是医疗诊断,甚至是电商推荐商品,决策树都能派上用场。
比如,你去医院看病,医生会根据你的症状逐步提问,像个侦探一样,最后找出你到底得了什么病。
用决策树算法,计算机也能像医生那样,通过分析病人的症状,给出合理的诊断建议,真是科技改变生活呀。
再聊聊决策树的优点,简单来说,就是直观、易懂。
这种算法就像画图一样,能够把复杂的逻辑关系以简单的形式展示出来。
你一眼就能看明白,不像那些复杂的公式,让人看了头疼。
小孩子都能学会,何况我们这些成年人呢!它的计算速度也快,处理大数据时也不含糊,简直是机器学习界的“干将莫邪”!任何事物都有两面性,决策树也不例外。
它虽然好,但也有些小缺点。
它可能会出现“过拟合”的问题。
就像你在学习的时候,如果只记住了书上的内容,没理解其背后的道理,那在考试的时候就容易出问题。
决策树如果过于复杂,可能就会记住数据里的噪声,而不是抓住真正的规律。
这时候就需要剪枝技术,像修剪树木一样,把不必要的分支去掉,让树更健康。
决策树公式和原理

决策树公式和原理宝子,今天咱来唠唠决策树这个超酷的东西。
决策树呢,就像是一棵倒着长的树,不过这棵树可神奇啦。
它有根节点、分支和叶节点。
根节点就是最开始的那个点,就像树的根一样,所有的决策都是从这儿开始发芽的呢。
比如说你在纠结今天是出去逛街还是在家看剧,这纠结的开始就是根节点啦。
那分支是啥呢?分支就像是从根节点伸出去的小树枝。
还是拿刚刚的例子说,如果你选择出去逛街,那关于去哪儿逛街,是去商场还是去小商业街,这不同的选择就像是不同的分支。
每个分支都代表着一种可能的决策方向。
叶节点就是这些树枝的尽头啦。
比如说你最后决定去商场逛街,然后在商场里选择了一家店,买了一件超好看的衣服,这个买衣服的结果就是一个叶节点。
它的原理其实就像是我们平时做决策的思路。
我们在生活中做决定的时候,也是一个一个问题去想的。
决策树就是把这个过程给整理得清清楚楚。
从数学公式的角度看,决策树主要是通过计算信息增益或者基尼指数这些东西来确定怎么分支的。
听起来有点复杂,咱简单说。
信息增益就像是在看哪个分支能够让我们对结果了解得更多。
比如说你有一堆水果,有苹果、香蕉和橙子。
你想把它们分类,那你可能会先看颜色这个属性,因为按照颜色来分,能让你更快地把这些水果分开,这个颜色属性就有比较大的信息增益。
基尼指数呢,也是类似的作用。
它是用来衡量一个节点里的数据有多“纯”。
如果一个节点里的数据都是一样的,那基尼指数就很小,就说明这个节点很“纯”啦。
就像一盒子里都是苹果,没有其他水果,那这个盒子里的数据就很“纯”。
决策树在好多地方都能用呢。
就像在预测天气的时候,如果我们要决定今天出门要不要带伞。
根节点可能就是看天气预报怎么说。
如果天气预报说可能有雨,那一个分支就是带伞出门,另一个分支就是不带伞赌一把。
然后再根据其他的因素,像是天空的云量啊,风的方向啊,继续分更多的分支。
最后得出一个比较靠谱的决策。
还有在商业里也很有用。
比如说一个公司要决定要不要推出一款新产品。
决策树算法公式

决策树算法公式决策树算法是一种基于树状结构的分类和回归方法,其中树的每个节点代表一个特征属性,每个分支代表该特征属性的一个取值,而每个叶子节点则代表最终的分类或回归结果。
在决策树算法中,通常采用信息增益或基尼指数等方法来选择最优的特征属性进行分割,从而构建出一棵高效的决策树。
具体的决策树算法公式如下:1. 计算信息熵信息熵是反映数据的不确定性的度量,其公式为:$H(D)=-sum_{i=1}^{n} p_i log_2 p_i$其中 $D$ 为数据集,$p_i$ 为第 $i$ 个分类的概率。
信息熵越大,数据的不确定性越高,反之亦然。
2. 计算信息增益信息增益是使用信息熵来选择最优特征属性的方法,其公式为: $Gain(A)=H(D)-sum_{i=1}^{k}frac{|D_i|}{|D|}H(D_i)$ 其中 $A$ 表示特征属性,$k$ 表示属性 $A$ 的可能取值个数,$D_i$ 表示第 $i$ 个取值所对应的数据集,$|D_i|$ 表示 $D_i$ 中样本的个数,$|D|$ 表示数据集 $D$ 中样本的总个数。
信息增益越大,表明选取该特征属性进行分割能够带来更好的分类效果。
3. 计算基尼指数基尼指数是通过选择最小基尼指数来构建决策树的方法,其公式为:$Gini(p)=sum_{k=1}^{K}p_k(1-p_k)=1-sum_{k=1}^{K}p_k^2$ 其中 $p_k$ 表示第 $k$ 个分类的概率。
基尼指数越小,表明数据的纯度越高,反之亦然。
4. 计算基尼指数增益基尼指数增益是使用基尼指数来选择最优特征属性的方法,其公式为:$Gain_Gini(A)=Gini(D)-sum_{i=1}^{k}frac{|D_i|}{|D|}Gini(D_i )$其中 $A$ 表示特征属性,$k$ 表示属性 $A$ 的可能取值个数,$D_i$ 表示第 $i$ 个取值所对应的数据集,$|D_i|$ 表示 $D_i$ 中样本的个数,$|D|$ 表示数据集 $D$ 中样本的总个数。
决策树算法应用和结果解读

决策树算法应用和结果解读
决策树算法是一种常见的机器学习算法,广泛应用于分类和回归问题中。
该算法通过构建一棵树形结构,对数据进行有序、层次化的划分,以预测输出结果。
以下是决策树算法的应用和结果解读:
应用:
1. 分类问题:决策树算法可应用于二分类或多分类问题。
通过构建决策树模型,将数据集划分为不同的类别,根据树的节点和分支规则,对新的输入数据进行分类预测。
2. 回归问题:除了分类问题外,决策树算法也可应用于回归问题。
通过构建决策树模型,对连续的输出变量进行预测,根据树的节点和分支规则,对新的输入数据进行回归分析。
结果解读:
1. 树形结构:决策树算法的结果通常以树形结构的形式展示,树中的每个节点代表一个特征或属性测试,分支代表测试结果,叶子节点代表最终的分类或回归结果。
2. 特征重要性:在决策树模型中,每个特征在决策树中的位置和重要性可以被评估和解读。
特征的重要性通常可以通过特征的分裂信息、基尼不纯度等指标来衡量。
3. 分类结果:对于分类问题,决策树的结果可以展示各类别在每个节点上的分布情况,以及每个分支所代表的类别。
通过观察树的节点和分支规则,可以了解不同类别之间的划分依据。
4. 回归结果:对于回归问题,决策树的结果可以展示每个节点的预测值和实际值之间的差异,以及每个分支所代表的预测值范围。
通过观察树的节点和分支规则,可以了解预测值与实际值之间的关系。
总之,决策树算法的应用广泛,结果易于解读。
通过观察决策树的树形结构和特征重要性、分类或回归结果,可以对数据集进行有效的分析和预测。
决策树算法及应用

决策树算法及应用数一决策树算法简介[1][6][8]决策树算法是一种归纳分类算法,它通过对训练集的学习,挖掘出有用的规则,用于对新集进行预测.决策树算法可设计成具有良好可伸缩性的算法,能够很好地与超大型数据库结合,处理相关的多种数据类型,并且,其运算结果容易被人理解,其分类模式容易转化成分类规则。
因此,在过去的几十年中,决策树算法在机器学习(machine learning)和数据挖掘( data mining)领域一直受到广泛地重视.决策树算法以树状结构表示数据分类的结果。
树的非叶结点表示对数据属性(at tribute)的测试.每个分枝代表一个测试输出,而每个叶结点代表一个分类。
由根结点到各个叶结点的路径描述可得到各种分类规则。
目前有多种形式的决策树算法。
其中最值得注意的是CART 和ID3/ C4. 5 。
许多其它的算法都是由它们演变而来。
下面介绍决策树算法ID3 (Quinlan ,1979) 在实际中的一例应用.决策树算法ID3 使用信息增益( Information Gain)作为选择属性对节点进行划分的指标。
信息增益表示系统由于分类获得的信息量,该量由系统熵的减少值定量描述。
熵(Entropy) 是一个反映信息量大小的概念。
最终信息增益最高的划分将被作为分裂方案。
决策树和决策规则是实际应用中分类问题的数据挖掘方法。
决策树表示法是应用最广泛的逻辑方法,它通过一组输入-输出样本构建决策树的有指导的学习方法。
对于分类决策树来说,需要先对原始资料来进行分类训练,经由不断的属性分类后,得到预期的分类结果.判定树归纳的基本算法是贪心算法,它采用自上而下、分而治之的递归方式来构造一个决策树。
ID3 算法是一种著名的判定树归纳算法,伪代码如下:Function Generate_decision_tree(训练样本samples,候选属性attributelist){创建节点N:if samples 都在同一个类C then返回N 作为叶节点,以类C 标记;if attribute_list 为空then返回N 为叶节点,标记为samples 中最普通类: //多数表决定选择attribute_list 中有最高信息增益的属性test_attribute:标记节点N 为test_attribute;for each test_attribute 中的已知位ai //划分samples由节点N 长出一个条件为test_attribute=ai 的分枝;设Si 是samples 中test attribute=ai 样本的集合; //一个划分If Si 为空then加上一个树叶,标记为samples 中最普通的类;Else 加上一个由Generate_desdecision_tree(Si,attribute_list_test_attribute)返回的节点:}在树的每个节点上使用具有最高信息增益的属性作为当前节点的测试属性。
决策树算法相关公式

决策树算法相关公式
决策树算法是一种基于树结构的分类和回归算法,其基本原理是将一系列数据样本根据特征属性进行递归划分,在每个最终子集上生成一个决策树结构,用于预测未知数据的分类或数值。
决策树算法的核心是如何选择最优划分属性,其计算公式主要包括信息熵和信息增益:
信息熵 = -∑(pi*log2pi)
其中,pi为样本中属于第i个类别的概率,log2pi为其对数值,其取值范围为0<=pi<=1,代表数据不确定性的度量,取值越小代表样本分布越纯。
信息增益 = 父节点的信息熵 - ∑(子节点的信息熵*子节点样本数/父节点样本数)
其中,父节点为当前状态下样本的整体信息熵,子节点为当前状态下根据某个属性划分的信息熵,其取值越大代表属性对于样本划分越明显。
基于信息增益,我们可以建立决策树来进行分类或回归,其基本流程如下:
1、对样本数据进行预处理,包括数据清洗、数据标准化等步骤;
2、选择最优划分属性进行树节点的分裂,并计算信息增益;
3、递归划分子节点,直到达到终止条件,如树的深度和样本数量;
4、根据决策树结构和划分规则,对未知数据进行分类或回归。
决策树算法具有良好的可解释性和高度的灵活性,在实际应用中得到了广泛的应用。
决策树算法原理

决策树算法原理
决策树算法是一种基于树结构的分类与回归分析方法。
它通过对数据集的分割,构建一个树状模型,从而进行决策和预测。
决策树算法的基本原理是在给定数据集的情况下,根据特征属性的值进行划分,使得划分后的子集尽可能地纯净。
纯净的子集指的是只包含同一类别的数据,或者回归问题中的一个具体数值。
为了选择最佳的划分属性,决策树算法通常利用信息增益、信息增益比、基尼系数等指标来度量属性的纯度和划分质量。
在构建决策树的过程中,决策树算法通常使用递归的方法。
首先,从根节点开始,选择一个最佳的划分属性将数据集分成子集。
然后,对每个子集递归地应用相同的划分方法,直到满足一定的终止条件,例如数据集已经纯净或者达到了最大深度。
最后,将每个叶节点所表示的类别或数值作为预测结果。
决策树算法具有直观、可解释性强的特点,并且能够处理离散型和连续型属性。
它可以用于分类问题,例如预测一个样本属于哪一类;也可以用于回归问题,例如预测一个样本的数值。
决策树算法在实际应用中具有广泛的应用,例如医学诊断、金融风险评估等领域。
决策式算法

决策式算法,又称为决策树算法,是一种常见的机器学习算法,主要用于分类和回归任务。
它的核心思想是通过一系列规则对数据进行分类或回归,其中每个规则对应树的一个节点,每个节点代表一个属性测试,从该节点出发,有两个或更多子节点,每个子节点代表该属性的一个可能结果。
决策树算法通常以树形图表示,层次分明,易于理解和解释。
在分类任务中,决策树算法的目标是根据训练数据集生成一棵决策树,使得对于未知类别的数据,能够通过树的路径找到其类别。
生成的决策树可以用于对新数据进行分类或预测。
在回归任务中,决策树算法的目标是根据训练数据集生成一棵决策树,使得对于给定的输入数据,能够通过树的路径找到其对应的输出值。
生成的决策树可以用于对连续值进行预测。
决策树算法有许多优点,例如易于理解和解释、能够处理缺失值和噪声数据、对特征进行自动选择等。
然而,它也有一些局限性,例如对于高维数据可能导致过拟合、容易受到异常值和噪声数据的影响等。
因此,在实际应用中,需要综合考虑各种因素选择合适的算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X>x2
<=52,000
>52,000
图9-2 按照分裂点划分而成的决策树图与相关的具体例子图
第9章 决策树算法
10
9.1 决策树算法原理
X
颜色
x1 x2 …… xi
红绿蓝 橙
收入
低 中等 高
图9-3 按照分裂子集划分而成的决策树图与相关的两个具体例子图
第9章 决策树算法
11
9.1 决策树算法原理
注意:分裂准则与分裂属性、分裂点、分裂 子集并不等同,它们是四个不同的概念, 并且分裂子集分裂点分裂属性分裂准则
第9章 决策树算法
9
9.1 决策树算法原理
将上面的定义结合实际的决策树例子可得 决策树图如下图9-1,图9-2,图9-3所示, 图中设X为分裂属性,是属性X的已知值。
X
收入
X<=x1
第9章 决策树算法
18
9.2.1 ID3算法
假设训练数据集D中的正例集PD和反例 集ND的大小分别为p和n,则ID3基于下面 两个假设给出该决策树算法中信息增益的 定义,因为信息是用二进制编码的,所以 在下面的公式定义中都用以2为底的对数。 (1)在训练数据集D上的一棵正确决策树 对任意例子的分类概率同D中正反例的概率 一致;(2)一棵决策树能对一个例子做出 正确类别判断所需的信息量如下公式所示:
第9章 决策树算法
13
9.2 常用决策树算法
ID3算法
ID3是Quinlan于1986年提出的,是机器学习中一种 广为人知的一个算法,它的提出开创了决策树算法的先河, 而且是国际上最早最有影响的决策树方法,在该算法中, 引入了信息论中熵的概念,利用分割前后的熵来计算信息 增益,作为判别能力的度量。
定义9.3 分裂属性Xi定义为决策树中每个内 部节点都对应的一个用于分裂数据集的属 性。Xi A= {A1, A2 ,, Ah }
第9章 决策树算法
8
9.1 决策树算法原理
定义9.4 如果Xi是连续属性,那么分裂准则 的形式为Xi,其中,就称为节点n的分裂点。
定义9.5 如果Xi是离散属性,那么的形式为, 其中,就称为节点n的分裂子集。
第9章 决策树算法
14
9.2.1 ID3算法
定义9.6 信息熵
自信息量只能反映符号的不确定性,而信息熵可以用
来度量整个信源X整体的不确定性。设某事物具有n种相互
独的立概的率可分能别结为果(P或(x1称), P状(x2态),):P(xx1n,)x, 2 ,,且xn有,:每一种结果出现
n
p(xi ) 1
每个内部节点都被标记一个属性Ai。
每个弧都被标记一个值,这个值对应于相 应父结点的属性。
每个叶节点都被标记一个类Cj。
第9章 决策树算法
7
9.1 决策树算法原理
定义9.2 分裂准则 定义为在决策树算法中 将训练数据集D中的元组划分为个体类的最 好的方法与策略,它告诉我们在节点N上测 试哪个属性合适,如何选择测试与测试的 方法,从节点N上应该生长出哪些分支。
X Y i
yes
noBiblioteka 颜色 {红 , 绿 }是
否
图9-4 按照分裂子集划分而成的决策树(只能是二叉树)图与相关的具体例子图
第9章 决策树算法
12
9.1 决策树算法原理
目前主要使用如下几个量化评估标准 (1)预测准确性 (2)模型强健性 (3)描述的简洁性 (4)计算复杂性 (5)处理规模性
(9.1)
i 1
那么,该事物所具有的不确定量为:
n
H (X ) p(x1)I (x1) p(x2 )I (x2 ) p(xn )I (xn ) p(xi ) log 2 P(xi )
i1
(9.2)
第9章 决策树算法
15
9.2.1 ID3算法
上式即为著名的香农信息量公式。注意到 式中的对数以2为底,当n=2时且时,熵=1 比特。由此可见,一个等概率的二选一事 件具有1比特的不确定性。所以,可以把一 个等概率的二选一事件所具有信息量定为 信息量的单位。任何一个事件能够分解成n 个可能的二选一事件,它的信息量就是n比 特。
优点:
使用者不需要了解很多背景知识,只要训练事例 能用属性→结论的方式表达出来,就能用该算法 学习;
决策树模型效率高,对训练集数据量较大的情况 较为适合;
分类模型是树状结构,简单直观,可将到达每个 叶结点的路径转换为IF→THEN形式的规则,易于 理解;
决策树方法具有较高的分类精确度。
工作过程:
训练数 据集
决策树 分类算
法
评估模 式
测试集
预测
预测结 果
类别未 知的数
据集
1、创建决策树过程
2、使用决策树模型预测过程
决策树分类模型的工作过程图
第9章 决策树算法
6
9.1 决策树算法原理
定义 9.1 给定一个训练数据集D=,其中每 个实例,称为例子,训练数据集中包含以 下属性A=。同时给定类别集合C。对于训 练数据集D,决策树是指具有以下性质的树:
第9章 决策树算法
4
9.1 决策树算法原理
传统的数据分类操作通常有以下两个步骤: 模型训练阶段:根据给定的训练集,找到
合适的映射函数H:→C的表示模型。 使用上一步训练完成的函数模型预测数据
的类别,或利用该函数模型,对数据集中 的每一类数据进行描述,形成分类规则。
第9章 决策树算法
5
9.1 决策树算法原理
下面给出的是ID3算法中将香农的信息熵定 义应用到决策树构造中,进而给出的信息 增益的定义。
设训练数据集D= D1 D2 D, n 是n维有穷向量空间,其中
Dj
是有穷离散符号集,D中的每个元素
d t1,t2 ,,tn ,叫做例子,其中
t j D j , j 1,2,, n 设PD和ND是D的两个子集,分别叫做正例集和反例集。
数据挖掘原理与SPSS Clementine应用宝典
元昌安 主编 邓 松 李文敬 刘海涛 编著
电子工业出版社
第9章 决策树算法
1
第9章 决策树算法
第9章 决策树算法
2
本章大纲:
决策树算法原理 常用决策树算法 决策树剪枝 由决策树提取分类规则 应用实例分析
第9章 决策树算法
3
9.1 决策树算法原理
第9章 决策树算法
16
9.2.1 ID3算法
Quinlan的首创性工作主要是在决策树的学 习算法中第一次引入了信息论中的互信息 (称之为信息增益),以之作为属性选择 的标准,并且将建树的方法嵌入在其中, 其核心是在决策树的各级节点上选择属性, 用信息增益作为属性选择标准
第9章 决策树算法
17
9.2.1 ID3算法