遥感总结
遥感基本知识总结
max T b
物体的发射率是温度和波长的函数,且与种类、物理状况(如粗糙度、颜色等)等有关。 按照发射率和波长的关系,辐射源可分为:
①黑体: ε λ = ε=1
②灰体: ε λ =ε=常数 <1
③选择性辐射体: ε λ <1, 且随波长而变
基尔霍夫定律:
( ,T)
M( ,T) Mb( ,T)
即物体的发射率等于该物体的吸收率
。如:雷达、扫
描仪、摄影机、辐射计等。
3. 信息的接收
传感器接受目标地物的电磁波信息,记录在数字磁介质或者胶片上。胶片由人或回收舱
送至地面回收, 而数字介质上记录的信息则可通过卫星上的微波天线输送到地面的卫星接收
站。
4. 信息的处理
地面站接收到遥感卫星发送来的数字信息,记录在高密度的磁介质上,并进行一系列的
3. 陆地卫星系列
1)陆地卫星( Landsat )
轨道 : 太阳同步的近极地圆形轨道 重复覆盖周期 :16 18 天
图象覆盖范围: 185 * 185 km ( Landsat 7 185*170 km )。 Landsat 上携带传感器空间分辨率不断提高,从 80 m 到 30 m 到 15 m 2)法国 SPOT卫星系列
此,只有电磁波探测属于遥感的范畴。
根据遥感的定义,遥感系统包括:被测目标的信息特征、信息的获取、信息的传输与记
录、信息的处理和信息的应用这五大部分。 1. 目标物的电磁波特性
任何目标物体都具有发射、反射和吸收电磁波的性质,这是遥感探测的依据。
2. 信息的获取 接受、记录目标物体电磁波特征的仪器,称为“传感器”或者“遥感器”
4) 按遥感的应用领域分 外层空间遥感、大气层遥感、陆地遥感、海洋遥感等。
遥感实验课总结与反思报告
遥感实验课总结与反思报告一、实验概述遥感实验课是为了加深对遥感原理和技术的理解,提高遥感数据的处理和分析能力所设计的一门实践性课程。
通过此次实验课,我对遥感技术有了更深入的了解,在实践中不断积累经验,也收获了一些收获。
二、实验内容本次实验课主要包括遥感数据获取、遥感影像处理和遥感应用三个方面的实验内容。
其中,遥感数据获取实验是通过收集卫星影像数据,探究遥感数据的获取方式;遥感影像处理实验是通过对影像进行预处理、分类和解译等操作,学习遥感数据的处理技术;遥感应用实验是通过选取一个具体的应用场景,利用遥感数据进行应用分析。
三、实验收获1. 对遥感原理和技术的理解通过实验课,我不仅深入了解了遥感的原理和技术,还学习到了很多遥感数据处理的方法。
在数据获取实验中,我了解到不同遥感平台对应不同的数据类型和空间分辨率,以及如何选择适合的数据源;在遥感影像处理实验中,我学会了如何对影像进行预处理、分类和解译,并使用软件进行操作;在遥感应用实验中,我掌握了如何将遥感数据应用于具体问题分析中。
2. 实践能力的提升通过实验课的实践操作,我逐渐掌握了一些遥感数据处理的技巧和方法,并具备了一定的数据分析和处理能力。
在数据获取实验中,我学会了利用卫星数据下载工具获取遥感数据;在遥感影像处理实验中,我熟悉了遥感图像的处理流程,并能够独立完成影像的预处理和解译工作;在遥感应用实验中,我学会了将遥感数据应用于实际问题的分析与解决。
3. 团队协作意识的培养在实验过程中,我与同学们共同合作,相互交流,共同面对问题,解决问题。
通过与同学们的合作,我体会到了团队协作的重要性,也学会了如何与他人合作,互相支持和帮助,共同完成实验任务。
在这个过程中,我不仅提高了自己的实践能力,还培养了团队合作和沟通的能力。
四、实验反思1. 实验准备不充分在实验中,我发现自己的实验准备工作不够充分,对实验的背景知识了解不够深入,导致在实验中出现了一些困惑和困难,需要花费更多的时间去学习和掌握。
卫星遥感知识点总结
卫星遥感知识点总结一、遥感基础知识1.1 遥感概念遥感是指在地面之外或大气层以上以电磁波为媒介,对地球进行全面、快捷、准确的观测和探测。
通过记录和测量被观测对象所发的电磁波,并将这些信息转换为有用的图像或数据,可用于获取目标地表特征信息的一种技术手段。
1.2 遥感的分类遥感根据平台可分为卫星遥感、航空遥感和地面遥感;根据波段可分为光学遥感、红外遥感、微波遥感等;根据应用可分为地质勘查、农业监测、城市规划、环境监测等。
1.3 遥感原理遥感技术的原理是基于地球表面上的物质通过电磁波的相互作用而得到信息。
地球表面物体吸收、反射、传播、发射电磁辐射,通过传感器记录地表物体所发的不同波段的辐射,再将辐射能转换为图像或数据。
1.4 遥感的应用卫星遥感技术在农业、林业、水资源、城市规划、环境保护等领域有着广泛的应用。
能够及时获取地表的相关信息,为决策提供数据支持,有助于资源的合理开发和保护。
二、卫星遥感技术2.1 卫星遥感的发展历程20世纪60年代,美国、苏联相继发射了世界上第一颗卫星——斯普特尼克1号和美国的“探险者”1号,标志着卫星遥感时代的开始。
80年代末至90年代初,陆续有多国和地区的公司和机构相继建造了多颗卫星发射到轨道上。
21世纪以来,卫星遥感技术进一步发展,传感器技术和数据处理技术不断提升,空间分辨率和时间分辨率不断增加。
2.2 卫星遥感的传感器卫星遥感传感器可分为光学成像传感器和微波雷达传感器。
光学传感器可以通过记录目标发射的电磁波的反射、散射等现象获取目标地的图像信息;微波雷达传感器可以穿透云层、大气层以及夜晚获得目标地的图像信息。
2.3 遥感数据的获取与处理卫星遥感数据获取有定点定时和遥感巡天两种方式。
定点定时是在特定时间和地点采集数据;遥感巡天是卫星在低轨道上向地面成条带式扫描,记录一幅幅图像,以获取一片大地全景图。
2.4 遥感图像的解译遥感图像的解译是指在数字图像上进行人工信息提取,根据地物的形状、大小、纹理、颜色等特征,识别出地物类别,并提供地物的相关信息。
遥感考点总结
第一章遥感概述一、遥感概念遥感(Remote Sensing)泛指对地表事物的遥远感知。
遥感定义:是从远处探测感知物体,也就是不与目标对象直接接触的情况下,通过某种平台上装载的传感器获取其特征信息,然后对所获取信息进行提取、判定、加工处理及解译应用的综合性技术。
二、遥感的分类按遥感平台分类:近地面遥感;航空遥感;航天遥感。
按传感器的探测波段分类:紫外0.05-0.38;可见光0.38-0.76;红外0.76-1000微米;微波1mm-10m;多波段遥感按传感器工作方式分类:主动遥感;被动遥感。
按遥感资料获取方式:成像遥感;非成像遥感获得信号是曲线、数据。
按波段宽度及波谱的连续性:高光谱遥感;常规遥感。
按应用领域分类:陆地遥感、海洋遥感;农业遥感;城市遥感……三、遥感的特点宏观观测,大范围获取数据(…)。
动态监测,更新快(…)。
技术手段多样,信息量大(…)。
应用领域广,经济效益高(…)。
局限性(…)。
四、遥感数据的应用领域林业:清查森林资源、监测森林火灾和病虫害。
农业:作物估产、作物长势及病虫害预报。
水文与海洋:水资源调查、水资源动态研究、冰雪监控、海洋渔业。
国土资源:国土资源调查、规划和政府决策。
气象:天气预报、气候预报、全球气候演变研究。
环境监测:水污染、海洋油污染、大气污染、固体垃圾等及其预报。
测绘:航空摄影测量测绘地形图、编制各种类型的专题地图和影像地图。
城市:城市综合调查、规划及发展。
考古:遗址调查、预报。
地理信息系统:基础数据、更新数据。
五、遥感技术系统组成1、遥感平台;遥感平台(Remote Platform)是安放遥感仪器的载体,包括气球、飞机、人造卫星、航天飞机以及遥感铁塔等。
按遥感平台的高度不同,遥感分为近地遥感(150m以下)、航空遥感(80 km以下的平台,包括飞机和气球)和航天遥感等。
2、遥感器;遥感器或传感器( Remote Sensor)是接收与记录地表物体辐射、反射与散射信息的仪器。
遥感原理与应用各章节知识点总结
遥感原理与应用各章节知识点总结
遥感原理与应用各章节知识点总结如下:
1. 遥感定义:遥感是指通过非接触的方式,远距离感知目标物体的基本属性,包括位置、形状、大小、方向、表面温度等。
2. 电磁波谱:遥感的工作基础是电磁波谱,包括可见光、红外线、微波等不同波段的电磁波。
不同的物体对不同波段的电磁波有不同的反射和吸收特性,因此通过测量这些特性,可以反演出物体的基本属性。
3. 传感器:传感器是遥感的“眼睛”,它能够接收和记录电磁波谱中特定波段的信息。
常见的传感器包括光学相机、红外扫描仪、微波雷达等。
4. 数据处理:数据处理是遥感中非常重要的环节,它包括预处理、增强、变换和分析等步骤。
通过这些步骤,可以将原始的遥感数据进行处理,提取出有用的信息,并对这些信息进行解释和识别。
5. 应用领域:遥感的应用领域非常广泛,包括资源调查、环境保护、城市规划、交通管理、气象监测、灾害预警等。
6. 发展趋势:随着科技的不断发展,遥感技术也在不断进步和完善。
未来的遥感技术将更加注重智能化、自动化和实时化,同时也会更加注重多源数据的融合和综合应用。
以上是遥感原理与应用各章节知识点总结,如需获取更具体的内容,建议查阅相关教材或权威资料。
遥感领域知识点总结
遥感领域知识点总结一、遥感技术简介遥感技术是利用各种感知设备(如卫星、飞机、无人机等)获取地球表面信息的一种技术手段。
遥感技术的主要特点是不需要直接接触被观测对象,能够实现全天候、全天时、全地域的地表信息获取。
在遥感技术的发展过程中,主要包括了光学遥感、微波遥感、红外遥感、激光雷达遥感等多种技术手段。
光学遥感是利用可见光、红外线、紫外线等电磁辐射进行地表信息获取的一种遥感手段。
光学遥感技术可以分为近景遥感和遥驾遥感两种,近景遥感通常使用相机、摄像机等设备,适用于地面观测;遥感遥感则是通过卫星、飞机等平台获取远距离地表信息的一种手段。
微波遥感利用微波波段的电磁辐射进行地表信息获取,主要适用于云雾天气下的地表观测。
微波遥感技术可以提供地表土壤湿度、植被覆盖、冰雪覆盖等信息,对于农业、水资源、气象等领域具有重要意义。
红外遥感是利用红外线波段进行地表信息获取的一种遥感手段。
红外遥感技术可以提供地表温度、火灾监测、环境变化等信息,对于环境保护、自然灾害监测等领域具有重要意义。
激光雷达遥感利用激光雷达进行地表信息获取,具有高精度、高分辨率的优势,主要适用于地形测量、建筑测绘、城市规划等领域。
二、遥感数据解译遥感数据解译是指利用遥感图像对地表信息进行识别、提取、分析的过程。
遥感数据解译的主要步骤包括数据准备、预处理、信息提取、信息分析等。
数据准备包括获取遥感数据、进行数据格式转换、数据配准等工作。
预处理是指对遥感图像进行大气校正、辐射校正、几何校正等处理,以保证图像质量。
信息提取是指根据遥感图像特征,对地表信息进行分类、识别等工作。
信息分析是指对提取的地表信息进行统计分析、空间分析等工作,从而获取有用的地表信息。
遥感数据解译主要涉及的技术包括像元分类、遥感图像分析、遥感信息系统等。
像元分类是指将遥感图像像元按其特征进行分类,常用的分类方法包括最大似然法、支持向量机、人工神经网络等。
遥感图像分析是指对遥感图像进行特征提取、目标识别等工作,主要涉及的技术包括纹理分析、形状分析、光谱分析等。
遥感导论知识点总结高中
遥感导论知识点总结高中一、遥感概念及发展历程遥感是指利用航空航天技术和传感器对地面、海洋、大气和宇宙空间等目标进行探测、观测和信息提取的一门学科。
它是一种通过远距离的传感器来获取地球表面和大气中的信息的技术,主要包括地面、航测和卫星遥感。
遥感技术的发展历程可以追溯到人类最早对地球表面的观测。
从最早的地图绘制,到到20世纪20年代以来的航空摄影测量、航测摄影仪、雷达和激光遥感器、遥感卫星等都是遥感技术的重要里程碑。
二、遥感的基本原理遥感是通过选取的光谱波段和相应的传感器,对地面物体和环境进行观测和检测,通过记录、分析和解释观测数据,获取有关地表对象及其相关地面、大气和水体参数等信息的过程。
遥感的基本原理包括辐射传输理论、光谱特性、空间分辨率、光谱分辨率、辐射分辨率等。
三、遥感的分类1.按照观测的波段范围来分:光学遥感、红外遥感、微波遥感和激光雷达遥感。
2.按照探测平台来分:航空遥感和卫星遥感。
3.按照应用领域来分:陆地遥感、海洋遥感、大气遥感和天文遥感。
四、遥感技术的应用1.农业资源监测:借助遥感技术对农作物的生长情况、地毯裸度、水分含量等进行监测和调查。
2.城市规划和环境保护:利用遥感技术监测城市土地利用、绿化覆盖和环境状况。
3.自然资源调查:遥感技术能够对地球表面的森林、草原、矿产、水体等自然资源进行调查和监测。
4.灾害监测和防治:遥感技术能够对地质灾害、气象灾害和生态灾害进行监测和防治。
五、遥感数据的处理和分析1.图像预处理:包括图像校正、图像增强、图像融合、图像变换和图像分类等。
2.图像解译:根据地物光谱特征和形态特征,对遥感图像进行解译和分类。
3.数据分析和应用:通过对遥感数据的处理和解译,获取地表对象及其相关地面、大气和水体参数等信息。
六、遥感技术未来发展趋势1.多源数据融合:将来遥感技术将更多地应用于多源数据融合,包括多光谱、高光谱、雷达和激光雷达等遥感技术的融合。
2.数据共享和开放:未来遥感技术将更多地采用数据共享和开放的方式,使得数据更加透明和共享。
遥感概论知识点总结
遥感概论知识点总结一、遥感的基本概念遥感是通过对地球表面进行观测和测量,获取地球表面各种信息的技术。
遥感可以利用航空器、卫星等平台来进行观测和测量,通过获取的遥感数据,可以对地球的各种现象和特征进行监测和分析。
遥感技术的应用范围非常广泛,可以在农业、水资源、土地利用、环境保护、城市规划等领域发挥重要作用。
二、遥感的原理遥感的原理主要是通过传感器对地球表面进行观测和测量,获取各种遥感数据。
传感器可以利用电磁波、红外线、微波等方式对地球表面进行观测,不同的传感器可以获取到不同波段的数据,从而获取到地球表面的不同信息。
遥感数据可以分为光学遥感数据和雷达遥感数据两种类型,其中光学遥感数据主要是通过对可见光、红外线等光谱的捕捉,获取地球表面的图像信息,而雷达遥感数据则是通过微波的回波信息获取地球表面的各种信息。
通过对遥感数据的处理和分析,可以获取到地球表面的各种信息,包括地形、地物、植被、水域、土壤等。
三、遥感的分类遥感可以根据传感器的工作原理和数据类型进行分类,主要可以分为光学遥感和雷达遥感两种类型。
光学遥感主要是利用可见光和红外线等光学波段进行观测和测量,可以获取地球表面的图像信息,包括地形、地物、植被、水域等。
光学遥感主要利用航空摄影、卫星摄影等方式获取数据,可以在农业、林业、地质勘探等领域得到应用。
雷达遥感则是利用雷达传感器对地球表面进行观测和测量,可以在夜间和恶劣天气下进行观测,可以获取地球表面的高度、形状、液体含量等信息,广泛应用于地质勘探、环境监测等领域。
四、遥感数据的获取遥感数据的获取主要是通过航空摄影、卫星摄影等方式进行观测和测量。
航空摄影是利用航空器进行大范围、高分辨率的遥感观测和测量,可以获取地球表面的高分辨率图像信息,适用于小范围的地面观测。
而卫星摄影则是利用卫星平台进行大范围、中低分辨率的遥感观测和测量,可以获取地球表面的宽幅图像信息,适用于大范围的地面观测。
通过这些方式获取的遥感数据可以在地质勘探、农业监测、城市规划等方面得到应用。
遥感知识点归纳总结
遥感知识点归纳总结一、遥感的基本概念1. 遥感是通过利用飞机、卫星等远距离获取地球表面信息的技术手段。
2. 遥感的基本原理是利用传感器感知地面目标发射的辐射能量,将其转换成数字信号或电信号,再利用数据处理技术进行图像重建和信息提取。
二、遥感的分类1. 根据传感器的工作原理和辐射波段的不同,遥感可以分为被动遥感和主动遥感。
2. 根据传感器所在的平台不同,遥感可分为航空遥感和卫星遥感。
3. 根据获取的数据类型不同,遥感可以分为光学遥感、微波遥感、红外遥感等。
三、遥感数据的特点1. 遥感数据具有多波段、全天候、高时空分辨率、连续性等特点。
2. 遥感数据可以用于地貌测绘、资源调查、环境监测、灾害预警等领域。
3. 遥感数据处理的基本步骤包括数据采集、数据预处理、数据解译和数据应用。
四、遥感数据的应用1. 遥感数据可以用于农业资源管理,包括农田监测、农作物遥感调查、粮食产量预测等。
2. 遥感数据可以用于城市规划和建设,包括城市地形测绘、土地利用变化监测、城市扩张分析等。
3. 遥感数据可以用于环境监测和保护,包括森林火灾监测、水质检测、环境污染监测等。
4. 遥感数据可以用于自然资源勘查,包括矿产资源调查、水资源调查、土地资源调查等。
五、遥感数据处理的基本方法1. 遥感影像预处理包括几何校正、辐射定标和大气校正等;2. 遥感数据解译可以采用目视解译、数字图像处理、人工智能等方法;3. 遥感数据处理中涉及到的技术包括遥感数据库管理、遥感模型构建、遥感影像融合等。
六、遥感技术的发展趋势1. 遥感技术在高分辨率、高灵敏度、多波段、3D等方面有了长足的进步,使得遥感在精准农业、城市规划等领域得到更广泛的应用。
2. 遥感技术与无人机、机器视觉、机器学习等新兴技术的结合,将使得遥感技术在自动化、智能化方面更加成熟。
3. 遥感技术在环境监测、自然灾害预警等领域的应用将更加广泛,对于人类社会的可持续发展将发挥更大作用。
遥感概论最强考点总结
遥感概论和普通的图象有什么异同?能从图象上得到什么?为什么要从那么高的空间对地成像?想了解有关的空间信息,通过什么途径?如何获取信息?遥感的作用或者目的?一、遥感定义:遥感广义的含义:泛指各种非接触的、远距离的探测技术,根据物体对电磁波的反射和辐射特性,以获取物体信息的一种技术。
遥感狭义的含义:指从远距离、高空以至外层空间的各种平台上,利用可见光、红外、微波等探测仪器,通过摄影或扫描,信息感应、传输和处理,从而识别地面物质的性质和运动状态的一门现代化科学技术。
遥感定义:指在高空和外层空间的各种平台上,运用各种传感器获取反映地表特征的各种参数,通过传输,变换,处理,提取有用的信息,实现研究地物形状、位置、性质、变化及与环境的相互关系的一门现代应用科学。
遥感技术:实现上述目的所采取的各种技术手段的总称。
二、遥感技术的特点:宏观性,综合性(覆盖范围大、信息丰富),多波段性(波段的延长使对地球的观测走向了全天候),多时相性(重复探测,有利于进行动态分析)。
三、遥感的分类1、按照遥感的工作平台分类:地面遥感、航空遥感、航天遥感。
2、按照探测电磁波的工作波段分类:可见光遥感、红外遥感、微波遥感等。
3、按照遥感应用的目的分类:环境遥感、农业遥感、林业遥感、地质遥感等4、按照资料的记录方式:成像方式、非成像方式5、按照传感器工作方式分类:主动遥感、被动遥感四、遥感技术系统:是一个从地面到空中直至空间;从信息收集、存储、传输、处理到分析判读、应用的完整技术系统。
第一章遥感的物理基础电磁波及电磁波谱光的波动性形成了干涉,衍射,偏振现象。
干涉:由两个或两个以上频率振动方向相同,相位相同或相位差恒定的电磁波在空间叠加时,合成波振幅为各个波的振幅的矢量和,因此会出现交叠区某些地方振动加强,某些地方震动减弱或完全抵消的现象。
凡是单色波都是相干波。
干涉对微波遥感的判读意义重大。
衍射:光通过有限大小的障碍物时偏离直线路径的现象。
遥感测量知识点梳理总结
遥感测量知识点梳理总结一、遥感概念及发展历史1.1 遥感概念遥感是指利用卫星、航空器、船只等自然物体之外的传感器和设备,对地球表面的物体和环境进行观测、测量、探测和监测。
遥感技术是一种无需与被观测物体接触的测量技术,因此被广泛应用于地球科学领域。
1.2 遥感发展历史遥感技术最早可以追溯到19世纪,当时的军事领域开始利用气球、飞艇和飞机拍摄地面敌军的照片。
到了20世纪,随着航空和航天技术的发展,遥感技术开始得到更广泛的应用。
1972年美国NASA发射了第一颗陆地观测卫星LANDSAT-1,标志着陆地遥感观测进入了卫星时代。
此后,遥感技术不断发展,成为地球科学领域不可或缺的工具之一。
二、遥感测量基础知识2.1 电磁波谱电磁波谱是指电磁波的频率范围,包括广泛的无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等。
在遥感技术中,不同波段的电磁波具有不同的特性和应用,因此了解电磁波谱是遥感测量的基础知识。
2.2 传感器遥感传感器是指用于探测、记录和测量地球表面各种信息的设备,可分为主动传感器和被动传感器两种。
主动传感器是指主动发射电磁波,然后接收返回的信号,如雷达;被动传感器是指接收地面物体自然发射出的电磁波,如光学传感器。
传感器的选择和使用对遥感数据的质量和应用具有重要影响。
2.3 遥感平台遥感平台是指用于携带、部署遥感传感器的航空器或卫星。
航空平台主要包括飞艇、飞机、直升机和无人机等;卫星平台主要包括低轨道卫星、地球同步卫星和地球静止卫星等。
不同的平台具有不同的观测能力和适用范围,可以根据具体任务和需求进行选择。
2.4 遥感数据遥感数据是指由遥感平台获取的地球表面信息,包括图像、光谱数据和雷达数据等。
根据观测波段和分辨率的不同,遥感数据可以提供地表特征、土地覆盖、地形地貌、气候变化等各种信息。
遥感数据的获取和处理是遥感测量的核心内容之一。
三、遥感测量方法3.1 遥感图像处理遥感图像处理是指对遥感数据进行预处理、增强、分类和解译等操作,以提取和分析地表信息。
遥感测量知识点总结归纳
遥感测量知识点总结归纳遥感测量是通过卫星、飞机等传感器获取地球表面信息的一种技术手段,能够实现对地球表面进行高效、快速、准确的观测和监测。
遥感测量技术应用广泛,涉及国土资源调查、环境监测、气候变化、灾害预警等多个领域,因此对遥感测量知识点进行总结和归纳,有助于更深入地了解和掌握这一领域的基本理论和实践技术。
一、遥感传感器1. 遥感传感器的分类遥感传感器按其感应原理和工作方式可分为被动传感器和主动传感器。
被动传感器是通过感知目标反射、辐射的电磁波或者目标对外界环境的响应来进行观测,如光学遥感和红外遥感;主动传感器是通过向目标发射电磁波,利用目标对电磁波的反射或者散射来进行观测,如雷达遥感。
2. 遥感传感器的参数遥感传感器的参数包括分辨率、光谱分辨率、时间分辨率、空间分辨率和幅射分辨率。
其中分辨率是传感器观测的基本特性,分为空间分辨率、时间分辨率和光谱分辨率,分辨率对于传感器的观测精度和效率具有重要影响。
3. 遥感图像的获取和处理遥感图像的获取主要是通过卫星、飞机等遥感平台获取,获取的遥感图像需要进行预处理、辐射校正和几何校正等步骤,以实现图像的准确性和可用性。
二、遥感数据处理1. 遥感数据的分类遥感数据根据其获取方式和信息类型可分为光学遥感数据、红外遥感数据、雷达遥感数据等,不同类型的遥感数据在信息提取和应用方面有其独特的特点和优势。
2. 遥感数据的信息提取遥感数据的信息提取包括分类识别、变化检测、地形建模等内容,信息提取技术是将原始遥感数据转化为地理信息产品的核心步骤。
3. 遥感数据的空间分析遥感数据的空间分析主要包括空间关系分析、空间统计分析和空间建模等内容,空间分析技术可以帮助人们理解地球表面的空间关系和特征,对资源管理和环境监测具有重要意义。
三、遥感应用1. 土地利用与覆被变化监测遥感技术广泛应用于土地利用与覆被变化监测,通过遥感图像的分类和变化检测,可以实现对土地利用变化和自然资源变化的动态监测和评估。
遥感-总结内容1
第一章1.遥感概念及特点。
答:概念:为了某种目的,采用不接触目标物的记录器,收集其信息并对其进行探测、识别、分类、判读和分析的过程;具有动态(where、when、what)、宏观(全天候、全天使、全球)、准确(高空间、高光谱、高时空分辨率)、系统(大小卫星、航天航空、技术与应用)的特点。
2.遥感平台、传感器的概念、功能和种类答:遥感平台是指遥感中搭载传感器的运载工具。
大体可以分为三类:地面平台、航空平台、和航天平台。
传感器是远距离感测和记录地物环境辐射或反射电磁波能量的遥感仪器,通常安装在遥感平台上。
根据记录方式的不同,分为成像方式和非成像方式两类。
3.遥感技术系统由哪几部分组成?各自功能是什么?答:遥感系统由以下四部分组成:遥感平台,遥感中搭载传感器的运载工具。
传感器,用来远距离感测和记录地物环境辐射或反射电磁波能量。
遥感信息的接收和处理,接收航空遥感和卫星遥感所获取的胶片和数字图像,并对其进行一系列的校正处理。
遥感图像判读和应用:将遥感图像光谱信息转化为用户的类别信息,也就是为了应用目的和要求对遥感数据进行分析分类和解译。
4.遥感影像的优缺点答:优点:动态、宏观、准确、真实客观、可数字化处理提取有效信息,可以不断的更新,具有时需性,便于现地找点。
缺点:无境界线、无属性、坐标、不能标明地类。
5.遥感技术的应用领域及发展趋势。
答:环境保护方面的应用,遥感对于检测各种环境变化,如城市化、沙漠化、土地退化、盐渍化、环境污染问题都能起到独特的作用。
发展趋势:多分辨率多遥感平台并存,空间、时间、光谱分辨率普遍提高;微波遥感、高光普遥感迅速发展;遥感的综合应用不断深化,商业遥感时代的到来。
6.天然遥感与人工遥感答:天然遥感:自然界中依靠独特的生体特征,以不接触目标物的形式,收集其信息并对其进行探测、识别,比如蝙蝠、海豚等动物;人工遥感:为了某种目的,采用不接触目标物的记录器,收集其信息并对其进行探测、识别、分类、判读和分析的过程;7.主动遥感与被动遥感答:传感器只能被动的接收地物反射的太阳辐射电磁波信息进行的遥感为被动遥感;传感器本身发射人工辐射,接收地物反射回来的辐射,这种探测地物信息的遥感即为主动遥感。
遥感原理总结
名词解释1. 遥感:遥感即遥远感知,是在不直接接触的情况下,对目标或自然现象远距离探测和感知的一种技术.一般指的是电磁波遥感.p12. 电磁波:根据麦克斯韦电磁场理论,变化的电场能够在它的周围引起变化的磁场,这个变化的磁场又在较远的区域内引起新的变化电场,并在更远的区域内引起新的变化磁场.这种变化的电场和磁场交替产生,以有限的速度由近及远在空间内传播的过程称为电磁波.p13. 干涉:有两个(或以上)频率、震动方向相同,相位相同或相差恒定的电磁波在空间叠加时合成的波振幅为各个波的振幅矢量和。
因此会出现交叉区域某些地方震动加强,某些地方震动减弱或完全抵消的现象成为干涉。
P24. 衍射:光通过有限大小的障碍物时偏离直线路径的现象成为光的衍射。
P25. 电磁波谱:不同电磁波由不同波源产生,如果按照电磁波在真空中传播的波长或频率按递增或递减的顺序就能得到电磁波谱图p26. 绝对黑体(黑体):如果物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体。
P47. 基尔霍夫定律:任何物体的单色辐出度和单色吸收之比,等于同一温度绝对黑体的单色辐出度。
8. 太阳常数:太阳常数指不受大气影响,在距离太阳的一个天文单位内垂直于太阳辐射方向上,单位面积黑体所接受的太阳辐射能量。
P69. 太阳光谱辐照度:指投射到单位面积上的太阳辐射通量密度,该值随波长不同而异。
10. 散射:电磁波在传播过程中,遇到小微粒而使传播方向发生改变,并向各个方向散开,称为散射。
P1011. 米氏(Mie)散射:如果介质中不均匀颗粒与入射波长同数量级,发生米氏散射。
P1012. 瑞利散射:介质中不均匀颗粒直径a远小于电磁波波长,发生瑞利散射。
P1013. 无选择性散射(均匀散射):当微粒的直径比辐射波长大得多时所发生的散射。
符合无选择性散射条件的波段中,任何波段的散射强度相同。
P1014. 大气屏障:遥感所能使用的电磁波是有限的,有些大气中电磁波通过率很小,甚至完全无法透过电磁波,称为大气屏障。
遥感基本知识点总结
遥感基本知识点总结遥感是利用航空器、航天器及地面探测设备获取地球信息的科学技术。
通过遥感技术,可以获取地球大气、水、地貌、地形等各种信息,从而用于环境监测、资源调查、城市规划、农业生产等诸多领域。
遥感技术的发展历程遥感技术的发展可以追溯到19世纪,当时人们利用照相机和气球等工具对地球进行拍摄和观测。
20世纪初,航空摄影逐渐成为主要遥感手段,而随着航天技术的发展,卫星遥感技术也逐渐成熟。
今天,卫星遥感及无人机遥感已经成为主流遥感手段,为人类获取地球信息提供了更便捷、高效的方式。
遥感技术的分类遥感技术可以分为被动遥感和主动遥感两大类。
被动遥感是指利用自然光或其他外部光源获取地球信息的方法。
例如,通过卫星或无人机搭载的光学传感器获取地球表面的图像,或者利用辐射计和多光谱仪等设备来获取地球的辐射信息。
主动遥感是指通过主动发送电磁波,然后接收并分析反射回来的波束,从而获取地球信息的方法。
例如,雷达遥感就是主动遥感的一种,它利用雷达发射器发送微波信号,然后接收和分析反射回来的信号,以获取地球表面的信息。
遥感数据的类型遥感数据包括光学遥感数据和雷达遥感数据两种类型。
光学遥感数据主要包括数字影像数据和数字遥感数据。
数字影像数据是指由卫星或飞机传感器获取的地球表面的真实影像数据,它能够直观地反映地表的真实景象,包括地貌、植被、建筑等信息。
而数字遥感数据则是通过传感器获取的数字化的地球表面信息,例如地表温度、水体含量等。
雷达遥感数据则是利用雷达系统获取的地球表面信息。
雷达传感器可以穿透云层和植被,因此在夜间以及天气条件不佳时也能获取地面信息,因此在一些特定的应用场景中具有独特的优势。
遥感数据的处理与分析通过遥感数据处理和分析,可以获取地表植被覆盖、地形地貌、水体变化等信息,并用于环境监测、资源调查、城市规划和农业生产等领域。
遥感数据处理主要包括图像增强、分类、变化检测等步骤。
图像增强是指通过数字信号处理技术,对遥感影像进行亮度、对比度等参数的调整,以提高图像的质量和清晰度。
遥感导论知识点总结完整
遥感导论知识点总结完整引言遥感作为一种先进的信息获取技术,已经在各个领域得到广泛的应用。
随着科学技术的不断发展,遥感技术也在不断进步,为人类提供了更多更精确的信息。
本文将从遥感的基本概念、发展历程、原理与分类、遥感数据的获取与处理、遥感在环境监测、资源调查、地质勘查等领域的应用以及遥感技术的未来发展方向等方面对遥感进行全面的介绍和总结。
一、遥感的基本概念遥感(Remote Sensing)是指利用卫星、飞机等远距离的传感器对地球表面和大气的特定区域进行观测和记录,然后通过数据处理和分析来获取地球表面和大气的信息的一种技术。
遥感技术的基本原理是利用电磁波在大气中传播的特性,通过感应器对地球表面和大气进行观测,然后对获取的数据进行处理,得到地表特征和大气物理参数等信息。
二、遥感的发展历程遥感技术的起源可以追溯到19世纪中叶,当时法国科学家对地球表面采用长焦距照相术进行观测。
20世纪初,随着航空摄影术的发明,遥感技术得到了迅速发展。
随着卫星技术的进步,遥感技术得到了更大的发展,不仅可以进行大范围的观测,还可以获取更多更精确的信息。
在遥感技术发展的过程中,人们不断提出了各种遥感技术和方法,比如红外遥感、微波遥感、激光雷达遥感等,这些新技术和方法的应用,使遥感技术更加全面和精确。
三、遥感的原理与分类1. 遥感的原理遥感技术基于物体对电磁波的反射、散射、辐射和吸收等特性,通过感应器对地球表面和大气进行观测,进而获取地表特征和大气物理参数等信息。
遥感技术的原理可以简要概括为:电磁波的发射和接收、电磁波与地表物体的相互作用、数据获取与处理。
2. 遥感的分类遥感根据不同的波段和传感器,可以分为光学遥感、红外遥感、微波遥感等。
根据不同的平台,可以分为航空遥感和卫星遥感。
根据不同的目的和应用,可以分为地质勘查、环境监测、农业资源调查等。
四、遥感数据的获取与处理1. 遥感数据的获取遥感数据的获取包括传感器的观测、数据的传输和处理。
遥感原理与应用知识点总结
遥感原理与应用知识点总结遥感原理与应用是地理信息科学和地球科学领域中的重要学科,主要涉及利用遥感技术获取地球表面信息的方法、原理和应用。
以下是遥感原理与应用的重要知识点总结:1、遥感定义:遥感是指通过非接触传感器,从远处获取地球表面各类信息的技术。
2、电磁波谱:遥感技术主要利用电磁波谱中的可见光、红外线、微波等波段,不同波段的信息携带的地面信息不同。
3、辐射与反射:遥感传感器接收到的辐射包括目标物体的自身辐射和反射太阳光。
反射率是物体反射能量与入射能量之比,是遥感影像分析的重要参数。
4、分辨率:分辨率是遥感影像中能够识别的最小细节,可分为空间分辨率、光谱分辨率和时间分辨率。
5、图像增强:通过图像处理技术,对遥感影像进行色彩调整、滤波、边缘增强等操作,以提高影像的可读性和目标物体的识别精度。
6、图像分类:基于遥感影像的像素值和特征,利用计算机视觉和图像处理技术进行自动或半自动的分类,得到专题图层。
7、动态监测:遥感技术可以对同一地区不同时相的影像进行对比分析,发现地表信息的动态变化,如土地利用变化、环境污染监测等。
8、应用领域:遥感技术在环境保护、城市规划、资源调查、灾害监测、全球变化研究等领域有广泛应用。
9、遥感数据融合:将不同来源的遥感数据融合在一起,可以提高遥感影像的质量和精度,为应用提供更加准确可靠的数据支持。
10、3S技术:遥感(Remote Sensing)、地理信息系统(Geographic Information System)和全球定位系统(Global Positioning System)的结合,可以实现空间数据的快速获取、处理和应用。
以上知识点是遥感原理与应用学科的核心内容,理解和掌握这些知识点有助于更好地应用遥感技术解决实际问题。
同时,随着遥感技术的发展,新的理论和方法不断涌现,需要不断学习和更新知识。
除了上述知识点外,遥感原理与应用还包括许多其他重要内容。
例如,传感器设计和制造涉及的技术和标准,遥感数据的预处理和后处理方法,以及遥感应用中涉及的法规和政策等。
遥感实践总结及心得体会
随着科技的飞速发展,遥感技术在我国得到了广泛的应用。
遥感技术是一种非接触、远距离探测目标的技术,通过分析地面物体反射、辐射的电磁波,获取其信息。
近年来,我国在遥感领域取得了举世瞩目的成果,本人在参与遥感实践过程中,收获颇丰,现将实践总结及心得体会如下:一、实践总结1. 理论学习与实践相结合在遥感实践过程中,我们首先学习了遥感基本理论,包括遥感成像原理、遥感数据类型、遥感图像处理方法等。
通过理论学习,我们对遥感技术有了初步的认识。
随后,我们将所学理论知识应用于实践,通过实地考察、数据处理、图像分析等环节,进一步提高了自己的遥感应用能力。
2. 数据采集与处理在遥感实践过程中,我们学习了如何采集遥感数据,包括卫星遥感数据、航空遥感数据等。
同时,我们还学习了遥感数据处理方法,如图像预处理、图像增强、图像分类等。
通过这些实践,我们掌握了遥感数据采集与处理的基本技能。
3. 遥感图像分析与应用遥感图像分析是遥感实践的核心环节。
我们学习了遥感图像分析方法,如目视解译、特征提取、变化检测等。
通过这些方法,我们可以从遥感图像中提取有价值的信息,如土地利用、植被覆盖、灾害监测等。
在实践过程中,我们结合实际案例,分析了遥感图像在不同领域的应用。
4. 遥感技术应用与发展遥感技术在多个领域都有广泛的应用,如农业、林业、环境、城市规划等。
在实践过程中,我们了解了遥感技术在各个领域的应用现状和发展趋势。
这为我们今后的研究和工作提供了有益的启示。
二、心得体会1. 培养了严谨的科学态度遥感实践过程中,我们需要对数据进行分析、处理,从而得出结论。
这要求我们具备严谨的科学态度,对每一个细节都要认真对待。
通过实践,我明白了科学态度的重要性,并将其融入到今后的学习和工作中。
2. 提高了团队协作能力遥感实践是一个团队合作的环节,需要大家共同努力,才能完成项目。
在实践过程中,我学会了与团队成员沟通、协作,共同解决问题。
这对我今后的工作具有重要意义。
遥感方面知识点总结
遥感方面知识点总结一、遥感的基本原理遥感的基本原理是利用电磁波与地物之间的相互作用来获取地球表面信息。
地球表面上的各种地物会通过反射、辐射和散射等方式与入射的电磁波相互作用,不同的地物对电磁波的反射、辐射和散射特性也不同,因此可以通过遥感平台获取的电磁波数据来识别、分类和分析地球表面上的各种地物。
1. 光学遥感原理光学遥感是利用可见光、红外光等电磁波来获取地球表面信息的一种遥感方法。
在光学遥感中,遥感平台会携带光学传感器,通过接收来自地球表面的太阳辐射和地球辐射,来获取地球表面的图像数据。
光学遥感可以获取高分辨率的地表图像,对地物的特征进行精细化的识别和分析。
2. 雷达遥感原理雷达遥感是利用雷达系统发送微波信号,并通过接收微波信号的回波来获取地球表面信息的一种遥感方法。
在雷达遥感中,遥感平台会携带雷达传感器,通过发射微波信号,并接收地面目标反射回来的信号,来获取地球表面的图像数据。
雷达遥感可以在多云天气下获取地表信息,对地面地形、植被等特征进行有效的识别和分析。
3. 热红外遥感原理热红外遥感是利用地球表面目标的热辐射来获取地球表面信息的一种遥感方法。
在热红外遥感中,遥感平台会携带热红外传感器,通过接收地面目标的热辐射,来获取地球表面的图像数据。
热红外遥感可以通过地面目标的热辐射特征,对地表信息进行识别和分析。
二、遥感数据的处理方法遥感数据的处理方法包括遥感图像的预处理、信息提取和信息分析等步骤,对遥感数据进行有效的处理可以提高地表信息的获取和利用效率。
1. 遥感图像的预处理遥感图像的预处理是指对遥感图像进行校正、配准和辐射校正等处理,以保证遥感图像的质量和准确性。
在遥感图像的预处理中,需要进行大气校正,地形校正,影像配准等处理,以提高遥感图像的信息质量。
2. 遥感信息的提取遥感信息的提取是指通过遥感数据进行地表信息的分类、识别和提取等处理,对地表信息进行量化和分析。
在遥感信息的提取中,需要进行地物分类、植被指数提取、土地利用类型提取等处理,以获取地表信息的定量化数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第(一)章遥感之所以能够根据收集到的电磁波来判断地物目标和自然现象,是因为一切物体,由于其种类、特征和环境条件的不同,而具有完全不同的电磁波反射或发射辐射特征。
电磁波具有不同的频率和波长,因而具有不同的特性。
遥感应用的光谱范围;遥感采用的电磁波段可以从紫外线一直到微波波段;遥感就是根据感兴趣的地物的波谱特性,选择相应的电磁波段,通过传感器探测不同的电磁波谱的发射或反射辐射能量而成像的。
绝对黑体——任何波长的电磁辐射全部吸收光谱吸收率α(λ,T)和光谱反射率ρ(λ,T),二者之和恒等于1。
黑体辐射通量密度与温度、波长的关系满足普朗克定律:黑体辐射的三个特性:1绝对黑体表面上,单位面积发出的总辐射能与绝对温度的四次方成正比,称为斯忒藩-玻耳兹曼公式; (热红外遥感利用此原理来探测和识别目标物)2分谱辐射能量密度的峰值波长随温度的增加向短波方向移动 (黑体的温度越高,它的辐射峰值波长向短波方向位移) [选择遥感器和确定热红外遥感的最佳波段]3每根曲线彼此不相交,故温度T越高所有波长上的波谱辐射通量密度也越大。
(了解 )(2)大气对太阳辐射的吸收• 在紫外、红外与微波区,电磁波衰减的主要原因是大气吸收• 引起大气吸收的主要成分:氧气、臭氧、水、二氧化碳• 大气吸收的影响主要是造成遥感影像暗淡。
• 大气对紫外线有很强的吸收作用,因此,现阶段中很少使用紫外线波段。
大气对太阳辐射的散射:在可见光波段范围内,大气分子吸收的影响很小,主要是分子散射引起的衰减。
散射的方式随电磁波波长与大气分子直径、气溶胶微粒大小之间的相对关系而变, 主要有米氏(Mie)散射、均匀散射、瑞利(Rayleigh)散射等.•介质中不均匀颗粒的直径a与入射波长λ同数量级时,发生米氏散射;• 介质中不均匀颗粒的直径a>> 入射波长λ时,发生均匀散射;• 介质中不均匀颗粒的直径a小于入射波长λ的十分之一时,发生瑞利散射可知:瑞利散射对可见光影响较大,而对红外的影响较小,对微波基本无影响。
P11,解释现象:天空呈蓝色,太阳呈红色,微波穿云透雾;(3)大气窗口:有些波段的电磁辐射通过大气后衰减较小,透过率较高,对遥感十分有利,这些波段通常称为“大气窗口”。
可以用作遥感的大气窗口• 0.30 ~ 1.15μm大气窗口:这个窗口包括全部可见光波段、部分紫外波段和部分近红外波段• 1.3~2.5μm 大气窗口:属于近红外波段。
• 3.5~5.0μm 大气窗口:属于中红外波段。
• 8~14μm 热红外窗口:热红外窗口,透射率为80% 左右,属于地物的发射波谱。
• 1.0mm~1m微波窗口。
我们用发射率ε来表示它们之间的关系:ε= W′/ W。
发射率ε就是实际物体与同温度的黑体在相同条件下辐射功率之比。
基尔霍夫定律:在任一给定温度下,辐射通量密度与吸收率之比对任何材料都是一个常数,并等于该温度下黑体的辐射通量密度。
、1.3 地物的反射辐射• 光谱反射率:–反射率是物体的反射辐射通量与入射辐射通量之比,这个反射率是在理想漫反射体的情况下,整个电磁波长的反射率。
• 反射波谱是某物体的反射率(或反射辐射能)随波长变化的规律,以波长为横坐标,反射率为纵坐标所得的曲线即称为该物体的反射波谱特性曲线。
• 物体的反射波谱限于紫外、可见光和近红外,反射波谱特性曲线:• 不同地物的反射波谱特性(描述,区分)–第二章遥感平台及运行特点•遥感平台:遥感中搭载遥感器工具的统称• 按平台距地面的高度大体上可分为三类:地面平台、航空平台、航天平台。
卫星坐标的测定与解算• 星历表法解算卫星坐标1、卫星在地心直角坐标系中的坐标;2卫星在大地地心直角坐标系中的坐标;3、卫星的地理坐标2.2.3 卫星姿态角• 定义卫星质心为坐标原点,沿轨道前进的切线方向为x轴,垂直轨道面的方向为y轴,垂直xy 平面的为z轴,则卫星的姿态有三种情况:绕x轴旋转的姿态角,称之为滚动;绕y轴旋转的姿态角,称俯仰;绕z轴旋转的姿态角,称航偏。
卫星姿态角的测定; • 姿态测量仪[红外姿态测量仪星相机陀螺仪] • GPS 红外姿态测量仪以一定的角频率,周期地对太空和地球作圆锥扫描,根据热辐射能的相位变化来测定姿态角。
其精度主要取决于地面辐射的稳定性和对地球的非球性进行校正的程度。
2.3.1陆地卫星及轨道特征遥感卫星一般有两种绕地球飞行方式:静止轨道和近极地轨道。
静止轨道可以定点观测,而极地轨道(圆形)则可定期观测。
地球静止轨道:气象卫星、通信卫星和广播卫星常采用这种轨道• 轨道特点–近圆形轨道–近极地轨道–与太阳同步轨道–可重复轨道2.3.2 高分辨率卫星系列• IKONOS (美国)• QuickBird(美国)• Orbvi ew(美国)• Geoeye (美国)2.3.3 高光谱类卫星• 这类卫星的主要特点是采用高分辨率成像光谱仪,波段数为36—256个,光谱分辨率为5 —10nm,地面分辨率为30 —1000m。
• 目前这类卫星只有军方发射的,民用高光谱类卫星还没有,这类卫星主要用于大气、海洋和陆地探测。
SAR类卫星:第三章遥感传感器及其成像原理3.1扫描成像类传感器:• 对物面扫描的成像仪–对地面直接扫描成像(红外扫描仪、多光谱扫描仪、成像光谱仪)• 对像面扫描的成像仪–瞬间在像面上先形成一条线图像或一幅二维影像,然后对影像进行扫描成像(线阵列CCD推扫式成像仪)红外扫描仪的分辨率红外扫描仪的瞬时视场β= d/f; d探测器尺寸(直径或宽度)f:扫描仪的焦距红外扫描仪垂直指向地面的空间分辨率a0=βH=β*d/fβ在仪器设计时已经确定,所以对于一个使用着的传感器,其地面分辨率的变化只与航高有关。
航高大,a0值自然就大,则地面分辨率差。
扫描线的链接:当扫描镜的某一个反射镜面扫完一次后,第二个反射镜面接着重复扫描,飞机的飞行使得两次扫描衔接。
如何让每相邻两条带很好地衔接,可由以下的关系式来确定。
假定旋转棱镜扫描一次的时间为t,一个探测器地面分辨率为a,若要使两条扫描带的重叠度为零,但又不能有空隙,则必须W=a/t; W为飞机的地速Wt > a :将出现扫描漏洞Wt < a :将出现扫描重叠Wt=a=βH W/H=β/t,因为瞬时视场和扫描周期都为常数,所以只要速度w与航高H之比为一常数,就能使扫描线正确衔接,不出现条纹图像。
• 成像光谱仪–以多路、连续并具有高光谱分辨率方式获取图像信息的仪器,通过将传统的空间成像技术与地物光谱技术有机地结合在一起,可以实现对同一地区同时获取几十个到几百个波段的地物反射光谱图像。
{• 基本上属于多光谱扫描仪,其构造与CCD线阵列推扫式扫描仪和多光谱扫描仪相同,区别仅在于通道数多,各通道的波段宽度很窄。
}全景畸变:• 由于地面分辨率随扫描角发生变化,使红外扫描影像产生畸变,这种畸变通常称之为全景畸变,形成原因是像距保持不变,总在焦面上,而物距随扫描角发生变化所致。
几何特点:• 垂直于飞行方向(Y)的比例尺由小变大; • 变形——压缩与拉伸(山体前倾,朝向传感器的山坡影像被压缩,而背向传感器的山坡被拉伸,这与中心投影相反,还会出现不同地物点重影现象 ) • 高差产生的投影差亦与中心投影影像投影差位移的方向相反,位移量也不同。
• 雷达立体图像的构像特点(从不同摄站对同一地区获取的雷达图像也能构成立体影像)第四章 遥感图像数字处理的基础知识光学图像转换为数字图像就是把一个连续的光密度变成一个离散的光密度函数,图像函数f(x,y)在空间坐标和幅度(光密度)上都要离散化,其离散后的每个像元的值用数字表示,整个过程叫做图像数字化。
{• 空间坐标离散化——采样• 幅度(光密度)离散化——量化}遥感软件:ERDAS Imagine补充知识:亮度分辨率(灰度等级):图像亮度层次的多少;用灰度级L = 2k表示,k 可取1,2,3,4,5,6,7,8,11当一幅图像有L = 2k 灰度级时,称该图像是k比特 ( bit ) 图灰度图像:R = G = B彩色图像: R、G、B不一定相等一幅大小为M×N, k比特的图像的总比特数b为M × N × k该图像的总字节数= M × N × k / 8解决办法:建立一个RGB颜色表(调色板或为颜色查找表),表中每一行记录一种颜色的R、G、B值,这样当表示一个像素的颜色时,只需要指出该颜色是在第几行,即该颜色在表中的索引值即可。
第五章遥感图像的几何处理:• 遥感图像的构像方程是指地物点在图像上的图像坐标(x ,y) 和其在地面对应点的大地坐标(X,Y ,Z) 之间的数学关系。
• 在地面坐标系与传感器坐标系之间建立的转换关系称为通用构像方程全景摄影机的构像方程:由一条曝光缝沿旁向扫描而成,等效于中心投影沿旁向倾斜一个扫描角θ后,以中心线成像的情况,此时中心投影坐标为(x,0,-f)推扫式传感器的构像方程:(在垂直成像下,每一条线的成像属于中心投影,在时刻t时像点P的坐标为(0,x,-f)5.1.5 扫描式传感器的构像方程• 任意一个像元的构像,等效于中心投影朝旁向旋转了扫描角θ后,以像幅中心(x=0,y=0)成像的几何关系。
多项式构像方程的缺点• 不能真实地描述影像形成过程中的误差来源和地形起伏引起的变形。
• 应用限于变形小的图像:垂直、小范围、地面平坦。
• 定向精度与地面控制点的精度、分布和数量及实际地形有关。
• 三维多项式是二维的扩展,增加了与地形起伏有关的Z坐标。
• 与具体的传感器无关,数学模型形式简单、计算速度快。
5.1.8 基于有理函数的传感器模型RFM是一种与具体传感器无关的、能够获得与严格成像模型近似一致精度的、形式简单的传感器成像模型。
将地面点大地坐标D与其对应的像点坐标d用比值多项式关联起来。
为了增强参数求解的稳定性,将地面坐标和影像坐标正则化到-1.0和1.0之间。
(P,L,H)为正则化后的地面坐标;(X,Y)为正则化后的像点坐标;• 在RFM中,光学投影系统产生的误差用有理多项式中的一次项来表示,地球曲率、大气折射和镜头畸变等产生的误差能很好地用有理多项式中二次项来模型化,其他一些未知的具有高阶分量的误差如相机振动等,用有理多项式中的三次项来表示。
5.2 遥感图像的几何变形:• 遥感图像的几何变形是指原始图像上各地物的几何位置、形状、尺寸、方位等特征与在参照系统中的表达要求不一致时产生的形变。
6种因素引起几何变形• 传感器成像方式引起的图像变形• 传感器外方位元素变化的影响• dXs、dYs、dZs 、 dκ对整幅图的影响为产生平移、缩放、旋转等线性变化;• dφ、dω——非线性变形• 地形起伏引起的像点位移• 地球曲率引起的图像变形{ • 地球曲率引起的像点位移与地形起伏引起的像点位移类似。