木质素及其衍生物对酶的吸附
木质素综述1
木质素化学及其研究目录1 序言2 木质素的研究状况及应用3 木质素的研究进展3.1木质素降解菌株和降解酶的研究3.2木质素合成的基因调控研究3.3其他酶和小分子物质的研究4 木质素的测定方法研究进展4.1木质素总量的测定4. 2 木质素结构的测定4. 3 木质素分子量的测定5 木质素的合成5.1 木质素单体的生物合成5.2 木质素单体的聚合5.3 木质素的提取6 木质素的降解6.1 氧化降解6.2 还原降解6.3水解及酸解7主要用途7.1木质素磺酸的利用7.2 木质素产品的用途7.3 高分子材料领域8 展望摘要: 通过阅读《木质素化学基础及其应用》和木质素--高分子复合材料发展研究的文献,本文详细介绍了木质素化学的相关知识,包括木质素的化学组成、发展历程、研究现状,还阐述了木质素化学研究的意义。
关键词:木质素,化学基础,复合材料1 序言:木质素是存在于植物纤维中的一种芳香族高分子化合物,其含量可占木材的50%,在植物组织中具有增强细胞壁及黏合纤维的作用。
木质素是由四种醇单体(对香豆醇、松柏醇、5-羟基松柏醇、芥子醇)形成的一种复杂酚类聚合物。
在木本植物中,木质素占25%,是世界上第二位最丰富的有机物(纤维素是第一位)。
木质素单体的分子结构木质素是构成植物细胞壁的成分之一,具有使细胞相连的作用。
木质素是一种含许多负电集团的多环高分子有机物,对土壤中的高价金属离子有较强的亲和力。
因单体不同,可将木质素分为3种类型:由紫丁香基丙烷结构单体聚合而成的紫丁香基木质素(syringyl lignin,S-木质素),由愈创木基丙烷结构单体聚合而成的愈创木基木质素(guajacyl lignin,G-木质素)和由对-羟基苯基丙烷结构单体聚合而成的对-羟基苯基木质素(hydroxy-phenyl lignin,H-木质素);裸子植物主要为愈创木基木质素(G),双子叶植物主要含愈创木基-紫丁香基木质素(G-S),单子叶植物则为愈创木基-紫丁香基-对-羟基苯基木质素(G-S-H)。
木质素的高值化利用研究进展
木质素的高值化利用研究进展————————————————————————————————作者:————————————————————————————————日期:1木质素的高值化利用研究进展XXX化工学院13级化学工程学号:40130100x摘要:目前国内外所开发的木质素产品已经有数百种,但是,由于木质素本身结构非常复杂且木质素的种类繁多,使得开发木质素产品存在一定的盲目性,我国仅约6%的木质素得到利用。
如何有效地利用木质素的结构特性来控制已有木质素产品的性能稳定性、开发更多性能优良的木质素产品以及实现木质素高附加值产品生产的规模化、产业化等,将成为木质素研究的一个重要方面。
文章结合近年来木质素产品的研究及开发,介绍了木质素结构与功能之间的联系,以期能够充分利用木质素的结构特点来改进和生产木质素产品,以得到具有工业应用价值的产品,不仅具有环保意义,更具有经济意义。
关键词:木质素;高值化利用;木质素改性Research Progress of Lignin in High Value UseXXXnChemical Engineering of Chemical Engineering InstituteNO. 401301xxAbstract:Now the development of domestic and foreign products have hundreds of lignin.But be cause the type of lignin structure is very complicated and lignin is various, which makes the deve lopment of lignin products exist blindness,China is only about 6% of the lignin obtained by.How to effectively use the structure characteristics of lignin to control the performance stability of lig nin products,develop of more excellent performance of wood products and the realization of lign in products with high added value production scale, industrialization,will become an important a spect of the study of lignin.This paper based on the research and development of lignin products in recent years,Introduces the relationship of lignin structure and function,In order to make full u se of the characteristics of the structure of lignin to improvement and production of lignin produc ts and get the Industrial application value products.It not only has the significance of environmen tal protection, but also has a greater economic significance.Key words:Lignin; high value use; lignin modification1 前言木质素是一种复杂的、非结晶性的、三维网状多羟基芳香族化合物,它广泛存在于高等植物细胞中,是针叶树类、阔叶树类和草类植物的基本化学组成之一[1-3],也是木材水解工业和制浆造纸工业的主要副产物[4-5]。
木质素与酶的作用机制及其在纤维素酶水解中的影响研究进展
西北林学院学报2021,36(2):142-148J o u r n a l o f N o r t h w e s t F o r e s t r y U n i v e r s i t yd o i :10.3969/j.i s s n .1001-7461.2021.02.21木质素与酶的作用机制及其在纤维素酶水解中的影响研究进展收稿日期:2020-04-01 修回日期:2020-05-29基金项目:国家自然科学基金青年基金 纤维素酶吸附及水解对木质素结构S /G 值的动力学响应 (21704045);江苏省高等学校大学生创新创业训练计划项目(201910298034Y )㊂ 作者简介:黄丽菁,硕士在读㊂研究方向:生物质资源化学与工程㊂E -m a i l :h l j19970314@s i n a .c o m *通信作者:吴文娟,副教授,博士㊂研究方向:生物质资源化学与工程㊂E -m a i l :w e n j u a n w u @n jf u .e d u .c n 黄丽菁,吴彩文,邹春阳,闫雪晴,吴文娟*(南京林业大学江苏省林业资源高效加工利用协同创新中心,江苏南京210037)摘 要:化石燃料的持续开采与使用对环境产生了严重的负面影响,使得开发可再生清洁能源代替传统能源成为必然㊂木质纤维素是一种丰富的可再生资源,可转化为生物乙醇㊁氢气等生物质燃料,被认为是代替化石燃料的理想替代品㊂其中木质纤维原料转化为生物乙醇需经过预处理㊁酶水解以及微生物发酵这3个关键步骤,而纤维素酶水解通常会受到酶㊁水解条件㊁底物等诸多因素的影响㊂针对木质素对纤维素酶水解的影响研究进行综述,大量研究发现,木质素是纤维素酶水解过程中的主要抑制剂㊂木质素既可以吸附纤维素酶,与纤维素酶发生无效吸附;又可以作为物理屏障,阻碍酶对纤维素的生产性吸附㊂尽管通过预处理可以去除大部分的木质素,但依旧无法从根源上缓解木质素对纤维素酶水解的影响,研究木质素的结构单元对酶解效率的影响可能是当前生物乙醇转化中木质素在纤维素酶水解中的研究方向㊂关键词:木质纤维原料;木质素;S /G 比;纤维素酶水解中图分类号:T Q 35 文献标志码:A 文章编号:1001-7461(2021)02-0142-07T h e A c t i o n M e c h a n i s m o f L i g n i n -e n z y m e a n d R e s e a r c h P r o gr e s s o f I t s I n f l u e n c e o n E n z y m a t i c H y d r o l ys i s H U A N G L i -j i n g ,W U C a i -w e n ,Z O U C h u n -y a n g ,Y A N X u e -q i n g ,W U W e n -ju a n *(J i a n g s u C o -I n n o v a t i o n C e n t e r o f E f f i c i e n t P r o c e s s i n g a n d U t i l i z a t i o n o f F o r e s t R e s o u r c e s ,N a n j i n g F o r e s t r y U n i v e r s i t y ,N a n j i n g 210037,J i a n gs u ,C h i n a )A b s t r a c t :T h e c o n t i n u o u s e x p l o i t a t i o n a n d u s e o f f o s s i l f u e l s h a v e a s e r i o u s n e g a t i v e i m pa c t o n t h e e n v i r o n -m e n t ,w h i c h m a k e s i t i n e v i t ab l e t o d e v e l o p r e n e w a b l ec l e a n e n e r g y i n s t e ad o f t r a d i t i o n a le n e r g y .L i gn o c e l l u -l o s e i s a k i n d o f a b u n d a n t r e n e w a b l e r e s o u r c e s ,w h i c h c a n b e c o n v e r t e d i n t o b i o e t h a n o l ,h y d r o ge n a n d o t h e r b i o m a s sf u e l s ,a n d i s c o n s i d e r e d t o b e a n i d e a l a l t e r n a t i v e t o f o s s i l f u e l s .T h e c o n v e r s i o n o f l i gn o c e l l u l o s i c m a t e r i a l s t o b i o e t h a n o l r e q u i r e s t h r e e k e y s t e p s :p r e t r e a t m e n t ,e n z y m a t i c h y d r o l ys i s a n d m i c r o b i a l f e r m e n -t a t i o n .H o w e v e r ,e n z y m a t i c h y d r o l y s i s i s u s u a l l y a f f e c t e d b y m a n y f a c t o r s ,s u c h a s e n z y m e ,h y d r o l y s i s c o n -d i t i o n s ,s u b s t r a t e a n d s o o n .A l a r g e n u m b e r o f s t u d i e s h a v e f o u n d t h a t l i gn i n i s t h e m a i n i n h i b i t o r i n t h e p r o c e s s o f e n z y m a t i c h y d r o l y s i s .L i g n i n c a n n o t o n l y a d s o r b e n z y m e b u t a l s o a d s o r b n o n p r o d u c t i v e l y wi t h e n z y m e .I t c a n a l s o a c t a s a p h y s i c a l b a r r i e r t o p r e v e n t t h e e n z y m e f r o m a b s o r b i n g c e l l u l o s e p r o d u c t i v e l y.A l t h o u g h m o s t o f l i g n i n c o u l d b e r e m o v e d b y p r e t r e a t m e n t ,t h e e f f e c t o f l i g n i n o n e n z y m a t i c h y d r o l ys i s c o u l d n o t b e r e s o l v e d f r o m t h e r o o t .I n t h i s p a p e r ,r e s e a r c h e s o n t h e i n f l u e n c e o f l i g n i n o n e n z y m a t i c h yd r o l -y s i s we r e r e v i e w e d ,a n d t h e p o s s i b l e r e s e a r c h d i r e c t i o n s of l ig n i n i n b i o e th a n o l c o n v e r si o n w e r e p r o po s e d .K e y wo r d s :l i g n o c e l l u l o s e ;l i g n i n ;S /G r a t i o ;e n z y m a t i c h y d r o l y s i s目前,全世界的能源消耗主要来自于煤炭㊁石油㊁天然气等传统化石能源,社会经济的飞速发展使得人们对能源的需求不断增加,这将导致传统的化石燃料日益枯竭,也会带来严重的环境污染问题[1],为了解决能源供求问题,开发可再生的清洁能源已成为必然趋势,这也将是人类社会可持续发展的重大挑战㊂木质纤维原料是目前资源最为丰富㊁分布最为广泛的生物质,主要包括木材(阔叶材和针叶材)㊁能源植物(竹子㊁高粱等)㊁农业生产或林业加工废弃物(如棕榈树干㊁棉茧壳㊁橄榄壳㊁玉米秸秆等)[2],具有可再生㊁储量大㊁价格低等优势,可转化为乙醇㊁氢气㊁生物柴油等生物质燃料[3]㊂其中生物乙醇的生产是通过酶水解纤维原料中的纤维素㊁半纤维素并发酵而成的,这种生产过程取决于3个关键步骤,包括预处理㊁酶水解以及将释放的糖进行发酵[4],而预处理作为其中的关键环节对后续的酶水解有着重要的影响㊂在木质纤维原料的处理过程中,木质素的存在使得木质纤维原料对纤维素酶水解具有顽抗性,导致细胞壁的3个主要成分(木质素㊁纤维素和半纤维素)难以有效的解离,从而导致酶水解效率的降低[5]㊂因此,研究木质素的结构特点有助于降低纤维原料的顽抗性,实现更高效的酶水解,也为开发经济高效的新型预处理技术提供了方法和技术支撑[5-6]㊂目前,关于木质素对酶水解影响的研究有很多,但由于木质素结构的复杂多样性以及预处理对木质素结构的改变使得难以获得统一而确定的木质素对纤维素酶无效吸附的机理[7]㊂本文拟对纤维素酶水解的影响因素进行介绍,并综述木质素与酶之间的作用机理及其在纤维素酶水解中的影响研究进展㊂1木质纤维原料1.1组成与结构木质纤维原料主要含有纤维素㊁半纤维素㊁木质素等,木质纤维原料来源不同,组成含量也不同[8]㊂通常,木质纤维素原料中纤维素㊁半纤维素和木质素的含量分别在30%~60%㊁20%~40%和15%~ 25%[9]㊂纤维素是由葡萄糖组成的多糖聚合物,通过β-1-4糖苷键紧密连接,其聚合度在500~10000㊂由于纤维素分子间的氢键作用,纤维素分为结晶区和无定形区,结晶区氢键排列规则紧密,无定形区氢键排列松散且没有规则㊂分子间的氢键连接是具有不同取向性的,因此产生了不同程度的结晶度㊂结晶度在纤维素的生物降解过程中起着至关重要的作用,一般来说,结晶度越高,纤维素的生物降解就越困难[10]㊂半纤维素是由2种及以上的糖基组成,往往带有不同数量的支链或侧链㊂木糖㊁阿拉伯糖㊁葡萄糖㊁半乳糖和甘露糖等是组成半纤维素的主要糖基,它们根据半纤维素的来源以不同的比例排列㊂针叶材中的半纤维素以己聚糖为主,阔叶材中的半纤维素以戊聚糖为主㊂半纤维素分子量低,具有无定形区,比纤维素更易溶解,也更易受到化学攻击[11]㊂木质素广泛存在于维管植物中,是由苯丙烷单元通过化学键连接而成的芳香族聚合物,作为粘合剂存在于胞间层与微纤丝之间,从而增强了细胞壁的结构[12]㊂构成木质素的结构单元主要有对-羟苯基结构(H)㊁愈创木基结构(G)和紫丁香基结构(S) 3种,但不同来源的木质素结构差异有很大不同㊂这3种结构单元如图1所示㊂图1木质素3种结构单元[13]F i g.1 T h r e e s t r u c t u r a l u n i t s o f l i g n i n[13]一般来说,针叶木木质素含有丰富的G结构单元,阔叶木木质素同时包含G型和S型2种结构单元,而禾草类木质素则由G㊁S㊁H这3种结构单元构成[14]㊂因此根据所含结构单元的不同,木质素可进一步分为G型(针叶木木质素)㊁G-S型(阔叶木木质素)㊁G-S-H型(禾本科木质素)㊁G-H型(应压木木质素)[15]㊂表1为3种结构单元在不同种类植物中的含量[16]㊂表1不同种类植物中的木质素结构单元含量T a b l e1 C o n t e n t o f l i g n i n s t r u c t u r a l u n i t s i n d i f f e r e n tk i n d s o f p l a n t s%结构单元针叶材阔叶材禾草科G单元90~9525~5025~50S单元0~150~7525~50H单元0.5~3.4<0.0110~25 1.2木质素的来源与应用木质素的分离方式一般有2种:1)溶出木质素,木质素降解为可溶性碎片从原料中分离出来;2)保留木质素,纤维素㊁半纤维素降解溶出,木质素作为固体残渣被保留下来[17]㊂根据分离方法的不同,木341第2期黄丽菁等:木质素与酶的作用机制及其在纤维素酶水解中的影响研究进展质素可分为磨木木质素(M i l l e d W o o d L i g n i n, MW L)㊁碱木质素㊁酶解木质素㊁木质素磺酸盐等㊂磨木木质素又称B jök m a n木质素[18]㊂磨木木质素是使用中性溶剂在无酸㊁无热的条件下进行提取㊂此方法的得率较低,但其化学结构未受到严重的破坏,与原木质素具有最相似的结构,经常被用于木质素化学结构的研究㊂碱木质素是烧碱法或硫酸盐法化学制浆的副产物[19],往往含有大量的小分子糖㊁提取物和无机盐等杂质,因此常用碱溶酸析法进行提纯[20]㊂经过提纯改性后的碱木质素可用于复合材料㊁橡胶等领域㊂酶解木质素源自于生物乙醇的生产过程中的酶解残渣,通过有机溶剂或碱溶酸析法分离提取获得㊂它的结构与磨木木质素相似,但得率更高㊂由于酶解木质素未经过高温高压及酸碱的处理,保留了良好的天然结构,含有丰富的酚羟基,可作为在酚醛树脂中苯酚的替代物[21]㊂木质素磺酸盐来源于亚硫酸盐制浆工艺㊂它能够溶解于一定p H的水溶液中,却不溶于大多数溶剂[22]㊂木质素磺酸盐具有良好的分散性和表面活性,可以被用作混凝土外加剂㊁染料分散剂,以及用于工业废水中重金属吸附的乳化剂和螯合剂[23]等㊂2木质纤维原料的预处理木质纤维素结构复杂,纤维素周围被半纤维素和木质素形成的紧密的空间网状结构包裹㊂这种物理屏蔽阻碍了纤维素与外界的接触,也阻碍了纤维素的酶降解㊂为了增大原料的比表面积和提高酶对底物的可及性,改善纤维素的酶解效率,选择适当的预处理方式是必不可少的方法㊂一方面,可以破坏木质素和纤维素㊁半纤维素之间的连接,减少木质纤维素的顽抗性[24-25];另一方面,在一定程度上破坏了纤维素结晶度,增加原料的孔隙度和比表面积,改善了纤维素对酶的可及性[26]㊂目前,常用的木质纤维素预处理的方法有物理预处理,如机械粉碎法[27]㊁微波法[28]等方法;化学预处理,如酸法[29]㊁碱法[30]㊁有机溶剂法[31-32]㊁离子液体[33-34]等;物理化学预处理,如氨纤维爆破预处理[30]㊁蒸汽爆破预处理[35]等;生物预处理,如微生物预处理等[36-38]㊂每种方法都有其优缺点,可根据实际生产情况进行选择㊂3纤维素酶水解的影响因素在木质纤维素原料酶水解中,影响纤维素酶水解的因素有很多,包括纤维素酶和酶水解条件㊁酶的可及性㊁底物对纤维素的包覆等因素㊂纤维素酶是能够将纤维素降解为葡萄糖的酶的总称,分为内切型葡聚糖酶㊁外切型葡聚糖酶和β-葡萄糖苷酶β[39]㊂在一定的纤维素酶浓度范围内,酶解效率会随着纤维素酶浓度的增加而提高㊂T.K i n n a r i n e n等[40]在研究磨碎的废弃硬纸箱的酶解过程中发现纤维素酶的浓度在很大程度上决定着还原糖的产率,但酶的用量也不是越多越好,当浓度达到一定程度时,水解速度的增加会变得缓慢㊂当纤维素酶的浓度适宜时,其催化反应还需要在合适的温度以及p H值范围内进行㊂J o n等[41]在模拟温度㊁酶和生物量负荷对糖产量影响时发现,在较低的温度和较低的酶负荷下纤维素更易转化为葡萄糖㊂通常情况下,纤维素酶水解最适宜的温度在40ħ~60ħ㊂p H值最适宜的范围在4.5~5.5㊂但也有研究表明[42],p H值>5.5会促进木质纤维素的酶解效率㊂底物对纤维素酶水解也有着重要的影响,主要体现在纤维素的结晶度㊁纤维素可及比表面积以及木质素和半纤维素的空间阻碍等方面㊂在水解过程中纤维素酶首先水解纤维素中较易接近的无定形区,有研究表明[43],破坏纤维素的晶体结构可增加其可及度从而加速纤维素的水解㊂酶对纤维素吸附量的大小往往由可及比表面积的大小决定,当底物的孔隙足够大时,通过纤维素酶系统的协同作用,可显著提高纤维素酶水解的效率[30]㊂增加可及比表面积还可以通过去除半纤维素和木质素的方式来增加木质纤维素原料的孔径和可及比表面积,减少酶的非生产性吸附,提高木质纤维原料的酶水解效率[44]㊂3.1木质素—酶相互作用的机制许多研究表明,木质素对木质纤维原料的酶水解有着显著的抑制作用㊂尽管研究者已经对木质素和水解酶之间的相互作用做了大量的工作,但对这些相互作用背后的机制仍然不够清楚㊂目前认为酶水解中木质素的抑制作用主要来源于:1)木质素引起的非生产性吸附;2)木质素的空间结构[45]㊂3.1.1非生产性吸附纤维素酶和木质素之间的非生产性吸附主要与疏水作用[46]㊁静电作用[47]㊁氢键作用[48]有关㊂3.1.1.1疏水作用疏水作用指的是酶结构中的芳香性氨基酸的残基与木质素表面疏水基团的结合㊂纤维素酶中碳水化合物结合域和木质素之间的疏水作用被认为是纤维素酶催化木质素非生产性结合的主要原因㊂除了碳水化合物结合域以外,纤维素酶催化域上的疏水区域也被认为会导致对木质素的吸附[49]㊂K.T.H o d g s o n等[50]测量了木质素和441西北林学院学报36卷纤维素的接触角,发现木质素的接触角大于纤维素的接触角,说明木质素的疏水性高于纤维素,当木质素与纤维素同时存在时,纤维素酶会优先吸附木质素㊂3.1.1.2静电作用虽然疏水作用是主要的驱动力,但静电作用对蛋白质在固体表面的吸附行为也起着重要的作用㊂水相环境中官能团(如木质素的羧基㊁羟基㊁酶的氨基酸残基)的缔合㊁解离会使木质素和酶产生表面电荷,从而引起它们之间的静电相互作用[51-52]㊂在水溶液中,木质素的基团(羟基和羧基)会发生电离使其表面带有负电;而纤维素酶表面有许多暴露在外的氨基酸残基,这是一种两性基团,它所带的电荷性质会随着p H条件的变化而改变[45]㊂例如,当等电点一定时,β-葡萄糖苷酶在p H <5.5时带正电,几乎完全吸附带负电的木质素;而当p H值增加到6.0时,β-葡萄糖苷酶对木质素的吸附能力显著降低㊂但对于外切型葡聚糖酶和内切型葡聚糖酶来说,p H的变化对木质素-酶相互作用的影响并不明显,因为这2种酶的等电点均<5.0,并且在其应用p H值范围5.0~6.0显示出负电荷[53]㊂3.1.1.3氢键作用氢键作用是通过木质素和酶中的羟基发生的,在这些基团中,酚羟基直接负责酶的吸附,而脂肪族和羧基羟基被认为有助于木质素-酶的离子相互作用[54]㊂目前对木质素与纤维素酶之间的氢键结合的研究较少,因此需要进一步研究氢键对木质素-酶相互作用的影响㊂3.1.2空间位阻除了酶的非生产性吸附外,木质素还可以通过空间位阻来抑制纤维素水解㊂在木质纤维原料预处理的过程中,木质素可以迁移到纤维表面,导致整个生物量基质重新分布;也可以通过溶解的木质素重新凝聚形成液滴沉积在纤维素表面,阻碍酶在纤维表面的吸附,进一步抑制纤维素的水解[46]㊂J.K.K o等[55]在高温液态水预处理混合阔叶木的过程中,用电镜扫描观察了在细胞壁表面形成的球形液滴,发现这些液滴主要是疏水性的木质素,它们沉积在纤维素表面阻碍了水解,直观地解释了空间位阻对纤维素酶水解的影响㊂3.2木质素结构单元对纤维素酶水解的影响木质素结构单元的差异,直接影响木质素的分子结构,是木质素大分子结构差异的最主要的因素㊂木质素的组成因素对酶解过程中有着显著影响,被认为是酶水解的障碍,而在组成因素中,S/G比是研究最多的因素之一㊂S/G比之所以能影响酶水解,是因为它会影响木质素交联,进而影响植物细胞壁的三维结构和酶的纤维素可及性㊂许多研究者发现,S/G比与酶对木质素的吸附量呈负相关,但与纤维素水解产量呈正相关㊂例如, M.H.S t u d e r等[56]在对杨树样本研究的过程中发现,较高的S/G比意味着较高的脱木素率,由于高S/G比的木质素中不稳定的β-O-4键所占比例较高,导致它更容易进行预处理㊂因此在这种情况下,木质素更易水解㊂J.K.K o等[53]经过研究发现,G 单元含量高的木质素能吸附更多的纤维素酶,尤其是β-葡萄糖苷酶,木质素对β-葡萄糖苷酶的吸附间接抑制了阔叶木中纤维素的酶解,表明木质素的S/ G比在纤维素酶吸附木质素和生物质水解中的重要性㊂J.E.K i m等[57]研究了在相同反应条件下,草酸和硫酸催化剂对稀酸预处理生物质中木质素结构变化的影响㊂实验中发现,在草酸预处理的生物质中,由于G型木质素的含量较高,导致其对酶解效率有负面的影响㊂在比较酶在马尾松木质素膜与麦草㊁杨木木质素膜上的吸附量时,发现酶在马尾松木质素膜上的吸附量更高㊂而马尾松㊁麦草㊁杨木的S/G 比分别为0㊁0.5㊁1.47,因此这一结果可以证明G单元含量越高,吸附量越大[58]㊂然而,关于S/G比对于纤维素酶水解的影响还存着一些不同的结论㊂一些研究发现,S/G比与未经处理的木质纤维原料的酶水解呈负相关㊂在磨木木质素对纤维素酶的吸附实验中,L.P.T a n等[59]发现经过酸性亚硫酸盐预处理的磨木木质素显示出更高的S/G比以及更高的酶吸附能力㊂在研究桉树3个突变体及相应野生型在离子液体预处理前后对纤维素水解能力的影响时,G.P a p a等[60]发现,高S/G 比木质素会导致葡萄糖产率降低(r=0.97;P< 0.03;n=4),但不影响离子液体预处理后的葡萄糖产率㊂这是由于离子液体预处理的高效性掩盖了S/G比值改变的影响㊂也有一些研究表明,生物原料的水解能力不受S/G比的影响㊂为了研究S/G 比对苜蓿酶促水解的影响,B.S.D i e n等[61]创建了转基因苜蓿,这种苜蓿的S单位含量低于野生型苜蓿,经过实验未发现S/G比对经过稀酸预处理的苜蓿的酶水解有显着影响㊂N.A.T o b i m a t s u等[62]培育出了G㊁S㊁H单元含量较高的木质素,经过实验发现,G㊁S单元的含量对纤维素酶水解的影响几乎为零,而H单元的增加对纤维素酶水解有促进作用,它所产生的葡萄糖几乎是从前的2倍,因此研究者认为,与G和S单元的含量相比,木质素结构中醛基的含量才是酶水解的决定性因素㊂由于H单元在木材中的含量较少,对于H单元对纤维素酶水解的影响的研究较少㊂有数据表明,H单体可能与β-1-4-葡聚糖链而不是半纤维素541第2期黄丽菁等:木质素与酶的作用机制及其在纤维素酶水解中的影响研究进展连接,从而导致小麦和水稻中纤维素结晶度降低,因此H/G对水稻和小麦木质纤维素糖化有积极影响[63]㊂H单元之所以会产生积极作用,可能是因为木质素分子量降低㊁纤维素结晶度由于H单元与葡聚糖链的连接而降低或者是H单元的结合活性高于G㊁S单元[64]㊂F.F.G u o等[65]却在试验中发现木质素中H单元的浓度可能对吸附量没有影响㊂松木木质素和白杨木质素几乎含有相等的H单元,松木木质素的吸附量大于白杨木质素㊂秸秆木质素比松木木质素具有更多的H单元和较弱的亲和力,红麻木质素比白杨木质素和松木木质素具有更多的H单元和较弱的吸附能力,说明H单元数量的增加并没有增加吸附能力㊂秸秆木质素比红麻木质素具有更多的H单元和更大的亲和力,说明H单元数量的增加也没有降低亲和力㊂这些结果表明,H单元的数量可能与吸附能力无关㊂4展望酶水解是利用木质纤维原料生产生物乙醇的重要途径,而木质素通常被认为对木质纤维原料的酶水解有着显著的抑制作用㊂近年来,随着各种技术的综合利用以及新技术的开发,针对木质素对纤维素酶水解的影响的研究越来越多㊂在木质素对酶水解或酶吸附的研究中,由于木质素结构不同的底物,其生物构造㊁化学组分的构成㊁分子结构和超分子聚集态等也各不相同,传统的研究方法通常只能间接推测木质素对酶的吸附及对底物酶水解的影响㊂这也是目前对木质素结构如何影响酶水解存在不同观点的重要原因㊂如何消除非木质素因素的干扰,是解决这一难题的关键所在㊂未来的工作可以考虑制备具有不同单元构成的木质素样品,运用先进的技术,如耗散型石英晶体微分析天平,进行原位㊁实时研究不同结构单元的木质素,以及纤维素复合物在酶吸附和/或酶水解动态行为,在排除其他干扰因素(即除木质素结构不同,其他条件完全相同)的条件下,深刻认识木质素单一因素的影响,构建木质素结构单元与纤维素酶吸附及其对酶水解糖转化的 构-效 关系,为改进现有预处理方法及开发新的高效的预处理方法提供理论依据和技术支持,并有助于提高木质纤维素的酶解效率,实现以木质纤维素为原料进行生物乙醇高效转化的工业化生产㊂参考文献:[1]张海峰,杨军艳,吴建新,等.木质素氧化降解研究进展[J].有机化学,2016,36(6):1266-1286.Z H A N G H F,Y A N G J Y,WU J X,e t a l.R e s e a r c h p r o g r e s s o fl i g n i n o x i d a t i v e d e g r a d a t i o n[J].C h i n e s e J o u r n a l o f O r g a n i cC h e m i s t r y,2016,36(6):1266-1286.(i n C h i n e s e)[2] U F O D I K E C O,E Z E V O,A HM E D M F,e t a l.I n v e s t i g a t i o no f m o l e c u l a r a n d s u p r a m o l e c u l a r a s s e m b l i e s o f c e l l u l o s e a n d l i g n i n o f l i g n o c e l l u l o s i c m a t e r i a l s b y s p e c t r o s c o p y a n d t h e r m a la n a l y s i s[J].I n t e r n a t i o n a l J o u r n a l o f B i o l o g i c a l M a c r o m o l e-c u l e s,2020,146:916-921.[3] L I M F,G U O C Y,L U O B,e t a l.C o m p a r i n g i m p a c t s o f p h y s i-c o c h e m i c a l p r o p e r t i e s a nd h y d r o l y t i c i n h i b i t o r s o ne n z y m a t i ch y d r o l y s i s o f s u g a r c a n e b a g a s s e[J].B i o p r o c e s s&B i o s y s t e m sE n g i n e e r i n g,2020,43(1):111-122.[4] C H I A R E L L O L M.,R AMO S C E A,N E V E S P V,e t a l.P r o-d u c t i o n o f ce l l u l o s i c e t h a n o lf r o m s t e a m-e x p l o d e d E u c a l y p t u su r o g r a n d i s a n d s u g a r c a n e b a g a s s e a t h i g h t o t a l s o l i d s a n d l o we n z y m e l o a d i n g s[J].S u s t a i n a b l e C h e m i c a l P r o c e s s e s,2016,4(1):1-9.[5]文甲龙,陈天影,孙润仓.生物质木质素分离和结构研究方法进展[J].林业工程学报,2017,2(5):76-84.W E N J L,C H E N T Y,S U N R C.R e s e a r c h p r o g r e s s o n s e p a r a t i o na n d s t r u c t u r a l a n a l y s i s o f l i g n i n i n l i g n o c e l l u l o s i cb i o m a s s[J].J o u r-n a l o f F o r e s t r y E n g i n e e r i n g,2017,2(5):76-84.(i n C h i n e s e) [6]朱晨杰,张会岩,肖睿,等.木质纤维素高值化利用的研究进展[J].中国科学:化学,2015,45(5):454-478.Z HU C J,Z HA N G H Y,X I A O R,e t a l.R e s e a r c h p r o g r e s s i nc a t a l y t i c v a l o r i z a t i o n o f l i g n o c e l l u l o s e[J].S c i e n t i a S i n i c a C h i m-i c a,2015,45(5):454-478.(i n C h i n e s e)[7]崔兴凯,陈可,赵雪冰,等.甘蔗渣木质素的结构及其对纤维素酶解的影响[J].过程工程学报,2017,17(5):1002-1010.C U I X K,C H E N K,Z H A O X B,e t a l.S t r u c t u r e s o f s e v e r a ll i g n i n s i s o l a t e d f r o m s u g a r c a n e b a g a s s e a n d t h e i r e f f e c t s o n e n-z y m a t i c h y d r o l y s i s o f c e l l u l o s e[J].T h e C h i n e s e J o u r n a l o f P r o c e s s E n g i n e e r i n g,2017,17(5):1002-1010.(i n C h i n e s e)[8] N U R I K A I,E A S TWO O D D C,B U G G T D H,e t a l.B i o c h e m-i c a l c h a r a c t e r i z a t i o n o f S e r p u l a l a c r y m a n s i r o n-r e d u c t a s e e n-z y m e s i n l i g n o c e l l u l o s e b r e a k d o w n[J].J o u r n a l o f I n d u s t r i a l M i c r o b i o l o g y&B i o t e c h n o l o g y,2020,47(1):145-154. [9] N A N D A S,A Z A R G O H A R R,D A L A I A K,e t a l.A n a s s e s s-m e n t o n t h e s u s t a i n a b i l i t y o f l i g n o c e l l u l o s i c b i o m a s s f o r b i o r e-f i n i n g[J].R e n e w a b l e&S u s t a i n a b l e E n e rg y R e v i e w s,2015,50:925-941.[10] K O U P A I E H E,D A H A D H A S,L A K E H A A B,e t a l.E n z y-m a t i c p r e t r e a t m e n t o f l i g n o c e l l u l o s i c b i o m a s s f o r e n h a n c e d b i-o m e t h a n e p r o d u c t i o n a r e v i e w[J].J o u r n a l o f E n v i r o n-m e n t a l M a n a g e m e n t,2019,233:774-784.[11]S C HU T Y S E R W,R E N D E R S T,V A N D E N B O S C H S,e t a l.C h e m i c a l s f r o m l i g n i n:a n i n t e r p l a y o f l i g n o c e l l u l o s e f r a c t i o n a-t i o n,d e p o l y m e r i s a t i o n,a n d u p g r a d i n g[J].C h e m i c a l S o c i e t yR e v i e w s,2018,47(3):852-908.[12] A G A RWA L A,R A N A M,P A R K J H.A d v a n c e m e n t i n t e c h-n o l o g i e s f o r t h e d e p o l y m e r i z a t i o n o f l i g n i n[J].F u e l P r o c e s s-i n g T e c h n o l o g y,2018,181:115-131.[13]乔悦,甘洪宇,李响,等.木质素降解技术研究进展[J].化工科技,2019,27(4):84-88.Q I A O Y,G A N H Y,L I X,e t a l.R e s e a r c h o n d e g r a d a t i o n o f l i g n i n[J].S c i e n c e&T e c h n o l o g y i n C h e m i c a l I n d u s t r y,2019,641西北林学院学报36卷27(4):84-88.(i n C h i n e s e)[14] G U R A G A I N Y N,H E R R E R A A I,V A D L A N I P V,e t a l.L i g n i n s o f b i o e n e r g y c r o p s:a r e v i e w[J].N a t u r a l P r o d u c tC o mm u n i c a t i o n s,2015,10(1):201-208.[15] P O N N U S AMY V K,D I N H D N,D H A R MA R A J A J,e t a l.Ar e v i e w o n l i g n i n s t r u c t u r e,p r e t r e a t m e n t s,f e r m e n t a t i o n r e a c-t i o n s a n d b i o r e f i n e r y p o t e n t i a l[J].B i o r e s o u r c e T e c h n o l o g y, 2019,271:462-472.[16]于海霞,庄晓伟,潘炘,等.木质素单体结构分析方法及在木材研究中的应用[J].西北林学院学报,2017,32(2):265-270, 320.Y U H X,Z HU A N G X W,P A N X,e t a l.L i g n i n m o n o m e rc o m p o s i t i o n a n a l y s i s m e t h od a n d i t s a p p l i c a t i o n i n w o o d[J].J o u r n a l o f N o r t h w e s t F o r e s t r y U n i v e r s i t y,2017,32(2):265-270+320.(i n C h i n e s e)[17] A Z A D I P,I N D E RW I L D I O R,F A R N O O D R,e t a l.L i q u i df u e l s,h y d r og e n a n d ch e mi c a l s f r o m l i g n i n:a c r i t i c a l r e v i e w[J].R e n e w a b l e a n d S u s t a i n a b l e E n e r g y R e v i e w s,2013,21: 506-523.[18]秦特夫.杉木和 三北 一号杨磨木木质素化学官能团特征的研究[J].林业科学,1999,35(3):69-75.Q I N T F.T h e c h e m i c a l s t r u c t u r e s a n d c h a r a c t e r i s t i c s o f t h eMW L s o f c h i n e s e f i r(c u n n i n g h a m i a l a n c e o l a t a)a n d p o p l a rS a n b e i N O.1(P o p u l u s n i g r aˑP.s i m o n i i)w o o d[J].S c i-e n t i a S i l v a e S i n i c a e,1999,35(3):69-75.(i n C h i n e s e)[19]孙蒙崖,刘娜,傅英娟.木质素在材料中的应用研究进展[J].现代化工,2019,39(2):31-35.S U N M Y,L I U N,F U Y J.R e s e a r c h p r o g r e s s i n a p p l i c a t i o no f l i g n i n i n m a t e r i a l s[J].M o d e r n C h e m i c a l I n d u s t r y,2019,39(2):31-35.(i n C h i n e s e)[20]王欢,杨东杰,钱勇,等.木质素基功能材料的制备与应用研究进展[J].化工进展,2019,38(1):434-448.WA N G H,Y A N G D J,Q I A N Y,e t a l.R e c e n t p r o g r e s s i n t h ep r e p a r a t i o n a n d a p p l i c a t i o n o f l i g n i n-b a s e d f u n c t i o n a l m a t e r i-a l s[J].C h e m i c a l I n d u s t r y a n d E n g i n e e r i n g P r o g r e s s,2019,38(1):434-448.(i n C h i n e s e)[21]王祺铭,海潇涵,徐文彪,等.响应面优化酶解木质素酚化工艺研究[J].林产工业,2019,56(10):27-32.WA N G Q M,H A I X H,X U W B,e t a l.S t u d y o n l i g n i n p h e-n o l y z a t i o n p r o c e s s o f r e s p o n s e s u r f a c e o p t i m i z a t i o n[J].C h i n aF o r e s t P r o d u c t s I n d u s t r y,2019,56(10):27-32.(i n C h i n e s e)[22]石阳,吴思燕,汪翠萍,等.以碳酸氢铵为致孔剂的木质素磺酸铵耐溶剂复合纳滤膜的构筑及性能调控研究[J].膜科学与技术,2019,39(6):87-93.[23]曹一凡,朱利清,金贞福.木质素磺酸盐碱性过氧化氢降解及结构表征[J].东北林业大学学报,2020,48(2):109-114.C A O Y F,Z HU L Q,J I N Z F.A l k a l i n e h y d r o g e n p e r o x i d ed e g r a d a t i o n a n d s t r u c t u r a l c h a r a c t e r i z a t i o n o f l i g n o s u l f o n a t e s[J].J o u r n a l o f N o r t h e a s t F o r e s t r y U n i v e r s i t y,2020,48(2): 109-114.(i n C h i n e s e)[24] G E S B,WU Y J,P E N G W X,e t a l.H i g h-p r e s s u r e C O2h y-d r o t he r m a l p r e t r e a t m e n t of p e a n u t s h e l l s f o r e n z y m a t i c h y-d r o l y s i s c o n ve r s i o n i n t o g l u c o s e[J].C h e m i c a l E n g i n e e r i n gJ o u r n a l,2020,385.d o i:10.1016/j.c e j.2019.123949. [25] HU A N G C,F A N G G G,Y U L X,e t a l.M a x i m i z i n g e n z y m a t-i c h y d r o l y s i s e f f i c i e n c y o f b a m b o o w i t h a m i l d e t h a n o l-a s s i s-t a n t a l k a l i n e p e r o x i d e p r e t r e a t m e n t[J].B i o r e s o u r c e T e c h n o l-o g y,2020,299.d o i:10.1016/j.b i o r t e c h.2019.122568. [26]姜波,曹婷月,谷峰,等.碳酸钠预处理对麦草酶水解及木质素结构的影响[J].南京林业大学学报:自然科学版,2016,40(6):135-140.J I A N G B,C A O Y T,G U F,e t a l.E f f e c t s o f s o d i u m c a r b o n a t ep r e t r e a t m e n t o n e n z y m a t i c h y d r o l y s i s a n d l i g n i n s t r u c t u r e o fw h e a t s t r a w[J].J o u r n a l o f N a n j i n g F o r e s t r y U n i v e r s i t y:N a t-u r a l S c i e n c e s E d i t i o n,2016,40(6):135-140.(i n C h i n e s e) [27]J I G Y,G A O C F,X I A O W H,e t a l.M e c h a n i c a l f r a g m e n t a-t i o n o f c o r n c o b a t d i f f e r e n t p l a n t s c a l e s:i m p a c t a n d m e c h a-n i s m o n m i c r o s t r u c t u r e f e a t u r e s a n d e n z y m a t i c h y d r o l y s i s[J].B i o r e s o u r c e T e c h n o l o g y,2016,205:159-165.[28] K A R O L I N A K,P I O T R R,I WO N A H,e t a l.P r e t r e a t m e n t o fl i g n o c e l l u l o s i c m a t e r i a l s a s s u b s t r a t e s f o r f e r m e n t a t i o np r o c e s s e s[J].M o l e c u l e s(B a s e l,S w i t z e r l a n d),2018,23(11): 2937.[29]MA U R Y A D P,S I N G L A A,N E G I S.A n o v e r v i e w o f k e yp r e t r e a t m e n t p r o c e s s e s f o r b i o l o g i c a l c o n v e r s i o n o f l i g n o c e l l u-l o s i c b i o m a s s t o b i o e t h a n o l[J].3B i o t e c h,2015,5(5):597-609.[30] S U N S N,S U N S L,C A O X F,e t a l.T h e r o l e o f p r e t r e a t-m e n t i n i m p r o v i n g t h e e n z y m a t i c h y d r o l y s i s o f l i g n o c e l l u l o s i cm a t e r i a l s[J].B i o r e s o u r c e T e c h n o l o g y,2016,199:49-58. [31]黎雪,周莎,王晓娇,等.有机溶剂预处理对麦秆厌氧发酵产气的影响[J].农机化研究,2016,38(2):228-234.[32] MA J UM D A R S,G O S WAM I B,C H A K R A B O R T Y A,e t a l.E f f e c t o f p r e t r e a t m e n t w i t h o r g a n i c s o l v e n t o n e n z y m a t i c d i-g e s t i b i l i t y o f c a u l i f l o w e r w a s t e s[J].P r e p a r a t i v e b i o c h e m i s t r y&b i o t e c h n o l o g y,2019,49(10):935-948.[33]K A N D H O L A G,D J I O L E U A,C A R R I E R D J,e t a l.P r e-t r e a t m e n t s f o r e n h a n c e d e n z y m a t i c h y d r o l y s i s o f p i n e w o o d:a r e v i e w[J].B i o e n e r g y R e s e a r c h,2017,10(4):1138-1154.[34]S O U D HAM V P,R A U T D G,A N U GWOM I,e t a l.C o u p l e de n z y m a t i c h y d r o l y s i s a n d e t h a n o lf e r m e n t a t i o n:i o n i c l i q u i dp r e t r e a t m e n t f o r e n h a n c e d y i e l d s[J].B i o t e c h n o l o g y f o r B i o f u-e l s,2015,8:135.[35]王风芹,谢慧,仝银杏,等.蒸汽爆破预处理对玉米芯酶水解的影响[J].太阳能学报,2018,39(6):1675-1680.WA N G F Q,X I E H,T O N G Y X,e t a l.E f f e c t o f s t e a m e x p l o-s i o n p r e t e r a t m e n t o n c o r n c o b e n z y m e t i c h y d r o l y s i s[J].A c t aE n e r g i a e S o l a r i s S i n i c a,2018,39(6):1675-1680.(i n C h i n e s e)[36] S I N D HU R,B I N O D P,P A N D E Y A.B i o l o g i c a l p r e t r e a t m e n to f l i g n o c e l l u l o s i c b i o m a s s a n o v e r v i e w[J].B i o r e s o u r c eT e c h n o l o g y,2016,199:76-82.[37]梁鸿霞,李涛,高道江.小麦秸秆生产生物乙醇的预处理技术研究进展[J].四川师范大学学报:自然科学版,2015,38(6): 918-924.L I A N G H X,L I T,G A O D J.R e s e a r c h p r o g r e s s o f p r e t r e a t-m e n t t e c h n o l o g y f o r b i o e t h a n o l p r o d u c t i o n f r o m w h e a t s t r a w[J].J o u r n a l o f S i c h u a n N o r m a l U n i v e r s i t y:N a t u r a l S c i e n c e, 2015,38(6):918-924.(i n C h i n e s e)[38] F E I X H,J I A W B,WA N G J Q,e t a l.S t u d y o n e n z y m a t i c h y-d r o l y s i sef f i c i e n c y a n d p h y s i c o c h e m i c a l p r o p e r t i e s o f c e l l u l o s e741第2期黄丽菁等:木质素与酶的作用机制及其在纤维素酶水解中的影响研究进展a n d l i g n o c e l l u l o s e a f t e r p r e t r e a t m e n t w i t h e l e c t r o nb e a m i r r a-d i a t i o n[J].I n te r n a t i o n a l J o u r n a l of B i o l og i c a l M a c r o m o l e-c u l e s,2019,145:733-739.[39] Z HU A N G X S,WA N G W,Y U Q,e t a l.L i q u i d h o t w a t e rp r e t r e a t m e n t o f l i g n o c e l l u l o s i c b i o m a s s f o r b i o e t h a n o l p r o d u c-t i o n a c c o m p a n y i n g w i t h h i g h v a l u a b l e p r o d u c t s[J].B i o r e-s o u r c e T e c h n o l o g y,2016,199:68-75.[40] K I N N A R I N E N T,HÄK K I N E N A.I n f l u e n c e o f e n z y m e l o a d-i n g o n e n z y m a t i c h y d r o l y s i s o f c a r d b o a r d w a s t e a n d s i z e d i s-t r i b u t i o n o f t h e r e s u l t i n g f i b e r r e s i d u e[J].B i o r e s o u r c e T e c h-n o l o g y,2014,159:136-142.[41] W E L L S J M,D R I E L A K E,S U R E N D R A K C,e t a l.H o t w a-t e r p r e t r e a t m e n t o f l i g n o c e l l u l o s i c b i o m a s s:M o d e l i n g t h ee f f e c t s o f t e m p e r a t u r e,e n z y m e a n d b i o m a s s l o a d i n g s o n s u g a ry i e l d[J].B i o r e s o u r c e T e c h n o l o g y,2020,300:112-539. [42] L A N T Q,L O U H M,Z HU J Y.E n z y m a t i c s a c c h a r i f i c a t i o no f l i g n o c e l l u l a s e s h o u l d b e c o n d u c t e d a t e l e v a t e d p H5.2-6.2[J].B i o e n e r g y R e s e a r c h,2013,6(2):476-485. [43]陈秋艳,苗庆显,马晓娟,等.纤维素酶提高竹溶解浆反应性能的研究[J].西北林学院学报,2017,32(5):208-212.C H E N Q Y,M I A O Q X,MA X J,e t a l.E n h a n c e m e n t o fb a m b o o k r a f t-b a s e d d i s s o l v i n g p u l p r e ac t i v i t y b y c e l l u l a s et r e a t m e n t[J].J o u r n a l o f N o r t h w e s t F o r e s t r y U n i v e r s i t y, 2017,32(5):208-212.(i n C h i n e s e)[44] MU S S A T T O S I,F E R N A N D E S M,M I L A G R E S A M F,e ta l.E f f e c t o f h e m i c e l l u l o s e a n d l i g n i n o n e n z y m a t i c h y d r o l y s i so f c e l l u l o s e f r o m b r e w e r's s p e n t g r a i n[J].E n z y m e a n d M i c r o-b i a l T ec h n o l o g y,2008,43(2):124-129.[45] J I T E N D R A K S,A N I L K P,MU K U N D A,e t a l.C e l l u l a s ea d s o r p t i o n o n l i g n i n:a r o a db l oc k f o r e c o n o m i c h yd r o l y s i s o fb i o m a s s[J].R e n e w a b l e E n e r g y,2016,98:29-42.[46] L I X,Z H E N G Y.L i g n i n-e n z y m e i n t e r a c t i o n:M e c h a n i s m,m i t-i g a t i o n a p p r o a c h,m o d e l i n g,a n d r e s e a r c h p r o s p e c t s[J].B i o-t e c h n o l o g y A d v a n c e s,2017,35(4):466-489.[47] D O S S A N T O S A C,X I M E N E S E,K I M Y,e t a l.L i g n i n-e n-z y m e i n t e r a c t i o n s i n t h e h y d r o l y s i s o f l i g n o c e l l u l o s i c b i o m a s s[J].T r e n d s i n B i o t e c h n o l o g y,2019,37(5):518-531.[48] L I U H,S U N J L,L E U S Y,e t a l.T o w a r d a f u n d a m e n t a l u n-d e r s t a n d i n g o f c e l l u l a s e-l i g n i n i n t e r a c t i o n s i n t h e w h o l e s l u r r ye n z y m a t i c s a c c h a r if i c a t i o n p r o c e s s[J].B i o f u e l s B i o p r o d u c t s&B i o r e f i n i n g-B i o f p r,2016,10(5):648-663.[49]WA N G Z,JÖN S S O N L J.C o m p a r i s o n o f c a t a l y t i c a l l y n o n-p r o d u c t i v e a d s o r p t i o n o f f u n g a l p r o t e i n s t o l i g n i n s a n d p s e u d o-l i g n i n u s i n g i s o b a r i c m a s s t a g g i n g[J].B i o r e s o u r c e T e c h n o l o-g y,2018,268:393-401.[50] H O D G S O N K T,B E R G J C.T h e e f f e c t o f s u r f a c t a n t s o n w i c k i n gf l o w i n f i b e r n e t w o r k s[J].J o u r n a l o f C o l l o i d a n d I n t e r f a c e S c i-e n c e,1988,121(1):22-31.[51] N A K A G AM E S,C H A N D R A R P,K A D L A J F,e t a l.E n h a n-c i n g t h e e n z y m a t i c h yd r o l y s i s o f l i g n o ce l l u l o s i c b i o m a s s b y i n-c r e a s i n g t h e c a r b o x y l i c a c id c o n te n t of t h e a s s o c i a t e d l ig n i n[J].B i o t e c h n o l B i o e n g,2010,108(3):538-548. [52] N A K A G AM E S,C H A N D R A R P,S A D D L E R J N.T h e e f f e c to f i s o l a t e d l i g n i n s,o b t a i n e d f r o m a r a n g e o f p r e t r e a t e d l i g n o-c e l l u l o s i c s u b s t r a t e s,o n e n z y m a t i c h yd r o l y s i s[J].B i o te c h n o lB i o e n g,2010.105(5):871-879.[53] K O J K,X I M E N E S E,K I M Y,L A D I S C H M R.A d s o r p t i o no f e n z y m e o n t o l i g n i n s o f l i q u i d h o t w a t e r p r e t r e a t e d h a r d-w o o d s[J].B i o t e c h n o l o g y&B i o e n g i n e e r i n g,2015,112(3): 447-456.[54] F R I T Z C,F E R R E R A,S A L A S C,e t a l.I n t e r a c t i o n s b e t w e e nc e l l u l o l y t i c e n z y m e s w i t h n a t i v e,a u t o h yd r o l y s i s,a n d te c h n i c a ll i g n i n s a n d t h e e f f e c t o f a p o l y s o r b a t e a m p h i p h i l e i n r e d u c i n gn o n p r o d u c t i v e b i n d i n g[J].B i o m a c r o m o l e c u l e s,2015,16(12): 3878-3888[55] K O J K,K I M Y,X I M E N E S E,L A D I S C H M R.E f f e c t o f l i q-u i d h o t w a t e r p r e t r e a t m e n t s e v e r i t y o n p r o p e r t i e s o f h a r d-w o o d l i g n i n a n d e n z y m a t i c h y d r o l y s i s o f c e l l u l o s e[J].B i o t e c h-n o l o g y&B i o e n g i n e e r i n g,2015,112(2):252-262.[56]S T U D E R M H,D E MA R T I N I J D,D A V I S M F,e t a l.L i g n i nc o n t e n t i n n a t u r a l p o p u l u s v a r i a n t s a f f e c t s s u g a r r e l e a s e[J].P r o c e e d i n g s o f t h e N a t i o n a l A c a d e m y o f S c i e n c e s o f t h e U n i t-e d S t a t e s of A m e r i c a,2011,108(15):6300-6305.[57] K I M J E,L E E J W.E n z y m e a d s o r p t i o n p r o p e r t i e s o n d i l u t ea c i d p r e t r e a t e db i o m a s s b y l o w v ac u u m-s c a n n i n g e l e c t r o n m i-c r o s c o p y a nd s t r u c t u r a l a n a l y s i s o f l i g n i n[J].B i o re s o u r c eT e c h n o l o g y,2018,262:107-113.[58]曹婷月.利用Q C M研究木质素结构对纤维素酶吸附和酶水解的影响[D].南京:南京林业大学,2018:54[59] T A N L P,S U N W,L I X Z,e t a l.B i s u l f i t e p r e t r e a t m e n t c h a n-g e s t h e s t r u c t u r e a n d p r o p e r t i e s o f o i l p a l m e m p t y f r u i t b u n c ht o i m p r o v e e n z y m a t i c h y d r o l y s i s a n d b i o e t h a n o l p r o d u c t i o n[J].B i o t e c h n o l o g y J o u r n a l,2015,10(6):915-925. [60] P A P A G,V A R A N A S I P,S U N L,e t a l.E x p l o r i n g t h e e f f e c to f d i f f e r e n t p l a n t l i g n i n c o n t e n t a n d c o m p o s i t i o n o n i o n i c l i q-u i d p r e t r e a t m e n t e f f i c i e n c y a n d e n z y m a t i c s a c c h a r i f i c a t i o n o fE u c a l y p t u s g l o b u l u s L.m u t a n t s[J].B i o r e s o u r c e T e c h n o l o-g y,2012,117:352-359.[61] D I E N B S,M I L L E R D J,H E C T O R R E,e t a l.E n h a n c i n g a l-f a l f a c o n v e r s i o n e f f i c i e n c i e s f o r s ug a r r e c o v e r y a n d e th a n o lp r o d u c t i o n b y a l t e r i n g l i g n i n c o m p o s i t i o n[J].B i o r e s o u r c eT e c h n o l o g y,2011,102(11):6479-6486.[62] A N D E R S O N N A,T O B I MA T S U Y K,C I E S I E L S K I P N,e ta l.M a n i p u l a t i o n o f g u a i a c y l a n d s y r i n g y l m o n o m eb i o s y n t h e-s i s i n a n a r a b i d o p s i s c i n n a m y l a l c o h o l d e h y d r o g e n a s e m u t a n t r e s u l t s i n a t y p i c a l l i g n i n b i o s y n t h e s i s a n d m o d i f i e d c e l l w a l l s t r u c t u r e[J].P l a n t C e l l,2015,27(8):2195-2209.[63] WU Z L,Z H A N G M L,WA N G L Q,e t a l.B i o m a s s d i g e s t i-b i l i t y i s p r e d o m i n a n t l y a f f ec t ed b y t h re ef a c t o r s o f w a l l p o l y-m e r f e a t u r e s d i s t i n c t i v e i n w h e a t a c c e s s i o n s a n d r i c e m u t a n t s[J].B i o t e c h n o l o g y f o r B i o f u e l s,2013(6):183-196. [64] L I M,P U Y Q,R A G A U S K A S A J.C u r r e n t u n d e r s t a n d i n g o ft h e c o r r e l a t i o n o f l i g n i n s t r u c t u r e w i t h b i o m a s s r e c a l c i t r a n c e[J].F r o n t i e r s i n C h e m i s t r y,2016(4):45.[65] G U O F F,S H I W J,S U N W,e t a l.D i f f e r e n c e s i n t h e a d s o r p-t i o n o f e n z y m e s o n t o l i g n i n s f r o m d i v e r s e t y p e s o f l i g n o c e l l u-l o s i c b i o m a s s a n d t h e u n d e r l y i n g m e c h a n i s m[J].B i o t e c h n o l o-g y f o r B i o f u e l s,2014(7):38.841西北林学院学报36卷。
木质素生物合成相关酶基因调控的研究进展
分子植物育种(网络版), 2011年, 第9卷, 第1545-1555页 Fenzi Zhiwu Yuzhong (Online), 2011, Vol.9, 1545-1555 http://mpb. 1545研究评述 A Review木质素生物合成相关酶基因调控的研究进展吕淑萍, 倪志勇, 范玲新疆农业科学院核技术生物技术研究所, 乌鲁木齐, 830091 通讯作者: fanling@;作者分子植物育种, 2011年, 第9卷, 第75篇 doi: 10.5376/.2011.09.0075收稿日期:2011年05月03日 接受日期:2011年05月20日 发表日期:2011年06月15日这是一篇采用Creative Commons Attribution License 进行授权的开放取阅论文。
只要对本原作有恰当的引用, 版权所有人允许并同意第三方无条件的使用与传播。
引用格式:吕淑萍等, 2011, 木质素生物合成相关酶基因调控的研究进展, 分子植物育种 V ol.9 No.75 (doi: 10.5376/.2011.09.0075)摘 要 木质素是由3种不同的木质素单体聚合而成的,其含量和单体组成与植物体的许多功能密切相关。
木质素的生物合成首先是通过莽草酸途径在一系列酶的催化作用下转化为芳香族氨基酸,在苯丙氨酸解氨酶PAL 的作用下形成反式肉桂酸,经过羟基化、甲基化等一系列反应形成木质素单体,最后木质素单体聚合形成木质素。
本文根据其反应过程介绍与木质素生物合成中关键酶基因的研究进展。
此外,从木质素特异性启动子以及转录因子的调控等方面介绍了木质素生物合成基因调控的研究趋势。
完整的介绍了木质素生物合成途径及其基因调控的研究进展,并对今后的研究进行了展望。
关键词 木质素; 木质素生物合成; 基因调控Recent Advance in Study of Lignin Biosynthesis Enzymes Gene Regulatory ResearchLv Shuping , Ni Zhiyong , Fan LingInstitute of Nuclear and Biological Technologies, Urumqi, 830091, P.R. China Corresponding author, fanling@; AuthorsAbstract Lignin is a three different monomers lignin aggregate of its content and admixture with plants of the many functionsrelated. The synthesis of lignin begin with shikimic acid, it transform to aromatic amino acid under promotion of a series of enzyme. The aromatic amino acid is formed trans-cinnamic acid by PAL, then, it became lignin monomers after a series of reactions. Finally, lignin monomers aggregate form lignin. The recent advance in study of lignin biosynthesis is involved in this article by course of reaction. In addition, Lignin biosynthesis gene regulatory research would be introduced by xylem-specific promoters, and transcription factors and so on. Finally, The developments of lignin biosyn thesis and genetic regu lation are reviewed and the prospect for further development is also made herein . Keywords Lignin; Lignin biosynthesis; Gene regulation研究背景木质素是地球上数量上仅次于纤维素的有机物,占生物圈有机碳的30%(李金花等, 2007)。
玉米秸秆中不同木质素脱除方法对纤维素酶吸附及酶解效果的比较
玉米秸秆中不同木质素脱除方法对纤维素酶吸附及酶解效果的比较田顺风;程力;顾正彪;洪雁;李兆丰;李才明【摘要】利用不同预处理方法获得的玉米秸秆底物研究木质素脱除对纤维素酶吸附量及酶解效率的影响.相比于其他处理方法,2%(质量分数)NaOH处理的底物具有最高的木质素脱除率(85%),最高的底物可及性[4.7 mg·(g葡聚糖)?1]及酶解效率(18.9%).通过对不同处理获得的底物进行Langmuir吸附等温曲线模拟,获得了最大吸附量(Wmax)与吸附平衡常数(K),且木质纤维素酶水解效率与纤维素酶吸附量具有很好的线性关系(R2>0.8),表明脱除木质素能很好地提高底物可及性与酶解效率.然而,提高NaOH浓度(3%,4%)进一步脱除木质素时,底物可及性与碳水化合物转化为单糖的效率反而明显下降.因此,适当脱除木质素而提高底物对纤维素酶的可及性将有助于获得更有效的酶水解效果.%Experiments were conducted for various pretreated substrates to investigate the impact of lignin content on cellulase adsorption and substrate digestibility. Compared with other treatments, 2% (mass) NaOH pretreated solids with the highest level of lignin removal (85%) exhibited the highest accessibility to cellulase [4.7 mg protein·(gglucan)?1] and enzymatic digestibility (18.9%). The obtained maximum adsorption capacity (Wmax) and equilibrium constant (K) derived from fitting the Langmuir adsorption isotherm for different delignified substrates indicated that the removal of lignin benefited cellulase adsorption. The relationship between cellulase adsorption capacities and enzymatic digestibility for raw and pretreated solids correlated well (R2>0.8), supporting the hypothesis that carbohydrateconversion was primarily dominated by enhancing substrate accessibility owing to lignin removal. Nevertheless, further delignification by NaOH with concentrations of 3% (mass) and 4% (mass) was unfavorable to improving substrate accessibility to cellulase and enhancing carbohydrates conversion to monosaccharide. It appeared that the appropriate delignification to some degree was a significant pretreatment factor to be taken into consideration to achieve more effectively enzymatic digestibility.【期刊名称】《化工学报》【年(卷),期】2016(005)005【总页数】9页(P2084-2092)【关键词】玉米秸秆;生物质;生物能源;纤维素酶吸附;预处理;木质素脱除;酶水解效率【作者】田顺风;程力;顾正彪;洪雁;李兆丰;李才明【作者单位】江南大学食品科学与技术国家重点实验室,江苏无锡 214122;江南大学食品学院,江苏无锡 214122;江南大学食品营养与安全协同创新中心,江苏无锡214122;江南大学食品科学与技术国家重点实验室,江苏无锡 214122;江南大学食品学院,江苏无锡 214122;江南大学食品营养与安全协同创新中心,江苏无锡214122;江南大学食品科学与技术国家重点实验室,江苏无锡 214122;江南大学食品学院,江苏无锡 214122;江南大学食品营养与安全协同创新中心,江苏无锡214122;江南大学食品科学与技术国家重点实验室,江苏无锡 214122;江南大学食品学院,江苏无锡 214122;江南大学食品营养与安全协同创新中心,江苏无锡214122;江南大学食品科学与技术国家重点实验室,江苏无锡 214122;江南大学食品学院,江苏无锡 214122;江南大学食品营养与安全协同创新中心,江苏无锡214122;江南大学食品科学与技术国家重点实验室,江苏无锡 214122;江南大学食品学院,江苏无锡 214122;江南大学食品营养与安全协同创新中心,江苏无锡214122【正文语种】中文【中图分类】TS721.1DOI:10.11949/j.issn.0438-1157.20151570木质纤维素是地球上最丰富的可再生生物能源[1],主要由3种聚合物组成:纤维素、半纤维素和木质素。
木质素对纤维素酶酶解抑制研究进展
木质素对纤维素酶酶解抑制研究进展
安艳霞;刘欣;李占超;赵阳;张剑;李梦琴
【期刊名称】《河南农业大学学报》
【年(卷),期】2024(58)1
【摘要】在木质素对纤维素酶酶解形成的空间位阻、非生产性吸附等的基础上,重点综述了预处理、木质素的分布、相对分子质量、官能团及化学键、改性木质素,以及木质素酚类衍生物等对纤维素酶酶解抑制的影响,探讨了不同类型木质素对降低纤维素酶酶解抑制的作用。
借助现代技术分析手段,采取有效措施以期实现对木质素结构的定向调控,降低木质素对纤维素酶酶解抑制,减少纤维素酶酶解的成本。
最后针对预处理成本、预处理对环境影响等问题及绿色、高效的纤维素酶酶解技术面临的机遇和挑战进行了展望。
【总页数】12页(P23-34)
【作者】安艳霞;刘欣;李占超;赵阳;张剑;李梦琴
【作者单位】河南农业大学食品科学技术学院/农业农村部大宗粮食加工重点实验室
【正文语种】中文
【中图分类】TQ353.6
【相关文献】
1.木质素对纤维素酶水解抑制作用的研究进展与展望
2.玉米秸秆中不同木质素脱除方法对纤维素酶吸附及酶解效果的比较
3.假木质素沉积及对纤维素酶解的影响研
究进展4.假木质素及其对纤维素酶的抑制效应研究进展5.木质素与纤维素酶间相互作用及其抑制纤维素酶水解的研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。
木质素降解酶的产生和酶解机制研究
木质素降解酶的产生和酶解机制研究木质素是植物细胞壁中的一种复杂有机化合物,其主要功能是提供植物机械支撑并保护植物免受外界环境的伤害。
然而,由于木质素的结构复杂且难以降解,使得其对于很多工业过程的效率与效果产生了负面影响。
因此,研究木质素降解酶的产生和酶解机制,成为解决这一问题的重要途径。
木质素降解酶的产生主要来源于微生物和真菌。
通过对这些生物的研究发现,它们能够分泌多种具有木质素降解能力的酶类。
这些酶类包括纤维素酶、木聚糖酶、木质素过氧化物酶等。
其中,纤维素酶和木质素过氧化物酶是木质素降解过程中最关键的酶类。
纤维素酶能够降解纤维素,使其转化为可溶性的木糖和葡萄糖。
而木质素过氧化物酶则能够氧化木质素结构中的苯环羟基,产生自由基反应,从而引发木质素的酶解。
这两类酶的协同作用,能够有效地将木质素分解为较小的分子,进一步促进降解过程。
然而,木质素的结构复杂性使得其降解过程十分困难。
除了上述的降解酶外,还需要一系列辅助酶的参与,包括木质素酶A、木质素酶B等。
这些辅助酶能够进一步打开木质素分子中的环状结构,增强其他酶类的作用效果。
此外,高温和酸碱度等环境条件也会对木质素降解酶的酶解效果产生一定影响。
近年来,随着基因工程和蛋白质工程的不断发展,研究人员通过改良和优化酶基因,成功构建了更高效的木质素降解酶。
这些改良酶不仅能够提高木质素的酶解效率,还能够在极端环境条件下保持稳定性。
这为工业上的木质素降解应用提供了重要的技术支撑。
木质素降解酶的产生和酶解机制研究为解决木质素降解过程中的难题提供了重要的思路和方法。
通过了解木质素降解酶的产生来源和酶解机制,我们可以利用这些信息来设计更高效的降解酶,提高木质素的利用率,减少资源浪费。
此外,对于生物质能的开发利用也具有重要意义。
最后,正是由于对木质素降解酶产生和酶解机制研究的深入探索,木质素作为一种重要的生物质能资源,目前已经得到了广泛的应用。
研究人员不断探索和改良降解酶的同事,也不断深入到具体应用领域中,以更好地适应工业生产的需求。
木质素的结构与应用
第51卷第5期 辽 宁 化 工 Vol.51,No. 5 2022年5月 Liaoning Chemical Industry May,2022基金项目: 山东科技大学2021年度“课程思政”教育改革项目(项目编号:KCSZ202121);山东科技大学2020年度在线课程建设项目 (项目编号:ZXK2020067)。
收稿日期: 2021-10-21木质素的结构与应用江源,张佰庆,李桂江(山东科技大学 化学与生物工程学院,山东 青岛 266590)摘 要:木质素一种含量丰富的天然芳香族聚合物,具有循环再生、价格低廉的优点,可以作为化学高分子材料、高附加值化学品、生物染料等制备原料,但由于天然木质素分子量大、结构复杂等原因不能直接利用,而改性木质素特性优异,极大地拓宽了应用领域。
简要介绍了木质素的基本结构单元及结构单元之间的连接方式,重点阐述了改性对木质素各性能的影响,以及改性后的木质素在分散剂、粘合剂、吸附剂、生理生化、农业、制备小分子产物等方面的应用研究进展,具体分析了应用受限的原因并展望了其应用前景。
关 键 词:木质素;环保;结构;改性;应用中图分类号:O636.2 文献标识码: A 文章编号1004-0935(2022)05-0655-07木质素是一种天然有机高分子材料,其天然储量丰富,同时也是造纸工业中产生的废弃物,其中仅有约5%的木质素被回收利用,大部分被直接焚烧或排入环境中,这样做既浪费资源又造成污染。
随着人类对环境污染和资源匮乏等问题的认知日益提高,木质素的可降解性和可再生性等优良性质引起了越来越多的关注。
因此,从资源利用和环境保护两方面来说,对木质素进行改性,提高其性能并开发其用途具有重要意义。
1 木质素结构木质素主要由C、H、O 等元素组成,其分子结构复杂,有多种结构单体与连接方式,且分子量变化大,采取不同的方法测得的分子量结果各异,致使其结构至今未完全确定。
1.1 木质素的分子量在植物中未经分离的木质素称为原本木质素,其相对分子量可以达到几十万,对任何溶剂溶解性差,对研究造成了困扰,为了分离研究木质素,研究人员采用酸析法[1]、高沸醇溶剂法[2]、有机溶剂 法[3]、离子液体法[4]等不同方法降解或缩合木质素,分离后的木质素相对分子量低的多,由于分离方法不同,分子量一般几千到数万不等。
植物木质素合成途径中的酶促反应研究
植物木质素合成途径中的酶促反应研究植物木质素是一种复杂的聚合物,是植物细胞壁的重要组成部分,其对植物生长、发育和抗逆能力的影响十分重要。
植物木质素主要由三种单体单元组成,分别是过氧化丙烯酸(H2C=CHCOOH)、对羟基苯乙烯(C6H4CH2CH=CH2)和其它杂环化合物,其中对羟基苯乙烯被认为是最为关键的单体。
植物木质素合成途径中的酶促反应是这一过程的重要组成部分,也是研究植物木质素合成机理的重要途径。
植物木质素合成途径中酶促反应的研究主要包括三个方面:酚氧化酶(POD)催化反应、过氧化物酶(POX)催化反应和过氧化物醛化酶(PAO)催化反应。
其中,酚氧化酶是关键催化酶,它能够催化对羟基苯乙烯等底物发生氧化反应,生成具有多种功能的氧化产物,为后续的植物木质素合成提供重要的原料。
同时,过氧化物酶和过氧化物醛化酶也能够促进植物木质素合成途径中的反应,增强对羟基苯乙烯底物的氧化反应能力。
针对植物木质素合成途径中酶促反应的研究,研究人员采用了多种分离纯化、酶特异性检测、基因克隆和表达等手段进行深入探讨。
以酚氧化酶为例,研究人员利用萘醌染色法、双丙烯酰胺酰胺酶检测法、UV吸收光谱和酶活性测定等多种方法,成功地从茄子、西红柿和玉米等植物中分离出酚氧化酶,并对其催化反应进行了深入研究。
结果表明,酚氧化酶催化反应具有多达13种不同类型的反应途径,其中包括两种基础反应途径:羟基自由基迁移反应和氧自由基迁移反应。
同时,酚氧化酶催化反应在光照、温度和pH等环境条件的调控下也会发生变化。
除了酚氧化酶催化反应外,过氧化物酶和过氧化物醛化酶在植物木质素合成途径中也扮演着重要角色。
研究显示,从柳树中分离的一种POX蛋白能够将对羟基苯乙烯底物氧化为过氧化苯乙烯中间体,进而促进植物木质素单体单元的合成。
类似地,PAO也能够将过氧化苯乙烯中间体进一步氧化,促进植物木质素的合成。
这些研究不仅加深了对植物木质素合成途径中酶促反应的理解,还有助于为植物生长发育和环境适应性等方面的相关研究提供有价值的基础理论支持和实验依据。
木质素对纤维素酶的吸附作用研究
纸
学 报
T r a n s a c t i o n s o f Ch i n a P u l p a n d P a p e r
木 质 素 对 纤 维 素 酶 的吸 附 作 用研 究
姚 兰 周晓明 田 彦 杨海 涛
( 1 .湖北工业 大学制浆 造纸工程 学院 ,湖北武汉 ,4 3 0 0 6 8 ;
物对 于纤维素酶的吸附作用强弱顺序为 :银杏木质素 >玉米秸秆木质 素 > 杨木木质 素 > 微 晶纤 维素 ;木质素 主要吸附 的是 纤维素酶 中的内切酶和 口 一 葡萄糖苷酶 ,而对外切酶的吸附较少 。
关键词 :木质素 ;纤维素酶 ;吸附作用 ;最大吸附量
中 图分 类号 :聊 ;T K 6 文 献 标 识 码 :A 文 章编 号 :1 0 0 0 — 6 8 4 2 ( 2 0 1 6 ) 0 4 — 0 0 2 5 - 0 5
B j 0 r k m a n 提 出 的方法精 制磨 木 木 质 素 ( MWL ) 。将
得到的 3 种木质素分别命名为银杏木质素、杨木木质
பைடு நூலகம்素 、玉米秸 秆木 质素 。 I . 2 纤 维素 酶 吸附实 验
采用 p H值为 4 . 8的 H A c — N a A c 缓 冲液配制不同
经济 发展 、 国家 安全 以及环 境保 护等各 方 面 的需
对 比。
求促使各个 国家积极寻找可以替代石油的新能源 。我
国是 世界第 一 大发展 中 国家 ,开发可 以替代 石油 的新
能源 具有重 要 意义 。纤 维 素乙 醇在这一 背景 下应 运 而
1 实
验
生。在纤维素乙醇的生产过程中,如何 降低其生产成 本是 目前亟待解决的难题。数据显示 ,纤维素酶占纤 维素乙醇生产成本 的 1 5 %~ 5 0 %_ l J 。因此 ,如何 降
木质素的研究进展
毕业论文( 2012届 )课题名称:木质素的研究进展专业:生物化工工艺2012年3 月目录摘要 (2)Abstract (3)第一章木质素的结构和分类 (4)1.1 木质素的元素组成及结构 (4)1.1.1 木质素的元素组成 (4)1.1.2 木质素的结构 (4)1.2 木质素的化学特性 (4)1.3 工业木质素 (4)第二章木质素的工业应用领域 (5)2. 1 木质素在化肥领域的应用 (5)2. 2 木质素在高分子材料中的应用 (6)2. 2. 1 在橡胶工业中的应用 (6)2. 2. 2 在塑料工业中的应用 (7)2. 2. 3 在聚氨酯工业中的应用 (7)2. 2. 4 在黏合剂方面的应用 (8)2. 3 木质素吸附剂 (9)2. 4 小结 (11)第三章木质素在生物科技方面的发展 (11)3.1 木质素降解菌株和降解酶的研究 (11)3.2 木质素合成的基因调控研究 (13)3.3 其他酶和小分子物质的研究 (14)3.4 小结 (15)第四章展望与总结 (16)参考文献: (17)致谢 (21)木质素的研究进展摘要 :介绍了木质素的来源、元素组成、化学结构及分类 ,综述了木质素在农业、高分子化学及吸附剂领域的研究现状 ,对木质素应用研究的未来趋势行了分析和论。
人类利用木质素已有几千年的历史 ,真正开始研究木质素则是在 1930年以后 ,而且至今木质素还没有得到很好的利用因此 ,有效利用木质素 ,减少环境污染已成为当前研究的热点和难点问题。
目前 ,对木质素的利用已积累了一些技术和方法 ,但利用率不足 10% ,大部仍以废物形式排出 ,污染环境 ,浪费资源。
随着人们对生态环境问题的日益重视 ,木质素的利用将成为人类“可持续发展战略”的一个重要组成部分 ,并形成环保节能、自然资源的综合利用及闭路循环技术等涉及多个方面的一项系统工程。
对生物法处理木质素进行了简要概述,包括微生物降解、生物法酸析提取木质素以及生物法纯化木质素的效果及其研究进展。
木质素酶水解
木质素酶水解酶是一类生物催化剂,能够加速生物化学反应的进行。
木质素是植物细胞壁中的主要成分之一,具有很高的结晶度和难降解性,因此其分解对于生物质能源的开发利用具有重要意义。
酶水解木质素是指酶能够将木质素分子中的键断裂,使其分解成更简单的化合物。
酶水解木质素的过程可以分为两个关键步骤:首先是酶的识别和结合,然后是酶的催化作用。
具体来说,在反应初期,有充足的无定形纤维素暴露给了纤维素酶,这使得酶能够快速地剪切纤维素链形成更短的糖链。
在反应中期,容易降解的无定形表面越来越少,使得纤维素酶不得不面对相互缠绕的纤维素-半纤维素-木质素的聚合体,为了接触甚至降解这种聚合体中的纤维素,纤维素酶需要首先消化表面的半纤维素。
到了反应末期,可降解的木质纤维素组分越来越少,同时木质素在固体残渣中的比重也越来越大,由于无效吸附的形成,酶进一步失活,最终反应终止。
此外,提高预处理温度和延长预处理时间可以去除更多的半纤维素和木质素,进一步破坏原料复杂的化学结构,从而强化酶水解进程。
例如,蒸汽爆破预处理能去除半纤维素和木质素,提高酶解效果,但需要高温高压条件;碱处理可以有效去除大部分的木质素,但纤维素和半纤维素也有一定程度的降解;生物预处理主要利用微生物降解木质素,提高酶解效率,且在此过程中不会产生抑制剂,但微生物处理时间太长。
请注意,木质素酶水解的具体过程和条件可能会因所使用的酶的类型、木质素的来源和性质、反应条件等因素而有所不同。
此外,尽管酶水解是一种有效的木质素分解方法,但在实际应用中仍面临一些挑战,如酶的成本、稳定性和活性等。
因此,需要进一步研究和改进酶水解技术,以提高其效率和经济效益,从而更好地利用木质素这种重要的生物质资源。
以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询相关研究人员。
木质素的研究进展和在橡胶工业中的应用
木质素的研究进展和在橡胶工业中的应用王筱捷,程贤 (福州大学材料科学与工程学院,福建福州 350002) 摘要:高沸醇(High Boiling Solvents,简写为HBS)木质素是用高沸醇溶剂法从植物原料中提取的木质素,具有纯度高、化学活性强等特点。
本文介绍了高沸醇木质素的制备及其研究进展,并着重阐述了HBS木质素及其衍生物在橡胶工业中的应用情况。
关键词:高沸醇溶剂;高沸醇木质素;1,42丁二醇;橡胶助剂 地球上,除苔藓和菌类外,一切植物都含有木质素。
在自然界中木质素的储量仅次于纤维素,而且每年都以500亿t的速度再生。
制浆造纸工业每年要从植物中分离大约1.4亿t纤维素,同时得到5000万t左右的木质素副产品,由于我国以麦草、稻草、芦苇、甘蔗渣造纸为主,很难进行碱回收,超过95%的木质素仍直接排入江河或浓缩后烧掉,木质素成为造纸废水中的主要污染物,数量之大,占到全国工业废水量的30%,严重的污染了环境,成为我国废水控制的第一对象。
再过几十年或稍长一点时间,石化资源枯竭了,木质素将成为有机化合物(特别是芳香族化合物)的主要来源之一。
无论从综合治理水污染或利用固态废弃物的角度,还是从节省高分子材料等资源方面考虑,都使利用木质素这一天然可再生的废弃资源的研究具有重大的经济价值和深远的社会意义。
高沸醇木质素是利用高沸醇溶剂(HBS)法制备纸浆过程中获得的木质素。
高沸醇溶剂法是纸浆制备的新工艺,具有无污染、零排放、节能等特点,与传统制浆法有本质区别。
高沸醇溶剂法制备纸浆与木质素是一种新型的清洁生产工艺,得到的HBS木质素没有经过碱或亚硫酸盐的蒸煮,较好地保留了化学活性基团,所以它在多种材料的改性方面有广阔的应用前景,不仅可作为橡胶的添加剂、偶联剂,而且在涂料、胶粘剂、混凝土、生物活性物质等材料中都将得到广泛地应用。
1高沸醇木质素的研究状况111高沸醇木质素的制备高沸醇溶剂法制备木质素的工艺原理是在不锈钢高压聚合釜内,以1,42丁二醇水溶液为溶剂,在适量的催化剂并加热的条件下,让植物原料中的纤维素与HBS木质素溶液分离。
木质素
木质素(Lignin)是构成植物细胞壁的成分之一,具有使细胞相连的作用。
木质素是一种含许多负电集团的多环高分子有机物。
木质素完全取材于植物,无任何化学添加剂。
对环境无任何副作用。
木质素是构成植物细胞壁的成分之一,具有使细胞相连的作用。
在植物组织中具有增强细胞壁及黏合纤维的作用。
其组成与性质比较复杂,并具有极强的活性。
不能被动物所消化,在土壤中能转化成腐殖质。
如果简单定义木质素的话,可以认为木质素是对羟基肉桂醇类的酶脱氢聚合物。
它含有一定量的甲氧基,并有某些特性反应。
1838年,法国化学家和植物学家A.Payen用硝酸和碱交替处理木材,并用酒精和乙醚洗涤,在分离出纤维素的同时得到了一种比纤维素含碳量更高的化合物,也就是最初级的木质素。
1857年,F.Schulze仔细分离出这种化合物,并称之为"lignin"。
Lignin是从木材的拉丁文"lignum"衍生而来,中文译为“木质素”,也叫“木素”。
木质素的分子结构因单由于木质素的结构复杂,目前完整的结论还没有最终得出,但对其基本的结构框架众多科研工作者已达成共识。
一般认为木质素是由苯丙烷单元通过醚键和碳碳键连接而成的聚酚类三维网状高分子芳香族化合物,其中醚键约占60.75%,碳键约占25.30%。
在植物体内,苯丙烷单元先组装成三种基本结构一一愈创木基结构、紫丁香基结构和对羟苯基结构。
体不同,可将木质素分为3种类型:由紫丁香基丙烷结构单体聚合而成的紫丁香基木质素(syringyl lignin,S-木质素),由愈创木基丙烷结构单体聚合而成的愈创木基木质素(guajacyl lignin,G-木质素)和由对-羟基苯基丙烷结构单体聚合而成的对-羟基苯基木质素(hydroxy-phenyl lignin,H-木质素);裸子植物主要为愈创木基木质素(G),双子叶植物主要含愈创木基-紫丁香基木质素(G-S),单子叶植物则为愈创木基-紫丁香基-对-羟基苯基木质素(G-S-H)。
木质素及其衍生物对酶的吸附
木质素及其衍生物对酶的吸附*张夏红1,2,程贤甦1,3,丁马太2(1.福州大学材料科学与工程学院,福建福州350002;2.龙岩学院化学与材料工程系,福建龙岩364000;3.闽江学院化学与化学工程系,福建福州350010)摘 要: 研究了高沸醇木质素、高沸醇木质素酚、高沸醇木质素胺和木质素树脂对菠萝蛋白酶和木瓜蛋白酶的吸附性能,结果表明:这几种木质素类吸附剂都可以吸附菠萝蛋白酶和木瓜蛋白酶;经改性的高沸醇木质素胺和高沸醇木质素酚的吸附性能优于高沸醇木质素和木质素树脂,且吸附后的酶还能保持较高的活性,高沸醇木质素衍生物有望成为菠萝蛋白酶和木瓜蛋白酶的浓缩吸附剂或固定化的载体。
关键词: 木质素;吸附剂;木瓜蛋白酶;菠萝蛋白酶;吸附中图分类号: Q814.1文献标识码:A 文章编号:1001-9731(2006)10-1643-031 引 言木质素是一种天然芳香族高分子化合物,广泛存在于种子植物中。
它与纤维素、半纤维素一起,是构成植物骨架的主要成分。
在自然界中,木质素的储量仅次于纤维素,且每年都以500亿吨的速度再生。
木质素作为吸附剂是木质素高值化利用的一个新起点,可用于生化分离、环保、医疗等领域,具有广阔的前景。
木质素及其衍生物可以作为酶吸附剂。
本课题组曾以木材为原料制得可回收利用的木质素酚[1,2],这种木素酚能有效地吸附内毒素、纤维素酶和木瓜蛋白酶等生物活性物质。
最近,本课题组研究了新开发的高沸醇木质素[3~5]及其衍生物(高沸醇木质素胺、高沸醇木质素酚)和木质素树脂对菠萝蛋白酶和木瓜蛋白酶的吸附作用,发现经改性的高沸醇木质素胺和高沸醇木质素酚具有良好的吸附性能,而且酶被吸附后仍具有较高的活性;而木质素树脂虽对酶有一定的吸附量,但吸附后的酶活性很低。
高沸醇木质素及其衍生物有望成为菠萝蛋白酶新型浓缩吸附剂或固定化菠萝蛋白酶的新型载体。
2 实 验2.1 试剂及材料高沸醇木质素(HBS木质素)按文献[3~5]方法自制,木质素磺酸钠(广州造纸厂),菠萝蛋白酶、木瓜蛋白酶(广西南宁庞博生物有限公司提供),酪蛋白(分析纯,天津福晨化学试剂厂),L-酪氨酸(生化试剂,上海化学试剂公司),L-半胱氨酸(生化试剂,上海化学试剂公司),甲醛(37%,分析纯,上海化学试剂总厂),间甲酚(化学纯,上海化学试剂公司),其余试剂均为分析纯。
木质素生物合成代谢中的酶学研究进展
0引言除了纤维素外,木质素是自然界中的第二大聚合物,它不仅对农业、工业、环境有着重要的影响,与人们的生活息息相关,而且对植物体本身而言,都有着重要的功能:一是生物圈中最主要的碳素贮存方式之一;二是作为细胞壁中主要的聚合物之一,使其在加工过程中难于与纤维素分开,直接影响木料的性质;三是为植物提供机械支持使植物不会倒伏;四是降低了饲料作物如苜蓿等的可饲性和能消化性,进而影响畜牧业;另外,木质素及许多相关产物在植物生物的或非生物的抗性中具有许多功能,因此,苯丙烷代谢途径对植物的生存和健康具至关重要的作用[1-2]。
木质素主要是由香豆醇、松柏醇和芥子醇等3种主要的木质醇以不同的化学键连接而成的,这些木质醇是不同程度的羟基化或甲基化苯丙烷衍生物,在木质素分子中分别形成香豆醇残基(H )、松柏醇残基(G )和芥子醇残基(S )等结构单元,这些不同类型的木质醇经过氧化物酶和漆酶等的氧化聚合分别形成大分子的H-型木质素、G-型木质素和S-型木质素[3-4]。
木质素的生物合成虽然未完全清楚,但经过多年的研究,普遍认为大致可分为3个步骤:首先是植物光合作用后的同化产物到芳香氨基苯丙氨酸、酪氨酸和色氨酸等的合成过程,称为莽草酸途径;其次是从苯丙氨酸到羟基肉桂酸(HCA)及其辅酶A 酯类,称为苯丙烷代谢途径;最后是从羟基肉桂酰辅酶A 酯类到合成木质醇及其聚合物的过程,称为木质素合成的特异途径。
现已研究证明,在木质素合成的苯丙烷代谢途径中有很多的酶参与作用,如苯丙氨酸基裂解酶(PAL)、作者简介:冉秀芝,女,1975年出生,重庆市酉阳县人,博士,讲师,主要从事生物化学与分子生物学方面的教学与科研工作。
通信地址:400050重庆市九龙坡区杨家坪兴胜路4号重庆工学院化学与生物工程学院,E-mail:ranxiuzhi2006@ 。
收稿日期:2008-04-20,修回日期:2008-12-16。
木质素生物合成代谢中的酶学研究进展冉秀芝(重庆工学院化学与生物工程学院,重庆400050)摘要:目前认为木质素是由多种简单的苯丙烷及其衍生物经聚合形成的复杂的聚合物,由羟基肉桂醇的衍生物——木质醇氧化聚合而形成的。
植物激素与木质素生物合成途径研究
植物激素与木质素生物合成途径研究植物激素,顾名思义,是指植物内部的一类物质,它们能够影响植物的生长发育,从而调节植物对外界环境的适应性。
植物中的激素种类比较多,常见的有九种,包括赤霉素、生长素、脱落酸、细胞分裂素、脱落素等。
这些植物激素的作用是相互关联的,一个激素的作用会影响另一个激素的合成和作用。
近年来,研究人员们发现,植物激素和木质素生物合成途径息息相关,这对于木材工业发展有着重要的意义。
木质素是一类生物合成物,它们存在于植物细胞壁中,主要是木质素的前体物质。
在木材工业中,木质素是一种较为重要的物质,它是造纸、制药和其他化工品的重要原料。
因此,研究木质素的生物合成途径有着非常重要的意义。
植物激素和木质素的生物合成途径之间虽然不是非常直接的联系,但是它们之间的互动关系是明显的。
植物激素可以促进细胞分裂和细胞分化,这些过程是木质素的生物合成的前提条件,是制造木材的关键步骤。
同时,植物激素还可以影响根系的生长和发育,这样就能够提供足够的营养物质,使木质素的生物合成更加顺利。
在木质素的合成过程中,需要一些酶的参与,这些酶的合成也受植物激素的调控。
因此,研究植物激素与木质素的生物合成途径的关系对于提高木材工业的生产效率和质量具有重要意义。
细胞分裂素和木质素合成途径的关系植物激素中的细胞分裂素可以影响细胞分裂和细胞分化,这个过程对于木质素的生物合成非常重要。
细胞分裂素作为信号分子,能够启动细胞分裂的过程,促进细胞增殖。
在植物中,木质素的生物合成是需要细胞分裂的,因为木质素的生合成是细胞壁的细胞内含部分,细胞壁的发育与细胞分裂密切相关。
而在木材生产过程中,如果没有足够的木质素,木材的质量会受到严重的影响。
因此,植物激素对木质素的生物合成途径的影响是非常重要的。
脱落酸与木质素合成途径的关系脱落酸是一种植物激素,它在植物的生物活动中扮演着重要的角色。
脱落酸可以影响植物的落叶过程,调节植物对外界环境的适应性。
近年来,科学家们发现脱落酸与木质素的生物合成途径有着密切的联系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
木质素及其衍生物对酶的吸附*张夏红1,2,程贤甦1,3,丁马太2(1.福州大学材料科学与工程学院,福建福州350002;2.龙岩学院化学与材料工程系,福建龙岩364000;3.闽江学院化学与化学工程系,福建福州350010)摘 要: 研究了高沸醇木质素、高沸醇木质素酚、高沸醇木质素胺和木质素树脂对菠萝蛋白酶和木瓜蛋白酶的吸附性能,结果表明:这几种木质素类吸附剂都可以吸附菠萝蛋白酶和木瓜蛋白酶;经改性的高沸醇木质素胺和高沸醇木质素酚的吸附性能优于高沸醇木质素和木质素树脂,且吸附后的酶还能保持较高的活性,高沸醇木质素衍生物有望成为菠萝蛋白酶和木瓜蛋白酶的浓缩吸附剂或固定化的载体。
关键词: 木质素;吸附剂;木瓜蛋白酶;菠萝蛋白酶;吸附中图分类号: Q814.1文献标识码:A 文章编号:1001-9731(2006)10-1643-031 引 言木质素是一种天然芳香族高分子化合物,广泛存在于种子植物中。
它与纤维素、半纤维素一起,是构成植物骨架的主要成分。
在自然界中,木质素的储量仅次于纤维素,且每年都以500亿吨的速度再生。
木质素作为吸附剂是木质素高值化利用的一个新起点,可用于生化分离、环保、医疗等领域,具有广阔的前景。
木质素及其衍生物可以作为酶吸附剂。
本课题组曾以木材为原料制得可回收利用的木质素酚[1,2],这种木素酚能有效地吸附内毒素、纤维素酶和木瓜蛋白酶等生物活性物质。
最近,本课题组研究了新开发的高沸醇木质素[3~5]及其衍生物(高沸醇木质素胺、高沸醇木质素酚)和木质素树脂对菠萝蛋白酶和木瓜蛋白酶的吸附作用,发现经改性的高沸醇木质素胺和高沸醇木质素酚具有良好的吸附性能,而且酶被吸附后仍具有较高的活性;而木质素树脂虽对酶有一定的吸附量,但吸附后的酶活性很低。
高沸醇木质素及其衍生物有望成为菠萝蛋白酶新型浓缩吸附剂或固定化菠萝蛋白酶的新型载体。
2 实 验2.1 试剂及材料高沸醇木质素(HBS木质素)按文献[3~5]方法自制,木质素磺酸钠(广州造纸厂),菠萝蛋白酶、木瓜蛋白酶(广西南宁庞博生物有限公司提供),酪蛋白(分析纯,天津福晨化学试剂厂),L-酪氨酸(生化试剂,上海化学试剂公司),L-半胱氨酸(生化试剂,上海化学试剂公司),甲醛(37%,分析纯,上海化学试剂总厂),间甲酚(化学纯,上海化学试剂公司),其余试剂均为分析纯。
2.2 仪 器Spectrum2000FT-IR spectromeper(Perkinelmer公司),Cary50紫外可见分光光度计(VARIAN公司), pH S-3C型精密pH计(上海雷磁仪器厂),H H-6数显恒温水浴锅(金坛市富华仪器有限公司),DF-101B集热式恒温磁力搅拌器(浙江省乐清市乐成电器厂),800型离心沉淀器(上海手术器械厂),NPCa-02氮磷钙测定仪(上海新嘉电子有限公司)。
2.3 实验方法2.3.1 高沸醇木质素胺(H BS木质素胺)的合成见文献[6]。
2.3.2 高沸醇木质素酚(H BS木质素酚)的合成见文献[6]。
2.3.3 木质素树脂的合成20g木质素磺酸钙溶于30ml蒸馏水中,加入10ml 36.3%H2SO4,搅拌30min,静置2d后取上层液体反应。
先升温至60 ,加入3g苯酚,再升温至80 反应10min,加入14g37%甲醛溶液继续反应20min,得到粘稠的反应产物,经干燥后研成细粉过50目标准筛备用。
2.3.4 吸附实验分别准确称取上述各种吸附剂各两份,每份50m g。
一份于25 下加入5m l酶溶液,慢速搅拌一定时间后离心,分别收集上清液,用相应的缓冲液定容至25m l;另一份于25 下加入5ml相应的缓冲液,其余操作如上作为参比。
用Cary50紫外可见分光光度计测定清液中酶的浓度[7]。
2.3.5 酶活力的测定溶液酶活力的测定:参照文献[8]进行。
吸附后的酶活力测定:取适量吸附酶,除加入5ml 酶稀释剂外,其余步骤同溶液酶活力的测定方法。
3 结果与讨论3.1 木质素类吸附剂的合成本实验中所用的H BS木质素是以毛竹为原料[5]1643张夏红等:木质素及其衍生物对酶的吸附*基金项目:福建省教育厅科研基金B类资助项目(JB02058);福州市引进人才特别基金资助项目(200405)收到初稿日期:2006-02-07收到修改稿日期:2006-05-29 通讯作者:程贤甦作者简介:张夏红 (1971-),女,福建龙岩人,在读硕士,师承程贤甦教授,从事高分子材料研究。
以1,4-丁二醇为溶剂制备而得的一种棕褐色物质。
它不溶于水,可溶于碱及乙醇、丙酮等有机溶剂。
由于这样的制备方法是利用醇类溶剂把纤维素与木质素分离的,因而所制得的高沸醇木质素保留更多的酚羟基,具有更高的化学活性[3~5]。
以甲醛为交联剂,使H BS 木质素与二甲胺发生曼尼希反应。
这时,胺甲基被引入到木质素酚羟基的邻位,生成了H BS 木质素胺。
用凯氏定氮法分别测定H BS 木质素胺及H BS 木质素中的氮含量为1.87/0.87,说明确有部分胺甲基已经连接到H BS 木质素的苯环上而生成H BS 木质素胺。
虽然胺甲基引入量并不多,但吸附实验表明它的性质已经发生明显的改变[6]。
在木质素的结构单元中,酚羟基对位支链的 碳原子是一个活性位置,容易与苯酚衍生物发生反应而引入苯酚基团,形成二苯甲烷型分子。
采用室温相分离的方法,由H BS 木质素与间甲酚反应,制得了H BS 木质素酚;采用差异紫外光谱法,分别测定了H BS 木质素酚和H BS 木质素的酚羟基含量为2.31/2.03[6]。
木质素磺酸钙易溶于水,不能直接用作吸附剂,因此用苯酚和甲醛与其反应形成不溶于水的树脂:先用硫酸脱去木质素磺酸钙的钙离子,继使之与甲醛进行交联反应生成木质素树脂,为一棕褐色固体,不溶于水,也难溶于乙醇、丙酮等有机溶剂。
3.2 木质素吸附剂对菠萝蛋白酶的吸附分别以H BS 木质素、H BS 木质素胺、H BS 木质素酚和木质素树脂作吸附剂,考察其对菠萝蛋白酶的吸附能力。
菠萝蛋白酶用pH =7的缓冲液配成C 0=2.7mg/ml 的溶液,在25 时按2.3.4方法进行吸附实验,结果如图1所示。
从图1中可以看出,木质素及其衍生物对菠萝蛋白酶的吸附量的大小依次为:H BS 木质素胺>H BS 木质素酚>H BS 木质素>木质素树脂。
H BS 木质素胺对菠萝蛋白酶的吸附在较短时间达到平衡,而H BS 木质素和H BS 木质素酚对菠萝蛋白酶的吸附在30min后才达到平衡。
图1 吸附时间对菠萝蛋白酶吸附量的影响Fig 1Effect of adsor ption tim e on adso rption capacityo f bro melain3.3 木质素吸附剂对木瓜蛋白酶的吸附分别以H BS 木质素、H BS 木质素胺、H BS 木质素酚和木质素树脂作吸附剂,考察其对木瓜蛋白酶的吸附能力(见图2)。
木瓜蛋白酶用pH =7的缓冲液配成C 0=2.0m g/m l 的溶液,在25 时按2.3.4方法进行吸附实验,结果如图2所示。
从图2中可以看出,木质素及其衍生物对木瓜蛋白酶的吸附量的大小为:H BS 木质素胺的吸附量最大,高沸醇木质素的吸附量最小;吸附时间<30min 时,木质素树脂的吸附量大于H BS 木质素酚,但延长吸附时间之后,H BS 木质素酚的吸附量大于木质素树脂。
图2 吸附时间对木瓜蛋白酶吸附量的影响Fig 2Effect of adso rption time on adsorption capacityof papain从各吸附剂对菠萝蛋白酶和木瓜蛋白酶的吸附情况来看,经改性后的H BS 木质素胺和H BS 木质素酚对酶的吸附量明显大于H BS 木质素,说明引入胺基和酚羟基后的H BS 木质素衍生物对酶的吸附能力有很大的提高。
据报道,菠萝蛋白酶和木瓜蛋白酶每个分子中含有的氨基酸残基分别为286个[9]和212个[10],这些残基中都含有氨基、羧基和羟基等亲水基团。
而H BS 木质素则由醇解而得,保留了许多的酚羟基,经改性的H BS 木质素酚中含有更多的酚羟基,H BS 木质素胺中则同时具有酚羟基和胺基,这两种基团都能与氨基和羧基形成氢键,因此H BS 木质素及其衍生物都能吸附菠萝蛋白酶和木瓜蛋白酶;而超临界法制备的木质素不能吸附酶[1],也说明酚羟基对于酶的吸附是有一定作用的。
而H BS 木质素胺由于同时具有两种能形成氢键的基团,吸附性能就大大提高了。
同时吸附性能还可能与胺甲基和羟基在各自反应中引入的量有关,H BS 木质素胺和H BS 木质素酚与H BS 木质素相比,其胺甲基和羟基的含量分别增加1.87/0.87倍和2.31/2.03倍,其达到吸附平衡的时间也就缩短了。
据报道,酶通常可以非共价键被吸附在固体表面,如以氢键、静电或疏水相互作用进行吸附[9]。
木质素结构中的疏水部分也可能与酶蛋白结构中的疏水基团相连接,因此可以预测木质素及其衍生物对于酶的吸附是一个复杂的过程,可能还包含了氢键吸附和疏水吸附两种形式。
3.4 吸附前后的酶活按2.3.5方法检测菠萝蛋白酶和木瓜蛋白酶在吸附前后的活性变化,结果示于表1及2。
表明菠萝蛋白酶和木瓜蛋白酶被吸附在木质素吸附剂上时都还有活性,活性收率大小的顺序均为:H BS 木质素胺>1644功 能 材 料2006年第10期(37)卷H BS 木质素酚>H BS 木质素>木质素树脂。
菠萝蛋白酶结构中巯基、氨基、色氨酸残基和组氨酸残基是酶催化活性必需基团,而羧基和羟基与酶活性无关。
而木瓜蛋白酶中至少有3个氨基酸残基存在于酶的活性部位,它们是半胱氨酸-25、组氨酸-159和天东氨酸-158,其中半胱氨酸-25的自由巯基对维持酶的活性是至关重要的;当其被氧化成-S -S -或-SO 2H 、-SO 3H ,或者当它与重金属离子结合时,则酶活力被抑制。
表1 吸附前后菠萝蛋白酶酶活性的变化Table 1Bromelain activities before and after adsorption吸附剂H BS 木质素H BS 木质素酚H BS 木质素胺木质素树脂吸附前(U /g ) 5.37 105 5.37 105 5.37 105 5.37 105吸附后(U /g ) 3.12 105 3.81 105 4.59 1050.97 105酶收率(%)58.170.985.518.1表2 吸附前后木瓜蛋白酶酶活性的变化T able 2Papain activities before and after adsorption吸附剂H BS 木质素H BS 木质素酚H BS 木质素胺木质素树脂吸附前(U /g ) 1.83 105 1.83 105 1.83 105 1.83 105吸附后(U /g )0.70 1050.94 105 1.46 1050.35 105酶收率(%)38.151.180.019.1因此,只要在吸附时没有破坏这些保持酶活性的必需基团,酶活性就不会受到影响[6]。