高等数学课后习题答案上海交大版完整版非常详细

合集下载

高等数学课后习题答案

高等数学课后习题答案

高等数学课后习题答案【篇一:上海交大版高等数学课后习题解答】txt>第一章函数1.设f(x)?x2?1,求f(x2)、?f(x)?。

解答:f(x2)?(x2)2?1?x4?1,?f(x)??[x2?1]2?x4?2x2?1。

所属章节:第一章第一节难度:一级aex?be?x2.设f(x)?,求f(x)?f(?x)。

a?baex?be?xae?x?be?(?x)ae?x?bex?解答:f(x)?,f(?x)?, a?ba?ba?baex?be?xae?x?be?(?x)f(x)?f(?x)???ex?e?x。

a?ba?b22所属章节:第一章第一节难度:一级?2x ?1?x?0,1?3.设?(x)??20?x?1,求?(3),?(2),?(0),?(?)。

2?x?1 1?x?3,?1解答:?(3)?2,?(2)?1,?(0)?1,?()?。

2所属章节:第一章第一节难度:一级4.求下列函数的定义域:(1)y?2x11?xy?log;(2),(a?0,a?1); a2x?3x?221?x(3)y?3?2x1;(4)y?arcsin. 5lg(1?x)解答:(1)由x2?3x?2?0解得定义域为???,1??1,2??2,???;(2)由1?x?0,1?x?0解得定义域为??1,1?; 1?x(3)由2?x?0,1?x?0,1?x?1解得定义域为??2,0?(4)由3?x?0,3?2x?1解得定义域为[?1,3]。

5?0,1?;所属章节:第一章第一节难度:一级5.下列各题中,函数f (x)与g (x)是否相同?x(1)f(x)?lgx2, g(x)?2lg;(2)f(x)?x,g(x)(3)f(x)?elnx, g(x)?x.解答:(1)f(x)中的x可为一切实数,g(x)中的x要求大于零,即定义域不同,故函数不同;(2)f(x)将负数对应负数,而g(x)把负数对应正数,对应法则不同,故函数不同;(3)f(x)中的x要求大于零,g(x)中的x可为一切实数,即定义域不同,故函数不同。

高等数学课后习题解答 上海交通大学出版社 第三版 习题10解答

高等数学课后习题解答 上海交通大学出版社 第三版 习题10解答

第10章 曲线积分与曲面积分1.计算下列对弧长的曲线积分:(1) sin d C x y s ⎰,其中C 为3x ty t =⎧⎨=⎩,(0≤t ≤1);(2)22()d Cx y s +⎰Ñ,其中C 为圆周cos sin x a t y a t =⎧⎨=⎩,(0≤t ≤2π); (3) 2d Cy s ⎰,其中C 为摆线(sin )(1cos )x a t t y a t =-⎧⎨=-⎩的第一拱(0≤t ≤2π); (4) d Cy s ⎰,其中C 为抛物线y 2=2x 上由点(0,0)到点(2,2)之间的一段弧; (5) ()d Cx y s +⎰,其中C 为以O (0,0),A (1,0),B (0,1)为顶点的三角形的边界;(6)s ⎰,其中C 为圆周x 2+y 2=ax (a >0);(7) d Cz s ⎰,其中C 为圆锥螺线cos sin x t t y t t z t =⎧⎪=⎨⎪=⎩从t =0到t =1的一段;(8) 2d Cx s ⎰,其中C为圆周2224x y z z ⎧++=⎪⎨=⎪⎩解答:(1)1111sin d 3sin sin cos cos )Cx y s t t tdt t t tdt ===-+⎰⎰⎰(s i n 1c o s 1)=-;(2) 2223()d 2Cx y s a a ππ+==⎰⎰Ñ;(3)22223500d (1cos )16sin 2Cty s a t a dt ππ=-=⎰⎰⎰353025632sin 15a d a πθθ==⎰;(4)3222211d (1)1)33Cy s yy ==+=⎰⎰; (5) C 可以分割为三条直线:0(01)OA y x =≤≤,:0(01)O B xy =≤≤,:1(01)BA y x x =-≤≤()d Cx y s +⎰=()d OAx y s +⎰+()d OBx y s +⎰+()d ABx y s +⎰111(1xdx ydy x x =+++-⎰⎰⎰1=;(6) C 为圆周x 2+y 2=ax (a >0);化为参数方程cos 22sin 2a a x t a y t ⎧=+⎪⎪⎨⎪=⎪⎩,(0≤t ≤2π),2222200coscos 22222a a t ts dt dt a dt a πππ====⎰⎰⎰⎰;(7)1d Cz s =⎰⎰31212011(2)33t ==+=⎰; (8) C可以表示为参数方程[]cos sin ;0,2x y z θθθπ⎧=⎪=∈⎨⎪=⎩2220d cos Cx s πθπ==⎰⎰.所属章节:第十章第一节 难度:一级2.已知半圆形状铁丝cos sin x a ty a t =⎧⎨=⎩(0≤t ≤π)其上每一点的线密度等于该点的纵坐标,求此铁丝的质量解答:20d sin 2Cm y s a a π===⎰⎰所属章节:第十章第一节难度:一级3.已知螺旋线cos sin x a t y a t z bt =⎧⎪=⎨⎪=⎩(b >0)上各点的线密度等于该点到原点的距离的平方,试求t 从0到2π一段弧的质量解答:222222223208()d (ππ)3C m x y z s a b t a b π=++=+=+⎰⎰所属章节:第十章第一节 难度:二级4.求摆线(sin )(1cos )x a t t y a t =-⎧⎨=-⎩的第一拱(0≤t ≤2π)关于Ox 轴的转动惯量(设其上各点的密度与该点到x 轴的距离成正比,比例系数为k )解答:722332d (1cos )(1cos )CI ky s k t t dt ππ==-=-⎰⎰⎰23740102464sin 235t kadt ka π==⎰ 所属章节:第十章第一节 难度:二级5.计算下列对坐标的曲线积分:(1) d d C y x x y +⎰,其中C 为圆弧cos π,(0)sin 4x a t t y a t =⎧≤≤⎨=⎩,依参数t 增加方向绕行;(2) (2)d ()d Ca y x a y y ---⎰,其中C 为摆线(sin )(1cos )x a t t y a t =-⎧⎨=-⎩自原点起的第一拱; (3) d Cx y ⎰,其中C 为x +y =5上由点A (0,5)到点B (5,0)的一直线段;(4)Cxydx ⎰Ñ,其中C 为圆周222()(0)x a y a a -+=>及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行) 解答:(1)()22440d d sin (cos )cos sin cos 22Ca y x x y a td a t a td a t atdt ππ+=+==⎡⎤⎣⎦⎰⎰⎰(2)(2)d ()d Ca y x a y y ---⎰220[(2cos )(sin )(cos )((1cos ))a a a t d at a t a a a t d a t a ππ=-+---+-=⎰(3)525d (5)2Cx y xd x =-=-⎰⎰ (4) C 分成两部分在2122()(0):x a y a a C -+=>在x 轴的上部逆时针方向,2C 是从原点指向(2,0)a ,则1202320π02aCC C a xydx xydx xydx x dx a =+=+⋅=-⎰⎰⎰⎰⎰蜒? 所属章节:第十章第二节 难度:一级6.计算22()d d OAx y x xy y -+⎰,其中O 为坐标原点,点A 的坐标为(1,1):(1) OA 为直线段y =x ; (2) OA 为抛物线段y =x 2; (3) OA 为y =0,x =1的折线段解答:(1)122201()d d 3OA x y x xy y x dx -+==⎰⎰;(2)()122243208()d d ()15OA x y x xy y x x dx x d x ⎡⎤-+=--=⎣⎦⎰⎰; (3) 设点B 的坐标为(1,0),则OA 分为两段1122205()d d 6OAOBBAx y x xy y x dx ydy -+=+=+=⎰⎰⎰⎰⎰. 所属章节:第十章第二节 难度:一级7.计算22d d ABxy x x y +⎰,其中点A 、B 的坐标分别为A (0,0),B (1,1):(1) AB 为直线段y =x ; (2) AB 为抛物线段y =x 2; (3) AB 为y =0,x =1的折线段 解答:(1) 122202d d (2)1ABxy x x y x dx x dx +=+=⎰⎰;(2)1232202d d [2()]1ABxy x x y x dx x d x +=+=⎰⎰;(3) 设点C 的坐标为(1,0),则AB 分为两段1122d d 011ABACCBxy x x y dx dy +=+=+=⎰⎰⎰⎰⎰.所属章节:第十章第二节 难度:一级8.计算下列曲线积分:(1) 222()d 2d d Ly z x yz y x y -+-⎰,其中L 依参数增加方向绕行的曲线段23x t y t z t =⎧⎪=⎨⎪=⎩(0≤t ≤1);(2)d d (1)d Lx x y y x y z +++-⎰,L 为从点A (1,1,1)到点B (2,3,4)的一直线段;解答:(1)1222466401()d 2d d (43)35Ly z x yz y x z t t t t dt -+-=-+-=⎰⎰; (2)此时L 写作参数方程12 1 (01)31x t y t t z t =+⎧⎪=+≤≤⎨⎪=+⎩1d d (1)d (14293)13Lx x y y x y z t t t dt +++-=+++++=⎰⎰.所属章节:第十章第二节 难度:一级9.一力场由沿横轴正方向的常力F 所构成。

高等数学课后习题答案2 上海交大版

高等数学课后习题答案2 上海交大版

第二章 极限与连续1.用“N ε-”定义 来验证下列极限: (1)limn →∞=; (2)323lim212n n n →∞-=+;(3)lim 0n →∞=; (4)lim1n n→∞=;(5)lim 1(0)n a →∞=>; (6)lim 1n →∞=.解答:(1)对任意0ε>(无论它多么小,下同),要使0ε-<,只要24n ε>,故可取24[1]N ε=+。

则对任意0ε>,存在24[1]N ε=+,当n N >时,0ε-<,故由极限定义limn →∞=。

(2)对任意0ε>,要使323212n n ε--<+,只要7142n ε>-,故可取71m ax(,1)42N ε=-。

则对任意0ε>,存在71m ax(,1)42N ε=-,当n N >时,323721242n n n ε--=<++,故由极限定义323lim212n n n →∞-=+。

(3)对任意0ε>ε<=<21n ε>,故可取21[1]N ε=+。

则对任意0ε>,存在21[1]N ε=+,当n N >时,ε-=<<,故由极限定义lim 0n →∞=。

(4)对任意0ε>1ε-<11n-=<,只要1n ε>,故可取1[1]N ε=+。

则对任意0ε>,存在1[1]N ε=+,当n N>时,1111nNε=<<<,故由极限定义lim1n n→∞=。

(5)1a =时显然;1a >时,记1n r =,则(1)nn n a r nr =+>,对任意0ε>,1ε-<,只要1n a r n=-<,即an ε>,故可取[1]aN ε=+,当n N >时,1ε-<,由极限定义lim1,(1)n a →=>;01a <<时,类似证明。

(完整)上海交通大学_2007-2008学年_高等数学(高数)_期末考试_解答

(完整)上海交通大学_2007-2008学年_高等数学(高数)_期末考试_解答

1、解 22()()()0xy xx yy B AC f ab f ab f ab -=-≥,排除A 、B.(,)f x b 在点x a =处取得极小值:(,)0xx f a b ≥,同理:(,)0yy f a b ≥.答案:C2、解 0[()()()]C W F dr yzx t xzy t zz t dt π'''=⋅=-++⎰⎰u r r22200[sin cos ]2t t t t t dt tdt πππ=++==⎰⎰答案:B3、解 22:1(1)S z x y =+≤,方向为下侧,[221]S S S I y y dv dxdy -++Ω∑+=+=--+-⎰⎰⎰⎰⎰⎰⎰⎰⎰Ò32251133πππ=-⋅-⋅=-答案:A4、解1|(1)|nn n n a ∞∞==-=∑∑――A 错11||n n n n n a a ∞∞∞+====≥∑∑∑,发散 ――B 错1111||||n nn n n n n a a +∞∞∞+===-=-≥∑∑∑,发散 ――C 错1111||||n nn n n n n a a +∞∞∞+===+=+=∑∑∑n n ∞∞===≈∑∑,收敛 ――D 对答案:D5、解 (0)(0)(3)()02S S S S ππππ-+-+===答案:D6、解1 2{(,)|cos 2}D r r θθ=≤,2.......Dxy dxdy =⎰⎰解2 ***22***Dxy dxdy dy xy dx +-==⎰⎰⎰⎰07、解()()()222222552323222cc c x xy y ds x y ds x y ds π-+=+=+=⋅=⎰⎰⎰蜒?5π8、2cos x P Qx e y y x∂∂=+=∂∂ 解1 2(2sin )(cos )0x x xy e y dx x e y dy +++= ⇒ 2(2)(sin cos )0x x xydx x dy e ydx e ydy +++= ⇒ 2()(sin )0x d x y d e y += 通解为:2sin x x y e y C +=解2 (,)2(0,0)(2sin )(cos )x y x x u xy e y dx x e y dy =+++⎰220(cos )sin y x x x e y dy x y e y =+=+⎰通解为:2sin x x y e y C +=9、()()div rot F F =∇⋅∇⨯u r u r ()5(2)(3)23xy zx y z x y z x y z yzxz xy∂∂∂∂∂∂∂∂∂∂∂-∂-==++=∂∂∂∂∂∂-010、解1(1)n n n a x ∞=+∑的收敛半径2R =111(1)(1)(1)n n n n n n na x n a x ∞∞-+==⇒+=++∑∑的收敛半径2R =,11(1)n n n n a x ∞+=⇒+∑的收敛半径R =211、32332x x u z e yz e yz x x∂∂=+∂∂ 323232()3x x zyze yz e yz e xy+=+--+ (0,1,1)u x -∂⇒∂121232()333e e--=--=--12、解 12112xy yI dy ye dx =⎰⎰1212()y e e dy =-⎰21(2)2e e =-13、解 1C : 0y =(:15x →),11CC C C +=-⎰⎰⎰Ñ51[(2Dy dxdy xdx =+⋅--⎰⎰⎰512Ddxdy xdx =-⎰⎰⎰12512222π-=⋅⋅-212π=-14、解1(1) xzSD S dS ==⎰⎰⎰⎰(2) yzSD S dS ==⎰⎰⎰⎰ √yzSD S dS ==⎰⎰⎰⎰(yz D :0z =,z y =和1y =所围成的三角形区域)100dy =⎰⎰10==⎰ 解2:(01)C y x =≤≤c c S zds yds ==⎰⎰0=⎰012==⎰z 11Oz15、合一投影法:{}{}{}(cos cos cos ),,cos ,cos ,cos ,,xyD Pdydz Qdzdx Rdxdy P Q R dSP Q R dS P Q R ndxdyαβγαβγ∑∑∑++=++=⋅=±⋅⎰⎰⎰⎰⎰⎰⎰⎰v其中 {}(,),,,1x y z z x y n z z ==--v解1 合一投影法:原式{}{}2223,,22,2,1x y yx y z x y dxdy +≤=--⋅-⎰⎰2222(1)1(622)x y x y z dxdy +-≤=-+⎰⎰222(1)18x y x dxdy +-≤=⎰⎰22222221184()u v u v u dudv u v dudv +≤+≤==+⎰⎰⎰⎰14224ππ=⋅⋅= 解2 Gauss 公式设22:2()z y x y z ∑=+≤,取上侧,则原式SS +∑∑==-⎰⎰⎰⎰⎰⎰Ò()31232dV xdydz ydzdx zdxdy Ω∑=-----⎰⎰⎰⎰⎰22222442z x y yx z zdxdz ydxdy +≤+≤=-+⎰⎰⎰⎰ 22222(1)1()122(1)[4(1)4]2z x y x z dxdz y dxdy -+-≤+≤-=-++-+⎰⎰⎰⎰ 2222112(1)4[1]u v u v v dudv v dudv +≤+≤=-+++⎰⎰⎰⎰22122u v dudv π+≤==⎰⎰16、解 对级数10(1)321n n nn yn +∞=-+∑,1233321n n u n u n ++=⋅→+,13R =,13y =-时,100(1)313()21321n n n n n n n +∞∞==--=++∑∑发散, 13y =时,100(1)31(1)3()21321n n n nn n n n +∞∞==--=++∑∑收敛, 得10(1)321n n nn y n +∞=-+∑的收敛域为:11(,]33-,故原级数的收敛域为:22211,332x x -⎛⎤∈- ⎥+⎝⎦, 即 (][)2,11,2x ∈--⋃.17、解()()()2111(1)11()1913nnn n n nn n n ∞∞==-+-=-++∑∑11111919nnn n n ∞∞==⎛⎫⎛⎫=--- ⎪ ⎪+⎝⎭⎝⎭∑∑ 11911|101n x n x n ∞=-==--+∑()101111111()11x n n n n n n S x x x x dx n x n x ∞∞∞+======++∑∑∑⎰011()[ln(1)]1x x dx x x x x x==----⎰ ()()21113n n n nn ∞=-⇒+∑1111109109(ln )9ln 1091099109S ⎛⎫=---=-+-=- ⎪⎝⎭18、证 (1)22343232,22.2n n a a a a a a -==+<=<假设, 121122,3:2n n n n n n n a a a a n a --+-=+<<∀><则故.(2) 11211222n n n n n a x x x ----<=,故当12x <时,级数 11n n n a x ∞-=∑(绝对)收敛.111212231()n n n n n n S x a a x a xa a x a x ∞∞-++===++=++∑∑111111n n n n n n x a xa x ∞∞+++===+++∑∑211121n n n n n n x x a xx a x ∞∞--===+++∑∑21()[()1]x x S x x S x =+++-211x x=--。

高等数学习题解答(上海交大)习题解答

高等数学习题解答(上海交大)习题解答

第11章 级数1.写出下列级数的前5项:(1) 11(1)3n nn -∞=-∑;(2) 113(21)242n n n ∞=⨯-⨯∑;(3) 21(ln )nn n ∞=∑;(4) 1!n n n n ∞=∑ 解答:(1)23451111133333-+-+-; (2) 1131351357135792242462468246810••••••••••+++++••••••••••;(3) 2345611111(ln 2)(ln 3)(ln 4)(ln 5)(ln 6)+++++; (4)234511212312341234512345••••••••••+++++。

所属章节:第十一章第一节 难度:一级2.写出下列级数的通项:(1) 2341357++++;(2)2-+;(3)2242468x x ++++⨯⨯⨯⨯解答:(1) 21nn -; (2) 1(1)(1)n n n --+;(3)2242n xn•。

所属章节:第十一章第一节 难度:一级3.已知级数的部分和S n ,写出该级数,并求和:(1) 1n n S n+=;(2) 212n n n S -=;解答:(1) 一般项为111121u S +===,111,2,3,1(1)n n n n n u S S n n n n n -+-=-=-==--,故该级数为212(1)n n n∞=--∑,该级数的和为1lim lim 1n n n n S n →∞→∞+==;(2) 一般项为1112u S ==,11121211,2,3,222n n n n n n n n u S S n -----=-=-==,故该级数为112n n ∞=∑,该级数的和为21lim lim 12n n n n n S →∞→∞-== 。

所属章节:第十一章第一节难度:一级4.根据定义求出下列级数的和:(1) 1326n nnn ∞=+∑;(2) 11(2)n n n ∞=+∑;(3) 1(1)(2)(3)n nn n n ∞=+++∑;(4) 1n ∞=∑解答:(1) 111113211332()()1162321123nnn n n n n n ∞∞∞===+=+=+=--∑∑∑; (2) 1111111111113()(1)(2)222324354n n n n nn ∞∞===-=-+-+-+=++∑∑; (3) 111123111111[()]()()2(1)(2)(3)2122322334n n nn n n n n n∞∞===-+-⋅=-++⨯=++++++∑∑; (4)11n n∞∞==-=-∑∑1n ∞==∑1==-所属章节:第十一章第一节难度:一级5.证明下列级数发散: (1)121n nn ∞=+∑;(2) 12nn n ∞=∑;(3) 11nn n n ∞=⎛⎫⎪+⎝⎭∑;(4)111n nnn nn n +∞=⎛⎫+ ⎪⎝⎭∑解答:(1) 由于10212n n u n =→≠+,所以级数121n n n ∞=+∑发散;(2) 由于20nn u n =→+∞≠,所以级数12n n n∞=∑发散;(3) 由于1()01n n n u n e =→≠+,所以级数11nn n n ∞=⎛⎫⎪+⎝⎭∑发散; (4) 由于1111011(1)()(1)n n nn nn n n n nn n u n e n n n ++=≥=→≠+++,所以级数111n nn n n n n +∞=⎛⎫+ ⎪⎝⎭∑发散。

【交大】高等数学习题及详细解答

【交大】高等数学习题及详细解答

1. 利用定积分定义计算由直线y =x +1,直线x =a ,x =b (a<b )及x 轴所围成的图形的面积. 解 因y =x +1在[a,b ]上连续,所以x +1在[a,b ]上可积,从而可特殊地将[a,b ]n 等分,并取,,()()1i i i b a b a b aa i x f a i n n nξξ---=+==++Δ, 于是111()[()1]1()(1)11()[(1)(1)()]2nni i i i ni b a b af x a i n nb a b a a i n n b a n a n b a n ξ===--=++-=-++=-+++-⋅∑∑∑Δ 故面积 2111(1)lim ()()(1)22nbi i an i b a S x x f x b a a b a n ξ→∞=-=+==-+++-∑⎰d Δ 1()(2)2b a a b =-++2. 利用定积分的几何意义求定积分: (1)102d x x ⎰;(2) 0ax ⎰(a >0).解 (1)根据定然积分的几何意义知, 102d x x ⎰表示由直线y =2x ,x =0,x =1及x 轴所围的三角形的面积,而此三角形面积为1,所以12d x x ⎰=1.(2) 根据定积分的几何意义知,0ax ⎰表示由曲线0,y x x a ===及x 轴所围成的14圆的面积,而此14圆面积为214πa ,所以2014πx a =⎰.3. 根据定积分的性质,比较积分值的大小: (1)120d x x ⎰与130d x x ⎰; (2)1e d x x ⎰与1(1)d x x +⎰.解 (1)∵当[0,1]x ∈时,232(1)0x x x x -=-≥,即23x x ≥,又2x3x ,所以11230d d x x x x >⎰⎰.(2)令()1,()1e e x xf x x f x '=--=-,因01x ≤≤,所以()0f x '>, 从而()(0)0f x f ≥=,说明1e xx ≥+,又e x1+x .所以11(1)e d d xx x x >+⎰⎰.4. 估计下列各积分值的范围: (1)421(1)d x x +⎰;(2) arctan d x x ;(3)2e d ax ax --⎰(a >0); (4)22e d xxx -⎰.解 (1)在区间[1,4]上,函数2()1f x x =+是增函数,故在[1,4]上的最大值(4)17M f ==,最小值(1)2m f ==,所以4212(41)(1)17(41)d x x -≤+≤-⎰, 即 4216(1)51d x x ≤+≤⎰.(2)令()arctan f x x x =,则2()arctan 1xf x x x '=++,当x ∈时,()0f x '>,从而()f x在上是增函数,从而f (x )在上的最大值M f ==,最小值πm f ==所以2arctan 93ππππd x x =≤≤= 即2arctan 93ππd x x x ≤≤.(3)令2()e x f x -=,则2()2e x f x x -'=-,令()0f x '=得驻点x =0,又(0)1f =,2()()ea f a f a -=-=,a >0时, 21ea -<,故()f x 在[-a,a ]上的最大值M =1,最小值2ea m -=,所以2222ee d aa x aa x a ---≤≤⎰.(4)令2()e xxf x -=,则2()(21)e xxf x x -'=-,令()0f x '=得驻点12x =,又(0)1,f = 1241(),(2)2e ef f -==,从而()f x 在[0,2]上的最大值2e M =,最小值14e m -=,所以 212242ee d e x x x --≤≤⎰,而2222ed e d x xx x x x --=-⎰⎰,故 21024222e ed ex xx ---≤≤-⎰.5. 设f (x )及g (x )在[a , b ]上连续, 证明:(1)若在[a , b ]上, f (x )≥0, 且0)(=⎰ba dx x f , 则在[a ,b ]上f (x )≡0; (2)若在[a , b ]上, f (x )≥0, 且f (x )≢0, 则0)(>⎰ba dx x f ;(3)若在[a , b ]上, f (x )≤g (x ), 且⎰⎰=b a ba dx x g dx x f )()(, 则在[a ,b ]上f (x )≡g (x ).证明 (1)假如f (x )≢0, 则必有f (x )>0. 根据f (x )在[a , b ]上的连续性, 在[a , b ]上存在一点x 0, 使f (x 0)>0, 且f (x 0)为f (x )在[a , b ]上的最大值.再由连续性, 存在[c , d ]⊂[a , b ], 且x 0∈[c , d ], 使当x ∈[c , d ]时, 2)()(0x f x f >. 于是0)(2)()()()()()(0>-≥≥++=⎰⎰⎰⎰⎰c d x f dx x f dx x f dx x f dx x f dx x f dc bd d c c a b a . 这与条件0)(=⎰ba dx x f 相矛盾. 因此在[a ,b ]上f (x )≡0.(2)证法一 因为f (x )在[a , b ]上连续, 所以在[a , b ]上存在一点x 0, 使f (x 0)>0, 且f (x 0)为f (x )在[a , b ]上的最大值.再由连续性, 存在[c , d ]⊂[a , b ], 且x 0∈[c , d ], 使当x ∈[c , d ]时, 2)()(0x f x f >. 于是⎰⎰>-≥≥badcc d x f dx x f dx x f 0)(2)()()(0. 证法二 因为f (x )≥0, 所以0)(≥⎰ba dx x f . 假如0)(>⎰ba dx x f 不成立. 则只有0)(=⎰ba dx x f , 根据结论(1), f (x )≡0, 矛盾. 因此0)(>⎰ba dx x f .(3)令F (x )=g (x )-f (x ), 则在[a , b ]上F (x )≥0且0)()()]()([)(=-=-=⎰⎰⎰⎰ba b a b a b a dx x f dx x g dx x f x g dx x F ,由结论(1), 在[a , b ]上F (x )≡0, 即f (x )≡g (x ).1. 求下列导数:(1) 20d d x t x ⎰; (2) 53ln 2d e d d x t t t x -⎰;(3) cos 2sin cos()d xxt t '⎡⎤π⎢⎥⎣⎦⎰; (4) 22dsin d d xtt xtπ⎰(x >0). 解220(1)()2d d x t x x'==⎰5353ln 2(2)d e d e d x tx t t x x --=⎰cos cos sin 222sin 00cos sin 220022222(3)cos()cos()cos()cos()cos()cos(cos )(cos )cos(sin )(sin )cos(cos )sin cos(sin )cos cos(sin )sin πd πd πd πd πd πππππx x xx xx t t t t t t t t t tx x x x x x x x x x ''⎡⎤⎡⎤=-⎣⎦⎣⎦''⎡⎤⎡⎤=-⎣⎦⎣⎦''=⋅-⋅=--=-⎰⎰⎰⎰⎰22cos(sin )cos (sin cos )cos(sin )ππx x x x x =-2222sin sin sin (4)cos sin sin cos .ππd d d d d d d d d d xx t t x t t xt x x x t x x x x x x x x x⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭--=-=⎰⎰2. 求下列极限:(1) 02arctan d limxx t t x→⎰; (2) 2030sin 3d lime d x xx tt t t t→-⎰⎰; (3)()22220e d lime d x t xx t t t t→⎰⎰.解 ()002200021arctan arctan arctan 11(1)limlim lim lim 222d d x xx x x x t t t t x x x x x →→→→'⎡⎤--⎣⎦+====-'⎰⎰2220030003300222200sin 3sin 3sin 32(2)lim lim lim 2sin 3sin 3lim lim 663d d e e d e d e e x x x x x x x t xt x xx x t t t t x x x t tt t x x x x-→→→--→→'⎡⎤⋅⎢⎥⎣⎦=='⎡⎤⎣⎦=⋅=⋅⋅=⎰⎰⎰⎰ ()()[]222222222222222200002000022000200022(3)lim lim lim lim 222lim lim lim 2122e d e d e d e e d e e e d e d e d e e e e xxx x t t t x tx x x x x x x t x t x t x x x x x x x t t t t x x t tt t t x x x x →→→→→→→'⎡⎤⋅⎢⎥⎣⎦==='⎡⎤⎣⎦'⎡⎤⎣⎦====+'+⋅⎰⎰⎰⎰⎰⎰⎰ 3. 求由方程e d cos d 0yxt t t t +=⎰⎰所确定的隐函数y =y (x )的导数.解 方程两边对x 求导数得:cos 0e y y x '⋅+=, cos e yxy '∴=-. 又由已知方程有000sin e y xtt +=,即1sin sin 00e y x -+-=即1sin e yx =-,于是有cos cos sin 1e yx xy x '=-=-.4. 当x 为何值时,I (x )=2e d xt t t -⎰有极值?解 2()e x I x x -'=,令()0I x '=得驻点0x =,又22()(12),(0)10e x I x x I -''''=-=>, 所以当x =0时,I (x )有极小值,且极小值为I (0)=0.5. 计算下列定积分:(1)3x ⎰; (2)221d x x x --⎰;(3)()d f x x π⎰,其中,0,2()sin ,2x x f x x x π⎧≤≤⎪⎪=⎨π⎪≤≤π;⎪⎩ (4){}222max 1,d x x -⎰.解433322233222(1)(43)(8333x x ⎛⎫==-=- ⎪⎝⎭⎰21222221101(2)()()()d d d d x x x x x x x x x x x x --=-+-+--⎰⎰⎰⎰012322332101111111116322332x x x x x x -⎛⎫⎛⎫⎛⎫=++=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()22220022(3)()sin 1cos 82ππππππππd d d xf x x x x x x x =+=+=+-⎰⎰⎰(4)由于22221()max{1,}11112x x f x x x x x ⎧-≤<-⎪==-≤<⎨⎪≤≤⎩,于是 21121212223312122111120max{1,}333d d 1d d x x x x x x x x x x -------=++=++=⎰⎰⎰⎰6. 已知f (x )连续,且f (2)=3,求2222()d d lim(2)xt x f u u t x →⎡⎤⎢⎥⎣⎦-⎰⎰.解 []222222222222()()()()limlim lim lim(2)2(2)2(2)(2)x xt t x xx x x x t f u u t f u u f u u f u u x x x x →→→→''⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦===--''-⎡⎤-⎣⎦⎰⎰⎰⎰⎰⎰d d d d d d 22()113lim lim ()(2)2222x x f x f x f →→-==-=-=-.7. 设k 为正整数. 试证下列各题: (1)⎰-=ππ0cos kxdx ;(2)⎰-=ππ0sin kxdx ;(3)⎰-=πππkxdx 2cos ;(4)⎰-=πππkxdx 2sin.证明 (1)⎰--=-=--==ππππππ000)(sin 1sin 1|sin 1cos k kk k kx k kxdx . (2))(cos 1cos 1cos 1sin ππππππ-+-=-=--⎰k kk k x k k kxdx0cos 1cos 1=+-=ππk k k k .(3)πππππππππ=+=+=+=---⎰⎰22|)2sin 21(21)2cos 1(21cos 2kx k x dx kx kxdx . (4)πππππππππ=+=-=-=---⎰⎰22|)2sin 21(21)2cos 1(21sin 2kx k x dx kx kxdx .8. 设k 及l 为正整数, 且k ≠l . 试证下列各题: (1)⎰-=ππ0sin cos lxdx kx ;(2)⎰-=ππ0cos cos lxdx kx ;(3)⎰-=ππ0sin sin lxdx kx .证明 (1)⎰⎰----+=ππππdx x l k x l k lxdx kx ])sin()[sin(21sin cos 0])cos()(21[])cos()(21[=----++-=--ππππx l k l k x l k l k .(2)⎰⎰---++=ππππdx x l k x l k lxdx kx ])cos()[cos(21cos cos 0])sin()(21[])sin()(21[=--+++=--ππππx l k l k x l k l k .(3)⎰⎰----+-=ππππdx x l k x l k lxdx kx ])cos()[cos(21sin sin .0])sin()(21[])sin()(21[=--+++-=--ππππx l k l k x l k l k .9. 设⎩⎨⎧∈∈=]2 ,1[ ]1 ,0[ )(2x x x x x f . 求⎰=x dt t f x 0)()(ϕ在[0, 2]上的表达式, 并讨论ϕ(x )在(0,2)内的连续性.解 当0≤x ≤1时, 302031)()(x dt t dt t f x xx===⎰⎰ϕ; 当1<x ≤2时, 6121212131)()(2211020-=-+=+==⎰⎰⎰x x tdt dt t dt t f x x xϕ.因此 ⎪⎩⎪⎨⎧≤<-≤≤=21 612110 31)(23x x x x x ϕ.因为31)1(=ϕ, 3131lim )(lim 30101==-→-→x x x x ϕ,316121)6121(lim )(lim 20101=-=-=+→+→x x x x ϕ,所以ϕ(x )在x =1处连续, 从而在(0, 2)内连续.10. 设⎪⎩⎪⎨⎧><≤≤=ππx x x x x f 或0 00 sin 21)(. 求⎰=x dt t f x 0)()(ϕ在(-∞, +∞)内的表达式.解 当x <0时, 00)()(0===⎰⎰xxdt dt t f x ϕ;当0≤x ≤π时, 21cos 21|cos 21sin 21)()(00+-=-===⎰⎰x t tdt dt t f x xxxϕ; 当x >π时, πππϕ00|cos 210sin 21)()(t dt tdt dt t f x x x-=+==⎰⎰⎰10cos 21cos 21=+-=π. 因此 ⎪⎩⎪⎨⎧≥≤≤-<=ππϕx x x x x 10 )cos 1(210 0)(.11. 设f (x )在[a , b ]上连续, 在(a , b )内可导且f '(x )≤0, ⎰-=xa dt t f ax x F )(1)(. 证明在(a , b )内有F '(x )≤0.证明 根据积分中值定理, 存在ξ∈[a , x ], 使))(()(a x f dt t f xa-=⎰ξ. 于是有)(1)()(1)(2x f ax dt t f a x x F xa-+--='⎰))(()(1)(12a x f a x x f a x ----=ξ)]()([1ξf x f ax --=. 由f '(x )≤0可知f (x )在[a , b ]上是单调减少的, 而a ≤ξ≤x , 所以f (x )-f (ξ)≤0. 又在(a , b )内,x -a >0, 所以在(a , b )内 0)]()([1)(≤--='ξf x f ax x F .。

上交大 应用数学 课后习题参考答案

上交大 应用数学 课后习题参考答案

参考答案工作任务11.1.6 拓展任务A (基础题)1.(1)不同,定义域不同;(2)相同 ;(3)不同,对应关系不同;(4)相同. 2.(1)[)(]2,00,2 -; (2)[1,2)-; (3)[0,2];(4)(1,)+∞. 3.(1)奇函数; (2)偶函数.4.(1)5,23y u u x ==-;(2),sin u y e u x ==-;(3)sin ,5y u u x ==;(4)2,cos y u u x ==; (5)21y u x ==- ;(6)2arctan ,1y u u x ==+.B (提高题)1.(1),arcsin u y =v u =,21x v -=; (2)1ln , tan , y u u v v x===;(3) cos , 3y u v v x ===.2.51(0)1,(1)0,()44f f f ===-.3.(1)0.15, 050, (0,)7.50.25(50), 50x x y x x <≤⎧=+∞⎨+->⎩;(2)图形略;(3)4.5元,7.5元,13.75元.4., 10, 01t t u t t --≤<⎧=⎨≤≤⎩.5.100.05, 1800v t =+分钟. 6.略1.2.6 拓展任务A (基础题)1.(1)0 ; (2)0 ; (3)+∞ ; (4)0. 2.(1)无穷小; (2)无穷大; (3)无穷大; (4)无穷小.3.(1)3; (2)4 ; (3)23-; (4)4-; (5)27; (6)53 ;(7)1; (8)2e ; (9)13e -; (10)4e -.B (提高题)1.略.2.(1)14 ; (2)56; (3)2 ; (4)1 ; (5)23e -; (6)2e ;(7)e ; (8)e .3. (1)0 ; (2)0.4. rA5. 小狗奔波了3km ;当他们到达学校时小狗在家.自测题11.(1)错; (2)错; (3)错; (4)错; (5)对。

高等数学二答案

高等数学二答案

高等数学二答案【篇一:高等数学答案(全)上海交大2版】设f(x)?x2?1,求f(x2)、?f(x)?。

解答:f(x2)?(x2)2?1?x4?1,?f(x)??[x2?1]2?x4?2x2?1。

所属章节:第一章第一节难度:一级aex?be?x2.设f(x)?,求f(x)?f(?x)。

a?baex?be?xae?x?be?(?x)ae?x?bex解答:f(x)?,f(?x)?, ?a?ba?ba?baex?be?xae?x?be?(?x)f(x)?f(?x)???ex?e?x。

a?ba?b22所属章节:第一章第一节难度:一级?2x ?1?x?0,1?3.设?(x)??20?x?1,求?(3),?(2),?(0),?(?)。

2?x?1 1?x?3,?1解答:?(3)?2,?(2)?1,?(0)?1,?()?。

2所属章节:第一章第一节难度:一级4.求下列函数的定义域:(1)y?2x11?x;(2),(a?0,a?1); y?logax2?3x?221?x13?2x;(4)y?arcsin. lg(1?x)5(3)y?解答:(1)由x2?3x?2?0解得定义域为???,1???1,2???2,???;(2)由1?x?0,1?x?0解得定义域为??1,1?; 1?x(3)由2?x?0,1?x?0,1?x?1解得定义域为??2,0???0,1?;(4)由3?x?0,3?2x?1解得定义域为[?1,3]。

5所属章节:第一章第一节难度:一级5.下列各题中,函数f (x)与g (x)是否相同?(1)f(x)?lgx2, g(x)?2lg; x(2)f(x)?x,g(x)?(3)f(x)?elnx, g(x)?x.解答:(1)f(x)中的x可为一切实数,g(x)中的x要求大于零,即定义域不同,故函数不同;(2)f(x)将负数对应负数,而g(x)把负数对应正数,对应法则不同,故函数不同;(3)f(x)中的x要求大于零,g(x)中的x可为一切实数,即定义域不同,故函数不同。

高等数学习题解答(上海交大)习题解答

高等数学习题解答(上海交大)习题解答

精品文档.第11章级数1.写出下列级数的前5项:(1) 11(1)3n n n -∞=-∑;(2) 113(21)242n n n ∞=⨯-⨯∑L L ;(3) 21(ln )n n n ∞=∑;(4) 1!n n n n∞=∑解答:(1)23451111133333-+-+-L ;(2)1131351357135792242462468246810••••••••••+++++••••••••••L ;(3) 2345611111(ln 2)(ln 3)(ln 4)(ln 5)(ln 6)+++++L ;(4) 234511212312341234512345••••••••••+++++L 。

所属章节:第十一章第一节难度:一级2.写出下列级数的通项:(1) 2341357++++L ;(2) 251017261220-+-+L ;(3) 22242462468x x x x x ++++⨯⨯⨯⨯⨯⨯L 解答:(1) 21n n -;(2) 211(1)(1)n n n n -+-+;(3)2242nx n•L 。

所属章节:第十一章第一节难度:一级3.已知级数的部分和S n ,写出该级数,并求和:(1) 1n n S n +=;(2) 212n n n S -=;解答:(1) 一般项为111121u S +===,111,2,3,1(1)n n n n n u S S n nn n n -+-=-=-==--L ,故该级数为212(1)n n n∞=--∑,该级数的和为1lim lim 1n n n n S n →∞→∞+==;(2) 一般项为1112u S ==,11121211,2,3,222nn n n n n n n u S S n -----=-=-==L ,故该级数为112n n ∞=∑,该级数的和为21lim lim 12nn nn n S →∞→∞-== 。

所属章节:第十一章第一节难度:一级4.根据定义求出下列级数的和:.根据定义求出下列级数的和:(1)1326nnn n ∞=+∑;(2)11(2)n n n ∞=+∑;(3)1(1)(2)(3)n n n n n ∞=+++∑;(4) 1(221)n n n n ∞=+-++∑解答:(1) 111113211332()()1162321123n nnnnn n n ∞∞∞===+=+=+=--∑∑∑;(2) 1111111111113()(1)(2)222324354n n n n n n ∞∞===-=-+-+-+=++∑∑L ; (3)111123111111[()]()()2(1)(2)(3)2122322334n n nn n n n n n ∞∞===-+-⋅=-++⨯=++++++∑∑;(4)11(221)[(21)(1)]n n n n n n n n n ∞∞==+-++=+-+-+-∑∑111()211n n n n n ∞==-+++++∑11221=-=-+ 所属章节:第十一章第一节难度:一级5.证明下列级数发散:.证明下列级数发散:(1) 121n n n ∞=+∑;(2) 12nn n ∞=∑;(3) 11nn n n ∞=⎛⎫ ⎪+⎝⎭∑;(4) 111n nn n nn n +∞=⎛⎫+ ⎪⎝⎭∑解答:(1) 由于1212nnu n =→≠+,所以级数121n nn ∞=+∑发散;发散;(2) 由于20nn u n =→+∞≠,所以级数12nn n∞=∑发散;发散;(3) 由于1()01n n n u n e =→≠+,所以级数11nn n n ∞=⎛⎫ ⎪+⎝⎭∑发散;发散; (4) 由于1111011(1)()(1)n n nnnn n nn nn nu n en n n ++=≥=→≠+++,所以级数111n nnn nn n +∞=⎛⎫+ ⎪⎝⎭∑发散。

高等数学课后习题解答 上海交通大学出版社 第三版 习题8解答

高等数学课后习题解答 上海交通大学出版社 第三版 习题8解答

第八章 多元函数的定义1.求下列函数的定义域,并作图表示:(1)arcsin 3xz =+ (2)()2ln 48;z y x =-+(3)z x = (4)z =(5))0;z R r =>>(6)z =解答: 本题图略(1)30,03,0,0;x x y y -≤≤≤≤⎧⎧⎨⎨≤≥⎩⎩ (2)()242y x >-;(3),0x y <+∞≤<+∞;(4)x ≥且0y ≥;(5)2222r x y R <+≤; (6) 1.xy >所属章节:第八章第一节 难度:一级2.试用不等式表示由抛物线2y x =和2y x =所围成的区域(含边界)。

解答:201,x x y ≤≤≤≤ 所属章节:第八章第一节 难度:一级3.设(),,x f x y xy y=+求1,32f ⎛⎫⎪⎝⎭及()1,1.f - 解答:()15,3,1,1 2.23f f ⎛⎫=-=- ⎪⎝⎭所属章节:第八章第一节 难度:一级4.设()22,tan ,xf x y x y xy y=+-求(),.f tx ty解答:()()2,,.f tx ty t f x y = 所属章节:第八章第一节 难度:一级5.设22,,x f x y x y y ⎛⎫+=- ⎪⎝⎭求(),.f x y解答: 令11uv u x y x v xv u y y v ⎧=+⎧=⎪⎪⎪+⇒⎨⎨=⎪⎪=⎩⎪+⎩,代入原式得 222(1)(,)()()111uv u u v f u v v v v -=-=+++,即2(1)(,)1x y f x y y -=+注:如果题目是“设22,,y f x y x x y ⎛⎫=⎪⎭-+ ⎝求(),.f x y ”则答案为令11u u x y x v yuv v y x v ⎧=+=⎧⎪⎪⎪+⇒⎨⎨=⎪⎪=⎩⎪+⎩ ,代入原式得 222(1)(,)()()111u uv u v f u v v v v -=-=+++,即2(1)(,)1x y f x y y -=+。

线性代数第3版习题全解(上海交通大学)

线性代数第3版习题全解(上海交通大学)

习题1.11. 计算下列行列式:(1) 7415; ()()c o s s i n 2;3s i n c o s xy z x x zx y x x yzx-; ()2cos 1412cos 1012cos x x x;(5)xy x y yx y x x yxy+++。

解:(1)7415=7×5−1×4=31;(2) 1D =;(3) ()111x y zy zyz D x y zx y x y z x y x y zz x z x++=++=++++ ()3331030yzx y z x yy z x y z xyz z yx z=++--=++---。

(4)22cos 10014cos 2cos 12cos 112cos 1012cos 012cos x x x x x xx--=2314cos 2cos 8cos 4cos 12cos x xx x x--=-=-。

(5) xy x y y x y x x yx y+++=2()()()()()x x y y yx x y yx x y x y x y +++++-++33y x --3322x y =--2. 用行列式方法求解下列线性方程组:(1) 31528x y x y +=-⎧⎨+=⎩; (2)1231231323142543x x x x x x x x -+=⎧⎪++=⎨⎪+=⎩。

解:(1) 123111311,10,29528258D D D --====-==, 121210,29D Dx x D D==-== (2) 12131134253,42527,10131D D --==-==- 242132114453,42418131103D D -====,3121239,1,6D D Dx x x D D D====-==-。

3.求下列各排列的逆序数:(1) 34215; (2) 13…(2n −1)(2n )(2n −2)…2。

高等数学教程 课后答案(上海大学理学院数学系 著) 上海大学出版社

高等数学教程 课后答案(上海大学理学院数学系 著) 上海大学出版社

5. a = −π , b = 0 6. (1)当 a = 0, b ≠ 1 时,有无穷间断点 x = 0 ; (2)当 a ≠ 1, b = e 时,有无穷间断点 x = 1 . 习题 1-9 (A) 1.连续区间为: (−∞,−3), (−3,2), (2,+∞)
lim f ( x) =
x →0
1 2
8. a = b 9.
6 5
10. 第二类,第一类 三. 1. ϕ ( x) = 4. 4 7.
1 ln a 2
x +1 x −1
2. α = − 5.
e4
2004 1 ,β = 2005 2005
3. lim x n = 1 n →∞ 6. -50
8. 当 α ≤ 0 时, f ( x) 在 x = 0 处不连续;
1 2
(4)0; (8)
π2 . 8
总复习题一 一. 1. D 6. D 2. D 7. D 3. D 8. C 4. B 9. D 5. C 10. D
2 ⎧ ⎪x − x , x < 0 二.1. f (− x) = ⎨ 2 ⎪ ⎩x , x ≥ 0
2. arcsin(1 − x 2 ) , [− 2 , 2 ] 3. -1 4. 充分,必要 5. 充分,必要 6. 充分必要 7.
(3) p = 21000 (元) 习题 1-1 (B) 1. f ( x) 为偶函数.
2. f ( x) = x 2 − 2, f ( x − ) = x 2 + 3. f [ g ( x)] = ⎨ 4.
3 + 2x 2 1+ x2 ⎧1 − e − x , − 1 < x < 0 x ≤ −1 ⎩− 1 , ⎧0, x < 0 ⎩x , x ≥ 0

线性代数第3版习题全解(上海交通大学)

线性代数第3版习题全解(上海交通大学)
分享以下“线性代数第3版习题全解(上海交通大学)”资讯,希望对您有所帮助,感谢您对的支持!上海交通大学《线性代数(第三版)》习题全解习题1.11.计算下列行列式:c o s x -s i x ; (1);(2)s i n x c o x 1574xy x +y xx +y x yx y x zy;(4)x2cos x 1012cos x 1012cos x(3)zy;(5)解:y x +y。(1)7415=7×5−1×4=31;(2) D =1;x +y +zy x z y z -yz x zy zz yx(3) D =x +y +zx +y +z10y =(x +y +z )x=(x +y +z )0x -yy -z =x 3+y 3+z 3-3xyz。x -z2cos x (4)12cos x 1012cos x01-4cos 2x -2cos x =102cos x 112cos x 10=-1-4cos 2x -2cos x12cos x=8cos 3x -4cos x。x y x +y xx +y x y(5) y x +y=x (x +y ) y +yx (x +y ) +yx (x +y ) -(x +y ) 2(x +y )-y 3-x 3=-2x 3-2y 32.用行列式方法求解下列线性方程组:⎧2x 1-x 2+3x 3=1⎧3x +y =-1⎪(1) ⎨;(2) ⎨4x 1+2x 2+5x 3=4。⎩5x +2y =8⎪x +x 3=3⎩1解:1上海交通大学《线性代数(第三版)》习题全解2(1) 123111311, 10, 2

高等数学课后习题答案3_上海交大版

高等数学课后习题答案3_上海交大版
lim = . x→0 ϕ(x) ϕ′(0)
解答: lim
f (x)
= lim
f (x) − x
f (0)
=
lim
x→0
f (x) − x
f (0)
=
f ′(0)

x→0 ϕ(x) x→0 ϕ(x) −ϕ(0) lim ϕ(x) −ϕ(0) ϕ′(0)
x
x→0
x
所属章节:第三章第二节
难度:二级
11.设 f ′(x) 存在,试证:对常数α、β ,有
∆x→0
∆x
∆x→0
∆x
所以由导数定义, (cos x)′ = − sin x 。
所属章节:第三章第一节 难度:一级
7.按定义求下列函数的导数: (1) y = x2 + 3x −1 ;
(2) y = eax ;
(3) y = cos(ax + b) ;
(4) y = x sin x .
解答:(1)由于 lim
4.假定 f (x) 可导,观察下列极限,指出 A 表示什么?
(1) lim x − x0 = A ; x→x0 f (x) − f (x0 )
(2) lim f (x0 − 2∆x) − f (x0 ) = A ;
∆x →0
∆x
(3) lim f (3) − f (3 − h) = A ;
h→0
h
x→0 x
x→0
x
所属章节:第三章第一节
难度:一级
5.指出下列极限是什么函数在哪一点的导数?
(1) lim ax −1 ; x→0 x
(2) lim (1 + x)m −1 ;
x→0
x

上海交通大学 线性代数教材 课后答案 习题四

上海交通大学 线性代数教材 课后答案 习题四
证因为A是正定的,故存在实可逆矩阵Q使
又由于B为实对称,从而 为实对称。因此存在正交方阵U使
为对角阵。现在令P=QU,于是由 知
且 为对角矩阵。
58.设A和B为n阶正定矩阵,且方程 的根是1。证明:A=B。
证由57题结论,存在n阶实可逆矩阵P,使得 =E, = 是对角阵。
的根是1
由于P可逆,相当于
的根是1
是正定矩阵,其中 是非零实常数。
证易验证B为对称矩阵。对于任意非零向量 , ,其中 。因 是非零实常数, 是非零向量,由A是正定矩阵知 。即 是正定矩阵
21.设A为实对称矩阵,t为实数。证明:t充分大之后,矩阵 为正定矩阵。
证设 是m阶方阵,按行列式完全展开式, 应为t的多项式。其展开式有m!项,每项是不同行不同列的m个元素的乘积,其中t的最高方幂应是主对角线上m个元素之积: 。其他任一项至少包含一个主对角线外元素 ,这时就不能含 和 ,故这些项最多出现 ,它的常数项应为t=0时的 ,故
其中正交替换 为
若 ,A的特征值为0,2,2-2 .分别对应特征向量
, ,

显然Q为正交矩阵。则经 ,
其中正交替换 为
(3) 的解 ,即
其中k为任意实数。
60.用正交替换化二次型
为标准形。
解:
易证主对角线上为 其他元素都为 的 阶方阵的行列式为 ,
的矩阵

所以
,Байду номын сангаас
可以解得属于 的 个特征向量为
属于 的特征向量为
。于是 ,即A合同于E。
反之,A合同于E,则由g可通过实满秩线性替换化为f。因g是正定的,故f也是正定的,即A为正定矩阵。
16.设A为正定矩阵,A合同于B,证明B也是正定矩阵。

上海交通大学 线性代数教材 课后答案 习题五

上海交通大学 线性代数教材 课后答案 习题五

习题五 (一)1.试判断下列集合对所指定的运算是否构成实数域R 上的线性空间: (1)实数域R 上的全体n 阶实对称矩阵之集合, 对矩阵的加法和数乘;(2)平面上不平行于某一向量的全体向量集合, 依照二维向量的加法和数乘; (3)平面上全体向量对于通常的向量加法和数乘0,k k R α=∈;(4)全体复数集合依照数的加法及数的乘法作数乘.解 (1)是;因为实数域R 上的全体n 阶实对称矩阵之集合,关于矩阵的加法和数乘封闭,且易证满足8条性质。

(2)否;因为关于加法不封闭。

(3)否;不满足性质(5).(4)是;全体复数集合依照数的加法封闭,依照数的乘法作数乘封闭,且易证满足8条性质。

2.设C(R)是实数域R 上所有实函数的集合. 对任意(),,f g C R R λ∈∈, 定义()()()()()()(),,f g x f x g x f x f x x R λλ+=+=∈对于这两种运算, C(R)构成R 上的线性空间.问下列子集是否是C(R)的子空间, 为什么? (1)所有连续函数的集合1W ; (2)所有可微函数的集合2W ; (3)所有偶函数的集合3W ; (4)所有奇函数的集合4W ;(5)()()(){}5|01W f C R f f =∈=; (6) ()()(){}6|110W f C R f f =∈=+.解 (1)是;因为所有连续函数的集合1W 关于这里定义的加法和纯量乘法封闭。

(2)是;因为所有可微函数的集合2W 关于这里定义的加法和纯量乘法封闭。

(3)是;因为对任意(),,f g C R R λ∈∈,()()()()()()()()()()()()()(),,f g x f x g x f x g x f g x f x f x f x f x x Rλλλλ+-=-+-=+=+-=-==∈即,所有偶函数的集合3W 关于这里定义的加法和纯量乘法封闭。

(4)是;因为对任意(),,f g C R R λ∈∈,()()()()()()()()()()()()()(),(),f g x f x g x f x g x f g x f x f x f x f x x Rλλλλ+-=-+-=--=-+-=-=-=-∈即,所有奇函数的集合4W 关于这里定义的加法和纯量乘法封闭。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档